Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

#!/usr/bin/env python 

 

from __future__ import division 

 

import math 

import random 

import operator 

 

# Utility Functions 

 

def cast_anything_to_vector(input): 

    if isinstance(input, Vector): 

        return input 

 

    # If the input object is a container with two elements, use those elements  

    # to construct a vector. 

 

    try: return Vector(*input) 

    except: pass 

 

    # If the input object has x and y attributes, use those attributes to  

    # construct a vector. 

 

    try: return Vector(input.x, input.y) 

    except: pass 

 

    # If the function has returned by now, the input object could not be cast  

    # to a vector.  Throw an exception. 

 

    raise VectorCastError(input) 

 

def cast_anything_to_rectangle(input): 

 

    # If the input object implements the shape interface, use that information  

    # to directly return a rectangle object. 

 

    try: return cast_shape_to_rectangle(input) 

    except: pass 

 

    # If the input object can be cast to a vector, try to represent that vector  

    # as a rectangle.  Such a rectangle is located where the vector points and  

    # has no area (i.e. width = height = 0). 

 

    try: return Rectangle.from_vector(input) 

    except: pass 

 

    # If the function has returned by now, the input object could not be cast  

    # to a rectangle.  Throw an exception. 

 

    raise RectangleCastError(input) 

 

def cast_shape_to_rectangle(input): 

 

    if isinstance(input, Rectangle): 

        return input 

 

    # If the input object implements the shape interface (i.e. has bottom, left,  

    # width, and height attributes), use that information to construct a bona  

    # fide rectangle object. 

 

    try: return Rectangle.from_shape(input) 

    except: pass 

 

    raise RectangleCastError(input) 

 

 

def accept_anything_as_vector(function): 

    def decorator(self, *input): 

        if len(input) == 1: input = input[0] 

        vector = cast_anything_to_vector(input) 

        return function(self, vector) 

    return decorator 

 

def accept_anything_as_rectangle(function): 

    def decorator(self, input): 

        rect = cast_anything_to_rectangle(input) 

        return function(self, rect) 

    return decorator 

 

def accept_shape_as_rectangle(function): 

    def decorator(self, input): 

        rect = cast_shape_to_rectangle(input) 

        return function(self, rect) 

    return decorator 

 

 

def _overload_left_side(f, scalar_ok=False): 

    def operator(self, other): 

        try: x, y = cast_anything_to_vector(other) 

        except: pass 

        else: return Vector(f(self.x, x), f(self.y, y)) 

 

        # Zero is treated as a special case, because the built-in sum()  

        # function expects to be able to add zero to things. 

 

        if (other is 0) or (scalar_ok): 

            return Vector(f(self.x, other), f(self.y, other)) 

        else: 

            raise VectorCastError(other) 

 

    return operator 

 

def _overload_right_side(f, scalar_ok=False): 

    def operator(self, other): 

        try: x, y = cast_anything_to_vector(other) 

        except: pass 

        else: return Vector(f(x, self.x), f(y, self.y)) 

 

        if (other is 0) or (scalar_ok): 

            return Vector(f(other, self.x), f(other, self.y)) 

        else: 

            raise VectorCastError(other) 

 

    return operator 

 

def _overload_in_place(f, scalar_ok=False): 

    def operator(self, other): 

        try: x, y = cast_anything_to_vector(other) 

        except: pass 

        else: self.x, self.y = f(self.x, x), f(self.y, y); return self 

 

        if (other is 0) or (scalar_ok): 

            self.x, self.y = f(self.x, other), f(self.y, other) 

            return self 

        else: 

            raise VectorCastError(other) 

 

    return operator 

 

 

# Geometry Functions 

 

golden_ratio = 1/2 + math.sqrt(5) / 2 

 

class Shape (object): 

    """ Provide an interface for custom shape classes to interact with the  

    rectangle class.  For example, rectangles can be instantiated from shapes 

    and can test for collisions against shapes.  The interface is very simple, 

    requiring only four methods to be redefined. """ 

 

    def get_bottom(self): 

        raise NotImplementedError 

 

    def get_left(self): 

        raise NotImplementedError 

 

    def get_width(self): 

        raise NotImplementedError 

 

    def get_height(self): 

        raise NotImplementedError 

 

 

    # Properties (fold) 

    bottom = property(get_bottom) 

    left = property(get_left) 

    width = property(get_width) 

    height = property(get_height) 

 

 

class Vector (object): 

    """ Represents a two-dimensional vector.  In particular, this class 

    features a number of factory methods to create vectors from various inputs 

    and a number of overloaded operators to facilitate vector arithmetic. """ 

 

    @staticmethod 

    def null(): 

        """ Return a null vector. """ 

        return Vector(0, 0) 

 

    @staticmethod 

    def random(magnitude=1): 

        """ Create a unit vector pointing in a random direction. """ 

        theta = random.uniform(0, 2 * math.pi) 

        return magnitude * Vector(math.cos(theta), math.sin(theta)) 

 

    @staticmethod 

    def from_radians(angle): 

        """ Create a vector that makes the given angle with the x-axis. """ 

        return Vector(math.cos(angle), math.sin(angle)) 

 

    @staticmethod 

    def from_degrees(angle): 

        """ Create a vector that makes the given angle with the x-axis. """ 

        return Vector.from_radians(angle * math.pi / 180) 

 

    @staticmethod 

    def from_tuple(coordinates): 

        """ Create a vector from a two element tuple. """ 

        return Vector(*coordinates) 

 

    @staticmethod 

    def from_scalar(scalar): 

        """ Create a vector from a single scalar value. """ 

        return Vector(scalar, scalar) 

 

    @staticmethod 

    def from_rectangle(box): 

        """ Create a vector randomly within the given rectangle. """ 

        x = box.left + box.width * random.uniform(0, 1) 

        y = box.bottom + box.height * random.uniform(0, 1) 

        return Vector(x, y) 

 

 

    def copy(self): 

        """ Return a copy of this vector. """ 

        from copy import deepcopy 

        return deepcopy(self) 

 

    @accept_anything_as_vector 

    def assign(self, other): 

        """ Copy the given vector into this one. """ 

        self.x, self.y = other.tuple 

 

    def normalize(self): 

        """ Set the magnitude of this vector to unity, in place. """ 

        try: 

            self /= self.magnitude 

        except ZeroDivisionError: 

            raise NullVectorError 

 

    def scale(self, magnitude): 

        """ Set the magnitude of this vector in place. """ 

        self.normalize() 

        self *= magnitude 

 

    def interpolate(self, target, extent): 

        """ Move this vector towards the given towards the target by the given  

        extent.  The extent should be between 0 and 1. """ 

        target = cast_anything_to_vector(target) 

        self += extent * (target - self) 

 

    @accept_anything_as_vector 

    def project(self, axis): 

        """ Project this vector onto the given axis. """ 

        projection = self.get_projection(axis) 

        self.assign(projection) 

 

    @accept_anything_as_vector 

    def dot_product(self, other): 

        """ Return the dot product of the given vectors. """ 

        return self.x * other.x + self.y * other.y 

 

    @accept_anything_as_vector 

    def perp_product(self, other): 

        """ Return the perp product of the given vectors.  The perp product is 

        just a cross product where the third dimension is taken to be zero and 

        the result is returned as a scalar. """ 

 

        return self.x * other.y - self.y * other.x 

 

    def rotate(self, angle): 

        """ Rotate the given vector by an angle. Angle measured in radians counter-clockwise. """ 

        x, y = self.tuple 

        self.x = x * math.cos(angle) - y * math.sin(angle) 

        self.y = x * math.sin(angle) + y * math.cos(angle) 

 

    def round(self, digits): 

        """ Round the elements of the given vector to the given number of digits. """ 

        # Meant as a way to clean up Vector.rotate() 

        # For example: 

        #   V = Vector(1,0) 

        #   V.rotate(2*pi) 

        #    

        #   V is now <1.0, -2.4492935982947064e-16>, when it should be  

        #   <1,0>. V.round(15) will correct the error in this example. 

 

        x, y = self.tuple 

        self.x = round(x, digits) 

        self.y = round(y, digits) 

 

    def __init__(self, x, y): 

        """ Construct a vector using the given coordinates. """ 

        self.x = x 

        self.y = y 

 

    def __repr__(self): 

        """ Return a string representation of this vector. """ 

        return "Vector(%f, %f)" % self.tuple 

 

    def __str__(self): 

        """ Return a string representation of this vector. """ 

        return "<%.2f, %.2f>" % self.tuple 

 

    def __iter__(self): 

        """ Iterate over this vectors coordinates. """ 

        yield self.x; yield self.y 

 

    def __bool__(self): 

        """ Return true is the vector is not degenerate. """ 

        return self != (0, 0) 

 

    __nonzero__ = __bool__ 

 

    def __getitem__(self, i): 

        """ Return the specified coordinate. """ 

        return self.tuple[i] 

 

    @accept_anything_as_vector 

    def __eq__(self, other): 

        return self.x == other.x and self.y == other.y 

 

    @accept_anything_as_vector 

    def __ne__(self, other): 

        return self.x != other.x or self.y != other.y 

 

    def __neg__(self): 

        """ Return a copy of this vector with the signs flipped. """ 

        return Vector(-self.x, -self.y) 

 

    def __abs__(self): 

        """ Return the absolute value of this vector. """ 

        return Vector(abs(self.x), abs(self.y)) 

 

 

    # Binary Operators (fold) 

    __add__ = _overload_left_side(operator.add) 

    __radd__ = _overload_right_side(operator.add) 

    __iadd__ = _overload_in_place(operator.add) 

 

    __sub__ = _overload_left_side(operator.sub) 

    __rsub__ = _overload_right_side(operator.sub) 

    __isub__ = _overload_in_place(operator.sub) 

 

    __mul__ = _overload_left_side(operator.mul, scalar_ok=True) 

    __rmul__ = _overload_right_side(operator.mul, scalar_ok=True) 

    __imul__ = _overload_in_place(operator.mul, scalar_ok=True) 

 

    __floordiv__ = _overload_left_side(operator.floordiv, scalar_ok=True) 

    __rfloordiv__ = _overload_right_side(operator.floordiv, scalar_ok=True) 

    __ifloordiv__ = _overload_in_place(operator.floordiv, scalar_ok=True) 

 

    __truediv__ = _overload_left_side(operator.truediv, scalar_ok=True) 

    __rtruediv__ = _overload_right_side(operator.truediv, scalar_ok=True) 

    __itruediv__ = _overload_in_place(operator.truediv, scalar_ok=True) 

 

    __div__ = __truediv__ 

    __rdiv__ = __rtruediv__ 

    __idiv__ = __itruediv__ 

 

    __mod__ = _overload_left_side(operator.mod, scalar_ok=True) 

    __rmod__ = _overload_right_side(operator.mod, scalar_ok=True) 

    __imod__ = _overload_in_place(operator.mod, scalar_ok=True) 

 

    __pow__  = _overload_left_side(operator.pow, scalar_ok=True) 

    __rpow__  = _overload_right_side(operator.pow, scalar_ok=True) 

    __ipow__  = _overload_in_place(operator.pow, scalar_ok=True) 

 

 

    def get_x(self): 

        """ Get the x coordinate of this vector. """ 

        return self.x 

 

    def get_y(self): 

        """ Get the y coordinate of this vector. """ 

        return self.y 

 

    def get_tuple(self): 

        """ Return the vector as a tuple. """ 

        return self.x, self.y 

 

    def get_magnitude(self): 

        """ Calculate the length of this vector. """ 

        return math.sqrt(self.magnitude_squared) 

 

    def get_magnitude_squared(self): 

        """ Calculate the square of the length of this vector.  This is 

        slightly more efficient that finding the real length. """ 

        return self.x**2 + self.y**2 

 

    @accept_anything_as_vector 

    def get_distance(self, other): 

        """ Return the Euclidean distance between the two input vectors. """ 

        return (other - self).magnitude 

 

    @accept_anything_as_vector 

    def get_manhattan(self, other): 

        """ Return the Manhattan distance between the two input vectors. """ 

        return sum(abs(other - self)) 

 

    def get_unit(self): 

        """ Return a unit vector parallel to this one. """ 

        result = self.copy() 

        result.normalize() 

        return result 

 

    def get_orthogonal(self): 

        """ Return a vector that is orthogonal to this one.  The resulting 

        vector is not normalized. """ 

        return Vector(-self.y, self.x) 

 

    def get_orthonormal(self): 

        """ Return a vector that is orthogonal to this one and that has been  

        normalized. """ 

        return self.orthogonal.unit 

 

    def get_scaled(self, magnitude): 

        """ Return a unit vector parallel to this one. """ 

        result = self.copy() 

        result.scale(magnitude) 

        return result 

 

    def get_interpolated(self, target, extent): 

        """ Return a new vector that has been moved towards the given target by  

        the given extent.  The extent should be between 0 and 1. """ 

        result = self.copy() 

        result.interpolate(target, extent) 

        return result 

 

    @accept_anything_as_vector 

    def get_projection(self, axis): 

        """ Return the projection of this vector onto the given axis.  The  

        axis does not need to be normalized. """ 

        scale = axis.dot(self) / axis.dot(axis) 

        return axis * scale 

 

    @accept_anything_as_vector 

    def get_components(self, other): 

        """ Break this vector into one vector that is perpendicular to the  

        given vector and another that is parallel to it. """ 

        tangent = self.get_projection(other) 

        normal = self - tangent 

        return normal, tangent 

 

    def get_radians(self): 

        """ Return the angle between this vector and the positive x-axis  

        measured in radians. Result will be between -pi and pi. """ 

        if not self: raise NullVectorError() 

        return math.atan2(self.y, self.x) 

 

    def get_positive_radians(self): 

        """ Return the positive angle between this vector and the positive x-axis  

        measured in radians. """ 

        return (2 * math.pi + self.get_radians()) % (2 * math.pi) 

 

    def get_degrees(self): 

        """ Return the angle between this vector and the positive x-axis  

        measured in degrees. """ 

        return self.radians * 180 / math.pi 

 

    @accept_anything_as_vector 

    def get_radians_to(self, other): 

        """ Return the angle between the two given vectors in radians.  If 

        either of the inputs are null vectors, an exception is thrown. """ 

        return other.radians - self.radians 

 

    @accept_anything_as_vector 

    def get_degrees_to(self, other): 

        """ Return the angle between the two given vectors in degrees.  If 

        either of the inputs are null vectors, an exception is thrown. """ 

        return other.degrees - self.degrees 

 

    def get_rotated(self, angle): 

        """ Return a vector rotated by angle from the given vector. Angle measured in radians counter-clockwise. """ 

        result = self.copy() 

        result.rotate(angle) 

        return result 

 

    def get_rounded(self, digits): 

        """ Return a vector with the elements rounded to the given number of digits. """ 

        result = self.copy() 

        result.round(digits) 

        return result 

 

    def set_x(self, x): 

        """ Set the x coordinate of this vector. """ 

        self.x = x 

 

    def set_y(self, y): 

        """ Set the y coordinate of this vector. """ 

        self.y = y 

 

    def set_radians(self, angle): 

        """ Set the angle that this vector makes with the x-axis. """ 

        self.x, self.y = math.cos(angle), math.sin(angle) 

 

    def set_degrees(self, angle): 

        """ Set the angle that this vector makes with the x-axis. """ 

        self.set_radians(angle * math.pi / 180) 

 

    def set_tuple(self, coordinates): 

        """ Set the x and y coordinates of this vector. """ 

        self.x, self.y = coordinates 

 

 

    # Aliases (fold) 

    dot = dot_product 

    perp = perp_product 

 

    # Properties (fold) 

    tuple = property(get_tuple, set_tuple) 

 

    magnitude = property(get_magnitude, scale) 

    magnitude_squared = property(get_magnitude_squared) 

 

    unit = property(get_unit) 

    orthogonal = property(get_orthogonal) 

    orthonormal = property(get_orthonormal) 

 

    radians = property(get_radians, set_radians) 

    degrees = property(get_degrees, set_degrees) 

 

 

class Rectangle (Shape): 

 

    def __init__(self, left, bottom, width, height): 

        self.__left = left 

        self.__bottom = bottom 

        self.__width = width 

        self.__height = height 

 

    def __repr__(self): 

        return "Rectangle(%f, %f, %f, %f)" % self.tuple 

 

    def __str__(self): 

        return '<Rect bottom={0} left={1} width={2} height={3}>'.format( 

                self.bottom, self.left, self.width, self.height) 

 

    def __eq__(self, other): 

        return ( self.__bottom == other.__bottom and 

                 self.__left == other.__left and 

                 self.__width == other.__width and 

                 self.__height == other.__height ) 

 

    @accept_anything_as_vector 

    def __add__(self, vector): 

        result = self.copy() 

        result.displace(vector) 

        return result 

 

    @accept_anything_as_vector 

    def __iadd__(self, vector): 

        self.displace(vector) 

        return self 

 

    @accept_anything_as_vector 

    def __sub__(self, vector): 

        result = self.copy() 

        result.displace(-vector) 

        return result 

 

    @accept_anything_as_vector 

    def __isub__(self, vector): 

        self.displace(-vector) 

        return self 

 

    def __contains__(self, other): 

        return self.contains(other) 

 

 

    @staticmethod 

    def from_size(width, height): 

        return Rectangle(0, 0, width, height) 

 

    @staticmethod 

    def from_width(width, ratio=1/golden_ratio): 

        return Rectangle.from_size(width, ratio * width) 

 

    @staticmethod 

    def from_height(height, ratio=golden_ratio): 

        return Rectangle.from_size(ratio * height, height) 

 

    @staticmethod 

    def from_square(size): 

        return Rectangle.from_size(size, size) 

 

    @staticmethod 

    def from_dimensions(left, bottom, width, height): 

        return Rectangle(left, bottom, width, height) 

 

    @staticmethod 

    def from_sides(left, top, right, bottom): 

        width = right - left; height = top - bottom 

        return Rectangle.from_dimensions(left, bottom, width, height) 

 

    @staticmethod 

    def from_corners(first, second): 

        first = cast_anything_to_vector(first) 

        second = cast_anything_to_vector(second) 

 

        left = min(first.x, second.x);  top = max(first.y, second.y) 

        right = max(first.x, second.x); bottom = min(first.y, second.y) 

 

        return Rectangle.from_sides(left, top, right, bottom) 

 

    @staticmethod 

    def from_bottom_left(position, width, height): 

        position = cast_anything_to_vector(position) 

        return Rectangle(position.x, position.y, width, height) 

 

    @staticmethod 

    def from_center(position, width, height): 

        position = cast_anything_to_vector(position) - (width/2, height/2) 

        return Rectangle(position.x, position.y, width, height) 

 

    @staticmethod 

    def from_vector(position): 

        position = cast_anything_to_vector(position) 

        return Rectangle(position.x, position.y, 0, 0) 

 

    @staticmethod 

    def from_points(*points): 

        left = min(cast_anything_to_vector(p).x for p in points) 

        top = max(cast_anything_to_vector(p).y for p in points) 

        right = max(cast_anything_to_vector(p).x for p in points) 

        bottom = min(cast_anything_to_vector(p).y for p in points) 

        return Rectangle.from_sides(left, top, right, bottom) 

 

    @staticmethod 

    def from_shape(shape): 

        bottom, left = shape.bottom, shape.left 

        width, height = shape.width, shape.height 

        return Rectangle(left, bottom, width, height) 

 

    @staticmethod 

    def from_surface(surface): 

        width, height = surface.get_size() 

        return Rectangle.from_size(width, height) 

 

    @staticmethod 

    def from_pyglet_window(window): 

        return Rectangle.from_size(window.width, window.height) 

 

    @staticmethod 

    def from_pyglet_image(image): 

        return Rectangle.from_size(image.width, image.height) 

 

    @staticmethod 

    def from_union(*inputs): 

        rectangles = [cast_shape_to_rectangle(x) for x in inputs] 

        left = min(x.left for x in rectangles) 

        top = max(x.top for x in rectangles) 

        right = max(x.right for x in rectangles) 

        bottom = min(x.bottom for x in rectangles) 

        return Rectangle.from_sides(left, top, right, bottom) 

 

    @staticmethod 

    def from_intersection(*inputs): 

        rectangles = [cast_shape_to_rectangle(x) for x in inputs] 

        left = max(x.left for x in rectangles) 

        top = min(x.top for x in rectangles) 

        right = min(x.right for x in rectangles) 

        bottom = max(x.bottom for x in rectangles) 

        return Rectangle.from_sides(left, top, right, bottom) 

 

 

    def grow(self, padding): 

        """ Grow this rectangle by the given padding on all sides. """ 

        self.__bottom -= padding 

        self.__left -= padding 

        self.__width += 2 * padding 

        self.__height += 2 * padding 

        return self 

 

    def shrink(self, padding): 

        """ Shrink this rectangle by the given padding on all sides. """ 

        self.grow(-padding) 

        return self 

 

    @accept_anything_as_vector 

    def displace(self, vector): 

        """ Displace this rectangle by the given vector. """ 

        self.__bottom += vector.y 

        self.__left += vector.x 

        return self 

 

    def set(self, shape): 

        """ Fill this rectangle with the dimensions of the given shape. """ 

        self.bottom, self.left = shape.bottom, shape.left 

        self.width, self.height = shape.width, shape.height 

        return self 

 

    def copy(self): 

        """ Return a copy of this rectangle. """ 

        from copy import deepcopy 

        return deepcopy(self) 

 

 

    @accept_shape_as_rectangle 

    def inside(self, other): 

        """ Return true if this rectangle is inside the given shape. """ 

        return ( self.left >= other.left and 

                 self.right <= other.right and 

                 self.top <= other.top and 

                 self.bottom >= other.bottom) 

 

    @accept_anything_as_rectangle 

    def outside(self, other): 

        """ Return true if this rectangle is outside the given shape. """ 

        return not self.touching(other) 

 

    @accept_anything_as_rectangle 

    def touching(self, other): 

        """ Return true if this rectangle is touching the given shape. """ 

        if self.top < other.bottom: return False 

        if self.bottom > other.top: return False 

 

        if self.left > other.right: return False 

        if self.right < other.left: return False 

 

        return True 

 

    @accept_anything_as_rectangle 

    def contains(self, other): 

        """ Return true if the given shape is inside this rectangle. """ 

        return (self.left <= other.left and 

                self.right >= other.right and 

                self.top >= other.top and 

                self.bottom <= other.bottom) 

 

 

    @accept_anything_as_rectangle 

    def align_left(self, target): 

        self.left = target.left 

 

    @accept_anything_as_rectangle 

    def align_center_x(self, target): 

        self.center_x = target.center_x 

 

    @accept_anything_as_rectangle 

    def align_right(self, target): 

        self.right = target.right 

 

    @accept_anything_as_rectangle 

    def align_top(self, target): 

        self.top = target.top 

 

    @accept_anything_as_rectangle 

    def align_center_y(self, target): 

        self.center_y = target.center_y 

 

    @accept_anything_as_rectangle 

    def align_bottom(self, target): 

        self.bottom = target.bottom 

 

 

    def get_left(self): 

        return self.__left 

 

    def get_center_x(self): 

        return self.__left + self.__width / 2 

 

    def get_right(self): 

        return self.__left + self.__width 

 

    def get_top(self): 

        return self.__bottom + self.__height 

 

    def get_center_y(self): 

        return self.__bottom + self.__height / 2 

 

    def get_bottom(self): 

        return self.__bottom 

 

    def get_width(self): 

        return self.__width 

 

    def get_height(self): 

        return self.__height 

 

    def get_half_width(self): 

        return self.__width / 2 

 

    def get_half_height(self): 

        return self.__height / 2 

 

    def get_size(self): 

        return self.__width, self.__height 

 

    def get_size_as_int(self): 

        from math import ceil 

        return int(ceil(self.__width)), int(ceil(self.__height)) 

 

 

    def get_top_left(self): 

        return Vector(self.left, self.top) 

 

    def get_top_center(self): 

        return Vector(self.center_x, self.top) 

 

    def get_top_right(self): 

        return Vector(self.right, self.top) 

 

    def get_center_left(self): 

        return Vector(self.left, self.center_y) 

 

    def get_center(self): 

        return Vector(self.center_x, self.center_y) 

 

    def get_center_right(self): 

        return Vector(self.right, self.center_y) 

 

    def get_bottom_left(self): 

        return Vector(self.left, self.bottom) 

 

    def get_bottom_center(self): 

        return Vector(self.center_x, self.bottom) 

 

    def get_bottom_right(self): 

        return Vector(self.right, self.bottom) 

 

 

    def get_dimensions(self): 

        return (self.__left, self.__bottom), (self.__width, self.__height) 

 

    def get_tuple(self): 

        return self.__left, self.__bottom, self.__width, self.__height 

 

    def get_union(self, *rectangles): 

        return Rectangle.from_union(self, *rectangles) 

 

    def get_intersection(self, *rectangles): 

        return Rectangle.from_intersection(self, *rectangles) 

 

    def get_grown(self, padding): 

        result = self.copy() 

        result.grow(padding) 

        return result 

 

    def get_shrunk(self, padding): 

        result = self.copy() 

        result.shrink(padding) 

        return result 

 

 

    def set_left(self, x): 

        self.__left = x 

 

    def set_center_x(self, x): 

        self.__left = x - self.__width / 2 

 

    def set_right(self, x): 

        self.__left = x - self.__width 

 

    def set_top(self, y): 

        self.__bottom = y - self.__height 

 

    def set_center_y(self, y): 

        self.__bottom = y - self.__height / 2 

 

    def set_bottom(self, y): 

        self.__bottom = y 

 

    def set_width(self, width): 

        self.__width = width 

 

    def set_height(self, height): 

        self.__height = height 

 

    def set_size(self, width, height): 

        self.__width = width 

        self.__height = height 

 

 

    @accept_anything_as_vector 

    def set_top_left(self, point): 

        self.top = point[1] 

        self.left = point[0] 

 

    @accept_anything_as_vector 

    def set_top_center(self, point): 

        self.top = point[1] 

        self.center_x = point[0] 

 

    @accept_anything_as_vector 

    def set_top_right(self, point): 

        self.top = point[1] 

        self.right = point[0] 

 

    @accept_anything_as_vector 

    def set_center_left(self, point): 

        self.center_y = point[1] 

        self.left = point[0] 

 

    @accept_anything_as_vector 

    def set_center(self, point): 

        self.center_y = point[1] 

        self.center_x = point[0] 

 

    @accept_anything_as_vector 

    def set_center_right(self, point): 

        self.center_y = point[1] 

        self.right = point[0] 

 

    @accept_anything_as_vector 

    def set_bottom_left(self, point): 

        self.bottom = point[1] 

        self.left = point[0] 

 

    @accept_anything_as_vector 

    def set_bottom_center(self, point): 

        self.bottom = point[1] 

        self.center_x = point[0] 

 

    @accept_anything_as_vector 

    def set_bottom_right(self, point): 

        self.bottom = point[1] 

        self.right = point[0] 

 

 

    # Properties (fold) 

    left = property(get_left, set_left) 

    center_x = property(get_center_x, set_center_x) 

    right = property(get_right, set_right) 

    top = property(get_top, set_top) 

    center_y = property(get_center_y, set_center_y) 

    bottom = property(get_bottom, set_bottom) 

    width = property(get_width, set_width) 

    height = property(get_height, set_height) 

    half_width = property(get_half_width) 

    half_height = property(get_half_height) 

    size = property(get_size, set_size) 

    size_as_int = property(get_size_as_int) 

 

    top_left = property(get_top_left, set_top_left) 

    top_center = property(get_top_center, set_top_center) 

    top_right = property(get_top_right, set_top_right) 

    center_left = property(get_center_left, set_center_left) 

    center = property(get_center, set_center) 

    center_right = property(get_center_right, set_center_right) 

    bottom_left = property(get_bottom_left, set_bottom_left) 

    bottom_center = property(get_bottom_center, set_bottom_center) 

    bottom_right = property(get_bottom_right, set_bottom_right) 

 

    dimensions = property(get_dimensions) 

    tuple = property(get_tuple) 

 

 

Rect = Rectangle 

 

 

def get_distance(a, b): 

    a = cast_anything_to_vector(a) 

    b = cast_anything_to_vector(b) 

    return a.get_distance(b) 

 

def interpolate(a, b, num_points=3): 

    a = cast_anything_to_vector(a) 

    b = cast_anything_to_vector(b) 

    interpolation = [a] 

    steps = num_points - 1 

    assert steps >= 0 

 

    for step in range(1, steps): 

        v = a.get_interpolated(b, step/steps) 

        interpolation.append(v) 

 

    interpolation.append(b) 

    return interpolation 

 

 

# Exceptions 

 

class NullVectorError (Exception): 

    """ Thrown when an operation chokes on a null vector. """ 

    pass 

 

class VectorCastError (Exception): 

    """ Thrown when an inappropriate object is used as a vector. """ 

 

    def __init__(self, object): 

        Exception.__init__(self, "Could not cast %s to vector." % type(object)) 

 

 

class RectangleCastError (Exception): 

    """ Thrown when an inappropriate object is used as a rectangle. """ 

 

    def __init__(self, object): 

        Exception.__init__(self, "Could not cast %s to rectangle." % type(object))