Using a Tolerant Cartesian 3D Vector Class

Copyright (c) 2019 Tor Olav Kristensen, http://subcube.com (http://subcube.com)

https://github.com/t-o-k/scikit-vectors (https://github.com/t-o-k/scikit-vectors)

Use of this source code is governed by a BSD-license that can be found in the LICENSE file.

In [1]: 1 from math import acos

3 from skvectors import create class Tolerant Cartesian 3D Vector

In [2]: 1 # Create a 3-dimensional tolerant cartesian vector class
2
3 TCVC3D = create class Tolerant Cartesian 3D Vector('TCVC3D', 'xyz')
4
5 # Explicit alternative:
6 # TCVC3D = |\
7 # create class Tolerant Cartesian 3D Vector(
8 # name = 'TCVC3D',
9 # component names = ['x', ‘'y', 'z'],
10 | # brackets = ['<', '>'],
11 # sep ="', ',
12 # cnull = 0,
13 # cunit = 1,
14 # functions = None,
15 # abs tol = le-12,
16 # rel_tol = le-9
17 #)
In [3]: 1 # Absolute tolerance for vector lengths

2 TCVC3D.abs tol
Out[3]: le-12

http://subcube.com/
https://github.com/t-o-k/scikit-vectors

In [4]: 1 # Relative tolerance for vector lengths
2 TCVC3D.rel tol

Out[4]: 1e-09

In [5]: 1 # Calculate the tolerance for a vector based on its length
2 u = TCVC3D(0.0, 0.0, 0.0) # u.length() = 0.0
3 u.tolerance(), u.tol

Out[5]: (le-12, 1le-12)

In [6]: 1 # Calculate the tolerance for a vector based on its length
2 u = TCVC3D(-0.6, 0.0, 0.8) # u.length() = 1.0
3 u.tol, (le6 * u).tol

Out[6]: (1le-09, 0.001)

In [7]: 1 # Calculate the tolerance for a vector based on its length
2 u = TCVC3D(3, -4, 0) # u.length() = 5.0
3 u.tol, (u / 1e3).tol, (u / 1le6).tol, (u / 1le9).tol

OQut[7]: (5e-09, 5.0000000000000005e-12, le-12, le-12)

In [8]: Calculate a common tolerance for a vector and another based on their lengths
= TCVC3D(0, 0, 0)
= TCVC3D(0, 0, 0)

.tolerance with(v)

B WN R
c < c H#

Out[8]: 1le-12

In [9]: Calculate a common tolerance for a vector and another based on their lengths
= TCVC3D(-0.6, 0.0, 0.8) # u.length() = 1.0
= TCVC3D(3.0, -4.0, 0.0) # v.length() = 5.0

.tolerance with(v), v.tolerance with(u)

A WN B
c < c H#

Out[9]: (5e-09, 5e-09)

In [10]:

Out[10]:

In [11]:

Out[11]:

In [12]:

In [13]:

In [14]:

Out[14]:

In [15]:

Out[15]:

1 # Calculate a common tolerance for several vectors based on their lengths
2 u = TCVC3D(O, 0, 0)
3 v = TCvVC3D(0, 0, 0)
4 some_vectors = [u, v]
5 TCVC3D.tolerance all(some vectors)
le-12
1 # Calculate a common tolerance for several vectors based on their lengths
2 u = TCVC3D(-0.6, 0.0, 0.8) # u.length() = 1.0
3 v = TCVC3D(3.0, -4.0, 0.0) # v.length() = 5.0
4 some vectors = [u, v, u-v, u+yv]
5 TCVC3D.tolerance all(some vectors), TCVC3D.tolerance all(vector for vector in some vectors)

(5.440588203494177e-09, 5.440588203494177e-09)

N

1
2
3
4

True

1
2
3
4

NB: This does not work:
TCVC3D.tolerance all([])

NB: This does not work:
u = TCVC3D(3.0, -4.0, 0.0)
TCVC3D.tolerance all([u])

Check if the length of a vector is equal to cnull (within a calculated tolerance)
nil = TCVC3D.abs tol / 2

u = TCVC3D(0, nil, O) # u.length() = 5e-13

u.is zero vector()

Check if the length of a vector is equal to cnull (within a calculated tolerance)
not nil = TCVC3D.abs tol * 2

u = TCVC3D(0, not nil, 0) # u.length() = 2e-12

u.is zero vector()

False

In [16]: # Check if the length of a vector is not equal to cnull (within a calculated tolerance)
nil = TCVC3D.abs tol / 2
u = TCVC3D(O0, nil, O) # u.length() = 5e-13

bool(u)
Out[16]: False

A WNRE

In [17]: # Check if the length of a vector is not equal to cnull (within a calculated tolerance)
not nil = TCVC3D.abs tol * 2
u = TCVC3D(0, not nil, 0) # u.length() = 2e-12

bool (u)

B WN R

Out[17]: True

In [18]: 1 # Check if the length of a vector is equal to cunit (within a calculated tolerance)
2 u = TCVC3D(-0.6, 0.0, 0.8) # u.length() = 1.0
3 nil = TCVC3D.rel tol / 2
4 v = (1 + nil) * u # Make the length of v slightly longer than 1.0; v.length() = 1.0 + 5e-10
5 v.is unit vector()

Out[18]: True

In [19]: # Check if the length of a vector is equal to cunit (within a calculated tolerance)

u = TCVC3D(-0.6, 0.0, 0.8) # u.length() = 1.0

not nil = TCVC3D.rel tol * 2

v = (1 + not_nil) * u # Make the length of v longer than 1.0; v.length() = 1.0 + 2e-9

v.is unit vector()

U WN R

Out[19]: False

In [20]: 1 # Check if a vector is equal to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 nil = u.tolerance() / 2

4 v = (1 + nil / u.length()) * u # Make v slightly different from u

5 u==v

OQut[20]: True

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

Out[23]:

In [24]:

Out[24]:

1 # Check if a vector is equal to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)
3 not nil = u.tolerance() * 2
4 v = (1 + not_ nil / u.length()) * u # Make v different from u
5 u==yv
False
1 # Check if a vector is equal to any of some other vectors (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)
3 nil = u.tolerance() / 2
4 v = (1 + nil / u.length()) * u # Make v slightly different from u
5 w = TCVC3D(-4, 0, 3)
6 some vectors = [v, w]
7 u in some vectors
True
1 # Check if a vector is equal to any of some other vectors (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)
3 not nil = u.tolerance() * 2
4 v = (1 + not nil / u.length()) * u # Make v different from u
5 w = TCVC3D(-4, 0, 3)
6 some vectors = [v, w]
7 u in some vectors
False
1 # Check if a vector is not equal to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)
3 nil = u.tolerance() / 2
4 v = (1+ nil / u.length()) * u # Make v slightly different from u
5 ul=v
False

In [25]: # Check if a vector is not equal to another (within a calculated tolerance)
u = TCVC3D(3, -4, 0)

not nil = u.tolerance() * 2

v = (1 + not nil / u.length()) * u # Make v different from u

u'=yv

U~ WN R

Out[25]: True

In [26]: 1 # Check if a vector is not equal to any of some other vectors (within a calculated tolerance)
2 = TCVC3D(3, -4, 0)

3 n11 u.tolerance() / 2

4 = (1 + nil / u.length()) * u # Make v slightly different from u

5 = TCVC3D(-4, 0, 3)

6 some_vectors =[] v, wil

7

u not in some vectors

Out[26]: False

In [27]: # Check if a vector is not equal to any of some other vectors (within a calculated tolerance)
u = TCVC3D(3, -4, 0)

not nil = u.tolerance() * 2

v = (1 + not nil / u.length()) * u # Make v different from u

w = TCVC3D(-4, 0, 3)

some vectors = [v, w]

u not in some vectors

NOoOuhs, WN -

Out[27]: True

In [28]: 1 # Check if a vector has equal length to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 v = TCVC3D(-4, 0, 3)

4 nil = u.tolerance with(v) / 2

5 v *= (1 + nil / u.length()) # Make v slightly longer

6

u.equal lengths(v)
Out[28]: True

In [29]:

Out[29]:

In [30]:

Out[30]:

In [31]:

Out[31]:

In [32]:

Out[32]:

1 # Check if a vector has equal length to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 v = TCVC3D(-4, 0, 3)

4 not nil = u.tolerance with(v) * 2

5

6

v *= (1 + not nil / u.length()) # Make v longer
u.equal lengths(v)

False

1 # Check if a vector is shorter than another vector (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 v = TCVC3D(-4, 0, 3)

4 nil = u.tolerance with(v) / 2

5 u *= (1 - nil / u.length()) # Make u slightly shorter

6 u.shorter(v)

False

1 # Check if a vector is shorter than another vector (within a calculated tolerance)
2 U TCVC3D(3, -4, 0)

3 v TCVC3D(-4, 0, 3)

4 not nil = u.tolerance with(v) * 2

5

6

u *= (1 - not nil / u.length()) # Make u shorter
u.shorter(v)

True
1 # Check if a vector is longer than another vector (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)
3 v = TCVC3D(-4, 0, 3)
4 nil = u.tolerance with(v) / 2
5 u *= (1 + nil / u.length()) # Make u slightly longer
6 u.longer(v)

In [33]:

Out[33]:

In [34]:

Out[34]:

In [35]:

Out[35]:

In [36]:

Out[36]:

Check if a vector is longer than another vector (within a calculated tolerance)
u = TCVC3D(3, -4, 0)

v = TCVC3D(-4, 0, 3)

not nil = u.tolerance with(v) * 2

u *= (1 + not _nil / u.length()) # Make u longer

u.longer(v)

OoOuUh, WN =

True

1 # Check if a vector is orthogonal to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 v = TCVC3D(0, 0, 0)

4 nil = TCVC3D.abs tol / 2

5

6

v.X = nil
u.are orthogonal(v)

1 # Check if a vector is orthogonal to another (within a calculated tolerance)
2 u = TCVC3D(3, -4, 0)

3 v = TCVC3D(0, 0, 0)

4 not nil = TCVC3D.abs tol * 2

5 v.x = not nil

6 u.are_orthogonal(v)

1 Check if a vector is orthogonal to another (within a calculated tolerance)
2 TCVvC3D(3, -4, 0)

3 TCVC3D(4, 3, 0)

4 nil = TCVC3D.abs tol / 2 # = 5e-13

5

6

v = u.axis rotate(w, acos(nil)) # u.cos(v) = 5e-13
u.are_orthogonal(v), (u * 1e9).are orthogonal(v / 1e9), (u / 1e9).are orthogonal(v * 1e9)

(True, True, True)

In [37]: 1 # Check if a vector is orthogonal to another (within a calculated tolerance)

2 u = TCVC3D(3, -4, -1)

3 w = TCVC3D(4, 3, 0)

4 not nil = TCVC3D.abs tol * 2 # = 2e-12

5 Vv = u.axis_rotate(w, acos(not nil)) # u.cos(v) = 2e-12

6 u.are_orthogonal(v), (u * 1le9).are orthogonal(v / 1e9), (u / 1e9).are orthogonal(v * 1e9)

Qut[37]: (False, False, False)
In [38]: 1 # Create a vector by rounding the component values in a vector

2 u = TCVC3D(-1.000000004, 3.999999996, 2.123456789) # wu.tolerance() = circa 4.6e-9
3 u.round components(), u.cround

OQut[38]: (TCVC3D(x=-1.0, y=4.0, z=2.12345679), TCVC3D(x=-1.0, y=4.0, z=2.12345679))

In [1: 1

