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Foreword

Thisbook solvesthe Three Bears Problem. Asyou may recall, when Goldilocks visited
thethree bears, somethingsweretoo big, and somethingsweretoo small, but shewanted
something that was “just right.”

Many scientists, engineers, and technical managers face the same problem. It isim-
portant for them to have agood grasp of modern computer technologies, including com-
puter architecture, operating systems, and networks. All of theseare complex and rapidly
changing subjects.

Until now, these people have had two choices. On the one hand, there are many de-
tailed computer science textbooks available for each subject separately. These books of -
fer acomprehensive view of the subject, but require the reader to plow through 500-800
pages of material. Mastering computer architecture, operating systems, and networking
might require absorbing 2000 pages of highly technical material.

On the other hand, bookstores are full of gee-whiz books telling how wonderful com-
puters are and what they can do for you. Many are about specific systems, and are full of
advice of the sort “To make X happen, click oniconY.” These booksare written for read-
ers with a casual interest in science and technology, but do not explain how computers
and systems actually work inside.

For technically-oriented people in physics, chemistry, engineering, and management,
neither of these choicesis appropriate. What they need isa single volume that discusses
the fundamental s of computer systems (architecture, operating systems, and networks) in
considerable technical detail, but in asingle well-integrated book. Thisistheir book. In
alittle over 500 pages, it covers hardware, architecture, operating systems, communica-
tion, LANS, and WANS in asurprising amount of detail, with numerous algorithms given
as actual programsin an Ada-like language.

At universities, this book can be used for a second computer course for non-computer
science majors. It isaso self contained, and makes fine reading for practicing profes-
sionalswho want to keep up-to-date on three different subareas of computer science, but
without having to read three different books. | recommend this book most highly for
these audiences.

Andrew S Tanenbaum

Xiii
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Preface

Why we have written this book

This book was written out of necessity. A few years ago, both of us were engaged in
giving acourse onthetechnical principlesof computer systemsfor an audiencewith only
amodest background in computer science. The goals set out for that course where quite
challenging. First, undergraduate studentswereto be provided with ageneral insight into
the actual working of computer systems, which covered the three main themes. computer
organization, operating systems, and computer networks. Second, there was only room
for 15 two-hour lectures, to be given in a single semester. Indeed, not an easy task to
accomplish, especially when it turned out that hardly any single textbook existed that
covered these three themes at an adequate introductory level.

The result was that an initial course text was written, comprising about 200 pages,
which roughly explained the working of computer systems. The material was more or
less equally divided between computer organization, operating systems, and computer
networks. This course text, combined with the actual lectures given, proved at |east one
thing: explaining thetechnicalities of computer systemsin asingle semester wasnot only
feasible, the students actually enjoyed it. Doing a complete rewrite and ending with a
550-page book isjust one of those things that can happen when the two of us start hav-
ing “good” ideas.

The main questionsthat are addressed

As mentioned, in this book we have made an attempt to explain the working of com-
puter systems, but in such away that it should be possibleto go through amost the entire
material in just a single one-semester course. The book roughly addresses, in order, the
following questions:

e What does a computer look like from the inside? In particular, we explain the
essence of chips, processors, memory, peripheral devices such as hard disks and

XV
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xvi Preface

keyboards, and how these various components are connected to each other so that
they can operate together.

e What isactually meant by a computer program? This guestion (which to some
may seem so simple that they will have a hard time giving a right answer) is ad-
dressed in two ways. First, we explain how we can use a computer’s so-called in-
struction set to develop programs. Second, we shall demonstrate that computer
programs can be more easily written in a high-level programming language for
which no real processor exists, but which can neverthel ess be executed.

e What isan operating system, and how doesit work? Thisisan important ques-
tion asit addressestheway that modern computersappear to users. Wewill explain
that an operating systemisaspecial program that allowsyou to work conveniently
and efficiently with a computer. Above all, we will emphasize the role of operat-
ing systems as amechanism to abstract mattersthat are specific to hardware, and in
particular that they provide an important means for communication by computers.

e How can computersbelinked together? Thisisthefirst topic of computer net-
works. Our attention will initially focus on various hardware aspects, i.e. the phys-
ical appearance of computer networks. Also, we shall present the basics of how
computer programs are to be constructed by which information between two or
several computers can be exchanged. In a sense, the answer to this question is
treated very much at the same level asthefirst question posed above.

e How does communication across a computer network take place? Thisisan
important question that will also be addressed. We shall explain how messages can
be transferred from one user to another, possibly crossing a network that spansthe
world, or aternatively, one that is used in conjunction with, for example, print-
ers. Central to answering this question isthe concept of communication protocols:
what are they, and how are they realized?

These questions are not addressed in isolation. Instead, we follow an approach by which
the working of computer systems is gradually exposed. This approach not only alows
the reader to understand the essentials, but above all, will provide an overall view on the
technical principles of computer systems.

A book such as this probably cannot do otherwise than present the essentials. And
indeed, thisis as far as we go. But in doing so, we have sought to provide an under-
standing of the subjects in such away that the reader will see the big picture, but at the
same time will have a feeling for the details that are involved. For example, we have
found it important to explain how the interaction between hardware and software takes
place, in particular when discussing operating systems. Strangely enough, thistopic is
often hardly discussed explicitly in books on either computer organization or operating
systems. Likewise, we provide simplified examples of programs that illustrate how lay-
ering of software can be achieved. Layering is an important concept when explaining
computer networks. We have been surprised by the fact that again only relatively few
books explain how the concept can be made concrete. And although our approach only
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permits us to give a glimpse of how layering works in practice, we feel that not doing
thiswould have been a serious omission.

Intended reader ship

With these thingsin mind, we have written our text for people that are somewhat familiar
with computers. This means that we expect that the reader already has a basic feeling of
what computers are, and what you can do with them. Having followed an introductory
course in computer science will give an understanding of the material presented here.
Most of all, it will make it much easier to comprehend concepts such as processors and
programs, which are of vital importance to understanding computer systems. Having a
reading knowledge of computer programs, for example written in Pascal, will help.

The materia is, by its nature, technical. As such, undergraduate studentsin engineer-
ing disciplines and natural sciences will perhaps find the book easier to understand than
others. However, we emphasize that the material has also been classroom tested for stu-
dents in business information sciences. Aswe have said above, a basic interest in com-
puter science as experienced during afirst introductory course should be sufficient for a
successful understanding of this book.

The book can also serve as an aternative for courses in computer organization, with
less emphasis on architecture and more on modern subjects as concurrency and commu-
nication. To our opinionthischangein material coveragewill inevitably take place, since
computers and communication will be increasingly integrated.

But apart from a being a textbook to be used as part of a course, the material isalsoin-
tended for those who would wish to know more about the various general technical prin-
ciples, but find existing textbooks simply too overwhelming to start with. In that case,
thisbook may well form agood starting point, and may even be sufficient. If the latter is
not the case, then enough knowledge and terminology will have been introduced to make
the transition to more specialized textbooks.

We have made an attempt to organize the material in such away that different types
of readers will feel equally comfortable. First, we have included so-called elaboration
sections, which are distinguished from the main text as follows:

>> Thisisan example of an elaboration section, and can be skipped at first reading.

Elaboration sections often contain additional material that may be either too technical or
too detailed to be discussed initially. In all cases, these sections may be skipped if so
required: they do not interfere with the main text but are pure extensions of it.

Each chapter concludeswith asummary or discussion, aswell asreferencesfor further
reading. Where explicitly noted, the reader is particularly encouraged to consult the ref-
erenced material asit will generally provide further insight into the material as we have
presented it. Finally, each chapter, except the first one, has been augmented with a num-
ber of exercises. Starred exercises generally require reading the elaboration sections.
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M ore information

We find it important to keep the reader informed about additional material related to this
book. Therefore, we have constructed a Web page at http://www.cs.vu.nl/” steen/cno.html.
At present, the page containslinksto problem sol utionsand Postscript versionsof (nearly)
all figures. Additional material will be made available through this Web page. You can
also find out how and where we can be reached if you wish to contact us. Suggestionson
how the book can be improved are most welcome, as well as any reports on errors and
omissions.
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Chapter 1

| ntroduction

Thefield of computer and network organizationislarge, but an exciting one. The number
of problems that have been tackled and are still being studied is so large that it is often
difficult to obtain an overview of the subject without being swamped by all kinds of de-
tails. In order to avoid losing the way while studying the material in the chapters yet to
follow, we start with giving some rough guidelines on what computer and network orga-
nization ismainly about. Thisintroductory chapter is centered around Section 1.2 which
outlinesthe essence of computers, and Section 1.3 in which we concentrate on computer
networks.

1.1 Tostart with

In order to understand the material presented in thisbook it is necessary to look at prob-
lems of computer and network organization from the right perspective. Let's start by
explaining how we plan to tackle the problems by telling what our perspectiveis.

1.1.1 Thewhat versusthe how

It is hard to imagine what our daily lives would be without having computers. We have
become so familiar with their existence that they hardly surprise us any more. For ex-
ample, we expect that much of the administration that we are confronted with is handled
one way or the other by means of acomputer. That the inventory of supermarketsis kept
up to date by simply coupling the cash registersto the computer is something we tend to
consider asnormal. Using credit cardsthat are el ectronically processed isalso something
we are accustomed to. We have grown used to producing documents through advanced
word processing systems rather than using typewriters. These are only afew examples.
Computers have indeed ssimply become afact of life.

But thisisjust one side of computers. To date, many people have afairly good idea of
what can be done with computers. But knowing how computer engineers attained their
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2 Introduction

remarkable achievements is a completely different story. Aswe have al become so ac-
quainted with using computers, it also seems that we are willing to accept that it is nec-
essary to be an expert to understand what’'s going on under the hood. And that isreally
unfortunate, for it is our belief that if someone knows more about how computers work,
it becomes alot easier to understand what they can do, and above all, what they cannot
do.

In this book we will make a serious attempt to guide you through the principles that
underlie computer systems. The term “computer systems” is to be taken in its broad-
est sense. It covers the field of relatively small personal computers, as well as that of
worldwide networks consisting of millions of computers connected together to allow in-
formation to be easily communicated around the world.

1.1.2 Architecture versusorganization

The approach that we have adopted is that of focusing on the or ganization of comput-
ers and networks. What does that mean? To make an easy comparison, suppose we had
decided to write abook on the principles underlying cars. We could then roughly follow
two approaches.

In thefirst approach, we could start by explaining that a car has an engine, and al so ex-
plain what an engine consists of. We would be saying something about fan belts, cylin-
ders, spark plugs, etc. And likewise, other necessary components that make up a car
would be presented, together with an explanation of what they stand for. Putting it dif-
ferently, we would follow an approach in which acar is successively decomposed into a
number of functional components. In the end, you would be able to name all the neces-
sary components and explain exactly what they stand for, and why they are needed. In
that case, you would have a pretty good idea about the ar chitecture of acar.

Anaternative approach isthefollowing. Rather than merely explaining that an engine
is needed, we could choose to explain how that engine actually works. In that case, we
would explain that an engine may have four cylinders, possibly arranged in a row, and
that each cylinder is connected to a crankshaft. By pushing cylinders alternately down-
wards using compressed gas, we would show how an engine rotates the crankshaft that
can then be subsequently used to rotate the wheels. Rather than just looking at what kind
of componentsa car is made of, we would explain the principal working of each compo-
nent, and the way that they are connected to each other. We would then be focusing on
the organization of acar.

Admittedly, the distinction between architecture and organization isnot aclear cut one.
What should be clear, however, is that we are not going to focus on merely describing
computer systems. Instead, our attention is focused on showing how the various com-
ponents work, and how they are connected to each other. The main drawback of this
approach isthat we cannot tell what every computer looks like on theinside, and indeed,
very many different organizations exist. In terms of our example above, we explain how
a4-cylinder engine works, and leave that of a 16-cylinder version to your own imagina-
tion.

At this point, let’s start by gently introducing the various concepts that we will come
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Computers 3

meet in succeeding chapters. In the next two sectionswe first concentrate on the concept
of computers, followed by an introduction to computer networks.

1.2 Computers

The first part of this book, which consists roughly of Chapters 2 through 6, deals with
explaining what computers actually are. An outline of our approach isexplained in Sec-
tion1.2.1. Then, astructured approach to organizing computersisgivenin Section 1.2.2.

1.2.1 Theessence of computing devices

The nomenclature applied to computersisillustrative of the way that they are conceived
today. For example, it isnot uncommon to blame the computer for not doing itsjob right,
nor do we find it strange when someone says that the computer had a hard time getting
calculations done. 1n the case of factory automation, as another example, computers are
said to take over jobsthat people previously did by hand. Totakeit one step further, com-
puters are even said to be capable of learning. Many more examples can be thought of in
which computers are not merely treated as appliances, but are perceived as autonomous
entities having some kind of intelligence. The gap between our perception of what com-
puters appear to be and what they really are is sometimes astonishing. Although it does
make sense, for the sake of simplicity, to talk about computers as autonomous entities,
it does not make sense to treat them as intelligent beings with awill of their own. Com-
puters are not intelligent, and they cannot do anything that has not been put into them.
They are just sometimes complex, that’s all. In particular, they can be so complex that
it is hard for one person to comprehend fully what computersreally do. In this book we
are going to explain some of the essentials of computersthat will allow aperson to get a
grasp of how they work. We are convinced that this will help you put computersin the
right perspective, namely that of useful appliances.

On simulation and inter pretation

Let’s start with saying something that might be surprising: computers have no concept
of O'sand 1's. When giving the matter some thought, it isindeed hard to imagine that an
electronic device can have any concepts. The essence of the matter isthat computersare
devicesthat simulate the way that we handle things. And they are doing such agood job
at that, it isindeed sometimes hard to differentiate between simulation and what isreally
happening. Let’slook at an example to illustrate this.

Suppose we had a box with five light bulbs and two switches as shown in Figure 1.1.
The box hides an implementation of a simple calculator, capable of adding any combi-
nation of 0, 1, and 2. For example, if we set the first switch Sl to “0” and the second
switch S2to “2”, then the third bulb marked “2” would light up. Thiswould also be the
casewhen Slissetto“1” and S2to “1” or, when SLisset to “2” and &2” isset to “0".
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Figure 1.1 A ssimple calculating device.
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Figure 1.2 The effect of changing the labels: rubbish.

Now, the question that we want to raise here is whether or not our device can actually
calculate.

Giving astraight answer to thisquestionisreally not easy. For onething, it appearsas
if our device does have some calculation capabilities: no matter what combination of S1
and 2 we choosg, it dways givesthe right answer. So, from that perspective, we would
indeed say that we have atrue calculator at our disposal.

But suppose we changed the labels at both switches. Labels 0" are replaced by “27,
and labels“ 2" are replaced by “0” respectively, as shown in Figure 1.2. In that case, the
fact that abulb startsto light really does not make any sense. Putting it differently, there
isno sensible inter pretation of what comes out of the box when we turn the switches.
For one thing, our deviceisdifficult to recognize as some kind of calculator. The crux of
thematter lies, of course, intheway that weinterpret the setting of the switchesin combi-
nation with which bulb startsto glow. Asalast experiment, you will see that everything
works properly again if we also replace the label at each bulb as shown in Figure 1.3.

So what does our device actually do? First, it isimportant to realize that our calculator
can only be perceived as such if we can interpret the setting of the switchesin combina-
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Figure 1.4 An implementation of our ssmple calculator.

tion with the light bulbsin a manner that makes senseto us. But thereismore. It should
be clear that the device itself has no “knowledge’ built-in concerning arithmetic opera-
tions. Instead, what it does is merely simulate operations that have meaning to us. The
combination of having the device properly simulate a part of our own world, and our
own interpretation of its outcomes, puts us in a position to state that we indeed have a
calculator at hand.

> Some of you might ask what our calculator looks like on theinside. Animplementation is
shown in Figure 1.4. Switch Sl israther simple. It isjust a switch that allows a person to
choose to connect the input with precisely one of the three outputs. In the figure, the input
is connected to the first output, in our case, meaning that switch S1 has been set to “0".

Switch S2 consists of three sub-switches, each sub-switch enabling the input to be con-
nected to one of the three outputs. However, we assume that these three sub-switches are
mechanically constructed in such a way that turning the knob always implies turning the
three switches at the same time. Consequently, if the first sub-switch connects its input to
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Figure 1.5 The principle of a programmable device.

its second output pin as shown in the figure, the other two sub-switches will do precisely the
same in their case. What we have shown, therefore, is the state of affairs when switch S2
has been set to “1”. And indeed, the light bulb marked L1 will now be fully connected to
the battery, through which it then lights up.

Computersare in essence not very different from our simple calculator. They are con-
structed of electrical componentsthat act as switches, such that if we feed them with the
right electrical values(i.e. valuesto which we attach some useful interpretation) they will
produce a set of output valuesin such away that if we also interpret those valuesin some
sensible manner it will appear asif our computer has really computed something worth
while. The big difference with our calculator lies in the fact that real computers can be
programmed.

Programmable devices

What do we mean exactly by aprogram? Following Webster’s Dictionary, aprogram is
“aplan or sequence of thingsto be done”. For programmable devices, this can be refor-
mulated as

A programis a sequence of instructions that are to be executed.

The keywords here are instructions and execution. For example, using our ssmple calcu-
lator for adding 1 and 2 could be done by executing the following two instructions:

set switch Sl to “1”
set switch 2 to “2”

In this case, the user of the calculator would be responsible for the execution of these
instructions; in computers, the execution mechanism is part of them. In that case, we
need only construct a program and feed it into the device.

The principle is shown in Figure 1.5. What we see there is an input stream of num-
bers, and a program consisting of a series of instructionsthat the computer isto perform.
The output stream consists of the results produced by executing the instructions on the
given input. In our highly simplified example, we basicaly distinguish three types of
instructions:
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e Theinstruction READ(X) by which the next input valueisread from theinput stream
and internally stored as the variable X.

e Theinstruction WRITE(X) of which the execution yieldsthat the value of the inter-
nally stored variable X iswritten to the output stream.

¢ A collection of simple arithmetic operations that generally require three internally
stored variables. For example, the instruction ADD(X,Y,z) assigns the value of the
operation X + Y to Z.

Using these three types of instructions, we can then, for example, construct the follow-
ing general program that does the same as our calculator for an arbitrary input stream
consisting of just two numbers:

READ(X)
READ(Y)
ADD(X,Y,2)
WRITE(Z)

Programs are referred to as softwar e to distinguish them from the hardware components
of which computers are made.

Already we can see animportant difference from our simple calculator. Wherewefirst
merely needed to turn the knobs of the two switches S1 and &2 in order to get the result
instantaneously, we now have the situation that the input values arefirst stored internally
in the form of the variables X and Y, respectively. Also, instead of immediately getting
aresult, we explicitly instruct the computer to do an addition, and again separately store
this result as the variable z. The result is made available to us by writing it to the out-
put stream. We have thus assumed two extra components: an internal store, and some
processing unit that operates on values kept in that store.

Figure 1.5 isavery ssimple way of representing computers, and isin fact the way that
thefirst computersworked. The pointto realize, however, isthat inthisarchitecture, each
instruction is separately fed into the computer and subsequently executed. In particular,
it requires a separate mechanism to read the program instruction by instruction in order
to have it executed. An important improvement was made when it was recognized that
programs need essentially not be treated differently from the input data that they worked
on. Theideais revolutionary and simple at the same time. What we do is treat the in-
structions that make up a program as ordinary values that can be stored internaly. In
that case, our computer design can be made alot ssmpler. What it meansisthat we need
apowerful, central processing unit that isconnected to alarge main store. Thiscentral
processing unit, or processor asit is called, essentially has just two operations built into
it:

e An operation FETCH that reads the next instruction from the main store and stores
it locally in aspecial variable INSTRUCTION.

e Anoperation EXECUTE that does precisely what its name suggests. It executesthe
instruction currently stored as the variable INSTRUCTION, and in turn internally
storesthe result in a special variable RESULT.
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(We shall see in Chapter 3 that the variable RESULT is actually not needed. It isintro-
duced here for the sake of illustration.) Aswe have said, the processor itself is a com-
puter initsown right. It has some storage capacity and is capable of performing just two
operations. That designing computers now becomes a lot simpler is not difficult to see.
Essentially, we need to implement a device that continuously executes the alternating se-
quence of only the two operations FETCH and EXECUTE. Expressing this as a program
yields something like:

forever loop
FETCH
EXECUTE

end loop

There are two important thingsthat need to be kept in mind when organizing comput-
ersin thisway. First, we need to make a distinction between two distinctive levels. At
the lowest level we have the two operations FETCH and EXECUTE; one level higher we
haveinstructionssuch asREAD, WRITE, and ADD that are fetched from the main storeand
subsequently fed into the central processing unit, whichinturnisresponsiblefor their ac-
tual execution. In principle, you never see the two low-level operations: they have been
directly implemented in the form of a processor.

Second, we will have to assume that the EXECUTE operation is capable of handling
only arestricted number of instructions. In other words, we may not expect that every
possible high-level instruction that we can think of can be executed by the EXECUTE op-
eration. Putting it differently, we say that EXECUTE implements a fixed set of instruc-
tions, also known asthe processor’sinstruction set. Programming acomputer then con-
sists of telling it what to do by constructing valid sequences of instructions taken from
thisinstruction set.

Using this approach, we can now show how computers are generally organized. In
Figure 1.6 we have a distinction between two types of stores. Onetypeisfor storing val-
uesthat come from theinput stream aswell asthosefor the output stream, and onetypeis
for storing programs. We shall see later that these two stores can be taken together. Fig-
ure 1.6(a) shows what happens when the instruction ADD(X,Y,Z) is fetched; Figure 1.6(b)
what happens when thisinstruction is executed by the processor.

1.2.2 Theconcept of a multi-level machine

M aking a distinction between the two level s as discussed above simplified computer de-
sign considerably. The important issue was that designers need now concentrate mostly
on just the implementation of the two operationsFETCH and EXECUTE. Theresult would
be a processor that could subsequently execute any instruction that EXECUTE could han-
dle. But as you may imagine, implementing EXECUTE in itself is not an easy task to
accomplish. In particular, in order to keep the complexity of the processor manageable,
the set of instructions that can be handled generally consists of instructions that are still
rather primitive. And in that respect, nothing much has changed over the years.

Having to use only primitive instructions is awkward when constructing large pro-
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Figure 1.6 The organization of a computer in which an instruction is fetched (a) and subse-
quently executed (b).

grams. What effectively happensisthat although the complexity of computer design can
be greatly reduced if only primitive instructions are supported, the complexity of pro-
grams (that can only make use of these instructions) increases. This is comparable to
some domestic appliances, most notably perhaps video recorders. What we see there is
that the cheaper ones provide you with just simple buttons to operate the recorder. Pro-
gramming the recorder can then indeed be arather frustrating undertaking especially if a
mistake is made somewhere. In that case, it will generally be necessary to start all over
again. Modern recorders avoid this by sometimes providing just asingle instruction that

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



10 Introduction

you have to execute, namely scanning the bar code as it appearsin TV guides. And al-
though it does make things simpler, the additional price paid for thisfacility reflects that
the underlying technology can indeed be relatively difficult to realize.

Programming computers is not much different in thisrespect. Constructing programs
that are built from primitive instruction sets is generally a cumbersome and error prone
process. Two complementary solutions have been sought to aleviate these problems:
high-level programming languages and operating systems.

High-level programming languages

There are various high-level programming languages. In this book our primary focus
ison the use of a*“conventional” high-level language which will be presented in Chap-
ter 4. Conventional high-level programming languagesallow usto arrange programsasa
collection of statements, embedded in relatively small program units, of which the pro-
cedure is probably the best known. Consider the following example.

Suppose we want to write a program by which we can multiply two (positive integer)
numbers M and N, and store the result in a variable P. This would be a smple task as
all popular high-level programming languages support a multiplication operation. For
example, we can ssimply use the language’s assignment statement such as

P:=M*N;

of which the execution will show that the result of the multiplication M * N isassigned to
the variable P.

Now, asit may seem that thereisamultiplication operation avail able, thisbecomesless
obviousif you know exactly how multiplication isto be performed. For example, some
computer designers have deliberately omitted a multiplication instruction to keep their
computersassimpleaspossible. Thismeansthat we haveto write our own multiplication
program if necessary. To illustrate how this could be achieved by means of a high-level
language, let’s also assume that there is no multiplication facility at that level aswell. In
that case, we can calculate M * N through repeated addition, i.e.

P=M+---+M
%/_/
N times
which can easily be expressed in a high-level programming language as follows:

1) R:=0;

2) P:=0;

(3) whileR < Nloop
4) P:=P+M;

(5) R:=R+1;

(6) endloop

Inthefirst line, weareinitializing an additional variableR that isgoingto act asacounter.
It counts how many times we have aready added M to P. The latter isinitialized in the
second line. Lines (3)—(6) are an example of aso-called while statement that is supported

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Computers 11

high-level programming program expressed in a
language high-level language
i ———————— trandation ------- i
instruction set program expr as

a series of instructions

i direct implementation --- i

program execution

fetch/execute implementation in hardware

Figure 1.7 Viewing a computer as consisting of three distinct levels of instructions.

by almost every high-level language. Inour case, we have simply stated that aslong aswe
have not added M a sufficient number of timesto P, we have to do another addition. The
latter is done through the assignment statement in (4), whereasin line (5) we increment
our counter by one.

It is not difficult to see that our small program is correct, and indeed fairly easy to
understand. We will have much more to say about programs such as the one above, and
we shall also illustrate that using high-level programming languagesis much simpler to
do than using rather primitiveinstruction sets. Thereis, however, aproblem. Thereisno
processor that can execute any program written in a high-level language. The only thing
that a processor can do is handle programs that use instructions from its instruction set.
Thesolutionto thisproblemisfound inlanguagetrandglation. What we can doistrandate
programs written in a high-level programming language into equivalent programs, but
now expressed asaseries of instructionsthat aprocessor can handle. Taking into account
that instruction sets are in turn implemented through a fetch/execute mechanism, we can
then show a computer as a multi-level machine as shown in Figure 1.7.

There are some intricacies related to translating programs expressed in a high-level
language to alower-level instruction set, but we shall postpone further discussion on this
subject until Chapter 4. Theimportant point to note now isthat we are gradually making a
computing device more easy to use by allowing more powerful programming constructs,
even if we do not immediately have an implementation of these constructs at hand. In-
stead, we provide a translation mechanism from one language to another where needed.
The advantage is that from a user’s perspective the only thing that matters is what the
programming language looks like, as thisisthe only interface to a computer that allows
oneto set it to work. And taking it from that perspective, ahigh-level programming lan-
guage makes a computer look like a powerful and easy device to use. We return to this
issue below after having introduced yet another concept that eases the use of computers.
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Operating systems

Using high-level languagesis not the only way to ease the construction of computer pro-
grams. In particular, it is not hard to imagine that having just a bare computer requires
that parts of any program will have to be devoted to handling all kinds of input and out-
put operations for transferring data between a peripheral device and the computer. For
example, when using a disk, you would need a way to retrieve data from that disk, and
also be able to store data on it. Thiswould involve controlling the device by setting its
read/write heads, doing the actual datatransfer, etc. The whole point isthat these parts of
aprogram in essence have little to do with the main purpose of using the computer. But
no matter what program is being developed, we will probably have to control input and
output of datain any case. In that sense, it would be alot easier if we could make use
of a service program that handles disk manipulations. Such a service program would
have to be constructed only once and could be subsequently used as part of the various
other programs that are constructed. And things would be even better if someone else
had constructed such a service program for us, preferably an expert in the field of writ-
ing programsthat allowed us easily to make use of the hardware facilities of acomputer.

From a certain perspective, thisisexactly what so-called oper ating systemsare made
of: alarge collection of general-purpose service programs for controlling the computer
and its peripheral devices. Operating systems roughly establish two things. First, they
makethelifeof programmersalot easier by meansof their service programs. Effectively,
a service program establishes that you need no longer be concerned about how some of
the computer’sfacilities such as disks are actually to be used, as thisis completely taken
care of. In other words, a service program provides an easy way of programming acom-
puter. Second, service programs can be highly optimized once and for all so that these
facilitiesare also used efficiently. Operating systems can thus be viewed asresource man-
agers.

Animportant side-effect of operating systemsisthat from a programming perspective,
you never see how this control of resources takes place. Putting it differently, service
programs shield all kinds of intricacies that are related to controlling the hardware. As
a consequence, the computer appears to the programmer only by means of the service
programs that are part of the operating system. The service programs form a layer over
the hardware. This principleisillustrated in Figure 1.8.

But if service programs hide all kinds of hardware details, and by doing so ease pro-
gram construction, have we not then constructed an abstract view of what a computer
actually is? Indeed, this is the case and you might say that an operating system com-
bined with the underlying hardware is arealization of avirtual machine: adevice that
appears to be something different from its hardware components. Thisis, in principle,
not much different from using a high-level programming language as discussed above.
A high-level programming language provides a view of a computer’s programming ca-
pabilities which are more extensive than actually provided. Operating systems establish
similar goals, but in a different way. In both cases, the computer appears to be a more
powerful device than isreflected by the hardware.

A question that comesto mind, is how operating systems and high-level languagesare
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Figure 1.9 The construction of avirtual, multi-layered computing machine.

related to each other. Therearedifferent waysof viewing thisrelationship, but theonewe
shall takeinthisbook isthefollowing. The essence of the matter liesin how we construct
service programs. In this book we shall demonstrate that this can be done by means of
ahigh-level programming language. Consequently, we will be constructing service pro-
gramsthat are aimed at controlling acomputer’sresources, but will use the programming
facilities as provided by some high-level programming language. This leads to further
enhancement of our concept of a multi-level machine, asis shown in Figure 1.9.

And thisisabout asfar aswe shall go. It isnot hard to imagine, however, that we can
easily continue our line of reasoning by constructing yet another layer on top of an oper-
ating system. Typically, such alayer will further extend our view of what acomputer can
actually do, but at the same time will probably narrow our view as well in the sense that
the presented capabilitieswill be more focused towards a particular application domain.
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To illustrate, consider a modern word processing system such as those that are used for
personal computers. The main purpose of such a system isto provide its users with all
kindsof facilitiesfor making documents. Theinstructionsthat are entered either through
commands (such as combinations of keystrokes) or by means of a mouse (if amore ad-
vanced graphical interface is supported) allow you to move the cursor, display a specific
portion of a document on the screen, generate atable of contents, etc. At the sametime,
word processing systemsdo alot more. For example, they allow usto managethe storage
of documentsinto filesand directories. Also, they provideall kinds of waysfor handling
printing devices, help organize the screen, or even alow us to completely redefine the
meaning of the keyson akeyboard. Thelast facilities are traditionally provided by oper-
ating systems. And if making documentsis the only thing that is done with a compuiter,
there may be no reason why someone should ever use another program. Indeed, in such
cases the computer appears to its user as nothing but an advanced word processing de-
vice, again yet another virtual multi-level machine.

1.3 Computer networks

However, explaining how word processing systems and the like are constructed is not
what we are interested in here. Instead, rather than building layers of software on top
of each other, we will primarily be concerned with extending layers in such away that
communication between computers and their users becomes possible. We will thus enter
the realm of computer networ ks which forms the topic of the second part of this book.
Let’'sfirst consider why computer networks are so convenient to have.

1.3.1 Thedemand for computer networks

Linking computers to each other is attractive for a number of reasons, of which three
important ones immediately come to mind:

e Resource sharing. Thisis aphenomenon with which most of us who have ever
worked with computers connected in a network are already familiar. The most
notable shared resources are perhaps printers. To date, good high-quality print-
ers are still costly, especidly if the combination of speed and quality is a mgor
concern. But although a printer is typicaly something that is generally needed,
it is not something that is needed all the time. This makes them ideal for sharing
among several users, which in turn requires that those users can all have easy ac-
cess. Hooking a printer into a network is a solution to that problem. But there
are many other shared resources as well, athough not always as visible to users
as printers. An important type of shared resource is software. For example, itisa
lot cheaper for an organization to buy just a single copy of some advanced word
processing system, and keep that copy at one location. |If someone wants to do
word processing, they must collect the software from that single location and have
it executed on his or her own computer. Getting the word processing system onto
acomputer isalot easier if this can be done via a network.
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e Shared information. Thisisan extremely important reason for linking computers
together. Sharing information by having a database system as part of a computer
network allowsremoteuserslocated at different sites, all to have accessto the same
data. Typical examples of computer networks set up for sharing information are
(electronic) banking systems, airline reservation systems, stock inventory systems
used in e.g. supermarkets, and online library catalogs. Many more will come to
mind. Sharing information through a computer network is practical for a number
of reasons. First, it is arelatively easy way to allow users located at completely
different sites to have easy access to a single source of information. Another im-
portant reason is that this construction alows the information to remain consistent
(although thisis not always an easy task to accomplish). If one user performs an
update, then this change will be visibleto all other users as well.

¢ Information exchange. Thisis going to be a main focus for us when discussing
computer networks — communication between users and programmers. We shall
see that computer networks offer important opportunitiesfor usersto exchangein-
formation, often much better than is currently possible via hand-delivered mail,
telephones, faxes, etc. Computerized forms of standard communication facilities
are becoming increasingly popular. For example, electronic mailing facilitieshave
shown to be extremely useful: not only isit easy to get in touch with someone, itis
also very efficient (it often just takes a few seconds, or at worst, a few minutes to
get electronic mail to the other side of theworld). Asanother example, exchanging
documents over a computer network allows usersto collaborate without having to
belocated at the same site. Inthe sameway, it can be anticipated that participating
in a so-called video conference with participants from all over a country or even
the world will enhance ease of communication.

Just as we have become used to computers, we now also find it natural that computers
are linked together into a network. The most dominant growth of computer networks
has no doubt taken place in offices, factories, and of course, in universities and research
institutes. Especially in the last two cases great efforts are seen in expanding networks
to cover larger areas, and to improve the quality of the connections. These efforts are
now gradually finding their spin-offs in the construction of networks that are commer-
cially attractive to larger groups. For example, many banks today offer various services
that allow people to perform parts of their financial administration through a personal
computer. The French Minitel project that connects millions of homesto centralized in-
formation serversis another example of bringing computer network technology into our
homes. The exponential growth of the worldwide Internet (which is discussed in Chap-
ter 9) issometimesbeyond imagination, and as of today, servicesavailable onthe Internet
are readily available to many. Finally, as alast example, we may expect that in the near
future the telephone companieswill provide uswith integrated servicesfor communicat-
ing voice, data, and pictures through 1SDN or related full digital networks.
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1.3.2 Somefundamental problems

Having grasped the essentials of what a computer isall about, it becomes a lot easier to
conceive how we can subsequently link computers together. Again, starting from first
principles helps in understanding what the problems and their solutions are, and thisis
the approach that we have adopted in the second part of this book. In particular, as we
gradually expose the workings of computers, we shall al so present computer networks by
discussing problems as they surface with the growth of a network in terms of its number
of computers and geographical coverage.

Thefirst type of computer network that we shall consider is asimple one. It consists
of two computersthat are linked together through some kind of transmission medium.
There are various transmission media. Roughly, a distinction is made between guided
and unguided media. Guided media are, for example, wires through which an electrical
or optical signal issent that representsthe datawe want to transmit. Unguided mediaare,
for example, radio transmission and satellite connections. In that case, datais sent in the
form of radio signals.

In order to transmit data from one computer to another, we encode it as some kind of
signal that is subsequently sent across the transmission medium. In general, such asignal
represents a so-called bit string, which in turn represents the data we want to transmit.
A bit string isaseries of ones and zeroes. Again, we emphasizethat it isnot the bit string
that isbeing sent, but rather asignal representing that bit string. Nevertheless, when talk-
ing about data communication, it isalot easier to think of it in termsof bit strings rather
than signals, and we shall adopt this convention here.

Transmission errors

Now, sending bit strings from one computer to another seems a straightforward thing
to do. However, this statement is not entirely true. The first problem that we are con-
fronted with when we link two computers together isthat our transmission medium will
have some bounded quality with respect to its transmission capabilities. In particular,
in many cases there is alow but non-negligible probability that transmission errors may
occur. The effect of atransmission error is that a bit string b which is sent at one end
of the transmission medium may arrive as a different bit string b at the other end. This
problemis caused by many factors, but above all, it becomes more apparent asthe length
of the transmission medium increases. For this reason alone, transmission errors occur
less frequently in a single computer as the connections between the various components
in that case are relatively short.

One way or the other, we have to account for the fact that a bit string that arrives at
areceiver may contain errors in the sense that it is different from the bit string that was
originally sent. Devising schemes by which we can detect that a received bit string can
never correspond to what was originally sent is an important subject when developing
computer networks. There are al kinds of ways that errors can be detected, and some
of the important ones will be discussed in Chapter 7. To give you aflavor of how error
detection schemes work, consider the following.
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Figure 1.10 The phenomenon of limited bandwidth illustrated by road traffic.

To simplify matters, suppose we wish to transmit the series of decimal numbersd =
(2,3,4,5). Inthat case, we can choose to extend this series with an additional number by
summingitsvalues, leading tothe seriese= (2,3,4,5,14). It isthisseriese that we then
transmit. Now, supposethat thereceiver eventually picksuptheseriesé= (2,4,4,5,14).
In that case it can conclude that something went wrong for the ssmplereason that 244+
4+ 5 # 14, which it would have expected in the first place. That this scheme does not
alwayswork iseasily seen when considering that the receiver cannot detect that the series
(1,4,4,5,14) dso contains errors.

Limited bandwidth

Perhaps more serious when communicating between two computersisthe fact that there
isan upper bound to the amount of data that can be sent per time unit. Thisisgenerally
expressed by the number of transmitted bits per second (bps). The two limiting factors
here are the type of transmission medium and the computersthemselves. Thereisan easy
comparison to this phenomenon by considering road traffic. A highway is comparable
to the transmission medium. The amount of traffic that can pass per hour depends on
the number of lanes that are available. Likewise, the entrance and exit lanes determine
how many cars can actually get on and off the highway, and as such are comparable to
the transmission capabilities of the sending and receiving computer, respectively. This
isillustrated in Figure 1.10.

What we see here are three potential bottlenecks that may cause congestion. First, an
entrance lane may not be capable of handling all the traffic, despite the fact that the road
itself at that point has enough capacity. In our example, we have shown an entrance lane
that will presumably not lead to these kind of congestion problems. A second potential
bottleneck is shown at the point where the three lanes are merged into one. In that case,
it isthe road that causes atraffic jam. Finally, our example also shows that an exit may
also lead to traffic jams if not properly designed.
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Figure 1.11 The effect of not properly balancing the work on a conveyor belt.

At present, computersaswell asthe transmission mediathat connect them may impose
serious problemswith respect to communication. With the introduction of new transmis-
sion technology, such as optical fiber, the problem is gradually shifting towards comput-
ers. What it means is that we have to find a way such that (1) computers can work at a
pace that meets our needs for transmitting large amounts of data, and (2) that comput-
ers can adjust to each other’s pace with respect to communication. We will return to the
first issue on several occasionsin later chapters. The second issueisthe problem of flow
control which we illustrate next.

The producer—consumer problem

Assume that two computers are connected through an ideal transmission medium (that
such amedium does not exist issomething we are not concerned about here). Inthat case,
thereis at least one issue that we will have to deal with, namely the difference in trans-
mission speeds between the sender and the receiver, respectively. What do we mean by
this? The problemiseasily illustrated by comparing what happensif we put two workers
on one end of aconveyor belt and only one person on the other end, asillustrated in Fig-
ure 1.11. For the sake of argument, assume that each box contains priceless chinaware.

The problem isthat the two workersthat put boxes onto the belt jointly operate at such
aspeed that it is almost impossible for the person on the other end to catch all the boxes
and stack them. Consequently, alarge number of the boxeswill simply drop off the belt
and their contents will be lost.

The same problem happens with computers. If areceiver isnot capable of processing
incoming data at the same speed at which a sender istransmitting it, datawill smply be
lost. To acertain extent, the problem can be solved through the use of buffers, as shown
in Figure 1.12. What is seen there isthat if a box is not immediately removed from the
belt it will be stored automatically in aspecial area. But as soon asthat areaisfull, boxes
will start dropping off the belt again.

The whole idea of using buffersis to smooth the discrepancies in transmission speed
between asender and areceiver. If the sender stopssending for awhile, thereceiver can at
least make up time by processing the data that has been stored temporarily inits buffers.
Obvioudly, this scheme will only work if the sender does eventually stop transmission
beforethereceiver’sbuffersareall full, or at |east temporarily reducesthe speed at which
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Figure 1.12 Using a buffering areato assist removal of boxes.

it transmitsdata. But as soon as buffersare full, we fall back into the situation described
above: incoming data simply has to be discarded by the receiver.

The ultimate solution to this problem is that a sender and receiver agree on the rate at
which data is transmitted. In that case, problems such as those described above can be
avoided. But finding theright transmissionrateisnot awayseasy, and in the case of large
networks sometimes almost impossible. The consequence of thisis that despite the use
of buffers, we will have to face the situation that data can still sometimes be lost. More
precisely, incoming datawill sometimes simply be discarded by areceiver becauseit has
no capacity to storeit temporarily. From auser’s point of view, the situation that we then
have created isthat of an unreliable network: there can be no guarantee that transmitted
data will actually reach the receiver. In practice, what happens is that a sender and re-
ceiver agree to acknowledge the successful receipt of data. In that way, a sender will at
least know when data needs to be retransmitted. Alternatively, areceiver can explicitly
request retransmission of data when it finds out that something has gone wrong. We will
return to these problems in Chapter 9.

1.3.3 Expanding networks

The fundamental problems we have discussed so far have been illustrated by means of
a simple network consisting of just two computers. But computer networks in practice
are, of course, much larger. In general, there are two ways of constructing computer net-
works, which we discuss next.

Sharing a single transmission medium

Just as highways are used by many people at the same time, we would also like to use
one transmission medium for the transfer of data between several computers. There are
many reasons for wanting this, but, above all, sharing a transmission medium is ssmply
cost-effective, and in many cases, it also makes the construction of computer networks
much simpler. One particular scheme for sharing a transmission medium, and which is
generally employed in relatively small networks, is the following.

The basic ideais simply to connect several computers to the same medium. The con-
sequence of thisisthat if one computer starts sending somedata, all other computers con-
nected to the medium will be able to receive that data. Thisis comparable to connecting
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Figure 1.13 The principle of detecting message collisions.

several telephones to the same wall socket. As soon as someone phones, all telephones
will start ringing. Likewise, we can also connect several radiosor TV setsto one outlet.
Theincoming signal will just be propagated to all the devices at the same time. Depend-
ing on whether or not you tune into a station determines the actual receipt. In the case of
the type of computer networks we are considering here, the same principle applies. By
specifying exactly for which computers the transmitted data is intended, each computer
can determineif it should receive the data, or otherwiseignore it.

The main problem with this scheme isthat we have to prevent two or more computers
from transmitting data at the sametime. What it meansisthat if two bit stringsare simul-
taneously transmitted over a shared medium, the result may be a bit string that makes no
sense at all. In that case, we say that a message collision has occurred. Basically, there
are two ways of avoiding collisions.

Collision detection. A straightforward scheme issimply to let collisions happen. Be-
cause every computer connected to a shared medium is capable of receiving what is be-
ing transmitted, we have the situation that the sending computers can detect whether their
transmitted data is being garbled by some other computer that is also transmitting data.
Thisprincipleisillustrated in Figure 1.13.

There are various strategies that can be followed when a collision is detected, but the
one most widely applied isto have the sending computer immediately stop transmission,
and wait until the line isfree again. Of course, there are some subtletiesinvolved, such
aswhento decideto start transmitting again. These detailswill be explained in Chapter 8
when we describe so-called Ethernet networks.

Token-based solutions. An alternative solution is to use a special data item, known
as atoken, and have it continuously circulate from computer to computer. In this case,
the computers that share the medium are either physically or logically organized into a
ring, asillustrated in Figure 1.14. Thefigure showsanetwork inwhich the computersare
logically organized as aring, but that are physically connected to the same transmission
medium.
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Figure 1.14 Using a token to avoid message collisions.

Figure 1.15 A computer network based on point-to-point links.

In this case, a computer isonly allowed to transmit data just after it has received the
token. And after the computer has finished its data transmission, the token is again sent
acrossthe transmission medium, but isallowed to be picked up only by thelogically next
computer. So, if computer #5 had transmitted the token, then it may be picked up only
by computer #6. |If acomputer has no datato transmit, it immediately forwards the token
to the next computer. Token-based computer networks will also be further discussed in
Chapter 8.

Sharing the transmission medium is a technique that characterizes most local area net-
wor ks, which, astheir name suggests, cover arelatively small geographical area such as
adepartment floor or a building. The number of computersis restricted from some tens
to afew thousand computers, where in the latter case the overall network has been con-
structed by connecting several local networks. We return to local area networksin detall
in Chapter 8.

Networ ks based on routing

A second type of scheme that is employed for the construction of computer networksis
simply providing point-to-point links between a set of computers, resulting in agraph as
shown in Figure 1.15. The main advantage of this scheme isthat very large areas can be
covered, and it isin thisway that so-called wide area networ ks are constructed.

The point about this type of computer networks is that sending and receiving data re-
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quiresthat data be routed through the network. In other words, in order to get data across
the network, we have to select aspecific routethat it hasto travel. Route-based computer
networks are thus seen to have an immediate analogy with, for example, road and rail-
way networks. Note also that having to select a route is something that did not occur in
the case of local area networks as discussed above. In other words, we have to provide
an additional functionality.

Routing data through networksis a major and relatively difficult subject. The reason
for this lies not so much in finding the appropriate route, but rather in the fact that the
routing decisions have to made locally at the intermediate nodes through which the data
passes. Let'stake alook at what we mean by this.

Suppose you wish to make afairly long trip by rail and that there are alternative routes
to choose in order to get to your destination. Normally, what you would do is consult a
railway map and decide how to travel. Or, perhaps more conveniently, the railway orga
nization will suggest aroute. The main issue here is that the railway network is known
in advance and we can trust that this network will not undergo major changes during a
trip. With computer networks, however, the situation is somewhat different.

As a sender of data, we generaly do not have a very good idea of what the network
actually lookslike. Moreover, thereisaconsiderable chance that whiletransmitting data
through the network, this data may need to be rerouted once or severa times, smply be-
cause computers can crash, or because some links have to cope with more traffic than
they can handle adequately. In other words, in the case of computer networks we are
faced with the problem that the network may change with respect to its physical struc-
ture, or otherwise with respect to its traffic load such that determining a complete route
in advance is not always a good strategy to follow.

It becomes necessary to adopt an adaptive routing strategy. This means that each
timedataarrivesat an intermediate node, it makes senseto re-evaluate where exactly that
data should be forwarded. And it isthe intermediate node that is responsible for making
that decision. Indeed, an intermediate node becomes atruerouting device. But if traffic
in networks and networks themsel ves change so much, this means that an intermediate
node will have to be informed of the overall status of the network. And thisis precisely
what makesrouting so difficult. Where should thisinformation comefrom? Surely, if we
are dealing with a network that spans the world, it makes little sense to appoint a central
routing information center that keeps track of this information. If this center malfunc-
tioned the complete network would go down. Instead, what happens is that each inter-
mediate node has to pass on its local information, i.e. information on the status of the
links attached to it, to every other computer in the network. Thisis not an easy job to
do when you think about it. How each intermediate node can keep informed about the
overall status of the network and subsequently make routing decisions is a major topic
of Chapter 9.

Connecting networ ks

So far, we have made a distinction between networks based on sharing a transmission
medium, asin the case of local area networks, and those based on poi nt-to-point connec-
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tions as applied in wide area networks. Thereis also an important third type of network
which is formed by connecting numerous local and smaller wide area networks into a
single, very large internetwork. Thisisin fact the way that most large-scale computer
networksare constructed. Thistype of wideareanetwork isreceiving alot of attention as
it allows worldwide communication between computers. Worldwide computer networks
are still very much in their infancy. The major problem that hasto be solved isproviding
the right technology in order to allow for large amounts of data to be transferred across
such networks. In particular, a mixture of routing strategies has to be applied in order to
distinguish local traffic from global traffic.

Also, we have to face the problem that an internetwork is built from different con-
stituent networksin which each constituent network hasits demandswith respect to what
message traffic should look like. To illustrate, just as zip codes vary from country to
country, you can also expect networks to differ in the way that senders and receivers are
identified. Another problem isthat networks may vary with respect to the maximum size
of amessage. This meansthat if a message hasasize of N bits, and is to be transferred
across a network that can support messages only up to M < N bits the communication
will fail if no special measures are taken.

Constructing internetworksisadifficult task to accomplish, but at present itisthe only
way to achieve a worldwide computer network. In this context, the information super-
highway that some people are so enthusiastically talking about today is still non-existent.
A more appropriate term in that sense would perhaps be the information dirt road. Inter-
networksare discussed in Chapter 9, where we pay special attentionto theworld’ slargest
computer network, the Internet.

1.3.4 Towardscommunication systems

At this point it can already be seen that the construction of computer networksis indeed
something quite different from explaining how computers actually work. For one thing,
the approach that can be followed in the case of computersis the one by which we grad-
ualy lift the level of abstraction, and each time we do that, we merely need to explain
how such ahigher level can beimplemented on top of what we already have. With com-
puter networks, expansion of a network only introduces new problems that need to be
solved. The number of problems may even seem to grow faster than the number of so-
lutions we can provide. And from a certain perspective, there is actually some truth in
this statement. Fortunately, thereisalarge body of experience in constructing computer
networks and athough network technology is by ho means a mature area of technology,
thereisaconsensus on how networks can be built inastructured way. Again, the solution
isfound in adopting alayered approach.

Tackling computer network problems

So far, we have made a distinction between several types of computer networks:

e The simplest form we have addressed is the one in which only two computers are
linked together. Thisis hardly to be considered as a network, but already here we
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seethat our attention isdrawn to the problem of choosing an appropriate transmis-
sion medium, and getting a bit string from one computer to another.

e Loca areanetworksform anext step in the construction of computer networks. In
this case, we use a single transmission medium to link several computers together
and our focus of attention is directed towards the means for sharing that medium.

¢ Wide areanetworksform anext step. Inthiscase, we construct a network by link-
ing pairs of computers together having the advantage that geographically large ar-
eas can be covered. It does impose another problem: that of routing data from
sender to receiver.

¢ Internetworks, constructed by connecting several local and wide area networksto-
gether forms a next step. The additional problem is how datais to be handled so
that it can travel through different networks with varying demands on what mes-
sages should look like.

We have ordered these network types in such a way that with the increasing size and
complexity of the network type, new problems are introduced for which functionality
hasto be added on top of what we already have. In other words, we are forcing alayered
organization of network types. This approach has been widely adopted in the world of
computer networks and has been formalized in the form of several so-called reference
models. Animportant model that we shall roughly follow in this book is the one devel-
oped by the International Standards Organization (1S0) who produced the Open Systems
I nter connection reference model, abbreviated to the 0sI model. Thismodel consists of
seven layers, shown in Figure 1.16.

Without going into too many details, the four lower layersroughly cover thefollowing
functionalities:

e The physical layer specifies the functions that implement most of the aspects of
getting data in the form of abit string from a sender to areceiver.

e Thedatalink layer coversthefunctionsfor accessing atransmission medium. As
we shall see, the data link layer is a major concern when considering local area
networks.

e Thenetwork layer coversthe functionsthat deal with routing datathrough a net-
work. Assuch, it isan important layer in wide area networks and internetworks.

e Thetransport layer deals mainly with the functionsthat are required for building
areliable computer network, regardless of the underlying technology.

Understanding what these layers mean in practice can be difficult. Infact, knowing what
layering actually stands for and how it affects implementations can be difficult enough.
Throughout this book we explicitly provide examplesto illustrate the concept and once
the end of Chapter 9 has been reached, you should have a good idea of these matters.
The point to keep in mind for now isthat organizing systemsas layers provides you with
the right means for gradually enhancing the functionality of a system, without having to
affect the things that have been constructed so far.
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Figure 1.16 Outline of the osI reference model.

Away from technology: communication systems

This book deals with technology, and in particular, we concentrate on how computers
and networks are organized by describing how they work. In particular, with respect to
networks this means that we concentrate primarily on the four lower layers of the osi
model. The systems we shall describe will only allow us to send a message from one
side of the world to another. Not very spectacular, it may seem. But with some exag-
geration, we can state that there is not much more needed to build worldwide communi-
cation systems. Nevertheless, to put things into better context, we shall also pay some
attention to the way that actual communication systems are constructed. In particular, in
the final chapter we shall outline the architecture of communications systems that pro-
vide services directly oriented towards the construction of applications that allow users
tocommunicate. Thisis, infact, abrief story about the upper layers of the osi model. By
the time you have reached Chapter 10, understanding communication systemswill be a
lot easier for the simple reason that you will then have devel oped a better understanding
of the underlying technology.

1.4 Further reading

Introductory textbooks that explain computers and networks at a basic level are hard to
find. Traditionally, the material covered in thisbook ismore or less subdivided into three
fields:
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e Computer architecture and organization,
e Operating systems,
e Computer networks,

This subdivision often makesit difficult to understand what these fields havein common.
In particular, therole of operating systemsin computer networksis generally not easy to
comprehend by the novice. Thelack of ageneral textbook covering the material abovein
an integrated way, was a prime motivationto writethisbook. On the other hand, thisdoes
mean that many details have been omitted. It is hard for us to imagine that the answers
found in this book will be more than the questions that will come to mind after having
studied the material. And if thisis indeed the case, the reader is encouraged to delve
into the various subjectsfurther. To that end, each chapter containsreferences for further
reading.

Nevertheless, there are anumber of general introductory textbooks worth mentioning
at this point. Tanenbaum (1990a) focuses primarily on computer organization, but also
pays attention to the role of operating systems. Likewise, Stallings (1990) will show to
be a good introduction to these subjects, although with a stronger emphasis on computer
organization.

In Tanenbaum (1992) the author explains the principles of traditional operating sys-
tems and of those that are distributed across a computer network. Distributed operating
systems are more extensively discussed in Tanenbaum (1995). A somewhat different ap-
proach isfollowed by Silberschatz and Galvin (1994) but in which many aspects of distri-
bution and computer networks can be found. An excellent treatise on distributed systems
in general can be found in Coulouris et al. (1994).

A brief introduction to the hardware aspects of computer organization and computer
networks can be found in Goupille (1993). However, we feel that the omission of dis-
cussing the important role of software prohibits a good general understanding of com-
munication using computers.

There are numerous introductory books on computer networks. A thorough and in-
depth presentation is given in Tanenbaum (1988) of which a revised and updated edi-
tionisto appear (Tanenbaum, 1996). An excellent treatise can also be found in Stallings
(1994). A bottom-up approach starting with the basic principles of computer networks at
the hardware level, and ending with discussing the software components of networks can
befoundin Shay (1995). Asthe author followsthe same approach that we havetaken, the
book may show to be good additional reading to the material presented in Chapters 7-10.
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Chapter 2

On data, operations, and storage

In this chapter we start with taking alook at the basic elements of computer systems: the
representation of data and operations, and the means to store data values. To that end,
we first pay attention to how we can represent data and operations in terms of so-called
finite bit strings, and subsequently show how these representations can be implemented
using digital circuits. The basic elementsintroduced up to that point will then be used to
show how we can build devices which can store data val ues.

2.1 Introduction: information processing
Throughout thisbook we are concerned with finding an answer to the following question:

How does a computer system (1) process information, and (2) how can it
communicate that information to other computers?

In this chapter we start with taking alook at the basics of processing information. To be
able to process information, we essentially need two things: data and a set of operations
allowed on that data. When working with paper and pencil, information processing is
mostly trivia for us. For example, suppose you were asked to write down a shopping
list with an estimate of the total costs. In that case, you would use the symbols“0” ...
“9” to represent the digitsin our decimal system, and apply the mathematical operations
for adding, and possibly also multiplying numbersin order to arrive at atotal sum. But
the most important part of thisinformation processing is the person composing the list:
he or she performs the actual processing.

Thisexample at least illustrates one important issue. In order to process information
we need to make use of symbols that represent the data we have in our heads. When
processing information by means of a machine we have to find ameansto represent data
aswell. In other words, we have to come to an agreement on a suitable set of symbols.
But there ismore. Our simple example aso illustrates that we apply operations on data
inorder to arrive at afinal result. These operations manifest themselvesthrough symbol
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manipulation: we arrange our numbers in such away that in the end our shopping list
also includes an estimate of the total costs. This manipulation of numbersis areflection
of applying mathematical rules. Clearly, automated information processing will require
that we can represent these rules and their application to symbols as well.

Thefirst important choice we have to make, therefore, iswhich symbolsto choose for
representing data. To make things as simple as possible, let’s concentrate only on infor-
mation that we can express in terms of ordinary text and numbers. In other words, we
excludeillustrations and sound. It would then seem to make sense to simply choose our
alphabet augmented with the ten decimal digits, punctuation marks, quotes, etc. This
adds up to a mere one hundred symbols or so, not that much, it would seem. Unfortu-
nately, it israther much. The problem that we need to take into account is that each sym-
bol needs to have a unique physical counterpart in the machine that we are going to use
for our information processing. And although having to represent many symbols can be
done, it turns out that building machines becomes alot easier and cheaper if the number
of symbolsthat it needs to represent is as low as possible. Taking this into account, an
obvious choice is then to take the absolute minimum: two symbols. And in computer
systems, the choice was made for the two symbols“0” and “1”.

Havingjust“0” and“1” at our disposal then bringsusto another problem: how canwe
represent real-world data which we normally express through our one hundred symbols
or so in terms of just these two symbols? In the following section we first discuss how
we can merely represent datain terms*“0” and “1”. In Section 2.3, we continue by con-
centrating on the representation of operations on data. This will put us in a position to
concentrate on an extremely important issue: how can we implement the notions intro-
duced so far in terms of devices? Thisisthe main subject of Section 2.4. Our last topicis
formed by taking our approach one step further. In Section 2.5, we take the devices used
for implementing our representations, and construct a storage device that will alow us
to store data temporarily.

2.2 Datarepresentation

In this section we concentrate on representing just two kinds of data: numbersand plain
text. The reason for restricting ourselves to these kinds of datais twofold. Thefirst rea-
sonisthat of smplicity. Aswe shall see, representing either numbers or text in computer
systemsisrelatively straightforward, although there are afew snagsthat need to be con-
sidered. Assuch, numbersand text are excellent candidatesto illustrate representational
issues. Second, they stand for two slightly different kindsof information processing. One
kind is primarily focused towards doing calculations: weather forecasting, anaysis of
economic models, building constructions, etc. The other kind of information processing
isprimarily concentrated around mani pul ating text-based data, encompassing areas such
as office automation, business management, and administrative information processing.

We first concentrate on representing numbers, followed by a brief discussion on the
representation of text. But before doing so, we need to introduce some terminology. In
order to speak sensibly about manipulating symbols, it iscommon practice to use the no-
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tion of variables. Inour case, two kindsof variablesarerelevant. First, weshall makeuse
of so-called binary digits which are variables that can take on only two values, namely
the symbols“0” and “1”. A binary digit iscommonly referred to as a bit.

The second kind of variable we shall come acrossisthat of abit string, whichisnoth-
ing but a series of consecutive bits. A bit string of length 8 is usually called a byte.
Throughout this book we denote bit strings by enclosing them between the brackets “ ("
and“)” asin, for example, (10010111).

2.2.1 Numbers

Let’sstart by taking alook at how we can represent numbersin theform of bit strings. In
this subsection we concentrate mainly on so-called integer numbers, i.e. numberssuch as
+1, +2, etc. Although other kinds of numbers can also be represented as bit strings, their
representation is often more intricate, and also less important for the material presented
in this book. We therefore discuss them only briefly.

From decimal to binary numbers

Human beingsgenerally use decimal arithmeticto represent numbers. For example, when
we mention the number 1625, we actually mean a number that is calculated as

1625=1-1000+6-100+2-10+5-1

or, more systematically
1625=1-10°+6-10°+2-10* +5-10°

In the case of decimal arithmetic, 10is called the base number or radix. But, of course,
itisalso possibleto use another radix. For example, if we use 8 as our radix, the number
1625g is equal to:!

16255 =1-8%+6-82+2.81+1.8°= 9174 (2.1)

Likewise, we can express 9174 in radix 2:

91710 = 1-2°+1-22+1.2"40-2°40.2°+
1.24+0.224+1.2240.28+1.20
= 1110010101,

That humans tend to think in terms of decimal arithmetic is even illustrated by our con-

version (2.1). All the symbols after the first equation sign are expressed in decimals.
Coming to thispoint it we need to make a clear distinction between numbersand sym-

bols. For example, where a number such as 917 makes perfect sense to us, a computer

IWe use the subscript 8 to indicate the base number of the arithmetic currently being used.
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can deal with only two symbols: “0” and“1”. Rather than having to place thesetwo sym-
bols between quotes each time, we adopt the convention that a number is always written
in conjunction with itsradix, i.e. we write 917,¢ rather than just 917. The latter, in turn,
represents a sequence of three symbols: 9, 1, and 7. We omit the radix in those cases that
thiswill not lead to confusion.

Now, how do we represent numbersif our computer can only deal with the symbols0
and 1? Aswe haveillustrated above, it is not hard to represent a decimal number such as
917, by an equivaent binary representation, i.e. onethat usesradix 2. In other words,
if weinterpret the symbols0 and 1 as the numbers 0, and 1,, respectively, it would seem
that wewould already bein apretty good shape. Asaclarification, what weare proposing
isto take a bit string, say (10011), and consider it as a direct representation of a binary
number, in this case the number 10011,. The thing you have to realize here is that a bit
string such as (10011) is nothing but a consecutive series of our basic symbols 0 and 1,
whereas 10011, is a specific binary number. In order to represent a number from our
decimal system, we thus first convert it to a binary number, and simply represent that
number as a bit string where 0 or 1 standsfor O, or 15, respectively.

> Arithmetic operations on binary numbers such as addition, subtraction, multiplication, and
division, work exactly the same as those on decimal numbers. The only thing you have to
realize is that the set of digits now consists of 0 and 1, instead of 0to 9.

Example 2.1. Asan example, review how we actually add 424 and 19;:

Jadd ladd
carry:
first number: 4 = 2
second number: ~ 1[9] 9 +
result: 1 61

Note how wefirst add 2 and 9 and carry a 1 to the next two digits 4 and 1. In binary arith-
metic thisis done exactly the same. If weadd 1 and 1 theresult will beOandaliscarriedto
the next two digits to add. So, adding 10101Q, = 42,5 and 010011, = 19,0 will then result
in

carry: 000100

first number: 101010
second number: 010011 +

result: 111101

|

It isthus seen that our usual way of adding two numbers can be exactly the same asin binary
arithmetic. And asyou may suspect, binary subtraction isindeed quite similar aswell asis
illustrated in the following example.

Example 2.2. In order to subtract 9,9 from 30,9 we normally proceed as follows:
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lsub lsub
effect of borrow:
first number: 3l = [glo
second number: |9 9 -
result: 1 21

In this case, we have to borrow a 1 from the next digit if necessary. We do the same in the
case of binary subtraction:

effect of borrow: ---0-
first number: 111%0

second number: 1001 —
result: 10101

|

We leave it as an exercise for the reader to verify that binary multiplication and division can
be performed likewise.

The problem of finite bit strings

Binary systemsso far work fineand just aswell asthedecimal systemweare usedto. Un-
fortunately, thereisasmall problem which severely affects the representation of (binary)
numbers as bit strings. In practice, there is an upper limit to the number of consecutive
bitsthat can be used to represent numbersin acomputer. In other words, when consider-
ing implementations of binary systems, oneisfaced with thefact that operationsare only
defined for bit strings up to a certain length. For instance, most modern personal com-
puters only support binary operationsfor strings up to 16 or 32 bits. The consequence of
thislimitation isthat we have to decide how a number isactually going to be represented
as abit string of afinite and fixed length.

Thereare two situationswhere thismay lead to problems. In thefirst case, assumethat
our computer can only accept bit strings of length 8. This means that the largest positive
number we could represent asabit stringwould be 11111111, = 255,4. Indeed, not avery
large number. The only solution to this problem is that we will have to represent large
numbers as a series of bit strings. For example, the number 917, could be represented
by two consecutive bit strings of length 8 as follows:

917,0 = 1110010101, = (00000011)(10010101)

The drawback of thisisthat because (in this case) our computer supports only operations
on bit strings of length 8, we will have to explicitly instruct the computer how it is to
operate on series of bit strings. In practice, this is not something we want, but which
simply cannot be avoided. Fortunately, most modern computers allow operations on bit
strings of length 32, or sometimes even 64, which is adequate for most calculations.
The second problem that arises from having to deal with bit strings having a maxi-
mum length is arepresentation for negative numbers. An obvious representation of such
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numbers is using the first bit to indicate if the remainder of the string represents either
anegative or a positive number. Thisrepresentation is generally referred to as the sign-
magnitude notation. So, for example, we would have?

(011011)q, = +11011, = +27q9
(111011)g, = —11011, = —2749

Unfortunately, this does mean that we have a “specia” bit which turns out to be rather
awkward from an implementation point of view. Therefore, two other notationsare more
commonly used.

Intheone’scomplement notation, positive binary numbersarerepresented intheusual
way. So, for example, assuming the maximum bit string length is 8, 2749 is represented
as the bit string (00011011),z. Negative binary numbers are represented by taking their
positive counterpart, and subsequently inverting al bits. Toillustrate, —27,¢ is obtained
by considering the one’s complement notation for 27,5 and then changingeachOtoa 1
and vice versa. Consequently, using bit strings of length 8, we have that

— 2710 = invert((00011011)1¢) = (11100100)¢

The approach followed by the one’s complement notation for representing negative num-
bers does have one peculiar aspect. The number O can be represented by either the bit
string (0...0) sz or by the bit string (1...1) .

> To see how the one’'s complement notation works in practice, consider the subtraction a—
b of two positive numbers represented as bit strings of length N. In a one’s complement
system, thisis done by taking the one’s complement notationb of —b and adding thisto a. If
acarry emerges from the most significant bit (i.e. theleftmost one), implying that a-+b > 2N,
the correct result issimply obtained by adding aoneto the result found so far asisillustrated
in the next example. We leave it as an exercise for the reader to verify that this correction
actually works.

Example 2.3. Assume we need to calculate 42, — 19;9. In a one’'s complement system
using hit strings of length 8 thisis done as follows:

decimal binary 1'scompl.
420 00101010, — 00101010¢
-19,0 —00010011, — 11101100 +
carry — |1]00010110,
1 +
2310 0001011%¢

|

2Analogous to using the radix as a suffix to indicate the current arithmetic, we use the suffix sm to
indicatethat abit string is represented in the sign-magnitude notation. Similarly, we use the suffices 1c and
2c for respectively the one’'s complement and two’s complement notations, which are yet to be discussed.
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The example illustrates what happens when |a| > |b|. Obviously, when |a| < |b| we have
that a— b < 0. Let’'s see how such acalculation is performed.

Example 2.4. Assume we want to calculate 19 — 42;5. In a one’'s complement system
using bit strings of length 8 thisis done as follows:

decimal binary 1'scompl.
19,0 00010011, — 00010011z
—42;5 00101010, — 11010104z +
—2319 nocarry — 1110100Q¢

What we see hereisthat no carry isgenerated and, indeed, the bit string (11101000) inone's
complement notation represents the correct decimal humber —23,.

|

The disadvantage of the one's complement notation isillustrated by Example 2.3. We need
to perform an additional operation in the case of subtracting anumber b fromawitha—b >
0. This can be avoided when using adlightly different representation, asis discussed next.

An alternative to the one's complement notation is the so-called two’s complement
notation. Inthisnotation positivebinary numbersare represented asnormal, and negative
numbers are represented by taking the one's complement representation, and adding 1 to
it. So, for example, —27,¢ is represented as

— 2710 = (invert({00011011)5), + 00000001, = (11100101) 5

Because no extraaddition of 00000001, is needed, the two’s complement notation is eas-
ier to use when representing the subtraction of two binary numbers.

Yet another representation is the so-called excess n or biased n notation. In this case,
anumber pwith —n < p < n— 1 isrepresented by the binary number p = p+ n, which
of courseliesinthe set {0,1,...,2n— 1}. In other words, we simply add a value of n.
The main advantage of thisnotation isthat we need not be concerned about signs as each
number is non-negative.

Table 2.1 shows these four widely used interpretations for the case of having to deal
with bit strings of length 4. Note how the first bit in each representation is used to in-
dicate whether the string represents a positive or negative number. These notations can
easily be extended for larger bit strings. For example, each bit string starting witha O is
simply interpreted as a positive binary number, except for the excess n notation where it
isinterpreted as a negative number. We |leave it to the reader to verify that the bit string
(10110101) corresponds to the numbers shown in Table 2.2.

> Real numbers

Most scientific calculations are based on real numbers, and their representation in computers
has always been an important topic. Before going into details, it is not difficult to imagine
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Table 2.1 Interpretation of bit strings as decimal numbers

Vector Two’'s One's Sign Excess
complement | complement | magnitude 8
(0000y) 0 0 0 -8
(0001) 1 1 1 -7
(0010) 2 2 2 —6
(0011) 3 3 3 -5
(0100) 4 4 4 -4
(0101) 5 5 5 -3
(0110) 6 6 6 -2
(0111) 7 7 7 -1
(1000) -8 -7 0 0
(1001) -7 -6 -1 1
(1010) —6 -5 -2 2
(1011) -5 -4 -3 3
(1100) -4 -3 -4 4
(1101) -3 -2 -5 5
(1110) -2 -1 —6 6
(1111) -1 0 -7 7

Table 2.2 The interpretation of the bit string (10110101)

Bit string Two's One's Sign Excess
complement | complement | magnitude | 27
(10110101) —7510 —T449 —5310 5310

how we can actually represent binary fractions. It is done in the same way as decimal frac-
tions. For example, the binary fraction 110.1% is equal to 6.75;:

11011, =1-2241.214+0-2°+1.2 1 +1.2°2=6.75 (2.2)
The problems start when representations have to be devised that fit into a fixed number of
bits. Note that in the case of natural numbers we can always perform calculations exactly
(within arange defined by the number of digitswe are using, and with exception of division).
Natural numbers (being expressed in decimal or binary notation) aways have afinite num-
ber of digits. The same holds for fractions that can be expressed as in equation (2.2). But
difficulties are encountered when realizing that not every decimal fraction can be expressed
by a binary fraction with afinite number of digits. Consider, for example, the decimal frac-
tion 0.249. It isnot difficult to see that its binary counterpart is equal to:
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0.210 = 0.00110011001100110011001100. .

thus having an infinite number of digits. But apart from this, there are real numbers such
asm, /2, €%, etc. which simply can never be written as fractions with a finite number of
digits, regardless of the base number of the arithmetic used (which is always apositive nat-
ural number). Consequently, if only bit strings of finite length can be used, we are forced to
resort to approximations. An aternative solution would then seem to use fractions for this
purpose. So, for example, we might choose to represent 5,/2 as:

5v/2 & 7.071533203,¢ = 111.000100100101, (2.3)

Unfortunately, thisisnot going to work. Thisis caused by the two conflicting demands that
are put on the notation for real numbers:

1. The notation should allow for very large (positive and negative) numbersto be repre-
sented, and

2. The notation should allow for a precise approximation of real numbers.

When only afinite number of bits can be used it is not hard to imagine that these two re-
quirements are indeed conflicting. To this aim, many solutions have been proposed, but a
representation that has been generally accepted as areasonable compromise isthe floating-
point notation.

Hoating-point notations have abase § and a precision p such that each floating-point num-
ber can be represented as

:tdo.dl . dpfl X BeXp

wheredp.d; ... d,_ iscalled the mantissa or significand, and exp the exponent. Of course,
for each digit d we havethat 0 < d < .

Example 2.5. Toillustrate, if wetake p =2 and p = 10, the representation for 5/2 asgiven
by equation (2.3) would then become the floating-point number:

5v/2 &~ 1.110001001, x B2 (2.4)

In this case, the exponent isequal to 2. Note how we have derived equation (2.4) from (2.3)
by first dividing the latter by the exponent 2 (which means shifting all the bits 2 positions
to the right), and subsequently discarding all the bits after the 1¢ position.

|
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Two parameters associated with a floating-point notation are important: &, and emax rep-
resenting the smallest and largest allowable exponent, respectively. It isimportant to note
that the number of floating-point numbers for a given base, precision, and exponent range
isfixed. There are P possible significands, and @nax — €min + 1 exponents.

In general, floating-point numbers are normalized, meaning that theleading digit isnon-zero
(dg # 0). Demanding that floating-point numbers are normalized leads to a unique represen-
tation, but note that it does become impossibleto represent 0! Thelatter problemisgenerally
overcome by representing 0 as 1.0 x f™in—1, In other words, we use a representation that
lies outside the set of valid floating-point numbers. By making use of the parameters gin
and e We are al'so capable of representing other non-valid but useful numbers, generally
referred to as NaNs (“Not a Number”). For example, two useful NaNs are + which are
available in most floating-point notations.

2.2.2 Representing text

Now that we have shown how numbers can be represented by finite bit strings, let’s con-
centrate on the representation of text.

Character coding

Asyou might suspect, we need to devise a scheme by which text can also be represented
in the form of bit strings. The approach that is taken in this case is straightforward. As
text is ultimately nothing but a consecutive series of characters, our problem reduces
to the question of how we can represent individual characters. To that aim, there are
two widely used codes: AsclIl (* American Standard Code for Information Interchange”)
and EBCDIC (“Extended Binary Code Decimal Interchange Code’). EBCDIC is used
on large 1IBM mainframes; almost any other computer represents characters using ASCI|
code. Table 2.3 showsthe standard AscI1 codes, represented in decimals.

Two things are important here. First, note that the first 32 characters are “specia”.
They represent characters for line feeds, carriage returns, etc., characters which no one
enters other than by meansof special keystrokes(suchase.g. theRETURN or BACKSPACE
key). Second, there are exactly 128 codes. Thismeansthat whenusing AScil we can rep-
resent each character by 7 bits. In practice, however, most computersrepresent the ASCI|
character set by means of 8-bit bit strings as thisis more in line with the fact that com-
puters generally store datain unitsof 8 bits. We shall return to this aspect in Section 2.5.

A word on text processing

It would seem that just having the Ascii coding is not enough to represent every kind of
text that we come across. For example, the coding makes no distinction between differ-
ent types of fonts (boldface, italic), nor does it account for aspects like subscripts. Fur-
thermore, it also seems impossible to add new characters, or perhaps to use characters
that are specific to a particular language (e.g. “ A’ or “0"). These additional features are
typically embedded into so-called text processors.

What a calculator isto numbers, so is atext processor with documents: a device that
assists in producing results in an automated fashion. An important aspect of each text
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Table 2.3 The ASCII codes

| Dec. Char. Interpretation | Dec. Char. | Dec. Char. | Dec. Char. ||

0 NUL null 32 space| 64 @ 96 ‘
1 SOH start of header 33 ! 65 A 97 a
2 STX start of text 34 " 66 B 98 b
3 ETX endof text 35 # 67 C 99 c
4  EOT endof transm. 36 $ 68 D 100 d
5 ENQ enquiry 37 % 69 E 101 e
6 ACK acknowledge 38 & 70 F 102 f
7 BEL Dbdl 39 ’ 71 G 103 g
8 BS backspace 40 ( 72 H 104 h
9 HT  horizontal tabs 41 ) 73 I 105 i
10 LF linefeed 42 * 74 J 106 j
11 VT vertical tabs 43 + 75 K 107 k
12 FF  formfeed 44 , 76 L 108 I
13 CR carriage return 45 - 77 M 109 m
14 SO shiftout 46 : 78 N 110 n
15 Sl shiftin 47 / 79 O 111 o]
16 DLE datalink escape 48 0 80 P 112 p
17 DC1l devicectrl. 1 49 1 81 Q 113 o}
18 DC2 devicectrl. 2 50 2 82 R 114 r
19 DC3 devicectrl. 3 51 3 83 S 115 S
20 DC4 devicectrl. 4 52 4 84 T 116 t
21 NAK neg. acknowledge | 53 5 85 U 117 u
22 SYN synchronousidle 54 6 86 Vv 118 v
23 ETB endof trans. block | 55 7 87 w 119 w
24 CAN cancel 56 8 88 X 120 X
25 EM endof medium 57 9 89 Y 121 y
26 SUB substitute 58 : 90 Z 122 z
27 ESC escape 59 ; 91 [ 123 {
28 FS file separator 60 < 92 \ 124 |
29 GS group separator 61 = 93 ] 125 }
30 RS  record separator 62 > 94 B 126 ~
31 US  unit separator 63 ? 95 _ 127 DEL

processor is its support for a specific markup language, i.e. a set of commands that is
used to mark parts of your document for special processing. For example, this book has
been written using the IATEX markup language. Using only the AscCli character set, it is
possibleto still produce documents having awealth of variations concerning the presen-
tation of text. Toillustrate, consider the following IATEX command and its result:
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| ATEX fragment | result |

Usi ng \t ext bf {bol df ace} Using boldfaceisreally simple.
is really sinple.

If you are used to working with a personal computer, you will probably be using atext
processor that hides most of these commandsfor you. Instead, you can select fragments
of text and instruct the processor to process that fragment, for example, in boldface. In-
ternally, the processor adds a command like the one used in IATEX.

The problem with representing text using markup commandsisthat standardization in
thisareaisstill rather poor. Thismeansthat if you want to have your document processed
by another text processor, you may have to take great painsto do the proper conversion.3
Another problem is that most popular markup languages, especially used on personal
computers, do not strictly adhereto the printable Ascii coding, but instead use many non-
printable characters as well. Consequently, the text, including its markup commands as
produced with such text processors, cannot be displayed directly on a screen. Moreover,
as many high-level servicesin communication systems expect communicated datato use
only printable ASCII characters, communication may become a problem as well.

2.3 Operations

So far, we have discussed only how our daily representations for numbers and other text
can be transformed into finite bit strings. We have said nothing about operations: how
can we describe operations that have meaning in our daily livesin such away that when
performed on bit strings still yield something meaningful ? In this section, we introduce
Boolean algebra which is a mathematical system in which operations on bit strings are
described in terms of functions and expressions.

There are several reasons for introducing such a notation. The first point to realize is
that we are now entering aworld in which al things that we imagine in our daily lives
are expressed in terms of bit strings. But to do things right, this also means that data
manipul ations that make sense to usin reality have to be converted to operations that act
on bit strings. For example, adding two numbersis something we are accustomed to. But
if numbers are to be represented as bit strings, then we also have to describe operations
on hit stringsthat will allow usto manipulate our bit string representationsin such away
that the result can be sensibly interpreted as an addition of numbers. This principle is
shown in Figure 2.1.

Devising ascheme by which we can express operationson bit stringsisthus something
that we need. But such ascheme must proveto be beneficial inanumber of ways. First, it
should be as straightforward as possible. In other words, it should preferably correspond
to something that we are more or less aready used to. In the second place, as we are

SAndif you really believethat popular text processorsfor personal computersare capable of converting
adocument to the format of their competitor, beware. |n practice, they might produce something that seems
converted, but which is now internally mismatched with avery large number of commands that can drive
you crazy if you have to continue working with the converted document.
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real-world
data

datarepresented | | datarepresented
in normal symbols as bitstrings

v v

by hand (normal operation)* S *(bitstring operation) by machine

v v
resultsrepresented | | resultsrepresented
in normal symbols as bitstrings

N/

real-world
results

Figure 2.1 The relation between normal operations and the world of bit string operations.

dealing with computers, our scheme should also be easy to implement. That is, we have
to invent ascheme that can easily be simulated through electrical or mechanical devices.
Boolean algebrais such ascheme. In this section, we shall concentrate on the notational
issues. Implementation aspects are discussed in Section 2.4.

2.3.1 Boolean functions

Boolean algebrais, aswe have said, amathematical notation. The basisof thisnotationis
formed by treating bitsas variablesthat can have only two possiblevalues. the symbols0
and 1. Thisproperty hasan important consequence. Assumewe have aBoolean function
f with ninput bits, for which we can use the normal notation:

y = f(x1,X2,...,Xn)

Note that each bit y, Xy, ..., X, isconsidered as a Boolean variable so that it can be either
0 or 1. Theimportant issue here is that there are precisely 2" combinations of input val-
uesfor f. This meansthat we can simply resort to constructing a table with 2" rows and
n+ 1 columns, where each row describes a unique combination of the valuesfor the bits
X1,- - -, Xn, together withthevaluefor f(xq,...,xn). Such atableisdenoted afunction ta-
ble. For example, look at the three function tablesshownin Table 2.4. What isseen there
is that each function not, and, and or is completely specified by listing all the possible
combinations of values for their input bits.
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Table 2.4 The three basic function tables

[ x y[andxy) | [x ylor(xy) |
X | not(x) 0 0 0 0 0] O
0 1 0 1 0 01 1
1 0 1 0 0 1 0 1
1 1 1 1 1 1

But thereismore. If we consider a0 as the representation of the logical value FAL SE,
and 1 as the representation of the value TRUE, it is seen that we can also speak about
truth tables. For example, the function and is now a representation of the logical AND
operation. Using natural language

and(x,y) : “TRUEif and only if bothx and y are
TRUE.”

Likewise, or represents the logical OR operation and not the logical NOT operation:

or(x,y) : “TRUE if and only if either x or y is
TRUE.”

not(x) : “TRUEifandonlyifxisnot TRUE,i.e.
FALSE.”

Let'stake alook at another example. Consider the Boolean function xor with two in-
put bitsthat takes on the value 1 (TRUE) if and only if the two input values are different.
Thisfunction, also known as the exclusive-or (XOR) function, can be specified as shown
in Table 2.5. The question that comes to mind is if we can write down xor in terms of
the three basic functions from Table 2.4. And indeed, thisisthe case. To that aim, re-
call again from high-school algebrathe concept of function composition. For example,
suppose we had the following two functions:

f(x) = x
gx) = 1-x

Table 2.5 The specification of the exclusive-or (XOR) function

[ x y|xor(xy) |
00 0
01 1
10 1
11 0
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In this case, the composed functions f(g(x)) and g( f(x)) take the following form:

fg() = [P = (1-%)%=1-2x+x°
g(f(x) = 1—f(x)=1-x

We can do the same in the case of xor, for it can be readily verified that*

xor(x,y) = or(and(not(x),y),and(x, not(y)))

The important thing to note hereisthat it can be shown that any Boolean function can be
expressed as a combination of just the three functions not, and, and or. (Infact, it even
turns out that using only a combination of the not function and either of the and or or
functions is sufficient.) In turn, thisimplies that if we can devise implementations for
just those three basic functions, we will be able to implement any Boolean function. A
powerful result indeed.

2.3.2 Boolean algebra

But admittedly, writing functions such as xor in terms of function composition is rather
awkward and it is not hard to imagine that this notation can easily lead to descriptions
which are barely comprehensible by human beings. To solve this problem, we adopt a
symbolic notation to deal with expressionsthat take avalue of either O or 1. Thisnotation
was introduced by George Boole in 1854 and has come to be known as Boolean alge-
bra.® Later, it was adopted for computer science and has since then also been known as
switching algebra.

Notational issues

Boolean algebraisin fact aformal language that allows us to express function composi-
tionsin a convenient way. Being a language means that there will be certain syntactical
rules, just as there are rules in its grammar. Its basis is formed by the three functions
not, and, and or from Table 2.4 which are more conveniently written using the following
notation:

not(x) = X
and(x,y) = Xey
or(x,y) = X+y

4Below we shall explain how we can derive function compositionsin a systematic way.
SMore precisely, Boole showed that logic could be expressed in terms of an algebraic system.
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In other words, each of these functions is now specified in the form of an operation on
either asingle bit (the NOT operation) or as an operation between two bits (the AND and
the OR operation). Note that we are only introducing some convenient syntax here: the
notations above are just a way of writing down the basic functions in a more readable
form. There is nothing special about it in any sense.

Using this notation makesit much easier to express function compositions. For exam-
ple, the function xor given above can be now be written as:

Xor(x,y) = (Xey)+(xey)

which isindeed easier to read.

But just asthere are syntactical conventions, so there are also some grammatical rules
that we should adhereto. Anditisherewherethe mathematical nature of Boolean algebra
isfound. Beforewe elaborate on thisissue, note that grammatical rulesare something we
are already used to. In effect, many of them are simply rewriting expressions. Consider
the following examples:

| expression can berewritten as. .. ||
8x1 = 8
8+0 = 8
10+ 3 = 3410

45x (3+26) = (45x3)+(45x26)
12+ (34+9) = (12+34)+9

In Boolean algebra, there are really not that many differences from the thingswe are a-
ready used to. For example, the following rules apply equally well in our case (where
X,Y, and z are hits):

| expression can be rewritten as. .. ||
Xel = X

X+0 = X

Xey = YyeX

X+y = y+X

Xe(yez) = (xey)ez

X+(y+2z) = (x+y)+z

xe(y+2) = (Xey)+(xe2)

We have more or less deliberately used the symbols“+” and “e” to indicate that many of
the properties of ordinary addition and multiplication that we are used to apply equally
well in the case of Boolean algebra. Thereis, however, only one exception that does not
immediately have its counterpart in ordinary arithmetic. It can be shown that

forall x::x+x=x
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We shall not go into any further details here on Boolean algebra, as most properties, ex-
cept for the ones we have mentioned, are really not important for the remainder of this
chapter. Referencesto textbookson Boolean algebracan befound at the end of thischap-
ter.

Constructing Boolean expressions

At this point, the only thing we have done is to have introduced a notation that seemsto
be more readable than making use of function compositions. As we shall see later, our
notationisinfact so convenient that it becomesrelatively easy to deriveimplementations
for Boolean expressions. But that leaves us with one more issue to solve, hamely how
to derive a Boolean expression for a function. This is best explained by means of an
example. Let’'sreconsider our original specification of the exclusive-or function which
was given by means of the following function table:

[ x y[xor(xy)]
00

0
01 1
10 1
11 0

In order to derive a Boolean expression for xor, we consider only those rows from the
table for which xor(x,y) = 1. Thisistrue for the following two cases:

xor(x,y)=1< (1) x=0 and y=1
(2) x=1 and y=0

For each row for which thefunction yields 1, we construct a separate Bool ean expression
asfollows. If x = 0, we represent thisfact in our expression by writing the term “X”. On
the other hand, if x = 1, we write down “X”. The same goes for the input y. All these
terms are then subsequently brought together by using the AND operator:

(1) x=0 and y=1 = Xey
(2) x=1 and y=0 = Xxey

Thefinal expression isobtained by combining these expressionsinto asingle expression
by using the OR operator:

XOr(X,y) = (Xey) + (Xey).

2.3.3 Someexamples

Let'stake alook at afew examples of how we can describe operations on bit strings us-
ing the notations above. The operations we consider here will be used in the following
section as building blocks of a simple calculating device.
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Table 2.6 The specification of the majority operation on bit strings of length 3

inputs | output
X Yy z|major3
00O 0
0 01 0
010 0
011 1
100 0
101 1
110 1
111 1

The majority operation

Consider thefollowing operation. Suppose we have abit string (xyz) of length 3, and we
wish to determine if the majority of the number of bitsis 1. In other words, we wish to
determine whether thebit string containsat |east two bitsthat are 1. The operation, which
we denote as major3, is specified in Table 2.6. In order to determine the corresponding
Boolean expression, we proceed asfollows. First, we consider only thoserowsfor which
the operation yields 1:

major3=1«< (1) x=0 and y=1 and z=1
(2) x=1 and y=0 and z=1
(3) x=1 and y=1 and z=0
(2) x=1 and y=1 and z=1
which resultsin four expressions, one per row:
(1) x=0 and y=1 and z=1 = Xeyez
(2) x=1 and y=0 and z=1 = Xeyez
(3) x=1 and y=1 and z=0 = XeyeZz
(4) x=1 and y=1 and z=1 = Xeyez

S0 that we obtain

major3 = (Xeyez)+ (Xeyez)+ (Xeyez)+ (Xeyez)

What we have achieved isasimpleway of describing an operationon abit string of length
3. Aswe shall see later, subsequently deriving an implementation from the expression
for major3 is straightforward.
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Table 2.7 The specification of the oddbits operation on bit strings of length 3

inputs | output
X y z| odd3
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 1

The oddbits operation

Our next example concerns an operation by which we can determine if a bit string (xyz)
of length 3 contains an odd number of bitsbeing 1. In other words, the operation should
yield 1, if and only if the number of bitsthat are 1 iseither 1 or 3. The operation, which
we denote as odd3, isgivenin Table 2.7.

Following the same procedure asin the case of the majority operation, wefirst consider
only those rows for which the operation yields 1 as its result:

odd3=1< (1) x=0 and y=0 and z=1
(2) x=0 and y=1 and z=0
(3) x=1 and y=0 and z=0
(2) x=1 and y=1 and z=1
which resultsin four expressions, one per row:
(1) x=0 and y=0 and z=1 = Xeyez
(2) x=0 and y=1 and z=0 = Xeyez
(3) x=1 and y=0 and z=0 = Xeyez
(4) x=1 and y=1 and z=1 = Xeyez

S0 that we obtain

0dd3 = (Xeyez)+ (XeyeZ)+ (XeYeZ)+ (Xeyez)

A half adder

For the first time, let’s make a link between the world of bit strings and that of binary
arithmetic. Consider the operation halfadd shownin Table 2.8. We assumethisoperation
takes two bitsx and y as input, and likewise, has two bits zand ¢, as output.
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Table 2.8 The specification of the operation halfadd

inputs | outputs
X Y |Z Cou
0O 0|0 O
0O 1|11 O
1 0|1 O
1 10 1

When dealing with multiple outputs, asinthiscase, it isconvenient to write aBoolean
expression per output variable. Following the same procedure as described in the two
previous examples, it is not hard to see that

z = (Xey)+(xey)
Cot = Xey

The special thing about our operation halfadd isthat it behavesthe same as mathematical
addition in the case of binary numbers. To seethis, first note that in binary arithmetic the
following rules apply:

0+0; = 0
0+, = 1
1L,+0, = 1
1,+1, = 0, withanoverflowof 1,

These rules are completely analogous to decimal arithmetic. For example, recall that if
we perform the addition 43,5+ 919, wWe first write down a 2,4, and note that we had an
overflow of 1,0 which we carry to the next digit. Thisleadsto our final result 52;4. In
the case of binary arithmetic, we do exactly the same. By adding 1, + 1,, thefinal result
will be 0y, but with an additional overflow of 1,. Now, if you look at zin Table 2.8 you
will find that if we neglect possible overflows we have that z= x+y, where z x, and
y are now considered as binary numbers, and “+” denotes the usual add operation. A
possible overflow is recorded in ¢y, Which, of course, only happenswhen x =y = 1.
The operation halfadd is called a half adder for reasons we explain below.

Thisexampleillustratesan important point. What we have doneisconstruct aBoolean
function that behaves as an ordinary adder for binary numbers. In other words, we can
apparently represent operations such as adding two numbers in terms of operations that
make sense only in the world of bit strings. We shall return to thisimportant observation
bel ow.
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Table 2.9 Specification of the operation fulladd

inputs | outputs
CianZCout
O 00|/O0 O
O 01|12 O
0O 10|12 O
0 11|0 1
1 00|1 O
1 01/0 1
1 10/0 1
1 11]1 1

A full adder

You might suspect that the existence of a half adder impliesthat there will also be some-
thing as afull adder. And indeed, thisisthe case. Thisfull adder operation, which we
refer to here asfulladd, isclosely related to the majority and oddbits operation given pre-
viously. The operation takes three bits ¢, X, and y as input, and produces two bits z and
Cout 8S OUtput according to Table 2.9. Aswe shall explain below, the specia point about
thisoperationisthat it doesafull addition onitsinput. But before we go into any details,
let’sfirst see how we can express this operation using our Boolean notations.

Again, using the procedure as described above, it should not be too hard to verify that
we have:

Z = (GneXey)+(CnoXeY)+(CneXeY)+(GneXey)
Cow = (GnoXey)+(GnoXey)+ (CroXey)+(Gnoxey)

What is seen here isthat our fulladd operation is nothing but a combination of the mgjor-
ity and oddbits operation discussed above. In fact, it can be immediately observed that

z=o0dd3 and co = major3

Thedistinctionwith the half adder operation isthat we now take a possi ble overflow from
a previous application of the operation fulladd into account as well. It isfor this reason
that the adder described here is called a full adder. A previous overflow is recorded in
the additiona bit c;,.

Anoverflow will again occur when at | east two of thethree bitsx, y, and G, interpreted
as binary numbers, have the value 1. Again, this is completely analogous to decimal
arithmetic. For example, when adding 5619 + 49,0, we first add 6,0 + 919 Which leads
to the digit 440, and second, record an overflow of 1o which is carried to the next digit.
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After that, we add 1,9 + 519 + 4109 Which leadsto the digit 01 and, again, an overflow of
1;0. Thefinal result isthe number 10444.

In the case of our full adder, the overflow asthe result of the additionisagain recorded
in Coy. Full adders are important. As we shall see in the next section, it is possible to
combine N full adders into an adder that can operate on bit strings of length N. In this
sense, we are indeed using Boolean algebrato represent operations on binary numbers.

2.3.4 Towardsthe next step
Let’'stake alook at what we have accomplished so far:

1. We started out by making an attempt to represent our world of decimals, letters, etc.
by aworld consisting only of finite bit strings. Although we have skipped many
details, we have demonstrated that merely representing data through bit stringsis
feasible.

2. Our next step consisted in the construction of Boolean functions: functionsthat can
accept only variables that take on the values 0 and 1, values to which the function
itself is aso restricted. We have shown how we can describe these functions in
terms of Boolean expressions. We are now capable of describing operations on
finite bit strings.

3. Our exampleaboveisacrucial link. First, by using asuitablerepresentation for our
decimal numbersin terms of finite bit strings, and second by specifying a Boolean
function that produces bit strings that can be sensibly interpreted as numbers, we
have constructed an operation in termsof Boolean algebraand finite bit stringsthat
makes sense to us in the world of binary and decimal numbers.

So where does thisbring us? Up to this point we have merely concentrated on theoretical
issues. It istime that we put things into practice. Suppose that we could simulate the
world of finite bit strings and Boolean functions. In other words, suppose we could build
adevice that is capable of:

e Representing the symbols 0 and 1 in a unique way, and

e Simulating behavior of Boolean functionsexactly accordingtotherulesof Boolean
algebra.

Inthat case, we would have amachine at our disposal that we could readily use asacom-
puting device. How such adeviceis built is the subject of the succeeding sections.

2.4 Digital circuits

We now have the mechanisms to mold our world of decimals and letters into the world
of finite bit strings. Also, we have shown by example how Boolean functions can be
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Figure 2.2 A binary switch viewed from the outside.

used to construct operations that are useful to us, such as, for example, addition of bi-
nary numbers. We now take acloser look at the actual implementation of these functions
into hardware. Our main concern in thissection isto show how we can construct devices
out of electrical componentsthat are capable of simulating the behavior of Boolean func-
tions. These devices can then be used for doing computations in an automated way. We
first present in Section 2.4.1 the basic building blocksfor the construction of computers:
gates. Then, we show in Section 2.4.2 how gates can be used to implement operations
on bit strings, using Boolean expressions as our starting point. Finally, we consider the
integration of several implementationsinto a single so-called chip in Section 2.4.3.

24.1 Gates

The question wewant to answer hereisif we can produce an electrical or mechanical de-
vicethat is capable of simulating operationson bit strings. Aswe have mentioned above,
all Boolean operations can be constructed from the three basic operations. NOT, AND,
and OR. So, clearly, what we are seeking is a simple device that can simulate precisely
thesethree operations. Such adevice, whichisdenoted hereasabinary switch, isshown
in Figure 2.2. (We emphasize that our binary switch isjust an example. In reality other
kinds of binary switches are used.)

A binary switch operates on the basis of just two possible values of signals. a low
value, and a high value. For most computers a high value corresponds to something be-
tween 2 and 5 volts, whereas alow value typically lies somewhere between 0 and 1 volt.
On the outside, our switch has four pins. Two pins are used as input lines, one pin as an
output line, and one as a select line, respectively. The whole idea is that based on the
value of the signal put on the select line, either one of the two input linesis selected. In
particular, we have:

value at select lineislow = sdectinputlinell
value at select lineishigh = selectinput line |2

Thevalue of the signal at the selected input lineis subsequently propagated to the output
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Table2.10 Therelationship between the values of theinput, output and select signalsin abinary
switch

input lines | select | output
11 | 12 |lineS| lineO

low | low | low low
low | low | high | low
low | high | low low

low | high | high | high
high | low | low high
high | low | high low
high | high | low | high
high | high | high | high

line.® Thisgivesrise to a number of possible output values, depending on the values of
the signals at respectively the select line, and the two input lines. Table 2.10 shows this
dependency.

Binary switches become interesting when we manipulate the signals at the input lines.
Let’slook at three particular schemes.

Makingan inverter. First, assume we permanently put a high-valued signal on |1 and
alow-valued signal on 2. This corresponds to considering only rows #5 and #6 in Ta-
ble 2.10. Inthat case, we get the following relationship between the select signal and the
output signal:

valueat Sislow = vaueat Oishigh
valueat Sishigh = valueat Oislow

In other words, we have made the switch act as an inverter for its select signal. What
does this mean? If we consider the select signal as our actual input and interpret alow
signal value as 0 and a high signal value as 1, it should be clear that our binary switch
simulates the behavior of the Boolean NOT operation.

Makingan AND switch. Inasimilar way, we can construct aswitch that ssimulatesthe
Boolean AND operation. To that end, we directly connect input line 11 to the input line,
and consider what happens to the value of the output line. This corresponds to consider-
ing rows#1, #3, #6, and #8 in Table 2.10. In that case, we obtain the following:

SHow thisis donein practice is beyond the scope of this book. Thisis typically something what con-
cernsonly electrical engineers.
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Figure 2.3 Wiring switches for construction of gates.

inputs output
S 12 0

low low | low
low high| low
high low | low
high high | high

Again, by interpreting alow signal value as 0 and a high signal value as 1 it is seen that
our switch simulates the Boolean AND operation.

Making an OR switch. Finaly, we can wirethe switch in such away that it simulates
the Boolean OR operation. To that aim, we merely connect input line |2 to the select line.
This corresponds to considering only rows #1, #4, #5, and #8 in Table 2.10, leading to:

inputs output

S 11 0
low low | low
low high | high

high low | high
high high | high

These three different schemes are summarized in Figure 2.3. The relation to Boolean
algebra is now evident. By interpreting a high signal value as a 1, and a low signal
value as a 0, we have actually made implementations of the three basic operationsinto
switches. In other words, by using binary switches we can simulate the behavior of our
three basic Boolean functions not, and, and or. And because these three operations are
all that is needed for constructing an arbitrary Boolean expression, the devel opment of a
machine that can actually do computations can now commence. As we shall see below,
the only thing we have to do isto correctly wire a number of these switches together in
order to simulate the behavior of a Boolean expression. Thethree switchesare generally
known as gates and their conventional graphical representation is shown in Figure 2.4.
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Figure 2.4 The graphical representation of the three basic gates.

2.4.2 Implementing arbitrary Boolean functions

Having shown how we can simulatethe three basic operationsNOT, AND, and OR through
binary switches, it should now also be possible to ssimulate arbitrary Boolean functions
by connecting gates to each other. In this section, we shall pay attention to how we can
derive an implementation of a Boolean function in asystematic way. Let’sfirst start with
afew simple examples.

A multiple AND operation
As afirst example of a more complicated Boolean function, consider the function and5
specified as

and5(a,b,c,d,e) =aebecedee

In order to derive an implementation for thisfunction, our first concernisto specify add5
in terms of the basic functions not, and, and or. The point to note is that these functions
take, at most, two variablesastheir input. Because Boolean algebraissimilar to ordinary
algebra, we can also place afew brackets here and there. In particular, we may choose
to write add5 as the following expression:

and5(a,b,c,d,e) = ((aeb)e(ced))ee

We can now easily implement the function and5 using the basic AND gates, as shown
in Figure 2.5(a). For each term “y e Z’ we use a single AND gate and associate with its
input lines*y” and “z,” respectively, and with its output linetheresult “ye Z'. To further
illustrate, Figure 2.5(b) shows an implementation of and5 after having rewritten it asthe
expression

and5(a,b,c,d,e) = (aeb)e(ce (dee))

It should be clear how we can derive implementations of the AND or OR operations that
can take any given number of bits asinput. We leave this as an exercise for the reader.

The exclusive-or operation

Asan another example, consider the X OR operation which was specified by the Boolean
expression
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Figure 2.5 The construction of an AND gate with five input lines.

(x+y)+ (X=y)

(xey)+ (X=)

Xey Cout

@) (b)

Figure 2.6 An implementation for the exclusive-or function (@) and a half adder (b).

Xor(X,y) = (Xey)+ (xey)

Inthiscase, we start with deriving an implementation for the subexpression (e y) which
requires a NOT gate, combined with an AND gate. Likewise, the subexpression (xey)
also requires a NOT gate and an AND gate. The implementation of the full expressionis
finally achieved by using an additional OR gate. The result is shown in Figure 2.6(a).

But, in fact, we can do even better than this. Recall that our half adder operation spec-
ified in Table 2.8 took two bitsx and y as input, and had two output bits zand ¢y, which
could be specified as:

z = (Xey)+(xey)
Cost = Xey

Clearly, zcorrespondsto the X OR operation. By adding just onesinglegateto Figure 2.6(a),
we obtain a combined implementation for the exclusive-or function and our half adder,
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Figure 2.7 Animplementation for the majority function major3 (@), and the oddbits function
odd3 (b).

asshownin Figure 2.6(b). Combining several implementationsinto oneissomething we
shall meet often.

The majority and oddbits operation

Using the conventions introduced in the previous two examples, it is now not too diffi-
cult to derive implementations for the majority and oddbits operations discussed in the
previous section. These two operations could be specified as the following Boolean ex-
pressions:

major3 = (Xeyez)+ (Xeyez)+ (Xeyez)+ (Xeyez)
0dd3 = (Xeyez)+ (XeyeZ)+ (XeYyeZ) + (Xeyez)

We have already shown how to construct an implementation for the AND operation hav-
ing five instead of two input bits. Here, we assume that there is also an implementation
available for the three-bit case, as well as an implementation for the OR operation with
four bits as input. Assuming this, deriving the implementationsfor major3 and odd3 is
not too difficult; they are shownin Figure 2.7

A full adder

Asalast example, let’s consider an implementation of the full adder as specified in the
previous section (Table 2.9). Aswe have mentioned, our full adder actually consists of
two components: the majority and oddbits function. It would therefore seem reasonable
that we can derive an implementation by simply merging the implementation of these
two functions together, similar to the way that we combined the implementation of the
exclusive-or operation and our half adder. And indeed, this can be done. Moreover, we
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Figure 2.8 Animplementation for the full adder operation.

can in fact have one gate less. Recall that the full adder was specified as an operation
taking three input bits x, y, and ¢;,, and which had as output two bits zand Coy:

2 = (CaoXeY)+ (Groxe9) - (GnoXey) + (Groxey)
Cout = (Cin.X'Y)+(Cin.)_(.Y)+(Cin.X.)_/)+(Cin.X'Y)

What is seen hereisthat the subexpression (G, X e y) appears for both output bits. This
means that we can have just one AND gate for this expression in our implementation.
Thisleads to the circuit shown in Figure 2.8.

Discussion

The functions discussed so far are rather ssmple and one may justifiably argue that their
complexity is certainly not representative of most functions performed by computers.
Neverthel ess, even complex Bool ean functions can be implemented by electrical circuits
that combine only NOT, AND, and OR gates. But clearly, if complex functions are to be
implemented we need to raise the level of abstraction, i.e. group functionality into more
complex components that in turn can be combined to implement more complex func-
tions. In the next subsection, we shall discuss how several gates can be integrated into
so-called integrated circuits.

2.4.3 Integrated circuits

Gates form the basic building block in constructing computers. But manufacturing com-
puters by starting to connect gates into the kind of circuits discussed so far is not very
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efficient. Instead, it seemsmore practical to make use of existing circuits, and preferably
circuits that can be tailored to specific needs. In addition, and more important, the level
of abstraction when considering only gatesis simply not adequate if we are to construct
such complex machines as computers. In this section, we take a closer look at the con-
cept of anintegrated circuit (1C), commonly referred to asachip. Anintegrated circuit
iIsacollection of gates and their interconnections grouped together into a single package
with a number of pins that are connected to the input and output lines of some gates.”
Integrated circuits will be seen to be useful in a number of ways. In thefirst place, they
allow us to introduce a more convenient level of abstraction: rather than talking about
circuits in terms of gates, we are able to consider circuits constructed by wiring chips
together. In the second place, and the starting point for our discussion in this section,
integrated circuits often combine several functionsinto a single chip which can each be
selected through a separate mechanism.

Integrating and selecting implementations

An important feature of many chipsisthat they integrate functionality: severa Boolean
operations are implemented on the same chip. Doing so has severa benefits. For exam-
ple, by integrating several operations it becomes possible to optimize the overall imple-
mentation by minimizingthe number of gatesthat are needed. We have briefly come meet
thisissuein the previous section when discussing our implementation of afull adder. Our
solution was based on combining the implementation for the majority and oddbits oper-
ation, which each consisted of four AND gates. We observed that rather than having to
use atotal of eight AND gates, it would suffice to use only seven.

Another benefit of integration isthat of convenience. Rather than having to buy a sep-
arate chip for each required operation, it suffices to purchase just asingle chip, and select
the operation needed. In turn, this reduces the overall complexity of constructing com-
puters, of which the net effect is that costs can be kept relatively low. How operations
can be integrated and subsequently selected is our main concern in this section.

Let’s start by illustrating integrated implementations through a simple example. Sup-
pose we wish to construct a circuit that accepts two input bits x and y and that offers
implementations for calculating two different results: (x+y) and (xey). Now, rather
than having two different output pins, we require that there be only a single output pin
and additionally some sel ection mechanism to choose one of the two possible operations.
An outline of such achip isshown in Figure 2.9.

What we need at this point isto devise an implementation for our selection mechanism.
To that end, first note that we can specify our result z more generaly as.

Z = (X+y)esd + (Xey)esel

"We note that in order to simplify our discussion we do not make an explicit distinction between inte-
grated circuits and functional units, the latter being part of a chip. Instead, we focus only on the issues of
abstraction and combining circuits. How things are actually packaged into chipsislessimportant for our
discussion.
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Figure 2.10 A complete integrated implementation and selection mechanism.

where sel isa so-called selection bit that either enables or disables an operation. If sel =
1, only theresult of the operation (x+Y) ispropagated to z, so that the operation (Xey) is
effectively disabled. The converseholdsfor the casethat sel = 0. The general expression
for z also suggests how we can implement our selection mechanism by using two AND
gates, asingle OR gate, and aninverter. Our final implementationisshownin Figure 2.10.

We have shown so far that by using only one bit it is possible to select between two
possible aternatives. Thismechanism can easily be generalized asfollows. Assumethat
we want to design an implementation of a selection mechanism using K selection bits.
Because each selection bit can be either O or 1, it is not hard to see that this will allow
us to select between 2K input bits. For example, suppose that we have two selection bits
sel; and sel,. Inthat case, we can design an implementation that will allow us to select
between four input bits x4, . . ., X4 according to the following expression:

y = Xlo(SeTloSCTZ)—I—Xzo(glowlz)+X30(SelloSCT2)+X40(S€|10$e|2)

An implementation of this selection mechanism is shown in Figure 2.11(a). An appli-
cation of the selector isfound in Figure 2.11(b), which shows an implementation of an
integrated circuit providing four operations:

Xeoy if S€|1=O,S€|2:0
Xx+y if sdi=0,se,=1
xey if sei=1se,=0
XTy if sdy=1lse,=1
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Figure2.11 Animplementation of aselection mechanism for four inputs (a), and its application
in an integrated circuit (b).

Inasimilar way, we can deriveimplementationsthat allow usto usethree selection bits
to select between eight alternative input bits, etc. These implementationsare also called
multiplexers. We return to selection mechanisms when discussing memory chipsin the
next section. But before doing so, wefirst take alook at auseful andin fact indispensable
integrated circuit.

Integrating arithmetic and logic

An important type of integrated circuit is a so-called arithmetic and logic unit, gener-
ally abbreviated to ALU. Asits name suggests, an ALU integrates arithmetic and logical
operationsintoasinglecircuit. In particular, one can expect that an ALU having two input
bits x and y provides the following operations:

The Boolean NOT operation for at least one input, say x: X

The Boolean AND operation: xXey

The Boolean OR operation: X+y

The operation for doing binary addition on x and y.

With theimplementationsintroduced so far, we are capable of constructing an integrated
circuit that provides these operations. The simplest part is formed by the collection of
three Boolean operations; for the binary arithmetic operation, we can use our full adder
implementation from the previous section. Thisleadsto aso-called 1-bit ALU shownin
Figure 2.12.
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Figure 2.12 Animplementation of a 1-bit ALU by integration of several circuits.
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Figure 2.13 An implementation of a4-bit ALU.

Our 1-hit ALU isasimple device, and certainly alot simpler than it appears in prac-
tice. However, it can be used to build a more useful integrated circuit by concatenat-
ing several units as shown in Figure 2.13. What we have constructed there is an inte-
grated implementation of four operations that each take two bit strings X = (X4X3X2X1)
and 'y = (yay3Yy2Yy1) asinput, and produce a bit string z = (z4232,2;) as output. The fol-
lowing four operations are implemented, and selected through the two selection bits sel;
and sel,:
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selection | operation
sel; selp
0 | invert al the bits of x

1 | perform abitwise AND on x and y

0 | perform abitwise OR onx andy

1 | perform a binary addition on x and
y, where both input strings are inter-
preted as binary 4-bit numbers

R PFk OO

Toillustrate, if x = (1011), and y = (0110}, we obtain the following results:

sel; sel, | operation result
0 1 |(1011) (0100)
0 1 |(1011) e (0110) | (0010)
1 0 |(1011) + (0110) | (1111)
1 1 | 1011, + 0110, | 0010, overflow: 1

It isimportant to note that for the first time, we have constructed an implementation of
an operation that can add binary numbers consisting of more than one bit. Moreover, we
have embedded thisimplementationinto amore generally applicablecircuit. Aswehave
said, in practice more sophisticated ALUS exist than we have demonstrated here. How-
ever, the principle of how such circuits can be constructed from simpler onesremainsthe
same.

2.5 Storingdata

In the previous sections we have concentrated on the implementation of Boolean oper-
ations. These operations have one thing in common: a result is only dependent on the
specified operation and theinput values. When building machines, this property issome-
times too restrictive. What we often want to do is temporarily store a value. Unfortu-
nately, it isimpossibleto describe the process of storage in terms of Boolean operations.
In this last section, we focus on how we can build storage devices. Quite surprisingly,
we need not introduce any additional components other than the ones used so far. We
demonstrate in Section 2.5.1 that it suffices to use only basic components such as NOT,
AND, and OR gates. Then we construct in Section 2.5.2 a simple integrated circuit that
acts as a so-called counter, a device which we shall meet a number of timesin the next
chapter. Our last concern isthe development of storage devicesthat will allow usto store
millions of bitsin a so-called memory chip. These are treated in Section 2.5.3.

25.1 1-bit memories

We start by taking alook at a device that permits us to store precisely one bit. First, we
consider only the underlying principle of how to store asingle value. Then, we concen-
trate on how we can control when avalueis either to be stored or retrieved.
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Figure 2.14 An SR latch.

Thebasic principle

Consider the circuit shown in Figure 2.14, which isalso known asa SET/RESET latch or
simply an SR latch. Unlike the circuits we have seen so far, the values of the output line
are not determined by the input alone. For example, assume we put alow signal value
on both input lines Sand R. The output of gate G; can only be low if the value of the
signal on linel; islow aswell. Let's assume thisisthe case. Then clearly, the value of
the signal on line I, will be high due to the NOT gate Gs. Effectively, this means that
the output of gate G, is high, so that the value of the signal on line |, should be low. In
other words, if we assume that linel; carries alow signal value (implying that Q islow
aswell), everything seemsto be in order.

What happensif we assumel, carries a high signal value? Then, clearly, gate G; will
produce a high signal value as well, which isinverted by gate Gz, so that |, will carry a
low value. Thisinturn, impliesthat gate G, producesalow signal valuewhichisinverted
by gate G4 to ahigh oneonlinely. In other words, if we assume |, carries a high signal
value, then everything seemsto be in order as well.

Thisisarather peculiar situation. If we assumel; iseither high or low, then the circuit
seems to be consistent. We conclude that if we assume nothing, we cannot say anything
sensibleabout thevaluesonlinesl, and |,, and consequently, al so nothing about thevalue
on output line Q. Note, asamatter of fact, that if we assumelinel, to carry ahigh signad
value, then I, must carry alow signal value, and vice versa.

Let’s continue our line of thought and assume that |, carries alow signal value (im-
plying that Q islow aswell). If we change the value of the signal on line Sfrom low to
high, gate G, will then produce a high signal value, which isinverted by gate Gz into a
low value. Gate G, will now still produce alow signal value which isinverted by gate
G4 so that the value of the signal on line |, and consequently also Q changesto high. It
is not difficult to see that having a high signal value on S, alow value on R, and a high
value on | is perfectly acceptable. The circuit is said to be stable.

It can be verified that changing the value on line S back to alow will not affect the
valueon |4. In other words:

If the value of the signal on line Q is low, and we temporarily change the

value of the signal on Sfrom low to high, the value at Q becomes high, and
remains high.
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Figure 2.15 A clocked D-latch as a 1-bit memory.

Thisisan important observation. Apparently, by merely changing the value of the signal
on Sfrom low to high for a short period we can permanently change the value at Q from
low to high. But this means that we can store a high signal value on line Q. A similar
reasoning showsthat if we temporarily change the value of the signal on line Rfrom low
to high while Q is high, this causes Q to switch permanently from high to low.

We concludethat thecircuit shownin Figure 2.14 can beused for storingasinglevalue,
to be set to high by temporarily switching the value of the signal on Sfrom low to high,
and that can be reset to low by temporarily switching the value of the signal on R from
low to high. However, we are not there yet. What we need is a controlled storage of a
single value, i.e. the value is only to be stored when a control signal indicates so. This
can berealized by aslightly extended circuit using the SR latch as described above. This
so-called 1-bit memory can be built as shown in Figure 2.15. The control lineC isused
to control the sampling on input line D (which is discussed below). Note that due to the
two AND gates, only if the value at C ishigh isit possible to propagate the value of the
signal on D to (the now internal) Sand R lines.

Clocksand storage

Figure 2.15 shows the logical design of a so-called clocked D-latch. A characteristic
feature of thiscircuit isthat an external control signal is used to determine when a pos-
sible change of the contents of the memory can be made. To be more specific, notethat if
thereisalow value at C, then the values at both Sand Rwill below aswell. On the other
hand, if C carries ahigh signal value, then the value at Swill be the same as the value at
D, while the value of the signal at R will be the opposite of that on D. Consequently, if
during thetimethat C carries ahigh signal value the value of the signal at D will be high
as well, then a high value will be stored in the 1-bit memory. On the other hand, if the
value of the signal on D islow, alow value will be stored. In other words, we have that:

During thetimethat C carriesa high signal value, and only during thistime,
the value of the signal at D will be stored in the 1-bit memory.

The control signal at C itself is generated by a so-called clock (which isonly another
electrical device), and which is therefore referred to as a clock signal. A clock signal
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Figure 2.16 A characteristic clock signal.
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Figure 2.17 A 1-bit memory word.

is generated on a periodic basis as shown in Figure 2.16. Each T time unit the signal is
repeated, consisting of ahigh value during thefirst t; time units (called the pulse width),
and followed by alow value during the remaining T —t; time units.

By now, we have introduced a powerful concept that enables us to deal with changes
that occur in the course of time. Let’s see how we can exploit the notion of a clock to
describe the behavior of this circuit. To this end, we first construct the 1-bit memory
shown in Figure 2.17 which we refer to as a 1-bit (memory) word. Our 1-bit word is
constructed from a clocked D-latch with some additional gates. Storing or retrieving a
value from this circuit is controlled by the control line designated as “R/W”. If ahigh
signal valueis put on thisline it will be inverted by the NOT gate to alow value, which
is then propagated through the AND gate, thus effectively disabling the C control line of
the p-latch. In other words, if ahigh signal valueis put on the R/W line, no changes can
be made to the value of the signal currently stored in the D-latch. On the other hand, it
is seen that this stored value will be propagated to the output line O whenever the value
of the signal at R/W is high. Following asimilar reasoning, it can be seen that putting a
low signal value on the R/W line will allow the value of the signal on theinput linel to
be stored in the D-latch, during the time that the value of the signal on the C line of the
word is high.
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What we have effectively accomplished by means of a 1-bit word is a digital circuit
from which we can read the currently stored value (by setting a high signal value on
R/W), but to which we can also write anew value (by setting alow signal value on R/W).

> We have shown that a circuit capable of storing information, such as that shown in Fig-
ure 2.17, can be implemented using the same basic components, namely gates, that we have
used for implementing Boolean operations. However, Boolean algebra cannot be used to
describe the function of a memory element. The reason for thisis that a Boolean function
only mapsitsinput valuesto its output values according to afunction prescription. Only the
current input values determine the output. However, in amemory component the output is
also dependent on input values of the past. In other words, the output value of a memory
component is history-sensitive.

Closely related to thisisthe concept of state. We say that the state of amemory component
ismade up of the values of al history-sensitive signals in that component. Hence, the state
of our 1-bit word W from Figure 2.17 can be defined as:

statey(t) = q ifandonlyiftet

where q denotes the value of the signal at line Q, i.e. the value currently stored in W. Note
thatif t € t; thereisno state: during that time the value at the C line at the word will be high
so that the component behaves as an ordinary Boolean function in the sense that the value
a O is completely determined by the values of the signals at R/W and I.

Since a bit can have only two possible values, the state of a word can also have only two
values: 0 and 1. Thisimplies that there can only be four possible changes in the state of a
1-bit word:

0—-0 0—-1 1—0 1—1

A change of state, even if it means storing the same value as before, is called a state tran-
sition. State transitions occur at each clock cycle. To that end, denote by statgy[k] the state
of the 1-bit word W after k clock pulses have been generated, and let statg,[0] denote the
initial value stored in word W. Denoting by I[K] the value of the signal on the input line |
during the K" clock pulse, and using a similar notation for the control line R/W, it can be
seen that we have

_ [ stateylk—1] ifR/WK =1
Statew[k] = { 1K if RAW[K = 0

Note that, by definition, a state transition occurs at each clock pulse.

However, acomment isin order at this point. Recall that our memory circuit has no state if
t € T1. If we provided the same clock to every memory element in the system, then during
the period t; all these memory e ements would simultaneously lose their state information.
Clearly, this cannot be our intention. There are several solutions to this problem. One that
is adopted in most circuits is to design memory circuits which only respond to changesin
the clock pulse, i.e. the state is changed at the rising or falling edge of the clock pulse, in
afinite, but very small time period. This period is so small that no memory information is
lost. What it impliesisthat the state is always defined. Without going into further details,
thiswill be animportant assumption in the remainder of this chapter and in those that follow.
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Figure 2.18 The layout of a4-bit word integrated on a single chip.

2.5.2 Storing bit strings

Now that we have explained how a single value can be stored in a 1-bit memory, we
describe how we can store entire bit strings. Also, we consider an example of a circuit
in which two bit string memories are connected in such away that they jointly act asa
counting device. Such counters, asthey are called, will be used in the next chapter where
we explain automated selection of program instructions.

N-bit words

A 1-bit word is capable of storing just a single value, and it is not hard to imagine how
we can group acollection of 1-bit memories such as D-latches onto asingle chip in order
to store groups of words. Consider the design of a4-bit word as shown in Figure 2.18.
In this case, the R/W control line has the same function as the R/W control line of the
1-bit word shown in Figure 2.17. Similarly, the C line is assumed to be connected to an
external clock as previoudly.

The main difference with our 1-bit word is that input and output signals are now only
consideredin unitsof four. Inother words, if wewant towriteto a4-bit word, wecan only
do this by simultaneously providing four values at the respective input lines 1y, ..., 4.
These four values are simply denoted as abit string. Similarly, reading signals can only
be done by simultaneously reading the four values at the output lines Oy, ...,O4. Toil-
lustrate, assume a 4-bit word contains the bit string (0011) and that we wish to change
the second bit from O (low) to 1 (high). Inthat case, we haveto set alow signal value on
R/W, and provide the bit string (0111) as input. Merely setting a high signal value on
the second input line I, is thus not sufficient.

> In order to describe the behavior of this circuit we have to adapt our idea of astate. Thisis
quite smple. Instead of considering only the output line of asingle D-latch, we take all four
output linesinto account at the sametime. If W isthe 4-bit word shown in Figure 2.18, then
the state of W at timet is defined as
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statew(t) = (01,02,03,04)

where (1, 02,03, 0s) denotes the bit string that is currently stored in W. Alternatively, we
use the notation statey[k] to denote the state of W after k clock pulses have been generated,
where again, statgy[0] denotestheinitial state. State transitions can be defined anal ogously.
Tothat end, denote by | [K] the bit string (k (K], I2[K], 13]K], 14[K]) where; k] denotes the value
of the signal oninput line |; during the K clock pulse. We then have

[ stateylk—1] ifR/WK =1
Statew[k] = { K if R/WK = 0

In the case of a4-bit word it is not difficult to see that there are 2 x 2* = 256 possible state
transitions.

A counter

Before we continue with explaining how large storage circuits are constructed, we first
look at a useful application of the technology introduced so far. In the following chap-
ter we shall meet a special kind of storage circuit called a counter. A counter has the
property that whenever its stored value is read, this value is automatically incremented
by one. This means that the next read operation will yield an incremented value, and
so forth. A counter can be initialized by explicitly storing some initial value in it. We
stress at this point that the implementation of a counting mechanism as introduced here
isdlightly different from way counters appear in practice. However, our implementation
doesprovideinsight into their principles, and moreimportant, theimplementation makes
it easier to understand the mechanisms we introduce in the next chapter. We shall return
to thisissue below.

In order to construct a counter, we first introduce a mechanism that we shall also meet
anumber of timesin the following chapter. A (binary) timer is adevice that produces
asignal that alternates between high and low as shown in Figure 2.19. In other words,
it produces the infinite bit string (0101010101...). This signa will be used to control
various components and the way that values that are stored in memory circuits are prop-
agated to and manipulated by other circuits. Anticipating our further discussion, let’s see
how we can use a timer to construct our counter.

Assume we wish to implement a4-bit counter which, of course, can store only 16 dif-
ferent valuesranging from 0, and 1111, = 15,¢. To that end, we need at |east three com-
ponents:

e A 4-bit memory word, which we denote as VAL, that is used to store the current
value of the counter. Reading the counter meansthat the bit string stored in VAL is
propagated to the counter’s output pins.
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Figure 2.19 The signal produced by atimer.
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Figure 2.20 An implementation of a4-bit counter.

e A 4-bit full adder, denoted as INCR, which is used to increment the current value
stored in VAL whenever the counter isread. Thisfull adder can beimplemented by
concatenating four 1-bit full addersin asimilar way as the construction of a 4-bit
ALU from four 1-bit ALUS.

e Anadditional 4-bit word TEMP which isused to store temporarily the incremented
value from VAL whenever the counter isbeing read. After reading the counter, the
value stored in TEMP isto be propagated back to VAL.

Using an additional selection mechanism to either reinitialize the counter or to increment
itscurrent value leads to an organization as shown in Figure 2.20. We assume that when-
ever the sel pin carries a high-valued signal, the component SEL propagates the values
at the input lines marked a to the selector’s output lines (marked c); otherwise, when
sel = 0, thevalues at b are propagated to c.

Whenever we put a high-valued signal on the R/W pin of the counter the value stored
in VAL ispropagated not only to the output pins of the counter but also to the adder INCR
whereitisincremented by 1,, and subsequently stored inthe 4-bit word TEMP. Notethat
because we have inserted an inverter, whenever the value at the R/W pin of the counter
ishigh, the value at the R/W pin of TEMP will be low. In other words, while reading the
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value from VAL we simultaneously store the incremented value in TEMP. But as soon as
the value at the R/W pin of the counter becomes low, the opposite happens. VAL will
store either the value at the input pins of the counter (when sel = 1) or the incremented
value asfound in TEMP (when sel = 0).

It should now beclear that if we connect our timer to the R/W pin of the counter and set
sel to 0, each time we read a next value from the counter’s output pinsit will have been
incremented by one compared to the previously read value. We leave it as an exercise
for the reader to verify that after the counter has stored the bit string (1111) its next bit
string will be (0000) which corresponds to the binary number O,.

> But aswe have said, countersin practice are constructed in aslightly different way. Rather
than using atimer device, counters are incremented at each clock pulse. Aswe have men-
tioned earlier, thisclock pulsein turn actually corresponds to thefalling or rising edge of the
clock signal. Thisfact permits counters to be constructed in such away that the additional
1-bit word TEMP that we have used in our implementation above can be removed. Instead,
at each clock pulse, the value at the input lines of vAL areimmediately stored. Then, before
these signals are propagated to the output lines and even get a chance to make it back to
the input lines, the clock pulse will aready be “over”. Consequently, it is seen that at each
clock pulsethevaues at theinput linesare stored in VAL, and kept there, until the next clock
pulse.

The reason we have deviated from this implementation isthat by using a separate timer we
have an easier way of controlling exactly when a counter isincremented. In effect, it isthe
timer signal that accomplishesthis. Itisonly each timethat it produces a high-valued signal
that the counter can be incremented. The timer device itself we have discussed here can, in
turn, be constructed with this adaptation of counters. Thisisleft asan exercisefor the reader.

2.5.3 Largestoragecircuits

In practice, computers make use of large amounts of storage which are grouped together
into a single integrated circuit called a memory chip. Memory chips are generaly or-
ganized into units of 8-bit, 16-bit, or 32-bit words, similar to our extension of a 1-bit to
a4-bit word illustrated above. Technology to date allows for the development of asin-
gle chip containing more than 250 000 16-bit words, adding up to over 4 million 1-bit
memories.

But additional measures need to be taken to avoid running into problems. Themainis-
sueisthat of selecting a specific word from the memory chip. Thiscan best beillustrated
by means of an example. To that end, consider a simple circuit with three 4-bit words as
shown in Figure 2.21. We first explain the additional circuitry for each word consisting
of aNOT, an OR, and an AND gate, as also shown in Figure 2.22.

To start with, note that the R/W input line of this component is connected to the R/W
pin of the memory chip shown in Figure 2.21, and that the output line R/W; is connected
to the R/W line of the component’s associated word (shown as R/W,; in Figure 2.22).
In other words, the R/W input line is used to indicate that the contents of the associated
word should either be read (when R/W = 1) or changed (when R/W = 0). The point
to note, however, isthat reading or writing should only occur if the associated word has

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Soring data 69

RN

RD, = L

!

4IL

S0

RIW O

. 3

Figure 2.21 A naive construction of athree 4-bit word memory chip.

been selected by means of the input line §. Now, suppose we put a high signal value on
thelineS. Inthat case, we seethat R/W; = R/W. In other words, the value of the signal
at R/W is propagated to the R/W; control line of the associated word. This seemsto be
in order. And indeed, if R/W = 1and § = 1, i.e. we have selected to read the bit string
currently storedintheword, thishit stringis propagated to the output lines of the memory
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Figure 2.22 The basic digital circuit for selecting aword and its associated function table.

chip. Likewise, if R/W =0and § = 1, it is seen that the bit string at the input lines of
the memory chip is propagated to the input lines of the selected word and subsequently
stored, while at the same time the output lines of the word are set to 0.

Now, suppose that § = 0. In that case, the bit string in the word will never be propa-
gated to the output lines of the memory chip because the value at line OUT will always
be 0 as well. Consequently, we have disabled reading the word’s current contents. Fur-
thermore, it can easily be seen that the value of the signal at R/W; will alwaysbe 1 (high)
when § = 0. In other words, it is not possible to store any new bit string in the word as
longas § = 0. It can thusbe concluded that if § = O, the contents of the associated word
can be neither read nor changed. And thisis precisely what we wanted to achieve.

So what we see here is that by introducing an additional control line per word we are
capable of selecting where we want to store a bit string in a memory chip, or which bit
string we want to read. Thereis, however, a problem with this organization. If we sim-
ply grouped the 4-bit words together without too much thinking as we have donein Fig-
ure 2.21, we would need two groups of 4 pinsfor respectively the input lines and output
lines, 1 pinfor the clock signal, 1 pinto indicateif storage or retrieval should take place,
and finaly 3 pins (shown as §;, S, and ) to select the proper word. Thisadds up to a
total of 13 pins. In general, if we wereto construct achip with N M-bit words, we would
need atotal of 2M + N + 2 pins. With M = 16 and N = 65536 this means that, one way
or the other, we would have to find space for 65570 pins! Indeed, thisis not possible.

Clearly, it isthe number of words that determine the number of pins we need. Fortu-
nately, thereisway to reduce thisnumber. Observing that at any time precisely oneword
will be selected, implying that precisely one of theinputlinesS,, . .., Sy will carry ahigh
signal value, while al the others carry alow value, we can devise an efficient decoding
function that can easily be implemented as a Boolean function. To that end, assume that
our memory chip contains atotal of N words, identified as\Wg, W, ..., Wy_1. With each
word W we associate a unique memory address addr (W) defined as:
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Figure 2.23 A 3-t0-8 decoder circuit.

addr(W) =i

The next step is to write each memory address as a binary number, and use the cor-
responding bit string as the means to select aword. To illustrate, suppose that we have
amemory chip with 256 words. In that case, each memory address can be written as a
binary number using no more than 8 bits, and each address could then be encoded as a
bit string of length 8. For example, in order to select word W7, we encode its address as

addr(\/\/27) = 2710= 11011, — <00011011>

The only thing we have to do now is decode the bit string of length 8 into a bit string of
length 256, where the 28" bit is 1, and all the others are 0. In other words, we have to
implement a Boolean function decode(i) specified as:

decode(i) = (00...0100...0)
i N—i—1

where N is again the number of words contained in the memory chip.

This scheme should look familiar. What we are stating here is that we can use K bits
to select among N = 2K alternatives. We came across this mechanism when discussing a
general meansfor selecting one out of several inputs. It will therefore comeasno surprise
that an implementation of our decoder is similar to that of the selector implementations
discussed in Section 2.4.3. As an example, Figure 2.23 shows an implementation of a
so-called 3-to-8 decoder . Inthiscase, N isassumed to be 8, so that we can encode each
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memory address by using, at most, 3 bits. In general, if we assume that a memory chip
contains a total of N = 2% M-bit words, we construct a K-to-N decoder as part of the
chip, and effectively reduce the number of pinsto 2M + K + 2. So, with M = 16, and
N = 65536 = 216 we would then need only 50 pinsinstead of the 65570 required by our
initial naive implementation.

2.6 Summary and further reading

In this chapter we have concentrated on binary computing systems, our main aim being
to show that our world of computationscan (to acertain extent) be simulated by electrical
devices. In particular, attention has focused on four subjects:

1. Therepresentation of datain aworld consisting of finite bit strings

2. The representation of operations on such datain the form of Boolean expressions
3. The implementation of these operations by means of digital circuits

4. The storage of dataalso using digital circuits.

Representing data. To someit may seem strange at first to start with a section on data
representation. However, from the point of view that computing devicesare only capable
of manipulating electrical signals, it isobviousthat we need a clearly defined mapping of
our commonly used data objectsto onesinthe world of computers. The important aspect
of datarepresentation isthat we always haveto realize that only by properly interpreting
electrical signals are we capable of constructing computers that can do something that
seems sensible to us. In this sense, Section 2.2 has been a description of what such a
mapping could look like.

Most of the material discussed in Section 2.2 can be found in introductory texts on
computer architecture and design. A practical introduction to computer arithmetic with
many exercises can be found in Goupille(1993). Aswe have mentioned, we have hardly
paid any attention to the representation of real numbers. An excellent survey on these
matters can be found in Goldberg (1991). For computer arithmetic in general, Knuth's
(1981) book is generally considered a standard reference on the subject.

Representing operations.  Section 2.3 presented amathematical basisthat allowsusto
describe operations as Boolean functions. The point to note here is that by specifying a
Boolean function in the form of afunction table we can systematically derive equivaent
expressions which are relatively easy to comprehend — and as we have illustrated — can
be implemented straightforwardly as digital circuits. It should be clear that Boolean al-
gebraliesat the basisof computer design, and, indeed, isfar more extensivethan we have
presented here. There is much more to say concerning Boolean algebra and its relation-
ship to computer design. The mathematical implications are severe and often difficult to
comprehend by the novice. For those readers with a mathematical background, we refer
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to Birkhoff and Bartee (1970) for a thorough and in-depth discussion on applied algebra.
A generd introduction to switching algebrais given in Givone (1970).

An important topic that we have skipped amost entirely is the minimization of com-
plex Boolean expressions. a systematic approach towards simplifying such expressions.
If we use Boolean expressions to derive implementationsin the form of gates, it should
be clear that if we can reduce the complexity of an expression, i.e. reduce the number
of operations occurring in an expression, our implementation will also be ssmpler. On
the other hand, an expression with a minimal number of operationsis not aways desired
because it may not be the fastest one that can be implemented. The speed of a circuit
is generally determined by the maximum number of gates to be passed from any input
to any output of a circuit. When implementing arithmetic operations, intricate designs
have been developed which cannot simply be derived by applying some mathematical
minimization procedure (Hwang, 1979).

Digital circuits. In Section 2.4 we discussed how electrical switches could be used to
construct the fundamental building block of computers. gates. Combining switches to
gates, and successively combining gates, we showed how Boolean functions can be im-
plemented by electrical devices. Theimpact of being able to implement functionsin ac-
tual devices should not be underestimated. What we have illustrated is that mathemat-
ical concepts which exist only in our minds can be smulated by machinesin our daily
lives. The basis for constructing machines that can do things has now been laid down,
and, indeed, thisbasisis considered by us as being fundamental to all the topicsyet to be
discussed.

Some comments concerning Section 2.4 arein order. First, the electrical switchespre-
sented in Figure 2.2 exist only on paper. In the early days of computing these switches
were made out of tubes, called triodes. Later, they were replaced by what can be consid-
ered as arevolution in technology: the transistor. How triodes and transistors actually
work is outside the scope of this book and is atopic for electrical engineers and physi-
cists. And just as we have smplified our presentation of electrical switches, thisisaso
the case concerning integrated circuits.

Much of the material presented in Section 2.4 can aso be found in Tanenbaum’s text-
book (1990a) on computer organization. Also, the material as presented in Shiva(1985)
will show to be of value to the interested reader. A more thorough introduction to digital
designispresented in Mano (1984) and Garrod and Borns (1991) where thelatter ismore
suited for readers with a background in electrical engineering.

Storing data. Our last subject was that of storing data. The remarkable thing we have
demonstrated in Section 2.5 is that by using the basic components we used for imple-
menting Boolean functions, we could also construct circuits that were capable of storing
avaue. Thisisafunctionality that cannot be described in terms of Boolean functions.
Together with the introduction of memory words for storing values, we have introduced
other components of importance: a clock, and what we have called atimer. A clock is
used to control exactly when values can be retrieved from and stored into memory units.
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A timer aswe shall useit in thisbook isused to control several storage unitsin suchaway
that values are propagated from one storage unit to another in a controlled way. We will
have moreto say about timersin the next chapter. Most of the material of Section 2.5 can
also be found in Tanenbaum (1990a) and Shiva (1985), to which we refer the interested
reader.

Exercises

1

Find the binary representationsfor thefollowing numbers: 23,q, 5619, 1019, 1001,
and 32 765(.

2. Findthedecimal representationsfor 1001115, 10110,, 110011, 1111,, and 01100..
3. *Show how binary multiplication is done for 23, x 564¢.

4. *If we have two bitstrings of length n, denoting positive binary numbers, what is

then the maximum length of the result in case of addition and multiplication, re-
spectively.

Given the bit string (1001011), calculate its base 10 interpretation in one’'s com-
plement, two’s complement, and sign magnitude representation, respectively.

Determinethelargest positive valuethat can be represented by abit string of length
8, using two’s complement, one's complement, and sign magnitude, respectively.

7. Explain how characterslike ‘@, ‘1, ‘A, etc. can be represented.

8. Show that xe xe Xe X = X in Boolean algebra.

9. Show, by using function tables, that X+ (ye z) = (X+Y) e (Xx+ 2).

10.

11.

12.

13.

Show, by using function tables, that Xey = X+V. Likewise, show that for any two
bitsxand y, Xx+y = XeY.

Show that by only using the function nor(x,y) = X+, we can readily construct
the functions not, and, and or. Hint: use the results from the previous exercise.

Construct a Boolean expression for the following function f:

(X y[fxy) ]
0 0] 0
01 1
10| o
11| 1

Construct a Boolean expression for the following function f:
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14.

15.

16.
17.

18.

Exercises 75

Ix y z|f(xy2 |
000 1
001 o
010 o
011 1
100 0
101 1
110 1
111 0

Show how the function ze ye X+ Zey e X can be implemented using the three gates
OR, NOT, and AND.

Derive an implementation for the selection mechanism of a 4-bit counter as used
in Figure 2.20.

Explain the difference between a clock and atimer as introduced in this chapter.
*Consider the following digital circuit with input x and output y:

X—X—D@—«i y

Assuming it takes d time units for a signal to propagate from the input of the in-
verter to its output, what can be said about the value at y in terms of the value of
the signal at x?

Suppose we have devised amemory chip containing 200 16-bit words. How many
pins do we need for selecting a single word?
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Chapter 3

Computers

In this chapter we explore how the basic components described in Chapter 2 can be used
to build computing devicesin which computationsare performed as the execution of ase-
guence of instructions. To that end, we continue where we left off, by combining compu-
tational unitsand memoriesinto a so-called microcal culator. We shall see that by adding
atimer mechanism, and storing information on execution sequences, amicrocalculator is
capable of automatically executing a series of instructions. A next and important step is
formed by copying the architecture of acalculator to ahigher level of abstraction, leading
to a processor. We conclude by briefly discussing peripheral devices.

3.1 Microcomputing

In this section we start by taking a look at how we can do simple calculations as a se-
quence of basic computational steps, where each step produces an intermediate result.
Such aresult isthen to be temporarily stored so that it can be used in afollowing step. We
shall demonstrate that executing such a sequence of steps can be fully automated using
the components introduced in the previous chapter. At that point, we will have outlined
the basic architecture of asimple, programmabl e cal culator, whichisadevicethat we can
explicitly instruct to do specific cal cul ations expressed as a series of basic computations.

3.1.1 Stepwise execution

Before starting our discussion on how we can build programmable computing devices,
let’sfirst illustrate how we can construct a device that is capable of performing atask as
a sequence of smaller subtasks. To that end, consider the following example.! Suppose
we have three bit strings x,y and z, each bit string having alength 8, and that we are to
calculate abit string r (also of length 8), such that

LIn this section, abit string a of length n is assumed to be written asa = (ajay. .. an).

77
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r=(X+y)ez, (3.2

where all operations are to be taken element-wise, i.e.

rn = (X+y)ez fori=1...8
Normally, inorder to calculater wewould proceed by means of thefollowing three steps:

e Step 1(S1): Calculatetheintermediateresult t1 = x+.
e Step 2 (S2): Calculate the second intermediate result t2 =tle z.
e Step 3 (S3): Calculatethefinal result r = t2.

Considering the ssimplicity of thiscomputation, it would seem that implementing compu-
tation (3.1) by means of digital circuits should not be that difficult. To that end, assume
we have a single integrated circuit LOGUNITS at our disposal as shown in Figure 3.1.
Thiscircuit accepts two bit stringsa and b (each of length 8) asinput, and producesare-
sult ¢ as output (also of length 8), dependent on the control lines Ry and F;. In particular,
LOGUNIT8 implements the following Boolean functions:

[Fo Fi|] ¢ |
0O O] aeb
0O 1]|a+b
1 0| aeb
1 1|a+b

where, again, all operations are performed element-wise. So, for example, if weset iy =
0,F; = 1, LOGUNIT8 implements the Boolean function

: > W
FO |
E LOGUNIT8 m
1 O
AW
c A
RIW MEM

Figure3.1 Theavailable components: the IC LoGUNIT8, afour 8-bit word memory MEM, and
two 8-bit words Lg and L.
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LOGUNIT8

high ¢ ‘
9 L% LOGUNIT8

L W

r

Figure 3.2 Cascading two circuits LOGUNIT8 in order to directly implement computation (3.1).

f(ab)=a+b

Clearly, we can use LOGUNITS8 for implementing computation (3.1). In fact, we can re-
duce our original three stepsto just two in the following way. First, consider Step 1 (S1)
which isrewritten as

t=X+y

yielding the intermediate result t. This calculation can be immediately implemented by
means of LOGUNIT8 by setting the control linesFy = 0,F; = 1 and using x and y for its
input. The second and third steps (S2 and S3), which yields the final result

r=tez

can be implemented as a single step by also making use of LOGUNIT8. To that end, we
simply set the control linesto Fp = 1, F; = 0 and use the intermediate result t and the bit
string z as itsinput.

It should be clear how our computation can be implemented if we had two circuits
LOGUNITS8 at our disposal. In that case, we would merely have to cascade the two as
shown in Figure 3.2. However, the situation becomes rather more complicated if we as-
sumethat thereisonly one LOGUNIT8 available. Inthat case, it would still seem possible
that we can implement our calculation, although some special measures will have to be
taken. First, after performing the first step (S1), the intermediate result t will need to
be temporarily stored, so that it can be used for the second step. Second, we will have
to change the signals at the control lines Fy and F; in order to continue with the second
step.

Let’sfirst concentrate on storing the intermediate result. In fact, what we can doisas-
sume the existence of amemory containing four 8-bit wordsin which we can store all the
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Table 3.1 Specification of the memory chip MEM

Ay A; | R/W effect
0 O 0 Wy « |
0O O 1 O « W
0 1 0 |W, « |
0 1 1 O —« W
1 O 0 W, «— |
1 0 1 O — W
1 1 0 |[Ws «— |
1 1 1 O «— W

relevant bit strings. three to contain the bit strings x, y, and z, and one to store the inter-
mediateresultt. Aswe shall see, thisisaso enoughto arrive at afinal implementation of
computation (3.1). To thisend, we take amemory chip MEM aso shownin Figure 3.1 of
which the functionality is specified in Table 3.1. Note that because the chip containsfour
words, it will make use of a2-to-4 memory address decoder asexplainedin Section 2.5.3.
This explains the two address pins Ag and A;.

Using MEM isfine, but we have to realize that we can only read or write asingle value
from or to the chip at atime. Because LOGUNIT8 requires two input values, we can
chooseto first extract these two input bit strings from MEM, temporarily store them into
separate 8-bit words, and then let LOGUNIT8 doitswork. Therefore, we make use of two
additional 8-bit storage units, which we refer to asL and L, respectively, also shownin
Figure 3.1. The result produced by LOGUNIT8 (whichist after thefirst step, and r after
the second) can immediately be stored back into MEM as we shall see. Wearenow ina
position to connect our four components together as shown in Figure 3.3.

Now let’s see how we can actually do our original calculation by means of thisimple-
mentation. We assume that initially word Wg of the memory chip already containsthe bit
string x. Likewise, W, isassumed to containy and W5, the bit string z. The only thing that
remainsisreading these bit stringsfrom MEM in the right order, storing them in the 8-bit
words Ly and L1, doing a calculation by setting the control lines Fy and F, and storing
the result back into MEM. More precisely, if we perform the following six consecutive
steps, we will have implemented our original calculation (3.1):

1. Read the value stored in W, (i.e. xX) and store thisin L.
2. Read thevalue storedinW; (i.e. y) and storeitin L.

3. Input both bit strings stored in respectively Lo and L, into LOGUNIT8, and save
the result in word Ws. After thisstep, our device hascalculatedt = x+y, whichis
stored inWs.

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Microcomputing 81

Em o
w8
& B
Wb
A g .
B
RW MEM
Lo
RIW
HIRIRInInIniniE
F LOGUNIT8

Figure 3.3 A simple, dedicated calculator.

Table 3.2 The setting of the control lines to realize the third step

component control | comment
MEM : Ay < 1|selectwordW,

Ay 1

R/W « 0] ensurethat MEM can be written to
Lo: R/W « 1| readthefirst variableinto LOGUNIT8
Ly: R/W <« 1] read the second variableinto LOGUNIT8
LOGUNIT8: Fy <« 0| selecttheright computation

F, « 1|for LOGUNIT8

4. Continue with reading the bit string z from word W5 and storeit in Lg.
5. Read the intermediate result t from word W and storeitin L.

6. Finally, input the bit strings stored in Lo and L, respectively, into LOGUNIT8, and
write the result to either word W or W,.

Assuming that the result of Step 6 is stored in word W, it is seen that after performing
these six steps the final result of computation (3.1) isnow stored in W, of MEM.
In order to perform each of these steps, it is not difficult to see that we only need to
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Table 3.3 The setting of control lines for the dedicated calculator

MEM Lo Ly LOGUNIT8
step| Ao At R/Wpem | RIWW, |[RW, |Fo Ft
1: |0 O 1 0 1 X X
2: 10 1 1 1 0 X X
3: 11 1 0 1 1 0 1
4: 11 O 1 0 1 X X
5:.11 1 1 1 0 X X
6: |0 O 0 1 1 1 0

properly set the various control lines of each of the four components LOGUNITS, Lo, L1,
and MEM, respectively. For example, Step 3isrealized by setting the values according to
Table 3.2. In particular, for each step it can be verified that the proper setting isas shown
in Table 3.3. Because the memory chip will not accept any new values (i.e. we cannot
store a value) when performing steps 1, 2, 4, or 5, the setting of the control lines iy and
F; for LOGUNIT8 isimmaterial in these cases. We have expressed thisby writing an “x”
in the corresponding entries of Table 3.3. The six steps are shown in Figure 3.4.

3.1.2 Automated stepwise execution

So far, everything seems to be in order. We have constructed a device that, in principle,
can be used to implement the calculation

r=(x+y)ez

provided we properly set thevariouscontrol linesin six consecutive steps. But obviously,
our device does not work in an automated way. We are still forced to set the control lines
manually. The gquestion that immediately comesto mind ishow we can avoid this. And it
isherethat wearrive at asimple, yet extremely powerful and important conceptualization
that is fundamental to programming computers. We store the consecutive values of the
various control lines.

The whole ideaisthat if we want to automate the execution of our six steps, we will
have to make the settings of the control lines per step available in some way. The point
to note is that each of these settings is just a group of atotal of 7 high and low signal
values. In other words, each step requires a bit string of length 7. And as we have seen
in Section 2.5.3, storing bit strings can be done by means of memory words. For example,
we could choose to store the settings for the first step as the string

ul1 = (00101xX)

where, again, X indicates that it does not matter if we storea 1 or a0. The other control
settings are stored in a similar way, leading to atotal of 6 bit strings, one for each step,
and in which each string has the general form
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step 1:00101xx step 2:01110xx
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Figure 3.4 Six sequentially executed steps for calculating (x +Yy) e z.

C= <C17 C2,C3,C4,Cs, Cp, C7> = <A07A17 R/Wmem; R/WLm R/WL17 F07 F1>

To store the compl ete set of these control settings, we need an additional memory chip
consisting of six 7-bit words. Two comments about this chip are in order here. First,
as this chip needs to contain six words, we will need to decode at least six memory ad-
dresses as explained in Section 2.5.3. This, in turn requires that each address should be
represented by a bit string having at least length 3. Consequently, our memory chip will
have at |east 3 additional address pins (shown as A* in Figure 3.5).

Second, we have no intention of modifying any values stored in this memory chip; we
useit only to read its contents. In other words, we can take a so-called read-only mem-
ory, or ROM for our purposes, which is characterized by the omission of input pins (and
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Figure 3.5 Adding amemory chip for storing settings of control lines.

aso the R/W pin). This specia memory chip, which we refer to here as CTRLMEM, can
now be added to the other components as shown in Figure 3.5. Note how we have con-
nected the output pins of this memory chip to the control pins of the other four com-
ponents. The first two are used to select a word from MEM, the third is used to either
read from, or write to MEM, the fourth and fifth are used to control Ly and L4, and the
last two control the actual calculation performed by LOGUNIT8. Each bit string stored
in CTRLMEM is generally referred to asamicroinstruction.2 The memory chip itself is
called amicrostore. Each time a specific microinstruction is used to set the control lines
of the other components, we say that the instruction is executed.

Notice that we have stored the six microinstructionsin the order in which they are to
be executed. By doing so, we now need only to start with selecting the microinstruction
stored at the first address and subsequently select the microinstruction stored at the next
address at each execution step. If we can automate this selection of successive micro-
instructions, then we may justifiably state that we have constructed acomputing machine.

So how do we produce such a mechanism? To answer this question, we first observe
that selecting amicroinstructionfrom CTRLMEM requiresthat we providea3-bit address.
Therefore, we start by adding a digital circuit that can store bit strings of length 3, and

2The use of the adjective “micro” will become clear when we discuss instructionsin Section 3.2.
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actual control
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Figure 3.6 The outline of a mechanism for controlling the automated execution of micro-
instructions.

which will always contain this address. This special digital circuit is generaly referred
to as a microprogram counter, or MPC for short. Asits name suggests, it isindeed a
counter in the sense as explained in Section 2.5.2: its stored value is automatically in-
cremented by one each timeit isread. In other words, when the contents of the counter
isread, the next timeit is read its contents will have been incremented. As we have ex-
plained in Section 2.5.2, it isalso possibleto initialize a counter by explicitly setting its
contents by means of an additional selection pin. Like other storage units, we can thus
explicitly store a bit string into a counter.

In the general case that a microstore contains more than eight microinstructions, it is
obvious that we have to increase the size of this counter. A next observation is that dur-
ing the time the address of the required microinstruction is stored in the MmpC, nothing
should change with respect to the setting of the control lines for the other components.
In other words, the previous microinstruction should still be in execution. To do this,
we use an additional 7-bit word in which a microinstruction is stored while it is being
executed. What it means is that this so-called microinstruction register (MIR) isread
during execution of theinstruction it contains. The additional componentsMPC and MIR
are now attached to CTRLMEM as shown in Figure 3.6. The component TIMERCTRL iS
discussed below. The component TIMER is a so-called timer, as was also discussed in
Section 2.5.2. It continuously produces the aternating bit string (01010101...) and is
used to provide the basic control in the course of time for the other components.

Now the whole idea is that MPC and MIR are read from, and written to, at the right
time. For example, while MPC is updated with the address of the next microinstruction
to be executed, MIR should contain the microinstruction that is presently executed. After
that, the address stored in MPC isto be used to update the contents of MIR with the next
microinstruction. This behavior is repeated many times, and is therefore referred to as
themicrofetch-execute cycle. Thecomponent TIMERCTRL isresponsiblefor producing
thiscycle. It controlsthe setting of the R/W control lines of MmPcC and MIR, respectively,
by means of the two control lines marked as P and M. TIMERCTRL is aso responsible
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for storing the appropriate addressin MpPC and it is connected to MPC viathe output lines
marked as O. More specifically, we have that TIMERCTRL implements the following
algorithm:

Algorithm 3.1. The micro fetch-execute cycle: Consider the components as shown in
Figure 3.6. The following two steps are repeatedly executed:

1. Fetch microinstruction: The next microinstructionisstoredin MIR by taking the
addressfound in MPC, and selecting the associated instruction from CTRLMEM. To
thisend, P=1and M = 0.

2. Execute microinstruction: The address of the next microinstruction is stored in
MPC. At the sametime, the microinstruction stored in MIR isexecuted. Therefore,
wehaveP=0and M = 1.

O

In order to repeat these two steps, we connect TIMERCTRL to the component TIMER.
What effectively happensisthat each timethetimer producesahigh signal value, TIMER-
CTRL setsitscontrol linessuchthat thefirst step isexecuted. Assoon asthevaluechanges
to low, the second step isexecuted. Thisscheme can berealized by thecircuit for TIMER-
CTRL shown in Figure 3.6.

3.1.3 Executing multiple microinstructions

Let’s summarize what we have done so far. First, we showed that by using asingle inte-
grated circuit LOGUNIT8, amemory chip MEM, and two additional 8-bit wordswe could
implement the calculation

= Fy)ez

by specifying a sequence of six steps. Each step was then represented by a bit string of
length 7, called a microinstruction, in which each bit was used for a specific control
line for one of the four components. These six microinstructions were then stored in a
separate memory chip, called amicrostore. By arranging the microinstructionsin their
consecutive order in the microstore, we then demonstrated that by making use of atimer
and some additional circuitry, the six steps could be executed automatically.

Now let’sfirst reconsider our set of six microinstructions, which were given as.

| instruction| value ||

Mg 00101xx
Mo 01110xx
plg: 1101101
Mg : 10101xx
pls 11110xx
ple 0001110
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Clearly, this set falls naturally into two parts. The first three (ulq, plo, pl3) establish the
partial computation

t=x+y

yielding an intermediate result t. Similarly, the last three (ul4, pls, lg) aso belong to-
gether. They jointly perform the second part of our computation:

r=tez

Let's refer to each of these two sets of microinstructions as a microroutine. The im-
portant thing to note is that execution of each of the two microroutines changes one or
more values stored in the memory chip MEM. Moreover, these changes are predictable.
If we know what the contents are of MEM before execution of a microroutine, we can
unambiguously determine what the contents will be after its execution.

For now, let’s denote the microroutine consisting of the sequence of microinstructions
i1, ulo and pl3 as or01T03 as it ORS the contents of words Wy and W, and places the
result in word Ws. The microroutine made up from the microinstructions Ly, uls and
plg will bereferred to as NanD23T100 asit places the complement of the contents of word
W, and W4, after having ANDing them, into word Wg.

Theideaof grouping anumber of microinstructionsinto asingle microroutine can eas-
ily be generalized. For example, one could imagine that we use alarger microstore that
would also contain an additional microroutine consisting of the following sequence of
microinstructions:

MIz:10 1 1 0 1 x X
plg: 11 0 1 1 0 x x
Mlg:|{1 1 01101
If we were to execute this sequence, it can be readily verified that thiswould yield that

the value
t=y+z

would be stored in word W5 of MEM (assuming that y and z are stored in the second and
third words of MEM, respectively). We refer to this microroutine as or12103 for obvious
reasons. Likewise, the microroutine ANp03T0o1 given by the set of microinstructions

Ml1o: {0 0 1 0 1 x x
MI17:11 11 1 0 x X
Mli2:{0 12 01 100

can also be contained in the microstore, yielding that the result of the calculation
r=xet

is stored in word Wy, where we now additionally assumethat t is stored in word Ws.
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Now assume that we have stored several such microroutinesin amicrostore, and that
we had amechanism for selecting which microroutine we wanted to be executed. In that
case, wewould have an extremely powerful device. Wewould merely indicatethe micro-
routine it should execute, and by combining several of these microroutineswe could ac-
tually program the device to perform a calculation as a number of consecutive micro-
routines.

For example, assumingthat x,y, and z are already stored in respectively words\Wg, W,
and W, of MEM, our calculation

r=(x+y)ez
could be implemented by a program consisting of just two microroutines.

begin
or01to3
nand23to0
end

Similarly, the calculation

r=xe(y+2z)
could be implemented by the program

begin
orl2to3
and03tol
end

A question that needsto be addressed is how we can store several microinstructionsas
microroutines in a single microstore, such that it is possible to select individual micro-
routines. In fact, it turns out that thisis not too difficult. Two points need to be consid-
ered: (1) how we identify a microroutine, and (2) how we know when to stop, i.e. how
we can identify the last microinstruction to be executed.

(1) Identifying a microroutine in a microstore is actually quite straightforward. We
simply take the address of the microinstruction that is the first one to be executed
of that microroutine. So, for example, if amicroroutine uR consists of the sequence
of microinstructionsply, . . ., ply, wesimply takeaddr (pl 1) astheidentifier for uR.
Thisis also denoted as the address of the microroutine.

(2) Identifying thelast microinstruction to execute can beimplemented rather straight-
forwardly as well. For example, we can choose to add a single bit to each micro-
instruction which is set to 1 for each but the last microinstruction of each micro-
routine. Then, if wefind that the last bit of amicroinstructionisO, it is known that
thisisthe last microinstruction of the current microroutine.
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actual control signals

TIMER
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CTRLMEM

Figure 3.7 The actual control mechanism for the execution of microroutines.

Our micro fetch-execute cycle can now be refined so that an arbitrary microroutine
can be executed. First, we assume that the identification of the microroutinethat isto be
executed, i.e. theaddress of itsfirst microinstruction, isstored in aseparate memory word
IREG as shown in Figure 3.7, and which is controlled by the line marked E. In addition,
we adapt the organization of our microstore by adding a bit to each microinstruction as
discussed above. We shall denote this bit as MIR[0] and use it asinput to TIMERCTRL.
Using the notation CTRLMEM[K] to indicate the microinstruction at address k, we then
come to the following specification of the behavior of TIMERCTRL:

Algorithm 3.2. Modified micro fetch-execute cycle:

1. Fetch microinstruction: Storethe microinstructionidentified by MPC in MIR, i.e.
MIR < CTRLMEM[MPC], by setting P «— 1 and M «— 0.

2. Execute microinstruction: Execute the microinstruction by setting M < 1, and
update mpC by setting P < 0, sel +— MIR[0], and E «— 1.

The correctness of setting sel < MIR[0] in the second step is not difficult to verify. If
MIR[ 0] isequal to O, then anew microroutine should be started implying that mpC should
bere-initialized. Thisisdoneby settingsel <+ 1and E «+ 1. Otherwise, if MIR[0] isequal
to 1, mpc should be updated with the address of the next microinstruction of the current
microroutine, i.e. MPC «— MPC + 1, which isdone by setting sel < 0. Meanwhilewe can
safely set E «— O.

O

An implementation of TIMERCTRL is shown in Figure 3.7. Note that the second step
of our fetch-execute cycle is executed when the value of thetimer’ssignal islow. Inthat
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case, depending on whether or not MIR[0] isequal to O, either mPC will store the valued
contained in IREG or sSimply increment its present value.

> Storing microinstructions in aseparate microstore and devising acomponent by which micro-
instructions are fetched and executed at the right time is certainly not a bad choice. How-
ever, the question that may come to mind is if this solution is the only feasible one. The
factis, itisnot. The solution presented here is one that tends to become increasingly out of
date. The point isthat fetching a microinstruction simply takes too much time to justify the
use of amicrostore. The alternative solution isto directly implement the sequence of micro-
instructionsinto digital logic. Thisisgenerally referred to ashardwired control. Let’slook
at how this could be accomplished.

Suppose wewant to execute the sequence of microinstructions corresponding to the oR01T0O3
microroutine. This sequence was specified as follows:

H step ‘ oRrR01T03 H
1: | (00101xx)
2: | (01110xx)
3: | (1101101)

Now the ideais that we can specify this microroutine in the form of afunction table, which
in turn corresponds to an ordinary Boolean function. In our case, we refer to this function
asor01to3. Theinput for orO1to3 isabit string of length 2, specifying the current step. The
output is abit string of length 9, consisting of 7 bits that specify the settings of the various
control lines, and 2 bits specifying the next step that isto betaken. For simplicity, weassume
that oRO1TO3 isto be executed repeatedly, so that after the third step has been executed we
simply continue with the first one. This then leads to the following function table:

input output

(step) | (control)  (next step)
01 | 0010100 10
10 | 0111000 11
11 | 1101101 01

(Note that we have chosen to set alow signal value for those control settings during steps 1
and 2 for which the setting actually did not matter.) Implementing orO1to3 asadigital circuit
is straightforward. The interesting part is how we can use the last two bits that specify the
next step in order to change the control settings. But thisis not too difficult either. Consider
the circuit shown in Figure 3.8.

The implementation of or01to3 is shown as the integrated circuit oRO1T03. The crux of
our implementation isformed by the two 2-bit words cRO and cR1, of which the respective
R/W control lines are connected to a timer. In particular, notice that whenever the R/W
control line of crRO is high (low) that at the same time, the R/W control line of crR1 will
carry alow (high) signal value due to the inverter. Consequently, whenever the contents of
CRO isread, then cR1 is set to to be written to, and vice versa.

Now assume that CRO initially contains the bit string (01), which corresponds to step 1.
Then, when the signal generated by the timer is high, CRO is read so that this bit string will
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Figure 3.8 A hardwired control of three execution steps.

be passed to OrR01T0O3 leading to the setting of the control signals associated with step 1. At
the sametime, thelast two bits produced by orRO1TO3 arestored in CcR1. In other words, the
identification of the next step (which is the bit string (10)) is written to crR1. Then, when
the timer signal becomes low again, the contents of CR1 is passed on to CRO where it is
now stored. It should be clear by now that the next time the timer sets the signal high, the
bit string (10) is passed to ORO1T03, leading to the control setting corresponding to step 2,
while at the same time (11) is stored in CR1. This behavior is repeated many times.

Although our implementation israther simple, the point to noteisthat we have actually real-
ized the execution of a sequence of microinstructions without the need for explicitly storing
them in a separate microstore. Therefore, when the total number of microroutines is not too
large, and their sequencing not too complex, replacing a microstore by hardwired control
will generally lead to a much faster implementation. The price to be paid is a much more
complex, and less flexible implementation. The complexity is caused by the fact that im-
plementing all microroutines by means of digital circuits is not that simple. The decrease
in flexibility should be obvious. Once a series of microinstructions have been implemented
by means of digital circuits, there is no way we can change them. We shall return briefly to
this subject in our discussion at the end of this chapter.

3.1.4 A general architecture

We have demonstrated in the previous sections how we could automate the execution of
computational steps by storing a sequence of microinstructions (called a microroutine)
in a microstore, and adding a timer mechanism that ensures that such a microroutineis
selected and executed. Furthermore, we haveillustrated that we could even store several
microroutines in a single microstore, and by providing a sel ection mechanism we could
choose the microroutine to be executed.

The approach we have followed to implement these mechanisms can easily be gener-
alized. Figure 3.9 shows the architecture of what we shall call a microcalculator and
which is a great ssimplification of the ones that are found in many personal computers
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Figure 3.9 The architecture of asimplified microcalculator.

and workstations. For clarity, we have represented the connections between the various
componentsasthick, gray lines. Also, control linesare not always drawn separately, but,
instead, we have occasionally grouped several linesinto one. A few commentsabout this
architecture are in order.

First, we have added a specia storage unit DREG which serves a similar purpose as
IREG: it acts as an interface between the calculator and the outside world. In this case,
DREG isintended to be used to hold both operands and results of the computationsto be
performed by the microcalculator. This means that it can be used to store incoming as
well as outgoing data for the microcal culator. Second, note that we have used the same
representation for MPC, MIR, DREG, and IREG in the sense that each storage unit can
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contain a bit string of length 8. However, in practice, the size of these units can vary
between architectures. Obviously, depending on the size of the microstore, the micro-
program counter MPC may vary in width as well. Finally, we have replaced our LOG-
UNIT8 component by amore general ALU. ALUS have been discussed in Section 2.4.3.

A special comment should be made regarding the memory REGMEM. In practice, this
memory is implemented through advanced technology in order to ensure that manipu-
lation of its contentsis fast. Each word of this memory isreferred to as aregister, and
normally a number of these registers are dedicated to special purposes as we shall see
below.

3.2 General processing

The previous section has put many componentsin placeto makeasimple microcal culator.
By starting from asimple computationin Section 3.1.1 we have gradually shown how we
could construct and use digital circuitsto produce a microcal culator. We have now come
toapoint that if theregister IREG containstheidentification of amicroroutineand thereg-
istersin REGMEM contain the necessary input bit strings, our microcal culator can work.
What we have not addressed is how we can tell the calculator what to do, i.e. how we
can load input bit strings into registers and indicate which operation it should perform.
In thissection, we shall take acloser 100k at theseissues. In particular, we generalize our
architecture of amicrocal culator to that of acomputer consisting of aso-called processor
which is attached to a main memory module.

3.2.1 Instructions

Let’s start with reconsidering our original computational example from Section 3.1.1, in
which we needed to calculate

r=(X+y)ez (3.2

wherer,X,y, and z were bit strings of length 8. We showed that if we had four registers
and an ALU that could perform an OR-operation and a NAND-operation, then we could
implement computation (3.2), provided we had stored the bit strings in the appropriate
registers.

So where do x,y and z come from? And how can we tell which operation is to be
performed? When you think of the microcalculator as part of a pocket calculator, the
answer is quite simple. We provide the information manually. And indeed, thisis how
most pocket calculators work. We would be able to enter operands one by one, indicate
the operation that we want to be performed (by pressing one of the special-purpose keys,
e.g. “+” or “LOG"), and see the result on asmall display. Generally, these simple pocket
calculators also offer the possibility of storing asingle intermediate result.
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But this approach is hardly useful for complex operations that consist of many com-
putational steps. In that case, we would want to provide just theinitial operands and ad-
ditionally provide a series of instructions that the microcalculator should then execute
automatically. This approach is particularly useful if some of the computational steps
were to be repeated many times. What we would need then is ameans of storing theini-
tial operands, as well as the series of instructions that make up the calculation. To that
end, we simply connect a large memory module to our microcalculator. This memory
module will contain datathat isto be operated on, and, for now, series of start addresses
of microroutines as stored in the microstore that the calculator should perform.

But simply connecting amemory module to our microcal culator is not enough. When
giving the matter some thought, at least three questions come to mind:

1. How can we get information into and out of this memory modul e?

2. How canwe exchangeinformation (i.e. dataand instructions) between the memory
and microcalculator?

3. How we can automate the execution of a series of instructions?

An answer to the first question is postponed until Section 3.4 where we discuss periph-
eral devices. The third question will be addressed below, where we discuss the exten-
sion of our micro fetch-execute cycle. For now, we concentrate on answering the second
question. We first need to reconsider our notion of microroutines as these ssimply do not
support the kind of flexibility we need for telling a microcal culator what to do.

From microroutinesto instructions

Until now, the only way that we can let a microcalculator do something is by giving it
the address (of thefirst microinstruction) of amicroroutine. Each microroutineisnothing
but a series of microinstructionsthat successively set the various control lineswithin the
calculator. Now suppose we have a microcalculator with four registers REGO ... REG3
and that implements the following microroutines:

| microroutine | meaning |
ADDO1TO3 | REG3 <+ REGO + REG1
ADDO2T0O3 | REG3 <+ REGO + REG2
ADD12T03 | REG3 « REG1 + REG2

What we have here is a collection of similar microroutines that add the contents of two
registers and always store the result in register REG3. These three microroutines thus
represent the same oper ation but each acts on different (input) registers. Unfortunately,
thereisno rel ationship between these microroutineswhen we consider what each actually
represents, namely the address of thefirst microinstruction that isto be executed. In other
words, there is no or hardly any logical coherence between similar microroutines. This
iIsasituation that needs to be corrected if we are to provide a convenient way to program
amicroprocessor (we shall discuss other and more important reasons for reconsidering
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Table 3.4 Seven possible operations with associated 3-bit opcodes

| operation | opcode | meaning |

MIN (000) | subtract two binary numbers

ADD (001) | add two binary numbers

OR (010) | the bitwise operation X +y

AND (011) | the bitwise operation x ey
{
{
{

XOR 100) | the bitwise operation (Xey) + (X ey)
NOR 101) | the bitwise operation X +y
NAND ) | the bitwise operation Xey

microroutines in their present form below). This problem can be alleviated by properly
grouping several microroutines into a so-called instruction. Thisis best illustrated by
means of a simple example.

Imaginethat our microcal culator supportsatotal of seven different typesof operations,
each taking two operands and producing a single result. These seven different kinds of
operations can be represented by a 3-bit oper ation code, or opcode for short. For exam-
ple, we may assume that we have the seven kinds of operations and associated encoding
as shownin Table 3.4.

Likewise, the four registers can be represented by bit strings of length two as follows:

| code register ||
(00) — REGO
(01) — REG1
(10) — REG2
(11) — REG3

Using these coding schemes, it becomes much easier (for humans) to tell the calculator
exactly what to do. We need merely supply (1) an opcode, (2) two operands specifying
the registersthat should be read, and (3) the register in which the result should be stored.
Thisinformation can be grouped into a bit string of length 9 asfollows:

Q>
s &
@ s} g’
g & & s
5 y & &
Qo ~ Y <

Consequently, in order to have the microroutine ADDO1TO3 executed, we need to pro-
vide the bit string (001 00 01 11). This bit string then needs to be interpreted by the
microcal culator asan ADD microroutine, operating on the contents of registers REGO and
REG1, and of which the result isto be stored in REG3. In other words, this instruction
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would have to be decoded into the microroutine ADDO1T03. Aswe shall see, decoding
instructions will turn out to be an additional function that needs to be carried out by the
control unit TIMERCTRL of amicrocalculator.

> Anissue that we have not addressed isthat although our encoding scheme may be perfectly
inorder, it may also be possible to construct instructions that have no meaning. For example,
suppose we provide theinstruction (111 00 01 10), assuming that only the operations shown
in Table 3.4 are available. Clearly, because the opcode (111) has no associated operation,
this instruction makes no sense at all. It is therefore referred to as an illegal instruction.
In that case, one thing the microcalculator can do is stop altogether, or, aternatively, ignore
the instruction.

Load and storeinstructions

So far, we have only discussed instructions that manipulate the internal registers of the
microcalculator. However, in order to communicate with the outside world, two other
types of instructions are needed: one by which we can transfer data from an external
memory module to an internal register, and one by which we can do the reverse. Let's
briefly take alook at these so-called load and stor e operations.

Inorder to transfer datafrom external memory to aregister, amicrocal culator will gen-
erally have aLOAD instruction. Thisis an instruction that tells the calculator to fill or
load one of itsregisters with data that can be found in the memory module connected to
the microprocessor. For example, we might have the instruction

LOAD addr, reg0

that tellsthe calculator to copy the data stored at |ocation addr in the memory moduleinto
register REGO. But apart from transferring datafrom memory to registers, it may also be
possible to directly copy a bit string into a register by means of another type of LOAD
instruction, such as

LOAD #00001001, reg0

by which the bit string (00001001) is written to register REGO. It isimportant to note
that our notation for instructions given so far isjust symbolic. Inthe end, all instructions
are merely bit strings.

The counterpart of aLOAD instructionisaSTORE instruction. Thistype of instruction
specifies that datais to be copied from aregister to a place in the memory connected to
the calculator. For example, the instruction

STOREreg0, addr

Isasymbolic representation of a STORE instruction that tells the microcal culator to copy
the contents of register REGO into memory at address addr. The important thing to note
isthat LOAD and STORE instructions do more than just manipulate internal registers. In
particular, aL OAD instruction leadsto control signalsto read aspecified word of memory.
Similarly, aSTORE instruction leadsto control signalstowrite datato a specified location
in memory. What thisimpliesis that our example microcal culator will need additional
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control pinsto control the interaction with an external memory module. We shall return
to thisissue in Section 3.3 in more detail.

So where hasthisbrought us? At this point, we have merely introduced the concept of
an instruction. An instruction isabit string containing information on the type of opera-
tion that isto be performed, and where the data that is associated with that operation can
be found. An instruction that isto be executed is usually stored separately in a so-called
instruction register, which isthe analog of the microinstruction register MIR.

But just aswe could store series of microinstructionsin amicrostore, we can also store
series of instructions in a memory module. We now come to an important point. Sup-
pose we have stored data and a series of associated instructions into a memory module.
Moreover, let’sassume that the instructions are stored in a series of consecutive memory
locations that corresponds to the order in which the instructions are to be executed. The
whole idea then is that the microcalculator should automatically execute these instruc-
tions, one by one, by fetching an instruction from, say, location addr, executeit, and then
fetch and execute the instruction at location addr + 1, etc. How thisis doneis discussed
next.

3.2.2 Processors

Let’'s see what we need in order to execute instructionsin an automated way.

Organizing the basic components

First, we have to store instructions and the data they operate on. Completely analogous
to our microprocessor architecture, we can use two separate memory modules for this
purpose. One module, referred to as the datamemory, will contain all the data that needs
to be manipulated. The data memory isanalogousto the set of registersSREGMEM of Fig-
ure 3.9. The second memory module, called the instruction memory, is used to store the
instructions that are to be executed. Asin the ordering of microinstructionsin a micro-
store, we shall organize the instructionsin their order of required execution, as thiswill
allow usto keep track of the next instruction to be executed. To that end, we use aspecial-
purposeregister, called the program counter, that will always contain the addressin the
instruction memory of the next instruction to execute. Finally, as indicated above, we
shall make use of aninstruction register to temporarily store the instruction to be exe-
cuted. Now look at Figure 3.10, which shows an architecture of a small computer based
on asingle microcalculator.®

When comparing thisarchitecture to that of the microcal culator showninFigure 3.9, it
isseen that thetwo moreor lesscoincide. Infact, one might say that we have moreor less
copied the architecture of a microcalculator to ahigher level of abstraction. And indeed,
aswe shall see, the behavior of our example computer issimilar to that of asingle micro-
calculator. We start with taking a closer look at each of the components of Figure 3.10.

3]t should be noted that our architectureisnot complete. For clarity, weshall not strivefor completeness
here, but instead focus on the basic principles.
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Figure 3.10 The architecture of a simple computer.

The data and instruction memories mentioned above return as the components DATA-
MEM and INSTRMEM, respectively. Now, becauseinstructionsare never modified, INSTR-
MEM could at first thought have been replaced by a read-only memory unit. But this
would have been too restrictive as it would not allow us to replace a series of instruc-
tions by another. Anticipating our discussion on loading and executing programs, we
have therefore used a normal memory module to store instructions. For our purposes
here, however, we shall simply assume that the current set of instructions contained in
INSTRMEM is not modified.

At theheart of our examplearchitecture we haveamicrocal culator MICROCALC which
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has a similar role to that of an ALU. Comparing the interface of this microcalculator to
that of Figure 3.9, it is seen that we have added a number of pins. There are pins con-
nected to acollection of so-called addresslinesthat connect the cal cul ator to the memory
module DATAMEM. What we have assumed here is that, in order to load and store data
between its internal registers and the data memory, the microcalculator will separately
address which data is to be transferred. These address lines are thus analogous to the
address control lines of Figure 3.9 that connect the microinstruction register MIR to the
address pins of the set of registers REGMEM. In order to facilitate this additional feature,
we assume MICROCALC has a separate address register, analogous to its data register
DREG.

Also, inorder toindicateif datashould either beread from datamemory (whenaLOAD
instruction is executed) or that datais to be written to it (in the case of a STORE instruc-
tion), a separate control line between the microcal culator and the data memory is used.
The microcalculator thus controls if data is either read from or written to DATAMEM.
The pins connecting the microcal culator to the collection of data lines are used to trans-
fer data between DATAMEM and the internal registers of MiICROCALC. These pins thus
correspond to the ones attached to the register DREG of Figure 3.9. Finally, the micro-
routine that is actually to be executed is passed on to the microcalculator through the
microroutine lines. These lines are connected to the interna register IREG of Figure 3.9.
The additional control lines between MICROCALC and CTRLUNIT are explained below.

The last component we need to discuss is the control unit CTRLUNIT, which, as its
name suggests, isresponsiblefor controlling the execution of instructions. How doesthis
unit work? We seethat it containsaprogram counter andinstruction register shownas
the registers PC and IR, respectively. The register IR always contains the instruction that
is currently being executed, whereas PC contains the address in the instruction memory
of the next instruction to be executed. Both PC and IR are connected to CTRL, which hasa
similar functionality tothe TIMERCTRL unit of our example microcal cul ator architecture.
In particular, it updates the program counter each time an instruction has been executed
by incrementing its contents by one. Additionally, it decodestheinstruction containedin
IR into the address of the appropriate microroutine, as mentioned in the previous section.

The fetch-decode-execute cycle

The interesting part of the control unit is its ability to enable execution of instructions
automatically by attaching atimer tothe CTRL circuit. Andthisiswheretheanaogy with
our example microcal culator architecture is almost complete. The control unit, namely,
isresponsiblefor execution of the so-called fetch-decode-execute cycle of the computer.
In particular, the following algorithm is executed.

Algorithm 3.3. The fetch-decode-execute cycle. Assume that the register PC contains
the address in the instruction memory of the next instruction to execute.

1. Fetch instruction. The address stored in PC is propagated to INSTRMEM, result-
ing in the selection of the next instruction to be executed. Thisinstruction isthen
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loaded into the register IR. In other words, the control lines of PC and INSTRMEM
are set to read signals, whereas the control line of IR is set to awrite signal.

2. Decodeinstruction. Thenexttimethetimer generatesahigh value, theinstruction
storedin IR ispropagated to CTRL and decoded into the address of the microroutine
that is to be executed by the microcal culator. At the same time, the address stored
in PC isincremented by one. Consequently, the control lines of IR and PC are set
to respectively aread and awrite signal.

At this point, the address of the microroutine should be propagated to the micro-
calculator. In order to inform the latter that it should take the proper measures (in
particular, by setting the register IREG open for writing), we assume the control
unit setsahigh signal onthe SC1 line. Thiscontrol lineisthus used to synchronize
the control unit and the microprocessor.

3. Executeinstruction. In this step, control is passed to the microcal culator which
then executes the associated microroutine. In effect, this means that steps 1 and 2
of the micro execution cycle (Algorithm 3.1 on page 86) are repeatedly executed
until the last microinstruction has completed. At that point, we assume the micro-
calculator synchronizes with the control unit by setting a high value on the SC2
line. The control unit then continues with step 1.

O

The third step, executing an instruction, is the most intricate. Depending on the type of
instruction, this step may involve getting data from memory and loading it into the reg-
isters. Conversely, it may also involve copying data stored in the registersto specific lo-
cationsin the datamemory. Theimportant point to note, however, isthat during thisstep
we effectively execute steps 1 and 2 of the micro execution cycle until the microroutine
has been completed.

The von Neumann computer

So what have we accomplished at this point? We have discussed how a microcal culator
can be connected to memory modulesin such a way that it can automatically fetch and
execute instructions. We have assumed that these instructions either manipulate the in-
ternal registers of the calculator or transfer data between the memory and these internal
registers. The combination of these instructions and the extension of our control mecha-
nism provide uswith the right meansfor what we now refer to asprocessing. Whereas at
the level of a microcalculator we had devised a means for organizing a series of micro-
instructions into a microroutine that could subsequently be executed automatically, we
have now accomplished the same thing for aseries of microroutines. In practice, aseries
of instructions, combined with the data that isto be manipulated, is generally referred to
asaprogram. It should be clear that because we have shown how we can automatically
execute a complete program, we have indeed more or less copied the architecture of a
microcal culator to a higher level of conception.
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Figure 3.11 General architecture of avon Neumann-based computer.

But afew comments on computer design in practice are in order. Although we have
placed the control unit as a separate component of our example computer, it is normally
integrated as another part of the microcalculator. In particular, the control mechanism
of our microcalculator and the one attached to the control unit are normally integrated
into a single circuit called a processor. Moreover, most computer systems use only a
single processor, aso denoted as the central processing unit, or CpU for short. Another
issueisthat thereis generaly no physical distinction between a data memory and anin-
struction memory. Instead, both memories are amalgamated into asingle main memory
unit. Although this may seem a simple step, its implications cannot be underestimated.
By taking the two memory typestogether, we are actually unifying data and instructions.
In particular, instructions can be treated as modifiable data items. We shall return to this
subject in the next chapter. Taking a single microprocessor and a main memory leads
to an organization shown in Figure 3.11. This organization is generally referred to as
a von Neumann computer, named after the mathematician John von Neumann who laid
down the fundamental principles of digital computation.

3.2.3 Oninstruction sets

We are now in a much better position to take a closer look at instructions. In particular,
wefirst consider why designing a set of instructionsis such animportant task. After that,
we briefly discuss so-called addressing modes, which specify precisely to which memory
locations an instruction is referring.
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Designing instructions

Usinginstructionsinstead of microroutinesnot only makesaprocessor easier to program.
Moreimportant is the fact that an instruction hides details concerning the way an opera-
tionisactually implemented. To illustrate, recall our instruction for adding the contents
of two registers REGO and REG1, and storing the result in REG3, which was encoded as
the bit string

oL 00 01 1
T T T T

ADD REGO REG1l REG3

Thisinstruction was decoded into the microroutine ADDO1TO3 whichinturnismerely a
reference to aspecific locationin the microstore, namely that of thefirst microinstruction
that needs to be executed. Now the whole point is that in order to have the instruction
above executed, we simply need not know that it is decoded into ADDO1TO3. The fact
that it is, isjust an implementation issue that should be of no concern to us.

To see why thishiding of an implementation is so important, imagine that a manufac-
turer decidesto upgrade aprocessor by adding anumber of microroutines. For efficiency
reasons, it may turn out that the original microstore may need to bereorganized. In partic-
ular, we assume that the start addresses of the original microroutines need to be changed
aswell. From a programming point of view, this really does not matter at all aslong as
the original set of instructionsis still maintained. Aslong asthe manufacturer takes care
of that, we can still have our programs executed as before, but by a possibly better pro-
cessor. Thisidea of upgrading a processor has been put into practice for many years. In
fact, what generally happensisthat an existing set of instructionsis extended with some
new ones, along with an improvement of the implementation of all instructions. In this
way families of processors came to exist.

A well-known example of such afamily of processorsisthe Intel 80x86 series. Orig-
inally starting in the late 1970s with the 8086 processor which formed the heart of most
personal computers, it was soon followed by the 80186, and later by the 80286 processor.
Animportant issue wasthat all programsthat had been devel oped for the 8086 processor
could still be executed by a 80286 processor. From acommercial point of view, this up-
ward compatibility is extremely important. The 80286 was succeeded by the 80386 and
80486, the latter currently being used for most personal computers. The 80586, better
known as the Pentium processor, is at present the most powerful processor of this Intel
family.?

>> But designing an instruction set is not as simple as it may seem at first. And certainly, it
will not come as an afterthought in the way we have introduced instructions in this chapter.
When constructing a processor, determining what the computer should be able to do, i.e.
which instructions are to beimplemented, isone of thefirst activitiesto be undertaken. Let’'s
take a brief look at some of the more important issues involved.

4For completeness, it should be mentioned that the 8086 was based on the 8008, which in turn was
preceded by Intel’s 4004 processor. The 8088 was a popular, slower version of the 8086.
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Number of instructions. If we really wanted to accommodate a programmer with a pro-
cessor that is easy to program it would seem desirable to provide arich set of instructions,
i.e. aset containing many different types of instructions. As computer engineers gradually
obtained an increasing hold on the complexity of how to construct (micro)processors, it also
became alot easier to add functionality to instructions. Thistrend has resulted in processors
that at first were extremely powerful in the sense that they were relatively easy to program.
To date, these processors are referred to as complex instruction set computers, or smply
CISC machines. Almost without exception, the instruction set of these processors is (pri-
marily) implemented by means of microstore technology.

However, thereisaprice to be paid. Asthe complexity of an implementation increases, the
speed by which asingle (powerful) instruction can be executed ismuch harder to maintain at
asatisfactory level. But practice has shown that, despite the availability of extremely pow-
erful instructions, programmers tend to use only those instructions which they know can be
executed quickly® In effect, this meant that only arelatively small number of instructions
were being used. A tradeoff was thus being made in favor of speed instead of programming
flexibility. Therefore, the trend nowadays is to keep an instruction set as small as possi-
ble. Only instructions which it is known in advance can be implemented efficiently are sup-
ported. Thishasled to anew generation of processors referred to asreduced instruction set
computers (RI1SC machines). It will come as no surprise that the implementation technique
underlying these processors is that of hardwired control.

Instruction length. Another important design criterion is the length, i.e. the number of
bits, of an instruction. What it means is that the shorter the instruction, the faster the ma-
chine. How can this be? To see this, reconsider the fetch-decode-execute cycle. Thiscycle
can be effectively broken down into two major steps. (1) fetching an instruction from main
memory and loading it into the instruction register, and (2) decoding and executing the in-
struction. Each step takestime. In particular, the execution of thefirst step is determined by
thetimeit takesto transfer bitsfrom main memory to theinstruction register. Asinstructions
are longer, the more time this step will consume (at least if we assume that an instruction
is several words in length). As we have mentioned, the second step generally dominates
the total execution time. But this statement will not hold if the instruction mostly involves
manipulating registers. By carefully programming the processor, for example by first ensur-
ing that all the necessary data is contained in registers, we see that fetching an instruction
becomes the predominant factor when determining the overall execution time. In practice,
therefore, the trend is to keep instruction lengths as small as possible.

Word sizeand addresslength. Asdiscussed in Section 2.5.3, each word in memory has
aunique address associated with it. Also, if wewish to read from or write to main memory
then this can only be done in units determined by the size of a single word. Consequently,
if we decide to group 16 bitsinto a single word, we can transfer data between memory and
registers only in units of 16 bits. Now suppose at the same time that we had decided to
choose a (fixed) instruction length of 32 bits. In that case, each instruction would not only
require 2 words of memory, but more important isthat fetching an instruction would require

SMoreprecisely, itisnot only programmersthat take this approach, but al so compiler devel opers. Com-
pilers are discussed in Chapter 4.
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two separate data transfers from main memory to theinstruction register. From this point of
view, it would have been better to have chosen aword size of 32 bits.

But equally important is deciding on the maximum amount of wordsthat can be contained in
memory. To date, it is not uncommon to assume that as much as 2° words can be supported.
Assuming that each word consists of 4 bytes (i.e. 32 hits), the maximum memory capacity
would then be 20 x 4 = 4 gigabyte. In effect, this meansthat in order to address aword, 30
bits need to be reserved within aninstruction. Inpractice, thisisnot possible aswe a so need
to reserve bits to identify the kind of operation that is to be performed, as well as possible
additional operands. Therefore, special measures need to be taken of which some will be
discussed below.

Addressing modes

Instructions are only useful if they allow us to manipulate data. But in order to do so, it
isimportant to know exactly where data can be found. Although identifying the location
where dataresides may seem straightforward at first it isin fact not so. Thisis caused by
anumber of problems. Some of them are directly related to implementation restrictions,

such asthelength of instructions; others stem from the way wewould liketo refer to data
ingeneral. Here, we shall leave the reasons for having different ways of referencing data
for what they are. Instead, we will just briefly discuss some of the more conventional

ways of identifying memory locations, or addressing modes as they are called. In the
following we shall adopt an informal notation for instructionswhen making adistinction

between the different type of addressing modes. This notation will be further explained
in the next chapter.

Immediate addressing. Probably the simplest way of referring to datais by means of
immediate addressing. In this case, the datathat isto be operated on isimmediately con-
tained in the instruction itself. To illustrate, the instruction

LOAD #12, reg0

is an example showing how the decimal number 12 is directly written to register REGO.
Theprefix “#” isused explicitly to distinguish thefact that thisLOAD instruction employs
immediate addressing.

>> Executing an instruction that uses immediate addressing is very efficient. The point to note
isthat the instruction itself does not refer to the memory module at al asthe datais already
contained in the instruction. Consequently, the execution step of the fetch-decode-execute
cycle can be resolved entirely by transferring data within the processor. No data need thus
be transferred across the data lines as shown in Figure 3.11.

Register addressing. Another form of addressing occurs when no reference to mem-
ory isinvolved, but rather only to another register. Thismode, called register addressing,
takes the form

LOAD regl, reg0
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and, in this case, has the effect that the contents of register REG1 is copied to register
REGO.

> Again, when we look at the execution of this instruction with respect to the fetch-decode-
execute cycle, it is seen that no data transfer between the memory modul e and the processor
needs to take place, other than loading the instruction into the instruction register. In effect,
it can be expected that the efficiency of the execution of thisinstruction is of the same order
as when employing immediate addressing.

Direct addressing. Inthecase of direct addressing, theinstruction containsareference
to where the required data can be found in main memory. In practice this means that a
memory address needs to be provided asin

LOAD 1000, reg0

In this case, the datathat is stored at memory location with address 1000 is copied, and
written to register REGO.

> When employing direct addressing the execution of the instruction becomes more compli-
cated. After having fetched and decoded theinstruction, the processor will then need to read
the contents at memory location 1000. Consequently, the complete fetch-decode-execute
cycle requires two data transfers between main memory and the processor. One in order to
fetch the instruction and store it in the instruction register, and one to get the data to which
theinstruction refers. In effect, it isseen that thisinstruction isless efficient than when either
immediate or register addressing is employed.

Indirect addressing. A more complex form of addressing is that by which the refer-
enceto dataisindirect. Inthat case, thereference containedin aninstruction specifies not
where the data can be found, but merely where the reference to that datais. Toillustrate,
consider the instruction

LOAD (regl), regO

Inthiscase, the notation “ (reg1)” isused to denote that the actual data can be found at the
memory location of which the address is stored in register REG1. So, if we had stored
1000 in REG1, and memory location 1000 contains value 4520, then execution of the
instruction above will show that 4520 is |oaded into register REGO.

> When considering efficiency, it isnot hard to imagine that this addressing mode will cost ap-
proximately as much as direct addressing. In particular, it isnot difficult to seethat two data
transfers across the data lines of Figure 3.11 need to take place: (1) the instruction needs to
be fetched from main memory and stored in the instruction register; and (2) the data con-
tained at an indicated memory location (location 1000 in our example) needs to be trans-
ferred to the processor.
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Indexed addressing. Our last example at present isthat of indexed addressing. Inthis
case, the addressing scheme consists of a combination of a base address and an offset.
To illustrate, consider the instruction

LOAD 12(regl), regO

If we assume that REG1 contains the value 1000, then in this case, the data that isto be
LOADed into register REGO can be found at memory location 1000+ 12 = 1012. Ad-
dress 1000 is called the base address; 12 is denoted as the offset relative to the base ad-
dress. Indexed addressing is primarily used to access a series of data el ements that are
consecutively stored in main memory. For example, suppose we have stored the values
X0, X1, - - -, XN—1 IN Main memory, starting at address 1000. In other words, thevalue xg is
stored at location 1000, X at 1001, etc. The LOAD instruction above would then havethe
effect that the value x4 is copied to register REGO. Again, we shall see more examples
of indexed addressing in the next chapter.

> Using a similar approach to that presented above, it should now be clear that indexed ad-
dressing requires two data transfers between main memory and the processor. Thefirst, as
usual, constitutes the transfer of the instruction into the instruction register. Decoding the
instruction will ensure that the actual address (i.e. base address + offset) is calculated, after
which the actual data transfer takes place.

In practice, some additional addressing modes are used as well, most notably those in-
volving a so-called stack. Discussion of these additional addressing modes is deferred
until we present an example instruction set in the next chapter.

3.3 Interfacing processorsand memories

So far, we have discussed the design of only a simple computer consisting of a single
processor-memory pair. But there should be more than just this. For example, almost
every computer allowsyou to add components such as agraphics processor or afloating-
point processor. Obviously, there should be away of attaching peripheral devices (disks,
keyboards, etc.) to the computer in such away that they can interact with the other com-
ponents. In thissection, we shall consider the more general problem of connecting acol-
lection of processors, memories, and other devices, allowing them to exchange data or,
in other words, to communicate.

3.3.1 General busarchitectures

An interconnection system between processors, memories, and other devicesisgenerally
referred to as a bus. In its simplest form, a busis a set of wires with some additional
control circuitry that directly connect processors and memories. A distinction is often
made between three types of wires. control lines, data lines, and address lines.
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Figure 3.12 The implementation of a bus by direct wiring.

e Control linesare used to synchronize two communicating components. For exam-
ple, if aprocessor wantsto send datato amemory it must ascertain that the memory
is capable of receiving that data. In other words, it must ensure that a high signal
valueis set on the memory’s R/W control pin. Thisisdone by means of one of the
control lines of the bus. In addition to synchronization signals, control lines are
also used to pass signals from 1/O devices, clocks, etc.

e Datalines carry the data that is exchanged between two communicating compo-
nents. For example, the result of a computation performed by a processor will be
sent across the data lines of a bus connecting the processor to a memory.

e Addresslines, finaly, are used to select a word from memory by passing its ad-
dress to the main memory module.

To illustrate, suppose we were to design an architecture consisting of a single proces-
sor, alarge main memory module, and a special memory modul e containing a number of
non-modifiable programs.® What we would need to do then is make sure that the proces-
sor can access both memory modules. Two approaches can be followed. First, we may
choose for a processor that can be directly connected to the two modulesasillustrated in
Figure 3.12. Thisisaform of implementation that werefer to asdirect wiring. It should
be clear that this approach can only be followed if the processor issuited for it, i.e. it has
separate pins to connect all data, address, and control lines.

Directly connecting processorsand memoriesisfine, but doeshave a seriousdrawback
which becomes apparent when considering how computer systems are actually built. In
many cases, a manufacturer assembles a computer by taking various off-the-shelf com-
ponents. For example, apersonal computer may be based on memory chips, aprocessor,
and various processors for peripheral devices, al from different manufacturers. It is not
realistic to expect that these components can be directly wired together, i.e. that we can
literally solder wires to the pins of the various chips and simply switch the system on.

6For example, such a module may contain a collection of basic 1/0 programs, as is the case with the
so-called B10S component of many 1BM-compatible personal computers running the Ms-DOS operating
system.
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Figure 3.14 A general interconnection scheme by means of a single backplane bus.

What we need in this case is a common agreement on how the processors and memories
are to communicate.

To this end, a so-called backplane bus can be used. A backplane bus consists of a
number of integrated circuits that are simply wired together and which provide a means
of interconnecting various memories and processors. For each component that is to be
connected to the bus there will generally be a separate integrated circuit that implements
an appropriate interface. Such an interface ensures that communication across the bus
isthe same for each connected component. Figure 3.13 illustratesthe use of a backplane
bus, using the same components of our previous configuration.

It isnot hard to imagine that we can take our approach even further by attaching sev-
eral processors and memory modulesto the same bus. One particular scheme, and which
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we shall assume for the remainder of this chapter, employs a single central processing
unit (cpu), one main memory constructed out of one or several memory modules, and
anumber of specia 1/0 processors, as shown in Figure 3.14. The figure shows how the
variousdigital components have been located on separate boards, which are to be plugged
into slots. The bus, again, isformed by the wired slots and the circuits BUSLOGIC. The
memories and processors are thus attached to a single backplane bus. 1/0O processors,
which are discussed in Section 3.4, are special processors for handling communication
with peripheral devices. The CPU acts as the main processor and is responsible for exe-
cuting programs stored in main memory. The I/O processors handle all the communica
tion with the outside world, to which end they will need to communicate with the cpu,
and also access data stored in main memory.

However, when giving the matter some thought there are going to be problems with
this scheme. First, what happens if two processors want to transfer data over the bus at
the same time? For example, the cPu may want to execute a program while one of the
I/O processors wants to transfer data to a peripheral device such asa printer. In general,
this cannot be alowed and special measures have to be taken in order to serialize bus
access. Second, it may be easy to transfer data between a processor and memory, but
what about communication between processors? These two issues are addressed next.

3.3.2 Busarbitration

In order to manage communication over a bus, a distinction is made between those pro-
cessorsthat want toinitiateabustransfer, called master s, and those processors or memo-
riesthat are waiting for requests, called slaves. For example, assume aprocessor wantsto
store acomputed value in memory. The processor instructsthe busto set its control lines
so that the value stored in one of the processor’s internal registers will be transported to
a specific word in the memory module (possibly viainternal registers of one of the bus
interfaces). In this case, the processor acts as a master, whereas the memory acts as a
dave. Thefirst activity involved in managing bus transfers is the selection of a master.
If there is only one possible master, then selection is not a problem. When there is more
than one candidate, we have to resort to bus ar bitration. There exist several arbitration
schemes that can roughly be divided into two classes: centralized and decentralized ar-
bitration. Here, we shall discuss only centralized arbitration. Decentralized arbitration
techniques will be discussed in alater chapter, when we consider networks.

In the case of centralized bus arbitration a separate component, called the bus ar-
biter, handles al bus requests. One particular form of centralized bus arbitration is il-
lustrated in Figure 3.15. The principle is extremely ssimple: al processors are ordered
one after the other in a so-called daisy chain. Now, if a processor wants to use the bus
it first issues arequest at the bus arbiter. The bus arbiter, in turn, responds by passing a
grant to the first processor in the chain. The grant isforwarded from processor to proces-
sor, where each processor checksto seeif it had requested the bus. If so, it picks up the
grant signal; otherwise, the signal is passed on to its neighbor. As soon as the processor
isfinished using the bus, it signals the arbiter by means of the bus release line.
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Figure 3.15 Reguesting bus transfers by several masters through centralized daisy chain arbi-
tration.

>> Aslogical as this daisy chain scheme may seem, there are a few things that can easily be
overlooked. Let'sfirst see what we need in order to let a processor claim, and subsequently
use the bus. Denote by req the value of the request signal that is set by the i processor. In
particular, if processor R wants to use the bus, we will have that req = 1. Similarly, let rel;
denote that processor R has released the bus. Obviously, the busis not being used by any
processor if al of them have released it. In other words

thebusisfree < (relje---orely) =1

Let grant; denote the value of the grant signal as observed by the " processor. The gen-
eral behavior of a processor that wants to use the bus can then initially be expressed by the
following steps:

1. Request: setreg «+ 1.

2. Acquire: if grant = 1, then set rel; «— 0 and reg, < 0. The processor can now use
the bus.

3. Release: setrelj « 1.

For the arbiter, it is important to know when to pass a grant signal to the first processor in
the chain, and when to lower thissignal again. Itisnot difficult to seethat whenever thereis
arequest from a processor, and the bus has also been released by every processor, it istime
to pass the grant signal. As soon as the arbiter notices that the busisin use, the grant signal
should be lowered again. In other words, if we denote by grant the value of the grant signal
as produced by the arbiter, we have:

grant = (regy +---+reqy) e (relye---erely)

Unfortunately, this simple scheme is not going to work, for suppose that processor Phad
just passed the grant signal to a processor R further down the chain. This can only happen
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if B had not requested the use of the bus, i.e. reg = 0. Now imagine what happens when

P, decides to issue arequest just after it passed the grant signal to R, and before the arbiter

had a chance to lower the grant signal again (i.e. before B could claim the use of the bus by

setting rel; < 0). Inthat case, because we will till have grant = 1, B will inadvertently

assume that it can claim the bus as well. Consequently, we will then have two processors
starting to send signals across the bus simultaneously, leading to confusion.

The problem can be solved by letting R keep track of the fact that it had passed the grant
signal to another processor down the chain. If thisisthe case, Pwill first have to wait until
the grant signal is lowered again (indicating that the bus is now being used by B). At that
moment, it can pass its request to the arbiter by setting req < 1. Assoon asiit receives the
grant signal again, it can then claim the bus for its own use.

The main disadvantage of daisy chaining isthat the processors at the end of the chain
may have ahard time attaining the bus. Their predecessors have a much better chance of
claiming the grant signal for the simplereason that it arrivesthere earlier. An aternative
approachthat isfair to each processor istol et thearbiter select which processor isactually
going to get the bus. To that end, each processor communicates separately with the bus
arbiter through separate grant and request lines.

3.3.3 Interprocessor communication

Another issue that we mentioned was inter processor communication. Typically, com-
munication between processor and memory involves transferring instructions and data
between the internal registers of the processor and the memory module. But interpro-
cessor communication may actually involve transferring instructions and data from one
processor to another aswell. In particular, there should be a mechanism to let the cpu
instruct an I/O processor to start transferring data from main memory to a peripheral de-
vice, and likewise, to let an 1/O processor inform the cpu about the status of the data
transfer. So how does one processor actually supply another processor with data or an
instruction? In order to answer this question, thefirst point to realize isthat (practically)
all communi cation takes place by propagating bit strings stored in someinternal register
of the sending processor to some internal register of the receiving processor. So, if we
can uniquely identify registersin processors, we have away of communicating dataand
instructions between processors. Here, the notion of address spaces is needed.

Conceptually, an address space is merely a collection of storage locations, linearly or-
dered from address 0 and upwards. An addressis spaceisimplemented by taking one or
several memory units, and assigning to each storage location a unique number, starting
at 0. Inthissenseg, it isvery much comparable to the address decoding scheme discussed
in Section 2.5.3. Two different methodsfor identifying registers (and thusthe processors
they belong to) are generally employed in computer design. These methodsareillustrated
in Figure 3.16.

In the first scheme, all storage units, except for the internal registers of the cpu, are
assigned a unique address from a single address space. For example, assume we have
a computer with asingle cpu and two 1/0 processors I0PROC1 and 10PROC2, each I/O
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Figure 3.16 Mapping memory and registers into a single address space (a), or into different
address spaces (b).

processor having three registers. Furthermore, assume there are two memory modules
MEM1and MEM2. Then, we might organizethe address space asshownin Figure 3.16(a),
inwhich thefirst six addresses are assigned to the registers bel onging to the two 1/0 pro-
cessors, whereas the remaining addresses are assigned to words from MEM1 and MEM 2.
Theregisters of the cpu are always assigned to a different address space. Consequently,
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communication between the cpu and an 1/0 processor is now accomplished by simply
transferring databetween two different memory locations. Thismapping schemeiscalled
memory-mapped 1/O for obvious reasons.

> Memory-mapped 1/Oisinfact, an extremely simple and elegant way of controlling 1/O pro-
cessors. Anticipating our discussion on peripheral devicesin the next section, suppose that
we have an |/O processor that is responsible for data transfers between afloppy disk and the
CPU. In order to transfer data, a floppy disk unit needs to be explicitly activated, i.e. it is
the cpu’s responsibility to either start or stop the rotating of the disk. To that end, assume
we have a single address space as shown in Figure 3.16(a), and that the floppy disk unit is
controlled by 10PROC2 having a special 8-bit register CTRLDISK mapped to address 5. If
the last bit of this register contains a 1, then the I/O processor of the floppy disk unit will
start the motor in order to rotate the disk. Otherwise, when it is0, the motor isto be stopped.
We can then let the cpu instruct the floppy disk’s 1/0O processor to start the motor by means
of the two instructions

LOAD #00000001, reg0
STORE reg0, 5

The LOAD instruction uses immediate addressing, and puts the bit string into the cpu’sin-
ternal register REGO. The STORE instruction which employs direct addressing then writes
this value to memory location 5, which is equivalent to storing (00000001) into register
CTRLDISK of the floppy disk unit. At that point, the I/O processor (which is assumed to
continuously read register CTRLDISK), will start the disk’s motor.

In the second scheme, a distinction is made between distinct address spaces for the
registers of the 1/0 processors and main memory, as shown in Figure 3.16(b). In partic-
ular, words from the memory module are mapped into one address space, whereas the
registers of the cpu and each 1/0 processor are mapped into a different address space.
The problem with this scheme is that we now have to devise a special means to let the
CPU communicate to an 1/O processor that there iswork to be done. The only solution to
this problem isto design a number of special 1/0 instructions that the cpPu can execute.
Such an instruction is then sent to a selected 1/O processor, which in turn will do as it
isinstructed. For example, in the simplest form, the cPu may have a DOIO instruction
which enables a selected /O processor first to copy some data from main memory to its
internal registers, after which it proceedsto send this copied datato the peripheral device
to which it is connected.

As many modern processors do not employ this I/O scheme (a notable exception is
the Intel 80x86 family), and because we will be using the conceptually much simpler
memory-mapped /O scheme throughout the remainder of this book, we shall discuss
these matters no further.

3.4 Peripheral devices

Let’s now take a closer look at peripheral devices. In particular, we shall pay attention
to two subjects. First, we need to discuss how peripheral devices interact with proces-
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sors and memories. Second, we will take a closer look at the kind of devices that are
commonly used at present.

3.4.1 Interfacing devicesand processors

Aswe have already mentioned briefly in the previous section, interaction with peripheral
devicesis generaly taken care of by means of dedicated processors, called 1/0O proces-
sors. These are also frequently referred to as1/0O controllers. 1/0 processors enable the
transfer of data between a computer’s main memory and a peripheral device: disks, ter-
minals, printers, modems, etc. In general, each type of peripheral device requires a spe-
cific combination of a processing unit and additional circuitry which makes 1/0 proces-
sors special (where it should be noted that devices such as, for example, ssmple printers
and keyboards are so similar with respect to their communication protocol that they can
be controlled by the same /O processor).

I/O processorsarevery similar to the general processor discussed in Section 3.1.4. The
main difference is that they are capable of communicating directly with peripheral de-
vices. They need to transform data as stored in their internal registersinto aformat that
isacceptablefor the device they control. For example, printersrequire special sequences
of signals before they can be activated. A printer 1/O processor allows an ordinary pro-
cessor (i.e. the cpu) towritetoitsinterna registersthe datait wantsto print, after which
the /O processor sends the correct signalsto the printing components so that the datais
actually hard-copied onto paper.

Now let’stake a closer look at the interaction between a general processor and an I/0
processor. |n particular, we need to consider two aspects: (1) initiating data transfer, and
(2) detecting that data transfer is completed.

Initiating 1/0

We first consider how a general processor can actualy initiate /0. Assume we have a
central processing unit (CPU) that wants to transfer N data items from a memory chip
MEM to aperipheral storage device DEV. Thisdevice DEV has an associated I/O proces-
sor IoPROC. Transferring this data proceeds in two steps:

1. Thedataistransferred from MEM to some memory that islocal to the |/O processor.
This memory (which is often called a buffer) is denoted here as BUF.

2. Fromthereon, the datais moved from BUF to the actual devicefor permanent stor-
age, display on a screen, printing, etc.

There are several ways by which the first step can be executed, asillustrated in Fig-
ure 3.17. A ssimple schemeisto let the cpu start by issuing a bus request for reading a
single dataitem from MEM into one of itsinternal registers. After that, it issues another
bus request to write the contents of this register into a suitable location of BUF. This
schemeisrepeated until all dataitems have been stored in BUF. At that point, the buffer
associated with the storage device DEV has been filled, so that its contents can now be
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Figure 3.17 Transferring data for output via the cpu (a), or by means of direct memory ac-
cess (b).

transferred to the deviceitself. Thisdatatransfer istheresponsibility of the 1/O processor
associated with DEV. In order to accomplish this data transfer, the cpu will have to in-
struct the I/O processor to do so by sending a control signal to one of the 1/O processor’s
internal registers.

> Toillustrate, assume that we have a computer that uses memory-mapped 1/0O, and that the
buffer BUF consists of atotal of 100 words, mapped consecutively from memory location
11 and upwards. Also, we assume that DEV has an 8-bit register CTRLDEV mapped to ad-
dress 10, used to indicate what kind of data transfer needs to take place. If the first two bits
are set to (01), then this means that the data contained in BUF are to be stored on device
DEV. Now, suppose that we need to transfer the data stored in the first 100 words of main
memory, starting at address 1000. Omitting a number of details, the following sequence of
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instructions will accomplish just that’

LOAD 1000, reg0 Load the 1st data item into register REGO

STORE reg0, 11 and store it as the 1st item in the buffer.

LOAD 1001, regO Load the 2nd data item into register REGO

STORE reg0, 12 and store it as the 2nd item in the buffer.

LbAD 1099, reg0 Load the 100th data item into register REGO

STORE reg0, 110 and store it as the 100th item in the buffer.

LOAD #01000000, reg0 Set the appropriate values to transfer the data from
the buffer to the device

STORE reg0, 10 and instruct 1I0PROC to do the actual transfer.

The sequence of LOAD and STORE instructions first copy the data into memory locations
where they can be accessed by the I/O processor. Note that these transfers all take place
over the bus. Each dataitem is thus physically moved from main memory to the memory
associated with the device DEv. The last two instructions are used to instruct the 1/O pro-
cessor to store the data on DEV.

A more advanced schemeisto let loPROC do all thework. Inthis case, the cpu starts
by passing information to I0PROC on which data stored in MEM is to be permanently
stored on DEV. It then lets 1OPROC take care of the data transfer from MEM to BUF. The
important distinction with the previous scheme is that the cPu no longer moves the data
itemsfrom MEM to BUF. Thisisdone entirely by I0PROC. Because I0PROC apparently
hasdirect accessto MEM, thissecond schemeisalso referred to asdirect memory access
(DMA). Direct memory accessisespecially important in caseswherelarge chunksof data
are to be transported at high speed between main memory and a peripheral device. Ob-
vioudly, it permits the processor that initiated the data transport to do other things during
the time that the I/O processor is moving data.

> What the effect isof direct memory access can beillustrated by rewriting our program given
above. Assuming that data transfers always take place in afixed amount of bytes, the only
thing we have to do now istell the I/O processor whereit can find the data. Assume 10PROC
has another register, called STARTADDR, which should contain the address in main memory
of the first datum that is to be stored on DEV. Assume STARTADDR has been mapped to
address 9. Using abinary numbering convention (meaning that address 1000, where thefirst
datum islocated, is represented as the bit string (1111101000)), we then need only execute
the instructions

LOAD #1111101000, reg0 First get the start address (1000) into a register...
STORE reg0, 9 and store that address in register STARTADDR.

And start the data transfer by setting the correct value
into the control register of the device.

LOAD #01000000, reg0
STORE reg0, 10

(Suppose, by the way, that our control register is now used to instruct the 1/O processor to
do a DMA transfer, rather than transferring data between itself and the peripheral device.)

"We notethat this solution is arather foolish way of doing I/O. Better solutionswill be presented in the
next chapter.
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From there on, 10PROC will independently fetch the data from main memory and transfer it
to the buffer. Assoon asthisisfinished, it will then store the data on DeEv. Meanwhile, the
CPU can be used for executing other instructions.

Detecting completion of I/0

But what about detecting that 1/0 has completed? In principle, we need to make a dis-
tinction between two cases. (1) thel/O controller has completed transfer of data between
aperipheral deviceand itself, and (2) datatransfer through bmMA has completed. Thetwo
cases have in common that they both require the cpu to notice that another processor has
finished a task.

When giving this matter some thought there is one scheme that immediately comes
to mind, namely the one by which the cpu simply checks from time to time at the I/O
processor if it hascompleteditswork. Thiscan easily be done, for example, by letting the
cPU check the contents of a special control register at the I/O processor. This schemeis
referred to as polling. The main drawback of pollingisthat it isnot very efficient. If the
CPU wantsto initiate asecond datatransfer as soon as possible, it will have to frequently
request the status of thefirst datatransfer, prohibiting it to do other work in the meantime.
On the other hand, if 1/0O completion is only tested after considerable time has elapsed,
the overal rate at which 1/0 takes place may be too slow. The 1/O processor would then
simply not be working at its maximum speed.

But there is another simple solution to this problem. We let the 1/O processor inform
the cPu when it has completed its work by generating an interrupt. Generating an in-
terrupt by an 1/0 processor causes the CPU to stop its current execution of instructions
and devote itself to initiate a next 1/0 request, or otherwise indicate that no more 1/O is
currently needed. Aswe shall seein Chapter 5, thisso-called interrupt handlingisdone
completely by executing a series of special instructions. When this execution is finished,
the cpu automatically resumesitsinterrupted work. But for now, let’stake acloser |ook
at what happens at the hardware level.

Whenever the /O processor generates an interrupt, it sendsasignal to aspecial digital
circuit, called aninterrupt controller. Normally, several 1/0O processors are attached in
thisway to asingle interrupt controller. Theinterrupt controller in turn, sendsthe signal
tothe cpu. Assoon asthelatter sendsasignal back to theinterrupt controller that itisca-
pable of handling the interrupt, the interrupt controller issues abus request, and, after the
request has been granted, propagates the identification of the device that initially caused
theinterrupt to the cpu’sinternal registers. From that moment on, the cpPu “knows” that
the device isready to accept new data to transfer, and starts executing the instructionsto
initiate another datatransfer or otherwise indicate that no further I/O is currently needed.

3.4.2 Examplesof peripheral devices

Now that we have discussed the interaction between a cPu, memories, and 1/O proces-
sors, let’slook at some peripheral devices that are generally attached to computers. We
briefly discuss storage devices, terminals, and printers.
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Stor age devices

Computersaswe have discussed so far are magnificent devicesindeed. Yet, when storing
information they have one major drawback. As soon as the power supply is switched
off, all the data that is contained in registers and main memory is lost. Consequently,
this makes them unsuitable for permanently storing data. On the other hand, computers
would bealot lessuseful if we did not have the meansto save our dataaslong aswe wish
regardless of the availability of power supplies. The means to these ends are so-called
stor age devices. Because the amount of data that we wish to keep intact is so large, we
also find ourselves in the position that storage devices should not only preferably have
avery large capacity, they should aso be relatively cheap. In this subsection, we shall
look at some popular storage devices.

Magnetic storage devices. Traditionaly, storage media have always appeared in the
form of magnetic devices, particularly tapes, hard disks, and floppy disks. The principal
working of these devices is always the same. There is a medium (plastic in the case of
tapes and floppy disks, and metal or glassin the case of hard disks) that is coated with
magnetic material. Thismeansthat uncountable microscopic parts (each forming asmall
magnet) are spread all over the medium. The quality of the coating in combination with
the underlying medium determines how long this magnetic surface will remain intact. In
practice, thiswill be for many years. The essence of having amagnetic surfaceisthat its
parts can be pointed in any direction under theinfluence of an external magneticfield. In
other words, we can force the magnetic surface into a specific pattern. Moreover, once
we have established a pattern, it will remain unaltered aslong asit isnot exposed to some
external magnetic field again.2 Thisalso impliesthat if we expose the magnetic parts to
an external magnetic field in a controlled manner we can actually store information.

Enforcing a specific magnetic pattern is done by means of aread/write head. The
head is capable of inducing a magnetic field based on electrical signals. Consequently,
the electrical signalsthat are passed to the head can said to be transformed into a unique
magnetic pattern. More commonly, we say that we write data onto the device. The ad-
vantage about read/write heads, however, isthat they also work the other way around. In
other words, if we do not pass electrical signals to the head, but instead move the head
across amagnetic surface, it will induce electrical signalsin accordance with the pattern
that is being scanned. In that case, we say that we are reading data.

Aswe have said, the principles underlying magnetic storage devices are al the same.
The difference between the devices is to be sought in the way that they are physically
organized. Let’s ook at three types of magnetic storage devices: tapes, hard disks, and
floppy disks.

Magnetic tape. Magnetic tapes are not the most attractive storage medium when it
comesto flexibility. However, dueto thefact that they can contain very large amounts of

8|tisfor thisreason that you are often warned not to put your floppy disks on top of loudspeakers, which
amost invariably produce a strong, permanent magnetic field.
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Figure 3.18 The organization of magnetic patterns on atape.

dataat an extremely low cost, they are still frequently used for archiving purposes. Typ-
ically, the storage capacity of tapes as used in many personal computer and workstation
configurationsisin the order of tens to hundreds of megabytes. In terms of money, this
storage capacity is not going to cost much: it is comparable to the price of avideo tape.
Using advanced recording techniques, we can now store 5 gigabyte of data on asingle
video tape.

The magnetic pattern of a tape is organized into a number of tracks which in turn
are divided into frames as shown in Figure 3.18. A number of frames together form a
record. Datatransfer to or from tape takes place in units of so-called blocks. A block
typically contains a few thousand bytes. The problem with tapesis that they need to be
wound or rewound in order to position the head above the block in which we are inter-
ested. Thistakesalot of timeasyou can also experience with your own cassette or video
recorder, making them unsuitabl e in cases where data needsto be stored permanently but
till be easily, i.e. quickly, accessible.

Hard disks. In order to increase access speed, hard disks were introduced. A hard
disk consists of one or more metal (or glass) platters with a magnetizable coating, and
for each disk surface, amovable read/write head, as shown in Figure 3.19. Each surface
is divided into a number of tracks, which in turn are divided into sectors, as shown in
Figure 3.20. Tracks that are at the same distance from the center jointly form what is
called acylinder. Data can be transferred to or from a hard disk in units that equal the
size of asector. Thetotal storage capacity of ahard disk can vary considerably. Smaller
personal computers, such as notebooks, are often equipped with a 120 or 340 megabyte
hard disk. Larger hard disks may have a storage capacity of several gigabyte.

In order to transfer datato or from a hard disk, we have to specify exactly in which
sector we are interested. In practice, thismeansthat we haveto specify (1) acylinder, (2)
ahead, and (3) a sector number. The heads are then jointly positioned above the correct
cylinder, and the disk itself is rotated so as to read or write the correct sector. Note that
if information is to be transferred from or to the same cylinder, hardly any mechanical
movement isinvolved, because the heads can remain positioned above the same cylinder.
Because heads can be positioned above any cylinder, hard disks are so-called random
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Figure 3.19 A typical organization of ahard disk.
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Figure 3.20 Layout of a surface of ahard disk.

accessdevices, asopposed to sequential accessdevicessuch astapedevices. Obvioudly,
the average access time for hard disks is much shorter than that for tape drives.

One disadvantage of hard disksisthat they are generally vulnerable to transportation.
Although so-called removable disks are now commonly available, hard disks are not the
most convenient means of physically transporting information from one computer to an-
other.

Floppy disks. Withthe advent of personal computers, floppy diskswere introduced.
They are conceptually the same as hard disks, although each floppy disk drive can handle
only asingle diskette rather than a stack of disks. Also, astheir name suggests, a floppy
disk is physically alot more flexible with plastic being used as the underlying medium
for the magnetic surface. The storage capacity of floppy disks is typically just over 1
megabyte. Another major difference is that the read/write head of a floppy disk drives

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Peripheral devices 121

actually touchesthe surface of the diskette, in contrast to hard disks (wherethe head floats
just above the surface). Consequently, floppy disks are subject to more wear and tear. To
overcome this problem, the heads are generally removed from the surface, and the motor
of the disk drive is stopped when there is no need for data transportation. Floppy disk
drivestend to have amuch larger access and data transport time than hard disks, because
time for rotation and head movement is much slower.

Optical storage devices. An attractive alternative to magnetic tapes for storing data
are optical stores, such as, for example, cD-rROM. The main advantage of an optical disk
compared to amagnetic tapeisthe fact that it isfar less vulnerable to external influences
like heat, humidity, and, of course, electromagnetic fields. Consequently, optical disks
are much better for storing information for along period of time. The storage capacity
of optical disks lies somewhere between that of high-capacity tapes and hard disks. In
general, you can store in the order of 500-1000 megabytes of data on asingle disk.

At the heart of an optical disk isareflective layer whichisused to storeinformation. In
most cases, thisis done by burning holes at the surface, called pits, which are separated
by unburned parts called lands. Due to their difference in reflectivity, it is possible to
distinguish the two by making use of light (which is why these disks are referred to as
optical disks). Thedifferencein light can, asin the case of magnetic read/write heads, be
transformed into electrical signals. The reflective layer itself is protected on both sides
by an additional plastic or glass layer.

The problem with optical disksis that the data they contain are hard to modify. In
practice, most disks to date can only be used for data retrieval: there is no way that the
optical pattern burned into the disk can be changed. Special so-called write-once read-
many disks allow data on adisk to be changed only once. It isexpected that full erasable
optical diskswill become widely available in the near future.

In general, the dataon an optical disk isorganized in asingle spiral, similar to the lay-
out of vinyl records. Thisis perfectly in order for storing continuous data such as voice
and video, but isless suitable when storing discrete data as found in most computers. The
problem with the spiral organization is that the data, asin the case of magnetic tapes, is
only sequentially accessible. Thismeansthat if no special measures are taken, the head
will always haveto be positioned at the start of the spiral, after which the scanning of the
disk can start. In practice, thisis circumvented by dividing the data into records, analo-
gousto the organization of magnetic tapes. An alternative solutionisto follow the layout
of magnetic disks by organizing the datainto tracks and sectors. This approachis still at
the research stage, but would have the advantage that the data is then randomly acces-
sible. Combining thiswith full erasure possibility of disks, optical storage devices may
then form a strong alternative to hard disks.

Terminals

Terminasarethe primary meansfor interactively communicating with acomputer. They
consist of a keyboard, sometimes a mouse, and a monitor.
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Keyboards. Keyboardsarein principlenothing but alarge collection of switches. With
the introduction of personal computers by 1BM, a so-called geographic coding system
was used. Each key has an associated 7-bit binary code which is related not to what the
key logically stands for but instead only its position on the keyboard. For example, on a
PC compatible keyboard, the key “W” hasthe geographic code 46. Theinteresting aspect
of thiscoding systemisthat a distinction is made between depressing akey and releasing
it again. Whenever akey, say with geographic code keycode, is depressed, the keyboard
sends its code to the keyboard controller. As soon as the key is depressed, the number
keycode + 128 is sent. By associating two events with any keystroke, it is possible to
distinguish complex key combinations.

To illustrate, many developers of word processors have found it useful to force their
users to learn combinations of keys such as “CTRL-CEB” which means that the CTRL-
key should be depressed while typing in the sequence “ceb”. Using the notation “KEY |”
to denote that the key KEY is depressed, and likewise “KEY 1" denoting its release, our
example key combination generates the following series of events:

event number; 1 2 3 4 5 6 7 8
event: |[CTRL| ¢c| ¢c? E] ET B| BT CTRLT

which is atotal of eight events that are passed as keycodes to the keyboard controller.
Each event generates an interrupt that isto be handled by the keyboard controller in com-
bination with the cpu. Because the events can be separately distinguished, it isalso pos-
sible to recognize which key combination has been typed in. In this way, appropriate
action can be taken.

Mice. A mouseis asmall device that is capable of recording movements in two di-
rectionsrelativeto an initial position. In it simplest form, whenever amouseis moved it
updatestwo internal counters. onefor the X direction and onefor theY direction. For ex-
ample, moving to theright incrementsthe X-counter, whereas moving downwards decre-
ments the Y-counter. The counters are updated by means of an electromechanical inter-
face, where the mechanical part is formed by a simple tracking ball. Movement of the
ball is then trandated into electrical signals. The values in the counters are sent to the
mouse controller every 100 milliseconds or so, where they are further processed by the
CPU. In addition, each mouse generally has two or three buttonsin order to generate ad-
ditional events to the mouse controller, similar to the organization of keyboards as dis-
cussed above.

Monitors. Monitorsare comparableto normal TV screens. By using electrical signals
as input they direct an electron beam to a phosphorescent screen that subsequently pro-
duces alight spot. The screen itself is divided into a number of pixels per square inch,
also referred to as the screen resolution. The more pixelsinto which ascreen isdivided,
the better the definition. In practice, ordinary screens have resolutionsin the order of 640
pixelshorizontally and 480 pixelsvertically. High-definition screens may have aresolu-
tion of 1280 x 1024 pixels, or even 2048 x 2048.

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Peripheral devices 123

Ol0|0|0|0|O
O
O
O
O0|0|0|0|0

Figure 3.21 The representation of the character “A” by means of a 7-dot matrix printer.

In order to form a complete image on the screen, the electron beam scans each hori-
zontal line separately, updating each pixel as the beam passesit. The information on a
pixel (itscolor, luminosity, etc.) isgenerally encoded in one or several bytes, and which
is stored in so-called video memory. This memory is generally mapped to the same ad-
dress space as main memory, so that updating an image becomes relatively simple asfar
as interfacing is concerned. The information on a pixel is read each time the electron
beam passes a pixel when scanning aline. Now, in order to generate an acceptable im-
age, ascreen hasto be completely updated at |east 25 times per second. This means that
with a screen resolution of 640 x 480, at least 7,5 million updates have to be made per
second. In practice, monitors often have an update rate that istwo or threetimesaslarge.
In order to realize these rates, a separate video processor is required.

Printers

Thereare varioustypes of printers. Probably the three most common are matrix printers,
ink-jet printers, and laser printers.

Matrix printers. Matrix printers have aprint head that consistsof anumber of needles
that can be electrically activated and withdrawn. For example, a print head may contain
seven vertically positioned needles. The letter “A” can then be put onto paper asa5 x
7 matrix, as shown in Figure 3.21. Each character isthen constructed in five subsequent
steps of seven vertically placed dots.

There areroughly three techniquesfor matrix printing. The simplest one usesaribbon
as on a typewriter. The head moves along the ribbon g ecting needles when necessary.
Another form which is used for many facsimile machines uses specia thermosensitive
paper. Inthat case, ahead with pinsisheated causing alocal coloring when brought into
contact with the paper. The third technique, which is also based on thermal principles,
uses a special ribbon from which microscopic ink particles are removed when brought
into contact with a heated needle. The ink particles are then transferred onto paper. In
general, thisform has a much higher quality than the other two types of matrix printing.
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Ink-jet printers. Ink-jet printers also encode characters and symbols in the form of
matrices, but do not make use of a special head with needles to process the paper. In-
stead, acontinuous, very fine stream of ink dropletsisproduced. Each drop can either be
transferred to paper (producing a black spot), or diverted into a separate reservoir (leav-
ing a blank on the paper). Drops that have been diverted into the reservoir can later be
used again. An alternative technique isto only produce droplets on demand, making the
need for a separate reservoir obsolete. Due to their excellent price/quality ratio, ink-jet
printers have become popular for personal use.

Laser printers. Laser printersare similar to photocopiers. The heart of alaser printer
isformed by arotating drum that is charged up to about a 1000 volts and coated with a
photosensitive material. Using laser technology, the coated drum ishit with alight beam
on those areas where the original input is “white”. These spots then lose their electrical
charge. Assoon asalineof theinput has been put on the drumintheform of electrically
charged areas, the drum rotates and picks up black powder exactly on those partsthat are
still charged. The effect isthat the drum contains a mirrored image of the input, that can
now be transferred to a blank sheet of paper.

Laser printers are more expensive than ink-jet printers, but have a higher quality and
speed. Compared to ink-jet printers, laser printers are capable of attaining a resolution
that can be 10-20 times higher. And where ink-jets sometimes take tens of seconds to
print on a sheet of paper, laser printers are often capable of processing tens of sheets per
minute.

3.5 Discussion and further reading

It isworth taking a closer look at where we are now, before we move our discussion fur-
ther away from hardware. Inthefollowing two sectionswe shall reconsider our approach
towards the development of a processor by taking a look at microinstructions and in-
struction sets from the perspective of a design engineer. As we shall see, much of the
difficultiesinvolving processor design relate to performance demandsthat are to be met.
Performance is put into context in Section 3.5.2.

3.5.1 Processor development
Microinstructions

We started our discussion with the introduction of microinstructions. We have shown
how we we can control the transfer and manipulation of bit strings by storing the signals
by which this control is done. A microinstruction was, in fact, a group of such control
signals. Moreover, by adding a timer mechanism we are also capable of executing a se-
ries of microinstructions. A series of microinstructionsis referred to as a microroutine.
By storing several microroutines in a microstore, we subsequently showed that we can
construct a processor having several useful instructions.
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It should be clear that, to a certain extent, we can change this set of instructions by
storing other microroutines. In other words, if we change the contents of the microstore
wewould effectively have adifferent processor. This perspective makes a processor less
hardware than one would initially think. On the one hand, there are “hard” components
such asregisters, an ALU, etc. On the other, thereisalso a*“ soft” component in the form
of the replaceable microprogram. Moreover, a microprogram is not something you can
touch. It ismerely an ordered collection of bit strings. However, microprograms are not
very flexible — on the contrary. Because their primary goal is to control specific hard-
ware, we will probably be forced to adapt a microprogram when making changes to the
hardware. Moreover, microprograms hardly abstract from the hardware, they are truly
meant as a convenient means to design and implement hardware control signals. This
strong dependency on hardware makes microprograms atypical example of firmware.

Computers had been around for some time before microinstructions were invented.
Until the 1950s when Maurice Wilkes introduced the concept of microprogramming, al
instructions were hardwired, i.e. implemented directly into hardware. Microinstructions
have had a serious impact on processor design, but their influence is gradually now de-
clining in the face of performance demands (we shall return to this).

The advantage of microinstructionsisthat, to acertain extent, you can make your own
Instruction set without having to adapt the hardware. You only have to change the micro-
program stored in the microstore. But this advantage does not always outweigh the dis-
advantage that constructing microprogramsisan extremely hard and error-prone process.
If you want to know more about firmware, the tutorial provided by Rauscher and Adams
(1980) is agood point to start. A thorough treatment of the subject is given in Andrews
(1980); for amore recent treatise, consult Mange (1992). The original work on firmware
ispresented in Wilkes (1956). Viewing microprogramming from the perspective of high-
level languages makes it much easier to deal with than speaking in it in terms of bits.
Patterson’s (1976) paper was the first one to address this approach. It isinstructive, asit
provides aclear way of looking at microprogramming issues.

On complex and reduced instruction sets

The main goal of processor development, however, is, of course, not the development
of advanced microprograms, but rather that of instruction sets. The instruction set de-
termines the power and flexibility of a computer system from the programmer’s point
of view. The computer architect designs the instruction set as a compromise between
what is thought of being useful to programmers and compiler writers and what is tech-
nologically possible. The advances in technology have been used to enhance instruc-
tion setswith more powerful and el aborate instructionsand more complicated addressing
schemes. For along time there had been no validation whether or not theinstructionsare
actually useful, in the sense that they are frequently executed by average programs.
When people started measuring and gathering statistics about instruction usage fre-
guencies, they found out that someinstructionswere actually never used and otherswere
used frequently. It even turned out that some instruction sequences appeared very often,
while there was no appropriate instruction avail able to perform that operation inasingle
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step. Thishappened, for instance, in the case of so-called subroutinecalls. We will seein
the next chapter that executing a subroutine involves saving alot of context information
(register contents, program counter, etc.). When the calling program is to resume exe-
cution, this context information has to be restored. Current programming practice tends
to use subroutines much more frequently then three decades ago, among other things be-
cause of the popul arity of the so-called modular programming paradigm. Another impor-
tant aspect isthat the translation of high-level programming languagesinto series of ma-
chineinstructionsonly required rather ssmpleand, above all, straightforward instructions
to be available. Complex instructions, often only implementable by microprogramming
techniques, were thus simply not needed.

Another consequence of more complex instruction setsis that the decoding of thein-
struction takes more time and leads to more complex decoding circuitry. Thisalso slows
down instruction execution, but this was thought to be compensated by more processing
work done per instruction.

To overcome the above-mentioned problems, a number of computer architects started
todesign so-called Reduced I nstruction Set Computer s(RISC) asopposed to the Com-
plex Instruction Set Computer (Cisc). Their recipeisto reduce the number of instruc-
tions by deleting all instructions that are not frequently used, simplify the remaining in-
structions as much as possible to ease the instruction decoding process, and enlarge the
number of registers to accommodate subroutine calls and high-level language transla-
tion optimizations. A faster computer system will then result. The first RISC processors
had some 40-50 instructions as opposed to 200-300 instructionsin earlier CISC designs.
This approach has been adopted by some computer manufacturers, who now offer sys-
tems which are claimed to have been developed according to this concept. However,
more recent RISC processors such as the PowerPC (May et al., 1994) again have more
than 200 instructions, deviating markedly from the original goal of reducing the number
of instructions. Instead emphasisis put on fast decoding of instructions, leading to less
well-structured instruction sets. It is nevertheless expected that both cisc and RIsC de-
signswill continue to co-exist, possibly merging both techniquesinto hybrid designs. A
nice comparison of both approaches can be found in Smith and Weiss (1994).

The approach we have outlined in this chapter is clearly based on the development
followed for cisc processors, and can also be found in general textbooks. For the design
of RISC processors, Patterson and Hennessy (1994) is an excellent and thorough treatise
starting from scratch.

Computer architecture and organization

Theinstruction set of a computer is one of the most important architectural features of a
computer system. Itisthelink between hardware and software. Computer manufacturers
have their proprietary instruction sets for their range of machines. In architectural fea-
turesthey can find away to be different from the competition and to protect investments.
In reality, however, instruction sets are not really that different, since many machines
share equal or almost equal instruction types. Until recently, there was no trend or pres-
sure to obtain uniformity. However, with the introduction of personal computerswe can
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observe a change. Since only afew manufacturers of personal computers can afford to
design and build their own processor, most of them adopt a processor from an indepen-
dent manufacturer. Also, investment in designing and manufacturing a new processor is
becoming so high, that only afew manufacturers will survive.

It isuseful to make adistinction between computer architecture and computer organi-
zation, similar to the distinction given in Chapter 1. The architecture of a computer sys-
tem comprises those attributes of the system that can be reached and used by a program
(either application or system program). The organization of a computer system refersto
the actual configuration of the system, e.g. the sort of ALUS, how many are built in, and
their interconnection.

The main architectural specifications of acomputer system are the instruction set, the
built-in data type representations (integers and floating-point representation), the mem-
ory organization, and the 1/O system organization. For example, amultiplicationinstruc-
tion in the instruction set is an architectural feature. However, how the multiplicationis
performed is an organizational issue. We can do multiplication by means of implement-
ing an ALU capable of performing multiplication or by repetitive use of an ALU perform-
ing addition, for example.

The distinction between architecture and organization becomes important in view of
introducing new processors. If we left the architecture of a processor unaltered, but in-
stead, improved its organization, we would have obtained a situation in which all pro-
gramsthat could bein execution on one processor could also be executed by its successor
without any adaptations. This concept of processor families was first introduced in the
IBM 360-series of computers (Blaauw and Brooks, 1964) and caused a true revolution
in the computer industry. The family concept protects the user investment in programs
and provides a growth path for future needs. Most current manufacturers of large sys-
tems offer one or more families of computer systems. Typical examples of this upward
compatibility feature in the case of processors are the Intel 80x86 and Motorola 680x0
Processors.

There are many excellent textbooks on computer architecture and organization. Be-
sides Tanenbaum’s book (1990a), you might also find Shiva (1985) worthwhile asit pro-
vides a more gentle introduction to the material, although it is becoming rather out of
date. A more in-depth presentation is given in van der Goor (1989) which also covers
related subjects such a data representation. For advanced architectures, asin the case of
so-called parallel computers that consist of several cpus, an excellent treatise can be
found in Hwang (1993).

3.5.2 Processing power
Clocks and speed

We have shown that the clock, or rather atimer as we have called it, plays an essential
role in dictating the pace of operationsin adigital computer system. However, we have
not described clock rates in a quantitative sense. Nevertheless, it must be clear that a
clock signal must be made as fast as possible, since the speed of the basic fetch execute
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cycleisdirectly dependent on the clock rate.

Now, how fast can a clock be? To obtain some insight into this issue, remember that
the basic operation of acomputer isretrieving abit string from memory, providing an op-
eration on it and storing it back into memory. An operation meansin practice that aseries
of gateshaveto be passed. Physically, each gate causesasmall timedelay in propagating
the signal from the input to the output lines. Therefore, the maximum number of gates
to be passed from any position in the input bit string to any other position in the output
bit string determines the maximum time delay for carrying out an operation. Hence the
next clock pulse can only come after that maximum delay.

There are only two waysto influence the delay time of operations. Thefirst isto min-
imize the number of gatesto be passed from input to output. Thisisadesign issue, often
leading to intricate designs. The second way is changing the technology of manufactur-
ing gates. Thisonly concernsthe physics of making transistors on silicon or another suit-
able substrate and can be done without changing the design of acomputer system. Much
of the speed improvement comes from the ongoing reduction in the size of transistorson
achip. Generally, smaller devices lead to increased switching speeds.

Pipelining

A technique frequently used to increase processor speed and minimize the number of
gatesto be passed per clock cycleiscalled pipelining. Theideabehind pipeliningisquite
simple; one breaks down a complex operation into more simple suboperations, such that
each suboperation executes in an equal amount of time. If we separate the suboperations
by storage elements (pipeline-registers), a number of equal and mutually independent
calculations can be executed in an overlapped manner.

Therefore, in principle, with a so-called n-stage pipeline, a total of n suboperations
can be executed at the same time, yielding a potential n-fold increase in overall exe-
cution speed. In practice, the yield is a little less, anong other things due to the time
overhead caused by the pipeline registers. Severa operations in computer systems can
be pipelined. Examples are arithmetic operations, such as floating-point addition (with
possible suboperations as exponent comparison and mantissa addition) and instructions
(with possible suboperations as fetch, decode, and execute). As an example, reconsider
the fetch and execute cycle of Figure 3.7. Here the cycle is done in a strict sequential
order. Only after execution, can the next instruction fetch proceed. By putting an ex-
traregister between the microstore and the microinstruction register, both phases can be
overlapped. During execution the next instruction is being fetched. By pipelining the
fetch and execute cycle we effectively double the speed of operation.

Perfor mance measures

Although clock speed and instruction execution have a close relation, they are not the
same. Only when the internal design of the processors is the same, can clock speeds be
directly used to assess performance differences. For instance, a60 MHz version of pro-
cessor of type X istwice asfast asaversion of X with a clock speed of 30 MHz.
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In general, when new and improved processors are being brought to the market, we
would like to have an indication of their performance. What we want to know is how
much faster a program can run on this new machine. In general, this question isdifficult
to answer for various reasons. Gathering statistics from production programs is almost
impossible, sinceit requires the new computer to be completely installed in that produc-
tion environment. Second, many computer systems run a mixture of programs, making
judgment even more complicated.

However, measures of performance are still much wanted by usersand vendorsto have
some means of comparing systems. The simplest performance indicators are the average
instruction execution rate, denoted in million instructions per second (MI1Ps), and the
average operation execution rate, denoted in million floating-point oper ations per sec-
ond (MFLOPS). Asameasure, the MIPS isnot avery accurate one, since instruction sets
can differ quite profoundly. Some computers can perform a certain operation with asin-
gle instruction, while others need several instructions to perform the samejob. In order
to compare average instruction execution times, we a so have to give weight to the use of
those instructionsin typical programs. Still, the miPs is afrequently (mis)used measure
in comparisons between computer systems.

Within computer families comparisons between different models are a little easier,
since they all share the same architecture. In this case, comparisons can be made rel-
ative to some model in the series. For estimating the cPU power this can be done quite
well. However, different models may have a different computer organization. This can
have serious effects on, for example, the 1/0 performance of the system. If aprogramis
[/0 bound, that is, if thetransfer of data between the cpu and the disk dominatesthe total
processing time of a program, putting more MIPS into the cPu has minor effects on the
system’s performance, while improving the I/O bandwidth would help alot. A difficulty
in this case is, that the 1/0 performance is dependent on many factors in the computer
organization. Therefore, defining measures which can be used for comparison between
the 1/0 performance of systemsis not a simple task, not even within a family.

To obtain more accurate estimates of the real performance of a computer system, sev-
eral measures have been developed, based on so-called synthetic benchmark tests. A
benchmark suite is arelatively small collection of programs, of which the behavior ap-
proximates the behavior of a class of applications. The most well-known benchmark
suites are the Whetstone and the Dhrystone (Serlin, 1986) benchmarks. The Whetstone
isthe older and is biased towards numerical types of programs, while the Dhrystone puts
more emphasis on operations occurring in system programs. Currently, the so-called
SPEC benchmarks are often used to indicate performance. These benchmarks consists of
two programs. one for integer calculations and one for floating-point calculations. But
even benchmark suites have serious flaws asindicators of performance. Because bench-
mark suites are programs written in a high-level programming language, the way that
they are trandated into machine instructions can have a large influence on the final re-
sult. Consequently, great care hasto betakenininterpreting data obtai ned from executing
benchmark suites.

Designing processors primarily from the perspective of performance is an approach
that until recently has only been implicitly followed. With their textbook Hennessy and
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Patterson (1990) introduced anew way of looking at matters. However, thereader should
be warned: understanding performance issuesis generally not easy, asit often requires a
relatively strong background in mathematics. A general treatise on performance issues
can be found in the classic textbook by Kobayashi (1979). A more recent presentation
with a strong emphasis on designing performance analysis experiments, is discussed in
Jain (1991).

Exercises

1

Derive acircuit implementation of the LOGUNIT8 function f(a,b) = a+ b of Sec-
tion 3.1.1.

Design a microprogram based on the components introduced in Section 3.1.1, for
doing the calculation ((xey) + z), wherex isin W, y inWb, zin\Ws, and the result
r isto be placed in W;. What are the microroutinesin this case?

Show how the simple dedicated cal culator of Figure 3.3 can also be made to work
by removing L1 and connecting it to the output lines of LOGUNITS.

Using the wiring scheme of the previous exercise, what would be the sequence of
microinstructionsfor calculatingr = (x +y) e z?

5. *Can processorsbe constructed solely using memories? If so, why isthisnot done?

6. Explain the main reason for grouping microinstructions into a consecutive series

10.

11

12.
13.

14.

of microroutines.

* Explain the principle of implementing microinstructionsin the form of hardwired
control and discussthe primary advantages and disadvantages of applying thistech-
nique.

By introducing instructions, we have obtained a separation between (1) telling a
processor what it should do, and (2) letting designers of processors work out how
things are to be done. Explain what is meant by this statement, and why such a
separation is useful.

Provide arguments for combining data and instructionsinto a single memory.

Explainwhat thefunction of aprogram counter is, and why it isbest to useacounter
to implement that function.

Explain the basic components of the von Neumann computer, and what their func-
tionis.
What is meant by afamily of processors?

If we would like to implement N instructions, what would be the size of the field
for the operation code?

When data and instructions reside in the same main memory, how can a computer
distinguish between data and instruction?
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16.

17.

18.

19.

20.

21.

22.

23.
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What type of addressing modes can be recognized when addressing operands? What
are the advantages and disadvantages of each mode?

*Considering the transfers over the address and data linesin order to execute var-
lous instructions, explain what is meant by the “von Neumann bottleneck”.

Explain the function of abus and how we can logically subdivide its components.
Also explain therole of abus arbiter.

Explain the working of the daisy chain in the case of bus arbitration.

* At present, the time it needs to access main memory is lagging behind the im-
provements made with respect to the performance of processors. How would you
imagine that this problem can be alleviated?

Explain the concept of an address space, and how this relates to memory-mapped
I/0 and non-memory-mapped 1/0. What do you see as the main benefits of using
memory-mapped 1/0?

What isthe di stinction between adoubl e-density and high-density floppy disk? Why
isn’t it such agood ideato try to use a double-density disk as a high-density one?

If you have an MsS-DOS compulter, typing in the command chkdsk returnsinforma-
tion on the size of a so-called allocation unit, as well as the amount of allocation
units available. Explain what is meant here.

*Many personal computers alow you to install a so-called RAM drive. Thisisa
peripheral device similar to an ordinary disk drive, but which makes use only of
main memory. Explainthe principal working of thismechanism, aswell asitsmain
advantages and disadvantages.
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Chapter 4

From hardwareto software

In this chapter we will concentrate on the concept of programs. The objective isto show
how you can actually program hardware, given an instruction set implemented by a pro-
cessor. However, instruction sets are generally very low-level and make programming a
rather tediousand error-prone process. Thisproblem can bealleviated by making useof a
high-level programming language. Aswe shall illustrate, such a programming language
can be automatically trandated to a low-level instruction set. What we have achieved
thenissomething werefer to asavirtual processor. Thisconcept will befurther exploited
in the succeeding chapters when discussing realization aspects of operating systems and
communication systems.

4.1 Introduction

The material presented in the previous chapter has brought us a long way towards pro-
cessing. At this point, we have the appropriate means for constructing programs in the
form of a series of instructions that can be executed in an automated way.

4.1.1 Towards software solutions

In our discussion on microinstructions we argued that we are gradually diverting from
hardware to things that can no longer be considered as being constructed solely of digi-
tal circuits. Microprograms, or firmwar e aswe have referred to them, are constructed as
series of hit strings that are (more or less permanently) stored, and that control the way
that data (in the form of other bit strings) are manipulated in order to arrive at something
that we feel isuseful to us. Onreflection, it should be clear that the approach of firmware
construction offers us flexibility. Without having to change any digital circuits, or even
change the wiring between these circuits, we are capabl e of implementing a different set
of instructionsby merely changing the processor’s microprogram. From asomewhat dif-
ferent perspective, one might say that we can change the functionality of a processor by
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replacing its microprogram. An important observation is that this change is not accom-
plished through hardware, but instead by changing the way that we control the hardware
through bit strings.

But this approach can be taken several stepsfurther. Aswe have said, amicroprogram
implements an instruction set that characterizes the behavior of a processor. Itisthrough
instructions that we again have the right meansto control exactly what a computer does.
This leads to the concept of a program: a series of instructions that can be executed in
an automated way by a processor. Programs are also referred to as softwar e as opposed
to firmware and hardware.

But whereas microprograms are used to control the hardware that make up a single
processor, we shall use programsto control the hardware that constitute a compl ete com-
puter: processors, memories, and peripheral devices. Infact, we shall even use programs
to control the way that computers communicate. Therefore, we need to say more about
how computers can actually be programmed. In particular, we need to concentrate on
two issues:

e How we express programs that can be executed by a processor.
e How we can have a processor that executes a program.

These two issues form the main theme of this chapter. Before we go into details, let's
first briefly outline the approach that will be followed.

4.1.2 Expressing programs

Our first concern is to provide the right means to express programs. What we are thus
seeking is a convenient programming language. A programming language is in many
senses similar to ordinary languages, but with one important difference: programs ex-
pressed in a programming language describe something that can be executed by a pro-
cessor. In particular, a program expresses precisely what a processor should do.

Machine languages

The most primitive programming languages are so-called machine languages. A ma-
chinelanguage consistsof theinstructionsthat make up theinstruction set asimplemented
by a processor. Moreover, each instruction is expressed as a bit string. Although it is
primitive, we can indeed sensibly speak about a language in the sense that instructions
adhereto aspecific syntax and grammar. But expressing programsin amachinelanguage
Is not something that many people favor, and for obvious reasons. Instead, rather than
using bit strings, it is much more convenient to use a symbolic notation for each instruc-
tion. We have already encountered this form of expressing instructions in the previous
chapter. Using atextual, symbolic representation for instructions instead of bit strings
leads to the concept of a so-called assembly language. It should be clear that an assem-
bly language and a machine language are tightly coupled. The former can be considered
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as an immediate representation of the instructions implemented by a processor. For this
reason, we shall often hardly make a distinction between the two.

An example of an assembly language is discussed in Section 4.2. The purpose of pre-
senting such alanguageistwofold. First, a concrete assembly language providesinsight
into what an instruction set looks like in practice, and thus about the basic functionality
of asingle processor. Our example language is derived from an existing one: we have
merely left out specific details that are not important for the purposes of this book. Sec-
ond, by using such alanguage to express some simple programs, it becomes apparent to
what level of detail we need to go before we can get a processor to do something use-
ful. And aswe shall see, the level of detail is hopelessly inadequate to express solutions
to complex problems. In fact, programs written in an assembly language are generally
difficult to construct, and, except for the relatively simple onesthat we shall discuss, are
often even more difficult to comprehend.

High-level programming languages

Rather than expressing programsin an assembly language, we need something different.
In particular, we need a so-called high-level programming language that allows us to
concentrate on expressing solutions at an adequate level of abstraction. Such aprogram-
ming language is presented in Section 4.3. Again, we have taken an example from real
life by considering a subset of the programming language Ada which we have named
BASAL. Our example programming language will be used throughout the remainder of
this book to express software solutions to constructing computer systems and networks.

But what do we mean by an adequate level of abstraction? When we compare a high-
level language such as BASAL to assembly languages, there are at |east two striking dif-
ferences. First, BASAL will allow usto express representations of common datain away
that is much more convenient than by using only bit strings. Thisis achieved through
so-called data abstraction. To illustrate, suppose we want to represent an N x M ma-
trix containing integer values. Assembly languages will provide uswith little support to
represent such amatrix easily. Using BASAL, however, we can write

type MATRIX is array (1..N,1..M) of INTEGER,;

What we have done is express the matrix precisely as we imagine it: a data structure
consisting of N rowsand M columnswhere each element isan integer. We will see many
more examples.

Second, high-level languages provide the facilities to structure our programs prop-
erly. In particular, where assembly languages only allow us to express a program as a
single series of instructions, high-level languages provide the right means to hierarchi-
cally organize a program into logically coherent blocks of program statements, where
aprogram statement is to be seen as an abstraction over a machine language instruction.
Properly structuring programs is extremely important when expressing complex solu-
tions. The clearer we are able to express a solution in the form of a program, the easier
it becomes to comprehend that solution. And thisis precisely what we wish to achieve
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when explaining the organization of computer systems and networks.

4.1.3 Executing programs

Having a convenient means to express programs is one thing; we also need to have a
means to execute programs. Recall that the reason for using programsin thefirst placeis
that we wish to obtain solutions that can be constructed more easily than by using hard-
ware aone. By subsequently executing programs, we control the way that the underlying
computer operates. Expressing programs in a machine language is not going to lead to
any fundamental problems of execution, because a machine language is always imple-
mented by means of aprocessor. Using asymbolic notation asin the case of an assembly
language requires that we at least transform our symbolic notation into instructions ex-
pressed as bit strings. Due to the tight coupling between an assembly language and a
machine language, we need not expect many problems in such atransformation.

But problems will arise if we are going to express programs in a high-level program-
ming language, for in that case, we may not assumethat thereisaprocessor availablethat
can immediately do the execution. The point is, that a processor is capable only of exe-
cuting a much more primitive machine language. It is here where we are faced with the
problem of program translation. What we need to do in the end, is convert a program
written in some high-level language into an equivalent program expressed in a machine
language. If wewereto do thismanually, then not very much would have been gained by
using ahigh-level languageinthefirst place. Instead, thetrandation processitself should
be automated. Programs that do thistranslation are called compilersand are briefly dis-
cussed in Section 4.4. Thisfinally leadsto the organization in Figure 4.1 in which three
different layers with their interfaces are shown.

The lower and middle layers have been discussed in the previous two chapters. The
lowest layer isthat of digital circuits, which, aswe said above, is pure hardware. Aswe
have already indicated in Section 2.4.3, by adding (selection and) control pins to these
circuits, and subsequently wiring them in different ways, we can select the functionality
of the circuit. In this sense, these pinsform an important part of the programming inter-
face of digital circuits. The second layer consists of the microprogram that implements
amachine language by controlling the setting of signals at the control pins of the digital
circuits. The hardware and firmware form the rea processor.

The third layer is the one that allows development of software solutions that are ex-
pressed at a convenient level of abstraction. In fact, as we shall see, our solutions are
expressed at such alevel that many details of the underlying hardware need not even be
considered as part of the solution. Explaining a convenient high-level language and its
relationship to hardware that can execute programs in that language is the main subject
of thischapter. In order to execute programswritten in a high-level language, these pro-
grams need to be trandated into a machine language. If the trandation process itself is
automated, then, from a programmer’s point of view, the machine language into which
programs are trandated is of little or no interest. In other words, the combination of an
automated translator and areal processor provides aprogrammer with avirtual proces-
sor for the high-level language.
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Figure 4.1 The relation between real and virtual processors.

In this chapter we are going to explore the concept of virtual processors. In order to
do so, we need to discuss at |east three subjects:

1. A machine language that we can use as interface to areal processor.

2. A high-level programming language that allows us to abstract from this machine
language.

3. Thetrandlation of a high-level programming language into a machine language.

In the following three sections we shall discuss these subjects.

4.2 A primitive machinelanguage

Thefirst step we shall take towards software solutions is the introduction of a processor
that implements a small set of instructions, which we refer to as PRIMAL: a primitive
machine language.> PRIMAL isnot an invention of our own. Itisin fact (almost) asub-
set of apopular machine language implemented by the M otorola680x0 family of proces-
sors. The 68000 machine language is generally considered a well-designed instruction
set, inspired by another popular but now out-of-date machine language implemented by
Digital’s PDP-11 processors (Digital, 1975).

We have deliberately chosen to focus on a subset of the 68000 instruction set for rea-
sons of illustration. By choosing an existing machine language as the basisfor PRIMAL,

11t would have been more appropriate to say that PRIMAL is a primitive assembly language. As we
have said, assembly languages are alwaysdirectly based on amachinelanguage, but represent instructions
in asymbolic way. Thismakesit easier to construct programs. However, throughout this chapter we shall
hardly make a distinction between the two.
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you will nevertheless have the opportunity to experiment with writing your own pro-
gramsif so desired. However, the 68000 instruction set does have some characteristics
that we do not want to discusshere. Therefore, our PRIMAL language shall deviate some-
what from the original 68000 machinelanguage. The exampleswegiveinthe succeeding
sections can nevertheless be easily converted to executable programs (and in fact, they
have first been constructed as such before writing them down in PRIMAL).

421 A bascPRIMAL instruction set

Let'sfirst concentrate on abasic collection of instructionsthat will allow usto write sim-
ple PRIMAL programs. In order to do so, we need to say something about the registers
of the PRIMAL processor.

Introduction

We assume that the PRIMAL languageitself isimplemented by a processor similar to the
one discussed in the previous chapter. This so-called PRIMAL processor consists of the
following registers.

e Dataregisters. There are eight so-called data registers available, denoted Do, ... .,
D7. These registers are truly general-purpose ones in the sense that they can be
used to store all kinds of data, and that it does not matter which register you use
for what purpose. These eight dataregisters are all 32 bits wide.

e Address registers. Apart from eight data registers, there are also eight address
registers, denoted A0, .. ., A7. Astheir name suggests, addressregisterscan only be
used to contain referencesto memory locations. In contrast to the dataregisters, not
all address registers can be used for any purpose. In particular, register A7 is used
as aso-called stack pointer. Itsuse will be explained in Section 4.2.2. Address
registers are also 32 bitswide.

e Program counter. This register, denoted PC, is used to keep track of where we
are during program execution. In particular, it always containsthe addressin main
memory of the next instructionto be executed. Aswe haveexplainedin Section 3.2,
the program counter is always updated automatically. It will come as no surprise
that the program counter is also 32 bits wide.

e Statusregister. A special register, also referred to as the conditional code regis-
ter, and denoted CCR, contains additional information after an operation has been
performed. For our purposes, we merely need to assumethat CCR indicateswhether
the result of the last computational operation was zero or not. Thisregister isused
in combination with control flow instructions to be discussed below. The status
register is assumed to contain only bit strings of length 8.

Thisisall you need to know about the registersof the PRIMAL processor when construct-
ing programs.
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Our next step consists of looking at some of the more important instructions. In the
following discussion each instruction is only symbolically represented. \We omit any de-
tails concerning its actual representation in the form of a bit string (these can be found
in Motorola, 1986). The PRIMAL instruction set can be grouped into four different types
of instructions: those for transferring data, for changing the order of execution, for do-
ing computations, and finally, for handling subroutines. Here, we shall first concentrate
only on the first three groups; subroutines are discussed in a separate section. In order
to explain what exactly an instruction stands for, we will sometimes use the following
notation that allows usto conveniently make a distinction between aregister or memory
location and its contents:

¢ |f ADDR denotesalocationin main memory, we usethe notation M(ADDR) to denote
the actual value stored at that location.

¢ If REGisoneof PRIMAL’Sregisters, then [REG] denotesits present contents. So, for
example, to denote that register D4 contains the integer value 78, we write [D4] =
78. Combining this notation with the one above, M([REG]) denotes the val ue stored
at the location of which the addressis stored in REG.

¢ Replacing the contents of aregister or memory location is denoted by means of a
left-arrow “«". For example, the notation “[D4] « 78" denotes that the contents
of D4 isreplaced by the integer value 78.

An instruction operates on one or more oper ands. In our notation, an instructioniswrit-
ten asadescription of the operation, followed by thelisting of the operand(s). Themethod
used to specify the operands is the addressing mode, which we aready encountered in
Section 3.2.3. Now let’stake alook at some of the basic instructionsin PRIMAL.

Data transfer

Basically, thereisjust asingle data transfer instruction, referred to asthe MOVE instruc-
tion. Keeping the symbolic name used in the base language of PRIMAL, the 68000 as-
sembly language, the MOVE instruction essentially comesin just one form:

MOVE src, dst

which effectively copies the bit string stored as a 32-bit word at the location identified
as the source src, to the destination identified as dst. Let’s see how the source and des-
tination can be identified. First, for our purposes, we require that when using the MOVE
instruction at least one of the two operands should refer to one of the eight data registers,
or otherwiseto one of the eight addressregisters. Using thisrestriction, we can now take
acloser look at LOAD and STORE instructions as mentioned in Chapter 3.

LOAD instructions. LOAD instructions basically have five different forms. The fol-
lowing are supported, with their meaning explained after the vertical bar “|”:
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(L1) MOVE #number, Rx [RX] < number

(L2) MOVE Rx, Ry [Ry] < [RX]

ELB; MOVE address, Rx [RX] — M(address)
L4 MOVE (Ay), Rx [RX] — M([Ay])

(L5) MOVE offset(Ay), Rx [Rx] — M([Ay] + offset)

Inthese cases, Rx refersto either adataor an addressregister. Likewise, Ay awaysrefers
to one of the eight address registers. The meaning of each instructionis as follows.

e (L1): Thisisanexampleof aninstruction employingimmediate addressing. The
effect isthat an integer number as givenin theinstruction iscopied into register Rx.
Numbers can be represented in several ways. A number such as “#12” is consid-
ered as a decimal number, whereas “#%0110” isinterpreted as the binary number
0110, = 649. Theterm “immediate” refers to the fact that the operand isimmedi-
ately available: it need not be transferred from another register or main memory.

e (L2): Execution of thisinstruction yields that the data contained in register Rx is
copied to register Ry. The instruction is said to use (register) direct addressing.
Anticipating our further discussion, we note that an instruction of this type can
equally be qualified as a STORE instruction.

e (L3): Instruction (L3) is quite similar to (L2), except that the data that is to be
copied to register Rx is now taken from the memory location address. It employs
so-called (memory) direct addressing.

e (L4): Thisisanexampleof (register) indirect addressing. The address stored in
register Ay identifies the location containing the actual data.

e (L5): Thisinstruction calculates an address from where to copy data for register
Rx. In this example, we have that Rx will be loaded with the data that is found at
the location [Ay] + offset. The addressing mode exemplified by this instruction is
referred to as (register) indexed addressing. Note, by the way, that we can use an
address register only to denote the source.

STORE instructions. The STORE instructions are used to copy data from registers to
main memory and have three forms:

(S1) MOVE Rx, address M(address) « [RX]
(S2) MOVE RX, (Ay) M([AY]) «— [RX]
(S2) MOVE R, offset(Ay) M([Ay] + offset) « [RX]

Instruction (S1) is comparable to (L3). Using direct addressing, it stores the data or ad-
dress contained in register Rx at memory location address. Indirect addressingisusedin
(S2). The address or data contained in Rx is copied to the memory location found in reg-
ister Ay. Finally, indexed addressing is employed in (S3), similar to the load instruction
(L5).

Thereisone strange thing about PRIMAL when it comesto addressing and word length
that deviatesfrom the way we have been talking about instructionsso far. Because all our
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[DO]’aaaaaaaa‘aaaaaaaa‘aaaaaaaa‘aaaaaaaa‘

[D1] [bbbbbbbblbbbbbbbblbbbbbbbblbbbbbbbb]

[AO] [A0]
—>|laaaaaaaa —>»|aaaaaaaa
aaaaaaaa —»|dbbbbbbbb
aaaaaaaa [1(A0)] ibbbbbbbb
aaaaaaaa ibbbbbbbb
~— > bbbbbbbb bbbbbbbb
E@Q@] bbbbbbbb
bbbbbbbb
bbbbbbbb

(@ (b)

Figure 4.2 The effect of indexed addressing in PRIMAL.

registers havelength 32, it would seem that main memory isorganized into words having
asize of 4 bytes. Well, thisisnot true: the PRIMAL processor assumes that memory can
be addressed per byte. The only thing isthat each instruction for transferring data copies
4 consecutive bytes into or from aregister. This becomes particularly important to note
when using indexed addressing. To illustrate, assume that we have the following code
fragment

MOVE DO, (A0)
MOVE D1, 1(A0)

The ideais that we first copy the data contained in register D0 to the memory location
identified by register A0, and store the contents of D1 in the next location, as illustrated
in Figure 4.2(a). However, what actually happensis shown in Figure 4.2(b). The data
stored in D1 iswritten partially over the data just stored. The correct code should have
been

MOVE DO, (A0)
MOVE D1, 4(A0)

Control flow instructions.

This group of instructionsis used to change the order of execution. First, we have a so-
called JUMP instruction which takes the form

JMP  address | JuMP unconditionally to address
After executing this instruction, the processor will continue with executing the instruc-

tion that is stored at the memory location address. However, this instruction is not used
oftenin practice. Instead, so-called relativejumpinstructions, or BRANCH instructionsas
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they are called, are actually used. One such BRANCH instruction that we shall encounter
IS

BRA offset | BRAnNch to the address at ‘offset’ units

Theeffect of executing thisinstructionisthat the sel ected next instruction ischosen offset
memory locations away from the current instruction. In other words, the effect is that

BRA offset = [PC] «+— [PC] + offset

Related to thisinstruction are the following two instructions:

BEQ offset Branch if EQual to zero
BNE offset Branch if Not Equal to zero

which are so-called conditional BRANCH instructions. In this case, the instruction lo-
cated at memory location [PC] + offset will be selected as the next one to execute only
if the register CCR indicates that the result of the last computation operation was zero
or non-zero, respectively. Otherwise, the instruction following thisBRANCH instruction
will be selected as the next one to execute. There are many other conditional BRANCH
instructions available in 68000 assembly languages, but as far as our PRIMAL subset is
concerned, the above two will suffice for illustration purposes.

Computation instructions

Theseinstructionsactually set theALU towork. Most of theinstructionstake two operands
and are available in two forms:

(C) <oper>#number, Dx
(C2) <oper>Dx, Dy

where*“ <oper>" standsfor abinary operation such as addition, subtraction, etc. Thefirst
form (C1) operates directly on a given number, whereas the second (C2) operates on the
value of aregister. In both cases, the value in the second register is updated by the first
operand. So, for example,

ADD Dx, Dy

adds the contents of register Dx to the contents of Dy, i.e. [Dy] « [Dx] + [Dy]. Similarly,
SUB  #12, Dx

updates the value of register Dx by subtracting 12 from it. The computation instructions
that require two operands are: ADD (addition), SUB (subtraction), DIVS (division), MULS
(multiplication), AND (bitwise AND) and OR (bitwise OR).

> A comment on the relationship between PRIMAL and the 68000 instruction set, isin order.
The computational operations we discuss here generally arein various forms. In particular,
the 68000 instruction set makes a distinction between operands that have length 8, 16, or
32. And, as you may imagine, making this distinction indeed does make sense. Recall our
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discussion in Chapter 2 on the representation of negative numbers when having to deal with
finite bit strings. In our case, we will assume that the operations work as they should, and
we will be ignoring the length of their operands. For the programming examples we are
about to see our notation is generally correct, and the programs will work well. In practice,
subtle adaptations will generally be necessary. Theinterested reader isreferred to Clements
(1994) for further details.

Some simple examples

Before we continue, let’s consider some example programsto illustrate what a PRIMAL
program might look like.

Example 4.1. Supposewe haveanumber X stored at memory location 1000. Increment-
ing X with 12 can then be done by means of the following program (text that followsthe

vertical bar “|” is merely comment).
MOVE 1000,D0 Load value of X into DO: [DO] «— M(1000)
ADD #12,D0 [DO] « [DO] + 12
MOVE DO0,1000 Store result back into X: M(1000) « [DO]

The first MOVE instruction uses direct addressing. The data stored at location 1000 is
copied into register D0. We then subsequently add 12 to the value contained in this reg-

ister, and the result is then copied back again to location 1000.
O

In this example, we simply state that we have a variable X at memory location 1000.
What we are stating is that X denotes a memory location (namely, 1000), or, in other
words, is a placeholder, that we consider to be variable with respect to its contents. In
what follows, we shall abstract from exact |ocations when we speak about variables. In
particular, if X,Y, and Z denote distinct variables we simply assume that “X”, “Y”, and
“Z" arejust synonymsor aliasesfor distinct memory locations. Infact, thisiscompletely
consistent with the way that variables are dealt with in programming languages.

Example 4.2. Assumewe need to perform the calculation Y < X3. Thiscan bedone as
follows by using D1 for storing the intermediate and final result:

MOVE X,DO Load X into DO: [DO] «— M(X)
MOVE DO,D1 Store X! into D1: [D1] « [DO]
MULS DO0,D1 Store X2 into D1: [D1] « [DO]*[D1]
MULS DO,D1 Store X3 into D1: [D1] « [DOJ*[D1]
MOVE D1,Y Store the result into Y: M(Y) « [D1]

Thislooks much like our previous example, except that we are using the symbolic name
“X" to denote the place that we have associated with variable X. Note that register D1
isupdated by first multiplying it with the contents of Do, and storing the result back into
D1. In PRIMAL, these two steps are implemented by means of a single instruction.

0
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MOVE X,DO Load X into DO

MOVE N,D1 Load N into D1

MOVE DO0,D2 Store X! into D2

SUB #1,D1 Calculate N+ N—1: [D1] +— [D1] -1

BEQ END If N =0, we are finished, so continue with the instruc-
tion labeled at ‘END’

CALC: MULS DO0,D2 Calculate XK+1 — X.xX
SUB #1,D1 Calculate N« N—-1
BNE CALC Continue if N#0

END: MOVE D2,Y Store the result into Y

Listing 4.1 A PRIMAL program for calculating XV.

If wefollowed the approach shown in the example above, it would become quite tedious
to calculate, for example, X — X190, |n that case we would have to repest the instruction

MULS DO0,D1

numerous times. Repeating instructions can be elegantly solved by using BRANCH in-
structions. Consider the following example.

Example 4.3. Wewant to calculate Z — XN whereN > 0. Theidea, of course, isthat we
repeatedly cal culate an intermediate result X1 — X. XK, where XX has been cal cul ated
in the previous step. Now ook at the program shown in Listing 4.1.

This piece of PRIMAL code makes use of so-called labels. A label isasimple means
of attaching a symbolic name to alocation containing an instruction. In most assembly
languages, a label is followed by a colon. For example, the label CALC identifies the
location of the instruction

MULS DO0,D2

We use labels in combination with control flow instructions. In particular, rather than
specify theaddress of the next instruction to execute, weidentify theinstruction by means
of alabel. So, for example, the execution of the instruction

BEQ END

yields that the status register CCR isfirst checked to seeif the last performed operation
had a zero result. If thisisthe case, then thefirst instruction of the next series of instruc-
tionsthat will be executed isidentified by thelabel END, which, in our example, coincides
with the instruction

MOVE D2,Y

Now, what is seen in this exampleis that we simply decrement the value of N each time
we do an iteration. As soon as N becomes 0, we know that the work is completed.
0
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program P

program Q

v

BSR<Q>|

-

- RTS

Figure 4.3 The principle of calling and executing a subroutine in PRIMAL.

It should be clear by now what ssmple PRIMAL programslook like. In the next section
we shall see how more complex programs can be constructed by introducing the concept
of subroutines.

4.2.2 Subroutinesin PRIMAL

An important concept for any programming language is that of a subroutine, also re-
ferred to as a procedure or function. A subroutineis just another program, but whose
instructions can be executed on behalf of some other program. The principleisshownin
Figure 4.3. By executing the so-called BRANCH-TO-SUBROUTINE instruction:

BSR label | Branch to SubRoutine starting at “label”

execution continues with the series of instructions starting at the indicated label. The
label itself iscalculated asan addressrel ative to the current value of the program counter,
i.e. label = [PC] + offset. AS soon as the RETURN-FROM-SUBROUTINE instruction

RTS | ReTurn from Subroutine

IS encountered, execution continues where it had previously left off.

Subroutinesare extremely important when constructing large programs, no matter what
language you are using. And although the concept may seem simpleat first, it doestakea
special mechanism in order to realize it. In practice, many low-level machine languages
incorporate a so-called stack to this end, and which is discussed next.

The concept of a stack

A stack isacaollection of ordered elements, such that removing elementsfrom a stack can
only be done in the reversed order in which they were added to that stack. A stack can
thus be seen as an abstract meansfor storing data. It has only two associated operations:
push by which an item is said to be put on top of the stack, and the operation pop by
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(b1) (b2)

Figure4.4 Theorganization of stacksin PRIMAL. (@) Theinitial situation; the effect of pushing
an item onto the stack is shown in (b1); that of popping an itemin (b2).

which the item on the top of the stack can be removed again. Before we explain how the
concept of astack playsan important role in subroutines, let’sfirst see how stacks can be
produced in PRIMAL.

Any stack in PRIMAL is associated with a series of consecutive memory locations. In
order toidentify astack, we need aso-called stack pointer. A stack pointer isareference
to the top of a stack. It refers to the memory location of the element that can be popped
from the stack, or on top of which a new element can be placed. To this end, PRIMAL
uses one of the eight address registers, namely A7, asits genera stack pointer. Dueto its
special role, A7 isalso symbolically denoted as SP. Another issue that needsto be agreed
is how stacks shrink and grow. In other words, if we pop an item from the stack, what
happens to the contents of the stack pointer? If we decide to increment its value, then
this means that a stack shrinks towards the higher locationsin address space. Thisisthe
same as saying that a stack grows towards the lower memory locations. In PRIMAL, we
assume that stacks are indeed organized according to this shrink and growth scenario.
Thisisillustrated in Figure 4.4.

Now, in order to push an item onto the stack we need merely use the special PUSH
instruction. Toillustrate, the instruction
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PUSH DO

first adjusts the value of the stack pointer, and then copies the data stored in register DO
to the (new) top of the stack, as shown in Figure 4.4(b1). More formally, we have that

PUSHRx = [SP]+« [SP]-4; M(SP]) < [RX]

where Rx can be any data or address register. The semicolon in this case denotes that we
first adjust the stack pointer, and then store the value on the stack. Likewise, in order to
pop an item from the stack, we use the POP instruction:

POP Rx

which copies the data on top of the stack to register Rx, and adjusts the stack pointer
accordingly. Again, we can express this more formally as

POPRx = [Rx] < M(SP]); [SP] < [SP]+ 4

In this case, note that the semicolon indicates that we first copy the data from the top of
the stack to the appropriate register, and then adjust the stack pointer. Thisis precisely
the opposite order to the PUSH instruction.

> A comment isin order here. The 68000 machine language, and thus also PRIMAL, has, in
fact, no special stack operations. In order to manipulate the stack, you should use a special
form of indexed addressing instead. Without going into too many details, the correct way
for pushing an item onto the stack would be to use the instruction

MOVE Rx, —(SP)

What effectively happensisthat before the actual datatransfer takes place, the stack pointer
is decremented by 4 so that it refers to the right memory location to store the 4 bytes con-
tained in Rx.

Similarly, popping an item from the stack can be done by the following instruction:
MOVE (SP)+, Rx

In this case, the data stored at the top of the stack isfirst copied into the specified register,
after which the value of the stack pointer isincremented (implying that the top of the stack
is lowered).

Stacks and subroutines

We can now explain how branching to a subroutine works in PRIMAL. The first point
you have to realize is that with each program we associate precisely one stack. When
executing the instruction

BSR label
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POWER: POP A6 Save the return address in A6
POP D1 Save the value of Pin D1
POP DO And save that of U in DO
MOVE DO,D2 Store U into D2
SUB #1,D1 Calculate P—P -1
BEQ ENDPOW If P =0, we are finished
CALC: MULS DO0,D2 Calculate UK+1
SUB #1,D1 Calculate P—P—-1
BNE CALC Continue if P# 0
ENDPOW:PUSH D2 Push the result onto the stack
PUSH A6 As well as the return address
RTS And return

Listing 4.2 An alternative implementation for XN.

wherelabel indicates an address that can befound at, say, offset locationsfrom the current
location, the current value of the program counter is pushed onto the program’s stack, af-
ter which the value of the program counter is incremented by the value offset. In other
words, branching to a subroutine has (almost) the same effect as executing the two in-
structions

PUSH PC
BRA  offset

with the difference that the execution of BSR performs the two instructions above as a
singleinstruction.

Assoon asthe RETURN instruction RTS is executed, the value of the program counter
is restored by popping the stack. Thisimmediately leads to the selection of the instruc-
tion that initially followed the branch instruction. Thus, execution of RTS is similar to
executing

POP PC

Subroutine examples

Toillustrate the semantics of combining the stack and subroutines, consider thefollowing
example.

Example 4.4. Our first consideration is to adapt the program of Example 4.3 so that it
implements the function power (U, P) = UP by means of a subroutine. To that end, we
assumethat it isnecessary to push the value of U onto the stack, followed by the value of
P just before calling the subroutine. The result of the subroutine, i.e. UP, will be pushed
onto the stack just before a return is made to the calling program. Now look at the PRI-
MAL code shown in Listing 4.2.
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MAIN: PUSH X Push value of X onto the stack
PUSH N Push value of N onto the stack
BSR POWER Branch to POWER
POP DO Pop the result
MOVE DO,X Store the result back into X
PUSH Y Push value of Y onto the stack
PUSH M Push value of M onto the stack
BSR POWER Branch to POWER
POP DO Pop the result
MOVE DO,Y Store the result back into Y
MOVE X,D0 Store new value of X into DO
MOVE Y,D1 Store new value of Y into D1
ADD DO,D1 Store X+Y into D1
MOVE D1,Z Store the result into Z

Listing 4.3 Calling the subroutine POWER twicein arow.

In order to understand what this program does, keep in mind that as soon asaBRANCH
instruction

BSR POWER

has been executed, we assume that the stack has on its top the address of the next in-
struction to be executed when returning from the subroutine, followed by the value of
the parameter P, and the value of U. By first popping these three values in the right or-
der, we bring the stack into its original state. The major part of POWER |looks the same
as that of Example 4.3. The final series of instructions starting at label ENDPOW take
care of the stack. First, we push the result of our cal culation onto the stack, aswell asthe
previously saved return address. Executing RTS will return usto our original position by
popping the return address. The top of the stack now contains the calculated result.
O

Using the subroutine POWER we can now easily implement more intricate functions.

Example 4.5. Wewant to calculate Z < XN +YM by using the program in Example 4.4.
Theideaisquite simple. Wefirst calculate X «— XN, and later Y < YM. Thisleadsto the
PRIMAL program shown in Listing 4.3.

In the first section, we calculate X — XN. To that end, we can simply push the values
for X and N onto the stack and execute subroutine POWER, and will find that the result
isnow on the top of the stack. Simply popping the stack, and copying the result back to
X, accomplishes what we wanted in the first place. The rest of the program should now
be clear.

O
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4.2.3 Discussion

The examples discussed so far illustrate how programs can be constructed in PRIMAL.
And athough it is seen that even simple cal culations require many instructionsto be ex-
ecuted, it should be clear that our small PRIMAL instruction set is powerful enough to
handle more intricate calculations. However, it seems that we are running into a num-
ber of problems. First, expressing calculations in PRIMAL is not very comprehensible.
In other words, it is difficult to determine what a program does simply by looking at it.
In this sense, PRIMAL, and any other machine language, is considered a low-level pro-
gramming language. From a programming perspective thisis a problem that should not
be underestimated. The mainissueisthat constructing a program that doeswhat it is ex-
pected to do has now become a serious engineering problem. Also, as these programs
are difficult to comprehend at first, changing them isno longer atrivial task.

Another problem is that our programs will work only on PRIMAL processors. Thisis
really a problem, because our solutions seem to be general enough for any reasonable
processor. In other words, we have found general solutions, but have implemented them
for only a single processor. Consequently, we will have to do our programming work
al over again if we have a different processor at our disposal. As we have mentioned
in Section 4.1 thisimplies that generally useful programs such as word processors will
have to be rewritten entirely when adapting them for variousreal processors. Thisis not
acceptable.

Itisclear that the source of the problemswe are encountering isthe lack of abstraction
that can be provided by our PRIMAL machine language. In other words, the expressive
power of PRIMAL, or any machine language, is simply not enough to describe software
solutionsin acomprehensive and sufficiently abstract manner. Therearetoo many details
that we are forced to take into account that, in fact, have nothing to do with the solution
we wish to describe. Aswe have argued in Section 4.1, the solution to this problem is
to be found in high-level programming languages. Such languages (1) provide us with
theright level of abstraction, and (2) can betranslated in an automated way into machine
languages, thus still allowing us to execute programs. In the next section we introduce
such ahigh-level language.

4.3 A structured programming language

Our intention at this point is to introduce a high-level programming language which we
have called BASAL. There aretwo main reasonsfor introducing BASAL. Thefirst, andto
us the most important reason is that we need a vehicle to express implementation issues
of computer and communication systemsat amore convenient level of abstractionthanis
possiblewith thematerial discussed sofar. Thisimpliesthat itisimportant that you attain
a reading knowledge of our language. In other words, you need to know what BASAL
programs do; it is not necessary to be able to write them yourselves.

Second, constructing advanced computer and communication systemsisnot just aques-
tion of building the right hardware. Aswe have said, most of the effort is spent in getting
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the software to work. Softwareisseldom written in machine languageslike PRIMAL. In-
stead, high-level languages are used for this purpose. By introducing asimple high-level
language, we want to illustrate two things: (1) how we can construct machines merely
by using software, and (2) how these abstract machines can be implemented by low-level
machine languages such asPRIMAL. Thefirstissueis, infact, thetopic of al the material
yet to follow. The second issue will be further discussed in Section 4.4.

We have no intention of teaching you how to construct software. Instead, our focusin
this section will be on providing you with a reading knowledge of a programming lan-
guage that will serve our purposes. Here, we informally introduce BASAL, which stands
for abasic subset of the adalanguage. BASAL isderived from Ada(ANSI, 1983), an ad-
vanced programming language, and certainly not the most simple one to be learned by a
novice. However, Adaiswell established and, as we shall see below, suitable to be used
as a vehicle for our purposes relating to system and communication software. Rather
than use al its features, we shall restrict ourselves to a rather small but specific subset.
Most of BASAL’s language constructs will be explained in this section. In later chapters
we shall extend our descriptions as appropriate. We shall have more to say about Adain
our discussion at the end of this chapter.

When discussing developing programs it should be clear by now that a distinction
can be made between two different concepts: data and instructionsthat manipulate data.
What we are seeking at this point is a convenient means of describing (1) what the data
we wish to manipulate looks like, and (2) how this dataiis manipulated. Wefirst concen-
trate on a notation for representing data. How data can be manipulated is discussed in
Section 4.3.2. Then, we will describe complete programsin Sections 4.3.3 and 4.3.4.

4.3.1 Datatypesand variables

Aswe have said, in order to describe programs, we need away to describe the data that
ismanipulated. Animportant concept fundamental to most high-level programming lan-
guagesisthat of adata type. We have already encountered a few data types such asin-
tegers, characters, etc. A datatypeisto be seen as a definition of a collection of abstract
values, together with the operations by which these values can be manipulated. To illus-
trate, consider the character datatype. This data type defines exactly what we mean by
acharacter (namely the symbols, or values, “a’, “b”, “c”, etc.), as well asthe operations
that can be used. An example of such an operation (and indeed, which only makes sense
in the case of characters) isthe operation ascii, defined as:

ascii(x) = the Ascii code of character x

So, for example, using Table 2.3 on page 37, we have that ascii(“a’) = 97, and likewise,
ascii(“8") = 56.

In machine languages however, there is essentially only one data type: the bit string.
In this sense, you might say that the only thing we have been discussing so far ishow we
can represent our common data types in the form of finite bit strings. Thisis a situation
wewant to change. In thefollowing two subsectionswe are going to take a closer look at
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how we can define and represent, on the one hand, smple data types, and, on the other,
composed data types.

Predefined, simple data types

An important simple data type that is available in most programming languages, is the
integer. BASAL isno exception. In order to express that we are dealing with an integer
variable k, we use the notation

k: INTEGER,;

Variables are also referred to as data objects, and we say that k has been declared as an
INTEGER variable. The integer data type in BASAL is said to be predefined: it simply
comes with the language. As we shall see, there are only a few predefined data types
— most types will have to be explicitly defined. With integers, the arithmetic operators
“+" (addition), “~" (subtraction), “*” (multiplication), and “/* (division) can be used in
combination with integer variables. Theresult of using these operationsis, again, aways
an integer value.

Example 4.6. Valid expressionsin BASAL are, for example:
2+3,k=6,(/2)*2,

where we assume that k and i are INTEGER variables. Note that if i has the value 7 “i/2”
yieldstheinteger result 3. Integer division alwaysroundsoff to the nearest integer smaller
than or equal to the exact result.

O

Another predefined datatypein BASAL isthe character. Expressing that some variablec
can only take characters asitsvaluesis carried out by means of the notation

c: CHARACTER;

Analogousto integers, we say that we have declared c to be of type CHARACTER. Char-
acter values (or literals, as they are more commonly called) are expressed by using sin-
gle quotes. For example, the character “a” isexpressed in BASAL as’a’. Characters are
assumed to be encoded according the Ascii code. Only afew operations are defined for

characters. Inorder to get the Ascii value of, for example, the character “a” we can write

CHARACTER'POS('a);

whichyieldsthe result 97. In other words, the expression above isthe way we represent
the function ascii(x) discussed before. Likewise, by writing

CHARACTER'VAL(65);
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we obtain the character “A” which has Ascii code 65. We will find these two character
operations in some of the examplesto follow.

The last predefined data type that we will discuss here, is the Boolean. Using our
BASAL notation, a Boolean variable b can take on only two values TRUE and FALSE, and
should be declared in the usual way:

b : BOOLEAN;

The Boolean operators ‘not’, ‘and’, ‘or’, and ‘xor’ apply to Boolean values and yield
Boolean results. Boolean values also result when using the relational operators‘>’, ‘>,
‘£, <, "<, =" in conjunction with two integers.’ These relations adhere to the con-
ventional mathematical semantics.

Defining your own simple data types

Besides using predefined types, BASAL aso provides notations for defining your own
datatypes. Defining adatatype D essentially means specifying the elementsof D. There
are various ways of doing this, but probably the most straightforward is ssmply naming
all the elements (note that this may not be the most convenient way of defining a data
type—and, in fact, it may not always be possible). Where a data type consists of afinite
number of elements we can use a so-called enumer ation type declaration for defining
the datatype. For example, a data type containing symbolsfor the days of the week can
be defined in BAsAL asfollows:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

Using this notation, we have expressed that the data type DAY consists precisely of the
seven elementsMON ... SUN. It isnow easy to talk about variables of thisdatatype, and
which can be declared in the usua way.

But what if we want to specify a data type that consists of too many values to name
explicitly? In that case, one possibility isto base your definition on an already specified
datatype. Intermsof BASAL, you can declare asubtype. Toillustrate, in order to define
arestricted set of positive integers, we can declare a subtype CARDINAL as follows:

subtype CARDINAL is INTEGER range 0..65535;

What we have expressed here is that any cardinal variableis just the same as an integer
variable, except that it cannot take on negative values, nor values that are greater than
65535. We shall encounter more examples of enumeration types and subtypes in later
sections.

2\We note that our notation here deviates somewhat from that of Ada.
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Composed data types

Besides simple data types such as integers, Booleans, and characters, BASAL also pro-
vides notations for defining so-called composed data types. A composed datatypeis (at
first instance) constructed from simple data types, and isin two basic forms.

Array datatypes. First, BASAL providesanotation to defineindexed sets by means of
an array declaration. Toillustrate, suppose the data we wish to manipulateisin fact a
finite bit string of length 8. Now all bit stringsof length 8 can be considered asan indexed
set of bits, each bit being a variable that can take on the value O or 1. This brings us to
the two datatypes BIT and BITSTRINGS that can be declared in BASAL asfollows:

subtype BIT is INTEGER range 0..1;
type BITSTRINGS is array (0..7) of BIT;

Now suppose we are using a variable bitstring, which we have declared as

bitstring : BITSTRINGS;

In this case, bitstring itself consists of eight simple variables, denoted as bitstring(0), bit-
string(1), .. ., bitstring(7), respectively. Each of these variables is of type BIT. The index
set of type BITSTRINGS has been defined as0...7.

As another example, suppose we wish to define a data type for representing the usual
number of working hours per day of the week. In that case, it would be convenient if we
could use our previousdefinition of the datatype DAY asanindex. Infact, thisispossible,
for we can write

type WORKING_HOURS is array (DAY) of CARDINAL;

If we had avariable work of data type WORKING_.HOURS we could then use the notation
work(MON) to refer to the number of working hours on an ordinary Monday.

Record datatypes. Similarly, wecan also declare so-calledrecord datatypes. Record
data types are — in principle — composed of different data types. Thisis best explained
by an example.

Example 4.7. Suppose we wish to have a representation of characters as displayed on
an ordinary screen. In particular, we assume that characters can be displayed either in
reverse video or not, but can also be displayed in a normal, bold, underlined, or italic
typeface. We can then represent each position on the screen by means of the following
record data type:
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type CHARACTER_MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type CHARACTER_DISPLAY is
record
char : CHARACTER;
reverseVideo : BOOLEAN;
format : CHARACTER_MODE;
end record ;

yielding adatatype CHARACTER_DISPLAY whichiscomposed from acharacter, aBoolean,
and an enumerated type CHARACTER_MODE.
O

Thedifferent componentsof arecord are denoted asfields, and can bereferred to by using
adot notation. For example, if we had the variable declaration

charDisplay : CHARACTER_DISPLAY;

then charDisplay.char denotes the actual character variable associated with charDisplay.
Similarly, if charDisplay.reverseVideo hasthe value TRUE, then thiswould mean that charDis-
play.char would be shown in reverse video on the screen.

Combining arraysand records. Of course, it is also possible to denote complex data
types by combining the notations introduced so far.

Example 4.8. Assume that our screen consists of 72 rows and 120 columns, where the
rows are counted down-wise, and the columns from left to right. This means, for exam-
ple, that the upper-left corner of the screen can be represented by the coordinates (1, 1)
and the lower-right corner by the coordinates (72, 120). Representing an entire screenis
then easily expressed in BASAL by the following declarations:

type DISPLAY_ROW is array (1..120) of CHARACTER_DISPLAY;
type DISPLAY is array (1..72) of DISPLAY_ROW;

Suppose, then, that we had the following variable declaration:

screen : DISPLAY;

In this case, screen(1)(120).char would denote the character that is displayed in the upper-
right corner.
O

Using array declarations for defining the fields of record is, of course, also possible. To
illustrate, consider acompletely different representation of a screen by considering com-
plete rows, instead of only a single position.

Example 4.9. We assumethat a screenisnow represented by entire rows, each row con-
sisting of 120 characters. Wefirst introduce a separate data type for representing rows as
follows:
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type CHARACTER_MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type DISPLAY_ROW is array (1..120) of CHARACTER,;
type ROW_OF_CHARACTER is
record
column : DISPLAY_ROW,
reverseVideo : BOOLEAN;
format : CHARACTER_MODE;
end record ;

It should be clear that we have lost some flexibility here. In this case, a row can only
be displayed, for example, in reverse video or not; it is not possible to just select one or
severa charactersin that row to be displayed otherwise.

Representing an entire screen can now be done by means of the following data type
declaration, and accompanying variable:

type DISPLAY_BY_ROW is array (1..72) of ROW_OF_.CHARACTER,;
screen : DISPLAY_BY_ROW,;

In this case, the character in the upper-right corner of the screen is represented by the
variable screen(1).column(120).
O

We shall encounter several examples of (combinations of) record and array datatypesin
subsequent sections.

4.3.2 Statements

So far, we have introduced only anotation for defining datatypes and variables. Nothing
has been said about the way we can describe operations on variables. In this section we
shall start by discussing the most elementary ones, referred to as statements. Statements
are comparable to instructions in the sense that they are assumed to be executed. How-
ever, where program counters are used to indicate precisely which instruction is to be
executed next, there is nothing comparable in high-level programming languages. The
reason for thisisthat although statements are executed one by one, statements in high-
level programming languages may be contained in other statements. This situation does
not occur in machinelanguages. Rather than going into these mattershere, we shall make
this point clear in the following sections.

Again, we start with the simple notations for operationsin BASAL: the statementsfor
assignment and control flow.

Assignment statement

Anassignment statement isused to expressthe assignment of avalueto avariable. This
isdenoted in BASAL by means of a special symbol “:=" asin:

k:=2;
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Assuming that k is an integer variable, this assignment expresses that the present value
of the variable k is replaced by a new one, namely 2. The semicolon at the end of the
assignment is important. It indicates the termination of the execution of the assignment.
Thisisrelevant when we have to specify a series of assignments, asin:

k:=2;b:=TRUE; c:="a’;

In this case, the assignments are executed in sequence. First, k is assigned the value 2,
then b becomes TRUE, and finally c is assigned the literal ‘a’. Again, note how we are
implicitly assuming some kind of execution mechanism by which these assignmentstake
place, and in the order just mentioned.

Related to the assignment statement is the initialization of variables. In BASAL itis
possibleto assign aninitial valueto avariablewhichis specified as part of itsdeclaration.
For example, after declaring

k: INTEGER :=0;

we have not only declared a new integer variable k but have also provided it with the
initial value 0.

Initialization is not only a convenient means for providing an initial value for a vari-
able. The same mechanism must be used for declaring so-called constants. A constant
Is considered a variable that is initialized once, but whose value can never be replaced.
For example, if we wanted to express the value “0” by means of a constant ZERO, the
way to do thisin BASAL would be:

ZERO : constant INTEGER := 0;
Let’sillustrate this by means of another example.

Example 4.10. Suppose we wish to initialize our variable screen as declared in Exam-
ple4.8. In particular, we assumethat the screenisinitially to be entirely blank, for which
we can use the character representation of a single space. Our am is to use a constant
BLANK for this purpose, which then leads to the following declarations in BASAL (see
also Table 2.3 on page 37):

BLANK : constant CHARACTER := CHARACTER'VAL(32);

type CHARACTER_MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type CHARACTER_DISPLAY is
record
char : CHARACTER := BLANK;
reverseVideo : BOOLEAN := FALSE;
format : CHARACTER_MODE := NORMAL;
end record ;

type DISPLAY_ROW is array (1..120) OF CHARACTER_DISPLAY;
type DISPLAY is array (1..72) of DISPLAY_ROW,;
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Recall that CHARACTER'VAL(x) standsfor the character associated with Ascil valuex. In
our case, BLANK will be correctly initialized as the character representing a space. Now
in this case, adeclaration such as

screen : DISPLAY;

will automatically initialize the variable screen in such a way that it represents a com-
pletely blank screen.
0

We shall encounter initializations and constant declarations a number of timesin the ex-
ample programs yet to follow.

Control flow statements

Our notation for describing operations assumes, as in the case of processors, that state-
ments are executed in the order in which they appear in adescription. In order to alter the
order of execution we shall make use of a number of control flow statements. Control
flow statements are basically in two forms, conditiona statements and repetitive state-
ments.

The conditional statement. The conditional statement, also referred to astheif state-
ment, isused to guard the execution of a series of statements, in the sense that execution
will only take place if some condition is met. To illustrate, consider the following ex-
ample, which is arather strange way of calculating the difference between two integer
variables m and n:

ifm<nthend:=n-m;

elsifm>nthend:=m-n;

elsed:=0;
end if ;

The semantics of a conditional statement are quite obvious. Starting with the evaluation
of the first Boolean expression (in our case “m < n”), the statements associated with the
Boolean expression that evaluates to TRUE the first time are executed. If neither of the
first two conditions holds, the statements of the ELSE-part are executed. So, if m had
the value 5 and n had the value 3 when the statement above was executed, then only the
statement “d := m — n” would be executed.

Repetitive statement.  Asits name suggests, a repetitive statement is used to express
therepeated execution of aseriesof statements. Inthecase of BASAL therearetwo forms.
The so-called while statement is the most general one and is used to execute a series
of statements until some general condition is met. For example, consider the following
program fragment:
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row := 1,
while row < 72 loop
—— initialize a complete row first:
col :=1;
while col < 120 loop
screen(row)(col).char := BLANK;
screen(row)(col).reverseVideo := FALSE;
screen(row)(col).format := NORMAL;
col :=col + 1;
end loop ;
row :=row + 1,
end loop ;

Listing 4.4 An implementation for initializing a screen with blanks.

i=1,x:=1
while i < 12 loop

X:=2*X =i+ 1;
end loop ;

In this case, the two assignment statementsthat are part of thewhile statement are repeat-
edly executed as long as the value of the integer variablei islessthan 12. It isnot hard
to see that the statements above specify how 212 can be calcul ated.

Example 4.11. It should now be clear that we can also use awhile statement to explicitly
initialize our variable screen from Example 4.8, rather than the initialization method as
discussed in Example 4.10. Consider the piece of BASAL codein Listing 4.4 (where row
and col are integer variables).

What happens is that we initialize the screen, row by row, by setting the right values
for each column element. In other words, the screen isinitialized by first considering the
upper-left corner, then moving to the next position to the right until a complete row has
been initialized. After that, we continue with the second row, and so forth. We leave it
as an exercise for the reader to adapt the code so that a screen isinitialized column by
column.

O

Alternatively, we can also sometimesuse aso-called for statement. Inthiscase, anindex
variableisused to repeat the execution of a series of statements. To illustrate, we could
also have expressed the simple while statement above in the following way:

foriin 1..12 loop
X:=2*X;
end loop ;

In this case, the index variable i is automatically initialized to 1, and incremented by 1
after each timethe assignment “x := 2 * x” isexecuted. As soon asi reachesthe value 13,
I.e. its value would lie outside the specified range 1. . . 12, execution continues with the
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forrowin 1..72 loop
—— initialize a complete row first:
for colin 1..120 loop
screen(row)(col).char := BLANK;
screen(row)(col).reverseVideo := FALSE;
screen(row)(col).format := NORMAL;
end loop ;
end loop ;

Listing 4.5 An alternative implementation for initializing a screen with blanks.

statement following thefor statement. Incidentally, index variablesare assumedto beim-
plicitly declared asinteger variables. In other words, they need not be declared explicitly
in aprogram. Also, they may only be used within the for statement in which they occur.

Example 4.12. Our explicit initialization of a screen variable in Example 4.11 can now
be written more conveniently by making use of afor statement as shown in Listing 4.5.
Again, note that neither the index variable row or col, respectively, needs to be declared
as previougly.

O

4.3.3 Procedures

We have presented the most important notations for expressing data and operations on
datain our BASAL programming language. It should now also be clear why we can talk
about programming in BASAL. We are implicitly assuming that there is some kind of
execution mechanism underlying BASAL; amechanism that is quite similar to the fetch-
decode-execute cycle discussed in Chapter 3. Thiswill now enable us to consider pro-
gram units: logical unitsthat constitute a complete program, consisting of declarations
for data types, variables, and statements. Wefirst start by providing a notation for rather
simple programs. Later, we shall see how we can combine several programsinto asingle
so-called package.

Procedures declar ations

The simplest form of a program description is by means of a so-called procedure. A
procedure is a collection of declarations for data types and variables, combined with a
collection of statements. Asan example of a procedure declaration, consider the foll ow-
ing description of aprogram that calculates 212:
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procedure POWER is
X : INTEGER := 1,
begin
foriin 1..12 loop
X =X*2;
end loop ;
end POWER,;

Note that we need not declare theindex variablei as explained above. The datatypesand
variables declared within a procedure are said to be local to that procedure. This means
that their declaration is valid only within the procedure and nowhere else. When we say
that a procedure is executed, we mean that the statements specified after the word begin
are executed in the order of their appearance.

Now, just as we have illustrated how convenient it can be to have subroutines during
our discussion of PRIMAL, thesame holdswhen dealing with high-level descriptions. But
in that case, it is convenient also to be able to parameterize a procedure, i.e. we need a
way to specify exactly what the input and output are of aprocedure. Therefore, we need
to make a distinction between three types of parameters:

e First, we will wish to make use of parameter values that serve merely asinput. In
that case, the value that is passed on to the procedure should only be read; under
no circumstances must it be changed.

e Opposed to input parameters, there are also output parameters. An output pa-
rameter is avalue that is computed by the procedure, and which is to be returned
asaresult.

¢ Finally, thereisalso somethinginthe middle, namely valuesthat are to be changed
by aprocedure. These so-called in/out parameter s have the property that they act
asinput aswell as output parameters.

This distinction between parametersis also made in BASAL. In general, parameters are
declared as ordinary variables, asillustrated by the following parameterized version of
our procedure POWER given above:

procedure POWER(p : in INTEGER; u: in INTEGER; v : out INTEGER) is
X : INTEGER = 1;
begin
foriin 1..ploop
X =X*u;
end loop ;
Vi=X;
end POWER,;

What does this notation mean? It is easily seen that thisversion of POWER isessentially
the same as our previous one, except that we have added three parameter declarations:

e Theinput parameter p replaces the value 12 that we previously had. In particular,
thisparameter isused to cal culate how often amultiplication should take place, i.e.
it represents the exponent of our calculation.
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e Theinput parameter u isused as the base of the calculation and replaces the value
2 of our previous version. Likep, itisrequired only to know the value of u; there
IS no need to change it.

e Finaly, the output parameter v represents the result of POWER. In fact, it is not
difficult to see now that we have described a procedure that cal culates the val ue of
vasuP.

Let’'s first see how we can make use of (parameterized) procedures. The first point to
make is that procedures are much like the subroutinesin PRIMAL. In particular, as PRI-
MAL’S BRANCH instruction, proceduresin BASAL can be called. To illustrate, suppose
we had the following declarations:

exponent : constant INTEGER := 12;
base : constant INTEGER := 2;
result : INTEGER;

In that case, we can assign the value 212 to result by means of the procedure call state-
ment

POWER(exponent, base, result);

Because the first two parameters are used as mere input to the procedure POWER, we
could have also assigned the value 212 to result by immediately providing the values 2
and 12 asin

POWER(12, 2, result);

Examples of using procedures

Let’sillustrate the use of procedures by considering a number of examples.

Example 4.13. Wefirst return to our explicit initialization of a variable screen from Ex-
ample 4.11. In particular, we wish to provide a procedure that will allow usto initialize
an arbitrary variable of type DISPLAY with agiveninitial character. Consider the BASAL
code shown in Listing 4.6.

Now suppose again we had declared avariable screen of type DISPLAY. In order to ini-
tialize this variable with spaces, we would then need to call the procedure INIT_DISPLAY
asin:

INIT_DISPLAY (screen, BLANK);

The point to note is that because the parameter someScreen of INIT_DISPLAY is specified
asout, thevariablescreen will be completely changed when calling INIT_DISPLAY. In par-
ticular, none of the valuesit had previously can even be inspected. Thisis exactly what
we needed, as the whole idea of initialization is to provide a value for each variable of
which screen is composed. On the other hand, there is no reason to change the value of
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procedure INIT_DISPLAY(someScreen : out DISPLAY; char ;: in CHARACTER) is
begin
for rowin 1..72 loop
—— initialize a complete row first:
for colin 1..120 loop
someScreen(row)(col).char := char;
someScreen(row)(col).reverseVideo := FALSE;
someScreen(row)(col).format := NORMAL;
end loop ;
end loop ;
end INIT_DISPLAY;

Listing4.6 The procedure INIT_DISPLAY for initializing any screen with a user-specified char-
acter.

the parameter char; instead, we need merely to know itsvalue. For thisreason, it hasbeen
declared by usingin.
O

Many programming languages have a number of standard procedures which simply
come with the language. Often, such procedures are used for 1/0O purposes. For example,
the language Modula-2 (Wirth, 1983) has two standard procedures for handling terminal
[/0O. Using our BASAL notation, these procedures can be specified as follows:

procedure READ(c : out CHARACTER);
procedure WRITE(c : in CHARACTER);

Theprocedure READ isused for reading acharacter that has been typed in at thekeyboard,
whereas WRITE is used to display a character at the current position of a screen. Each
time WRITE is called, a character will be displayed next to the previous one, possibly
continuing on the next line.

Example 4.14. Supposewewishto construct aprocedurethat will automatically display
on our screen the character that has just been typed in. This can then be described in
BASAL as shown in Listing 4.7. Note that our procedure requires no parameters at all.
Once called, the only thing it will do is echo the characters that have been typed in.

O

We can produce something more sophisticated by using the two proceduresREAD and
WRITE. In particular, we can make a simple calculator. First, we assume that someone
cantypein asequence consisting of amaximum of 10 digits, starting with adigit between
“1” and “9” and terminating the sequence by a period (“.”). For simplicity, we assume
that only correct sequences are typed in.

Example 4.15. Our first concernisto convert a sequence of digitsinto an integer value.
Thisisreally not that difficult (at least if we assume that the person at the keyboard fol-
lows the rules of the game). To this end, note that if someone typesin the character “8”
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procedure ECHO is
key : CHARACTER;
begin
while TRUE loop
READ(key); —— Read the next character that is typed in,
WRITE(key); —— and show it on the display.
end loop ;
end ECHO;

Listing 4.7 A procedure for echoing typed-in characters on a screen.

procedure READ_NUMBER(number : out INTEGER) is
key : CHARACTER,;
digit : INTEGER,;
result : INTEGER :=0;
more : BOOLEAN := TRUE;
begin
while more loop
READ(key); —— read a character from the keyboard
WRITE(key); —— and display it on the screen
if key # " then
—— the sequence is not over yet: a digit has been typed in
digit := CHARACTER'POS(key) - CHARACTER'POS('0%;
result := result * 10 + digit;

else
—— a period had just been typed in, so that we need to stop
more = FALSE;
end if ;
end loop ;

number := result;
end READ_NUMBER;

Listing 4.8 Reading an integer number from the keyboard.

we can easily convert thisto an integer value and storing it in avariable, say digit asfol-

lows:
digit := CHARACTER’POS('8") — CHARACTER’POS('0);

This can easily be verified by considering Table 2.3: CHARACTER'POS('8") is equal to
56, and CHARACTER'POS('0’) is equal to 48, yielding that the value of digit is equal to
56— 48 = 8. Now |ook at the procedure showninListing4.8. What isseen hereisthat we
gradually construct thefinal result by systematically multiplying the number constructed
so far by 10. It is not difficult to verify that number will now correspond to the integer

typed in at the keyboard.

Our next assumption isthat, after having typed in the first sequence, either a“+" or a

“—" can be typed in, to indicate what the actual result should be.
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procedure CALCULATE(result : out INTEGER) is
key : CHARACTER;
firstNumber : INTEGER;
secondNumber : INTEGER;
begin
READ_NUMBER(firstNumber);
READ(key);
WRITE(key);
READ_NUMBER(secondNumber);
if key =+’ then
result := firstNumber + secondNumber;
else
result := firstNumber — secondNumber;
end if ;
end CALCULATE;

Listing 4.9 The actual calculator.

Example 4.16. Based on this assumption, we can now almost complete our trivial cal-
culator. What we need to do is (1) read the first number, (2) check what operationis re-
quired, (3) read the second number, and (4) do the calculation. This can be described by
the procedure CALCULATE (Listing 4.9). Note how this procedure makes use of the pro-
cedure READ_NUMBER but for different variables that are passed on as parameters (first-
Number and secondNumber, respectively). The final result is returned as a parameter of
the procedure CALCULATE.
O

Finally, we now only need to write the result back onto the display. It will come as no
surprise that this is precisely the reversed form of the procedure READ_NUMBER. Let's
see what thislooks like.

Example 4.17. The basic conversion from an integer number to a sequence of digitsis
rather straightforward. In principle, if we have an integer digit having avaluein therange
0,...,9, wecan simply convert thisto a character char as follows:

char := CHARACTER'VAL(digit + CHARACTER'POS(0");

But suppose we had an arbitrary integer number? In that case, the last digit can easily be
converted as:

char := CHARACTER'VAL(number — (number / 10) * 10);

where it should be noted that, because we are dealing solely with integers, for example,

278 — (278/10) - 10 = 278—-27-10=8
T T
number (number /10) * 10
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procedure WRITE_NUMBER(number : in INTEGER) is
sequence : array (1..20) of CHARACTER,;
strippedNumber, newNumber, digit : INTEGER,;
begin
newNumber := number;
for kin 1..20 loop
strippedNumber := (newNumber / 10) * 10;
digit := newNumber — strippedNumber;
sequence(k) := CHARACTER'VAL(digit + CHARACTER'POS('0"));
newNumber := strippedNumber / 10;
end loop
WRITE(=");
for kin 1..20 loop
WRITE( sequence(20 — k + 1) );
end loop ;
end WRITE_.NUMBER,;

Listing 4.10 The procedure for writing cal culations onto the screen.

Thebasic schemefor converting an integer can then be done by making use of acharacter
array in the following way (note that the multiplication of two 10-digit numbers results
in anumber with a maximum of 20 digits):

sequence : array (1..20) of CHARACTER,;
strippedNumber, digit : INTEGER,;

for kin 1..20 loop
strippedNumber := (number / 10) * 10;
digit := number — strippedNumber;
sequence(k) := CHARACTER'VAL(digit + CHARACTER'POS('0");
number := strippedNumber / 10;
end loop

Theonly thing weneed to beaware of isthat converting aninteger inthisway, startsat the
least significant digit, i.e. theright-most one. In our example this meansthat sequence(1)
denotes the right-most digit, and that sequence(20) the left-most one. We can now com-
plete our example by adding the procedure shown in Listing 4.10. The only thing that
remains to be done is to combine the procedure CALCULATE and WRITE_ZNUMBER in a

procedure CALCULATOR. We leave this as an exercise for the reader.
O

4.3.4 Packages

Procedures and variabl es can be grouped into so-called packages. Packages are aconve-
nient and practical means to denote that certain variables and procedures form alogical
unit. In other words, they allow usto split a program description into different modules.
In addition, they also provide a means for indicating which specifications of procedures,
data types, and variables can be used within other packages and procedures. Therefore,
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a distinction is made between a package specification and a package body. A pack-
age specification specifies exactly those things that can be used within other packages; a
package body describes how things are implemented.

Package specifications

A package specification in BASAL merely describes what is available to other packages
and procedures. In this sense, it describes what can be used, rather than how things are
actually implemented. A package specification is generally expressed in BASAL as.

package PACKAGE_NAME is

end PACKAGE_NAME:

where the éllipsis indicate the place where data types, variables, etc. are declared. To
illustrate, the two procedures READ and WRITE we encountered in the previous section
could well have been encapsulated into a package specification such as:

package TERMINAL is
procedure READ(c : out CHARACTER);
procedure WRITE(c : in CHARACTER);
end TERMINAL;

In this case, the package specification TERMINAL merely provides descriptions for read-
ing and writing characters for a combination of a keyboard and monitor. In order to use
these two procedures we have to reference them explicitly by making use of a dot nota-
tion, which we already encountered in the case of records. For example, acorrect imple-
mentation of the procedure ECHO from Example 4.14 would have been:

procedure ECHO is
key : CHARACTER;
begin
while TRUE loop
TERMINAL.READ(key); —— Read the next character that is typed in,
TERMINAL.WRITE(key); —— and show it on the display.
end loop ;
end ECHO;

Toillustratetheway that package specificationsaregivenin BASAL let’slook at amore
sophisticated example. Suppose we wish to specify a collection of procedures and the
like that jointly describe what an integer stack is, including its associated operations.
Informally, an integer stack isjust like any other stack, but isrestricted to merely storing
integer values. Assume that our integer stack should be capable of storing a maximum
of 1000 integer values. The description of such a package can be elegantly expressed in
BASAL asillustrated in the following example.

Example 4.18. Thewholeideawhen using BASAL to specify user-defined datatypesby
means of packagesisto start with a specification part. In the case of our example, we use
the following specification outline (details will befilled in later):
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package STACK_PACKAGE is
MAXSTACKSIZE : constant INTEGER := 1000;

subtype ELEMENT is INTEGER,;
type STACK is ...

procedure INIT(s : out STACK; ...);

procedure PUSH(s : in out STACK; value : in ELEMENT);

procedure POP(s : in out STACK; value : out ELEMENT);
end STACK_PACKAGE;

Let'stakeacloser ook at what we have outlined here. First, in order to emphasize that
thisisjust another stack except for thefact that it can store only elementsof the INTEGER
datatype we have deliberately declared a separate ELEMENT datatype which, in our case
isdefined asa subtype of INTEGER. Second, we have declared aconstant MAXSTACKSIZE
which reflects the maximum amount of (integer) values that any stack can have. The
package specification also contains a description of a data type STACK (which is further
detailed below), and the operations that can be applied to variables of thistype: INIT for
initializing the stack, and PUSH and POP for manipulating it.

Consider the procedure specification PUSH first. By declaring the parameter s by us-
ing in out, we specify that this procedure will change the stack s. Indeed, this is what
we would expect it to do. In particular, we would expect it to store the value given by
the input parameter value. That this parameter should not be changed is also obvious. It
should merely be pushed onto the stack. A similar reasoning explainswhy the procedure
POP has an in out parameter s, and an output parameter value. In this case, calling POP
would change the stack s, and the value stored at the top would be returned in the form
of value.

The procedure INIT, finally, is to be used for initializing a stack. We leave it to the
reader to verify that specifying s asan output parameter for the INIT is precisely what we
would need for initialization.

O

Let’sfill in some more details. In particular, we assume that when a stack isinitialized
it can be explicitly stated what the actual maximum size should be, provided that thisis
smaller than 1000. We can complete our specification as follows.

Example 4.19. We now need to provide a complete specification of a stack. First, we
need to have a means of storing integer values. This can be solved by a simple array.
Also, we haveto stipul ate exactly what the present top of the stack is, aswell asthe max-
imum size as specified at initialization. Thisthen leads to the compl ete package specifi-
cation shown in Listing 4.11.

When a stack isinitialized, the actual maximum size will have to be provided, which
is subsequently recorded in the field max of the data type STACK. Likewise, we use the
field top to indicate the present top of the stack. Not surprisingly, top in all caseswill be
initialized to 0 as will be shown below.

0
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package STACK_PACKAGE is
MAXSTACKSIZE : constant INTEGER := 1000;

subtype ELEMENT is INTEGER,;
type ELEMENT_SET is array (1..MAXSTACKSIZE) of ELEMENT;
type STACK is
record
max : INTEGER range 0..MAXSTACKSIZE;
top : INTEGER range 0.. MAXSTACKSIZE;
content : ELEMENT_SET;
end record ;

procedure INIT(s : out STACK; maxSize : in INTEGER);

procedure PUSH(s : in out STACK; value : in ELEMENT);

procedure POP(s : in out STACK; value : out ELEMENT);
end STACK_PACKAGE;

Listing 4.11 The specification of the package STACK PACKAGE.

Package bodies

However, as we have said, thisis only the specification part: it tells us precisely what
a stack is, together with the procedures that can be applied to it. It says nothing about
how the stack is manipulated. Therefore, we use a separate notation, namely that of a
package body. A package body generally has the form

package body PACKAGE_NAME is

end PACKAGE_NAME:

where, at the ellipses, the implementation for the proceduresin the package specification
are given. Additional declarations for types, variables, etc. may aso be included here.
Let’'s see how thisworks for our stack example so far.

Example 4.20. We can continue by further describing how (integer) stacks work. Con-
sider the package body showninListing4.12. It can now beeasily seen that, for example,
our implementation of the procedure PUSH accomplishes precisely what we expect from
it.

O

The example so far shows how we can construct a logically coherent group of data
type declarations and operations by means of a package. The package specification de-
scribes what is public. These are the things that can be used within other packages as
well. What's described by a package body, however, is considered to be private. No
declarations given in a package body can be used in other packages. We shall explain
other details of packages as we come across them.

We note that our package body as given in Example 4.20 is not complete. For exam-
ple, we have not provided any adequate meansto deal with the situation when avalueis
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package body STACK_PACKAGE is

procedure INIT(s : out STACK; maxSize : in INTEGER) is
begin
if maxSize < MAXSTACKSIZE then
s.max := maxSize;
else
s.max := MAXSTACKSIZE;
end if;
s.top :=0;
end INIT;

procedure PUSH (s : in out STACK; value : in ELEMENT) is
begin
if s.top < s.max then
—— We adopt the same convention as used in PRIMAL, by first
—— incrementing the value for top, and then storing a new value there.
s.top ;= s.top + 1,
s.content(s.top) := value;
end if ;
end PUSH;

procedure POP (s : in out STACK; value : out ELEMENT) is
begin
if s.top > 1 then
—— Here, we should do exactly the opposite to PUSHing a value: we
—— first remove the value stored at the top, and then lower the stack.
value := s.content(s.top);
s.top :=s.top —1;
end if ;
end POP;

end STACK_PACKAGE;

Listing 4.12 An implementation for (integer) stacks.

pushed onto afull stack or when an attempt is made to pop a value from an empty stack.
We |leave it as an exercise for the reader to correct this situation.

Parameterized packages

Before we divert our discussion from how programs can be expressed in BASAL, there
is one aspect that we want to bring to your attention. Despite the fact that our package
STACK_PACKAGE will only work for the INTEGER data type, it should be clear that the
same solution can al so be used for constructing stacksfor other datatypes. For example,
If we wanted to construct a package for CHARACTER stacks then only minor changes to
our package would be needed. In particular, we need change only the declaration of the
type ELEMENT to:

subtype ELEMENT is CHARACTER,;
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This is the only adaptation required. The rest of our package specification and imple-
mentation remains as shown above. Of course, if we want to have a separate package
for integer stacks as well a package for character stacks, we would still need to copy our
initial package and make the above-mentioned adaptation of the type ELEMENT. This,
however, can be avoided by means of so-called parameterized packages. The origina
concept of aparameterized package comesfrom Ada, whereitisreferred to asageneric
package and which is more sophisticated than is required for the purposes of this book.
In BASAL we support parameterized packages in the following way.

In order to a construct a package for a specific kind of datawe first construct ageneral
stack package using the following notation:

package STACK_.PACKAGE(type ELEMENT) is
...as before, but omitting the declaration of ELEMENT.
end STACK_PACKAGE;

Then, if we wish to construct a package INTEGER_STACK for integer stacks, we do this
by writing:

package INTEGER_STACK is new STACK_PACKAGE(ELEMENT = INTEGER);

Likewise, defining a package for handling character stacks is accomplished through the
following declaration:

package CHARACTER_STACK is new STACK_PACKAGE(ELEMENT = CHARACTER);

Here, we can conceive the data type ELEMENT asbeing aparameter of STACK PACKAGE.
The difference with parameters as used in procedures, lies in the fact that we are now
using data typesinstead of actual data as parameters.

Example 4.21. Asanother exampleof ageneral package, and onethat we shall encounter
afew timesin this book, consider the parameterized package specification for queuing
elements shown in Listing 4.13. We have omitted the specific details with respect to the
actual definition of the type QUEUE, but as you might expect, these will not differ rad-
ically from that of our STACK datatype. In fact, if you realize that a queue is precisely
the opposite of a stack, i.e. elements are added to the end of a queue and removed from
thefront, it is seen that the implementation of the procedures APPEND and REMOVE will
also be quite similar to those of PUSH and POP, respectively. We leave it as an exercise
for the reader to outline these implementations.

Using our general queue package, we can now easily construct other queuing pack-
ages for queuing specific elements. For example, a package for integer queues may be
declared as:

package INTEGERQ is new GENERAL QUEUE(ELEMENT = INTEGER);

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



172 From hardware to software

package GENERAL_QUEUE (type ELEMENT) is
type DEFINITION is ... definition is omitted for the sake of brevity

procedure APPEND(q : in out DEFINITION; elem : in ELEMENT);
—— Append the given element [elem] to the queue [q].

procedure REMOVE(q : in out DEFINITION; elem : out ELEMENT);
—— Remove the element at the head of the queue, and return it as [elem].

procedure CHECK_EMPTY(q : in DEFINITION; status : out BOOLEAN);
procedure CHECK_FULL(q : in DEFINITION; status : out BOOLEAN);
—— Check if the indicated queue is empty or full, respectively.

end GENERAL_QUEUE;

Listing 4.13 The specification of general package for queuing elements.

4.4 A BASAL virtual processor

So what have we actually accomplished? Not very much, to be honest. We have de-
scribed only two programming languages. The PRIMAL language may be assumed to
be implemented by a processor, but is not really the kind of programming language that
one would enjoy for constructing programs. On the other hand, BASAL at least allows
us to perhaps enjoy program construction, but there’s no such thing asaBASAL proces-
sor. So, we have aproblem. Oneway or the other, BASAL can only be of useto usif we
can provide alanguage implementation. What does this mean? When considering ma-
chine languages, their implementation is always provided by means of area processor.
In BASAL, we have no choice other than to find something analogous. But constructing a
real processor that implementsBASAL issimply impossible. Thelanguageistoointricate
to seriously consider such an approach. Instead, we should try to construct avirtual pro-
cessor which forms an implementation of BASAL. This virtual processor will be partly
implemented in software.

In this section we shall concentrate on a number of issues. First, we shall explain the
principal working of a virtual processor by taking a global view on the execution of a
BASAL program interms of a PRIMAL program. Then, in Section 4.4.2 we shall discuss
how the execution of BASAL programs can be automated by making use of acompiler or
interpreter.

4.4.1 Theprinciple of avirtual processor

Our first concern at this point is to explain the principal working of avirtual processor.
We start by taking a global view of what programs are actually all about. Starting in
Chapter 2, we have consistently made a distinction between data and oper ationsthat ma-
nipulate data. Thisis particularly emphasized by our initial architecture of a processor,
shown in Figure 3.10, in which we separated a memory module for instructions from a
memory module containing only data. And again, inour presentation of PRIMAL thedis-
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jorocessor

Figure 4.5 The effect of fetching and executing aBASAL statement.

tinction between the two was made explicit. Instructions were there to manipulate vari-
ables. Inthissense, BASAL isno exception. Variables need to be declared explicitly, and
by combining assignment statementswith control flow statements, we discussed how we
could describe the manipulation of variables. The major difference between the sophis-
ticated notation provided by BASAL and the rather low-level notations available in PRI-
MAL isto be sought in the structural organization of operations and mechanismsfor data
abstraction. The principal distinction between data and operations, however, remains.

Using thisdistinction, we can now be more explicit about our concept of avirtual pro-
cessor. First, consider Figure 4.5, which illustrates the principle of the execution of a
BASAL program. What happensisthe following. Aswe have mentioned, we assumethe
existence of some abstract execution mechanism underlying BASAL. This mechanism
works just like the fetch-execute cycle of a processor. First, a statement is fetched from
the set of statementsthat comprisesaBASAL program. Inaddition, any valuesof variables
that are needed to execute the statement are fetched from the data part of the program.
During the execution of the statement two things are accomplished: (1) the next state-
ment to be executed is determined, and (2) the value of variables are replaced by new
ones when executing an assignment statement. Thereafter, the selected next statement is
fetched and executed again.

Of course, wedo not yet have aprocessor that repeatsthefetch-executecyclefor BASAL
programs. Nevertheless, we can simulate its effect by means of the PRIMAL processor.
The principle is shown in Figure 4.6. What we need to do is construct a PRIMAL pro-
gram that has the same effect as the execution of aBASAL program. To thisend, we use
atrandator. Such a program does two things:

e Firdt, it associates with each BASAL variable one or more memory locations, in

which it subsequently stores bit strings that uniquely correspond to the value of
that variable.
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Figure 4.6 Simulating the BASAL fetch-execute cycle by the PRIMAL processor.

e Second, each BASAL statement is converted into one or several PRIMAL instruc-
tions, with appropriate references to the memory locations that correspond to the
variables occurring in the BASAL statement.

Theresult of thistrandation isaPRIMAL program consisting of a data part representing
all the BAsAL variablesand their initial values and a series of PRIMAL instructions cor-
responding to the converted BASAL statements. When thisPRIMAL program is executed
its data part will change in the sense that the bit strings representing the initial values of
the BASAL variables will generally be replaced by other bit strings. These bit strings, in
turn, are representations of the final values of the BASAL variables. Now suppose that
we could execute our BASAL program directly, i.e. without having it translated first into
a PRIMAL program. In that case, al the initial values of the BASAL program will also
have been replaced by final values. If the final values resulting from this direct execu-
tion correspond to those resulting from the execution of the PRIMAL program, we say
that the two executions have the same effect. We can now be more specific about virtual
processors. Such aprocessor first translatesaBASAL programinto aPRIMAL program of
which the execution has the same effect as the direct execution of the BASAL program.
It then executes the PRIMAL program by means of the real PRIMAL processor.
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source program
BASAL

=== BASAL language

------ target program
PRIMAL

Figure 4.7 The general architecture of avirtual processor.

4.4.2 On automated trandation

Suppose we have written a BASAL program. In order to execute this program, we will
have to trandate it into a PRIMAL program whose execution will have the same effect.
Now, it would be rather frustrating if we had to do the translation manually, for in that
case, we might aswell have programmed directly in PRIMAL. Thewholeidea, of course,
is that we should automate the translation process. And what would be a better means
thanto use areal processor for that purpose? In particular, if we can construct aprogram
that takes a BASAL program as input, and produces a PRIMAL program as output that
establishes the same as our original program, then we would no longer have to consider
the PRIMAL instruction set, but instead could resort to constructing programsin BASAL.
What we are talking about here is the construction of a so-called compiler.

More formally, a compiler is a program that establishes a translation from a source
language to atarget language. In our case, we are considering BASAL as our source
language and PRIMAL as our target language. Because it isaprogram, acompiler isalso
to bewritten in aprogramming language. For now, assumeitiswrittenin alanguageim-
plemented by a processor which we refer to as the compiler processor. The compiler,
the compiler processor, and thetarget processor together form an implementation of what
we have called avirtual processor. This approach isillustrated in Figure 4.7. Summa-
rizing, the compiler isexecuted on the compiler processor and its execution resultsin the
trandation of aBASAL program into an equivalent PRIMAL program. The latter, in turn,
Is executed by the PRIMAL processor.

These abstractionsmay befine, but you may justifiably ask yourself what thisall means
inpractice. Let’'sget down to earth again and see what compilationisactually about. We
note that the following subsections may be skipped on first reading.

> Thecompiler

So how do we start? Thefirst point to make isthat in order to compile a program we should
at least make it available for trandation by the compiler. This means that we have to get it
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into main memory, or perhaps store it somewhere on disk or tape, so that the program is at
least accessible. Now the best we can do at thispoint istypeit in. Thismeansthat by making
use of aterminal we enter our BASAL program character by character. Inthe end, what we
will have is atextual representation of our BASAL program, stored in the main memory of
our host computer. From there on, we can leave it in main memory, but perhaps also store it
safely on some storage device. The important point isthat our program has now been made
accessible for trandation. We can then execute the compiler.

Now, compilers are not the ssmplest programs you can imagine. In fact, languages such
as Ada are so intricate that it generally takes afew years before an acceptable compiler is
developed. Acceptable in this sense means two things. (1) the compiler can translate every
language construct correctly, and (2) the efficiency of the generated code is comparable to
that of compilersfor competitive languages. Toillustrate, although the definition of the Ada
language was established in 1983, it took approximately another four to five years before
the first commercial compilers became available. To manage the complexity of trandation,
compilers are generally organized into a number of modules (or packages if we use BASAL
terminology), each covering a specific phase of the trandation process. Three phases can
be distinguished: lexical analysis, parsing, and code generation.

Lexical analysis. During lexical analysis the textual representation is read, character by
character, and transformed into aseries of so-called tokens. The concept of atoken israther
simple, and we shall illustrate it by means of a brief example. Suppose we have the follow-
ing initialization statement:

val : constant INTEGER = 3;

Thismay seem acceptable to us, but you haveto realize that, initially, this statement appears
only as aseries of characters, namely the sequence

[v[a[t]e[:[o]c]o]n[s[t[a[n[t][e][r|N[T]E[G[E[R]o[: [=]c]3] ]

(where ‘¢’ is used to denote a space). However, from alogical point of view, the statement
consists of the following elements:

‘ val ‘ : ‘ constant ‘ INTEGER ‘ = ‘ 3 ‘ ; ‘

Each of these elements is called atoken. In this example, we can distinguish four different
types of tokens:

e Thereisakeyword token denoting the keyword “constant”

¢ There are two identifier tokens. one denoting the variable val and one denoting the
type INTEGER

e There are two delimiter tokens: one for the colon separating val from the rest of the
declaration, and one for the semicolon which refers to the end of the statement

e Anoperator token representing the assignment symbol “:=".
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During lexical analysis, the character sequences are transformed into token sequences, im-
plying that the compiler hasto recognize that thefirst three characters of our exampleform a
representation of avariable called “val”. The spaceisthen to be recognized as not being rel-
evant. The colon and subsequent space implies that we are dealing with a declaration here,
which is to be further recognized as being a constant declaration as soon as the character
sequence that make up theword “constant” has been read. Continuing in this way, the com-
piler should recognize that “INTEGER” stands for the fact that we are dealing here with an
integer declaration. And when reading the characters “:” and “=" the compiler must record
that these two stand for an assignment token, implying in this case the analyzed statement
isaninitidization statement. Continuing in this way, the character “3” is to be recognized
asaconstant, and ;" as aso-called delimiter. Thisinformation (and more) is stored by the
compiler for further anaysis.

Parsing. After the program has been scanned its actual organization is known. The next
step consists of checking if the program obeys the syntactical rules of the programming lan-
guage, and isknown asthe par sing phase. For example, suppose we had inadvertently typed
in the following:

procdure proc (i:in INTEGER) s ...

Thelexical analyzer, while scanning the sequence
p,r,0,c,d,u,re

can do no better than to record that it had just read a variable named “procdure” instead of
what we actually intended, namely the keyword “procedure” for designating a procedure. It
isthe task of the parser to notify that something iswrong here. In particular, while reading
the series of tokens produced by the lexical analyzer it is the job of the parser to recognize
that a variable-token followed by a sequence of tokens that correspond to a procedure dec-
laration does not make sense. The correct sequence, of course, should have started by a
keyword-token for “procedure”.

If no errors are found, the parser will construct an internal representation of the program
which is more convenient for further processing. This internal representation is caled a
parsetree. Toillustrate, consider the assignment statement

int:=3+(2*5);

Theinteresting part about assignment statementsin general isthat they consist of two sides.
A left-hand side corresponding to some variable, and a right-hand side that evaluates to
some value. Essentially, what the parser does is organize the tokens of the above statement
into asingle group T, and records that this group stands for an assignment. It then divides T
into two subgroups:. T Which is recorded as the left-hand side of the statement, and Tignt
which is recorded as its right-hand side. It is not difficult to see that Ty can be further
divided into an addition and a multiplication. We can graphically represent the statement
above as shown in Figure 4.8. The structure we see there is generally referred to as atree.
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|| token

Figure 4.8 The representation of an assignment in the form of a parse tree.

In effect, we see that the compl ete program is broken down into elementary parts, which in
turn are organized in ahierarchical way. Thisorganization turns out to be particularly useful
for the last phase: code generation.

Codegeneration. The code generation part of acompiler is actualy the hard part. In this
case, the parse tree of the program as constructed by the parser and istraversed until agroup
is encountered (which may be organized into subgroups) for which atrandlation rule can
be applied. For example, reconsider the assignment statement given above. The tokens for
an assignment statement are first always grouped together by the parser, and subsequently
partitioned into two subgroups. One group represents the |eft-hand side and the other repre-
sentstheright-hand side. Asfar asthe code generator isinitially concerned, each assignment
statement should in general be tranglated into the following two PRIMAL instructions:

MOVE <RHS>, DO Move the value of the RHS into DO
MOVE DO, <LHS> and assign this value to the variable in the LHS

The next step isto evaluate both sides of the assignment in order to complete the code gen-
eration. To this end, both subgroups T;gr and Tier: Can be evaluated separately and indepen-
dently of each other. By evaluating the tokens in T, the code generator will merely need
to generate areference to the variable int. In other words, it concludes that

<LHS> = int

Theright-hand side israther more complicated. Assuming arather naive approach towards
code generation, the generator first generates the following code based on its evaluation of
the addition:

MOVE #3, DO [DO] =3
MOVE <2 *5>,D1 [D1]:=2*5
ADD  D1,DO [DO] := [DO] + [D1]

The multiplication needs to be evaluated as well, which leads to:

MOVE #2, DO [DO] := 2
MOVE #5, D1 [D1]:=5
MULS D1, DO [DO] := [DO] * [D1]

Itsfinal task isto combine these pieces of code, leading to the following PRIMAL code:
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MOVE #2, DO [DO]:=2

MOVE #5, D1 [D1]:=5

MULS D1, D0 [DO] := [DO] * [D1]

PUSH DO Store intermediate result on the stack
MOVE #3, DO [DO]:=3

POP D1 Pop intermediate result from stack
ADD D1, DO [DO] := [DO] + [D1]

PUSH DO Store intermediate result on the stack
POP D1 Pop intermediate result from stack
MOVE D1, int And finally do the assignment

The important point to note is the systematic approach that is being followed here. Admit-
tedly, code generation isgreatly smplified in the example above. For example, we have said
nothing about the trandation of data. However, the principles remain the same, although
their realization is more intricate than we are prepared to demonstrate here.

Before we continue with our discussion on virtual processors, recall that in Section 3.2 we
mentioned that an instruction memory and a data memory are always joined into a single
main memory. By doing so, we argued that we were unifying data and instructions. Now
you can see why this is such an important step. By unifying the two, we can treat instruc-
tions as data, and can thus sensibly speak about automated tranglation. To the compiler, the
PRIMAL instructions it generates are just bit strings, i.e. data. To the PRIMAL processor,
however, these bit strings are perfectly sensible instructions.

Choosing a language for the compiler

So far, we have been deliberately vague about the language in which the compiler isimple-
mented and have implicitly suggested that thisis adifferent language from either the source
language (BASAL) or the target language (PRIMAL). In practice, thisis not the case. Let’'s
first pursue the thought that the compiler language is the same as the target language. In
other words, in our case we construct a compiler written entirely in PRIMAL.

When giving the matter some thought, this would indeed be an attractive choice. What we
would have then is a computer, based on a PRIMAL processor, that we could immediately
use to enter, trandate, and execute BASAL programs. In other words, when writing pro-
grams for that computer we can simply pretend it is atrue BASAL computer. Thereisonly
one problem with this approach. We will have to write the compiler in PRIMAL, alanguage
which we showed to be rather cumbersome for program development. An excellent can-
didate to aleviate this problem is, of course, BASAL itself. In other words, we could more
conveniently write our compiler in BASAL rather than in PRIMAL. But, of course, thisis
not going to work because in order to let the compiler be able to do its work we need to
execute it on a processor. But to do so requires that we first have to trand ate the compiler,
which brings us back to our original problem, namely the trandation of BASAL. Strangely
enough, most compilers are written in a high-level language. In fact, many compilers are
written in the same language that they are meant to trandate.

How can this be? The answer is quite simple. We start with constructing a compiler comp
for asmall subset of BASAL. We denote this subset by BASALSMALL. This compiler will
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VIRTPROC2 VIRTPROC1

Figure4.9 Theadapted architecture of the BASAL virtual processor, using aBASAL Virtual pro-
cessor (VIRTPROC2).

have to be written in PRIMAL. We then write a second compiler com, but now in BASAL-
SMALL that implements the full language. In order to be usable, comp is then compiled
by comp,. Because the compiler written in BASALSMALL cannot make full use of all the
BASAL features we may then decide to write a third and even better compiler comg, but
now using the full capabilities of BASAL. Of course, comp; is to be compiled using comp,.
In other words, our third compiler would be one written entirely in BASAL, and would form
part of the implementation of BASAL. The above-mentioned compiler language and source
language are now the same. (We note that in practice this situation hardly ever occurs. due
to the fact that so many compilers for high-level languages are available, we can simply
choose a suitable language for implementing the compiler and use one of its compilers.)

These observations lead to the architecture shown in Figure 4.9. Note that there are two im-
plementations of aBASAL virtual processor. Thefirst, denoted as VIRTPROCL, isto be con-
sidered as ageneral implementation which usesthe PRIMAL processor asitsreal processor.
The second, denoted as VIRTPROC2, is the one that executes the compiler of VIRTPROCI,
and which also usesthe PRIMAL processor. To complete the story, the two implementations
may be exactly the same; they are merely used for different purposes.

Compilation ver sus execution

Now let’s see how we can execute a BASAL program. Assume we have already entered the
program into the computer, i.e. itstextual representation is stored somewhere in main mem-
ory or onastorage device. Thistextual representation isthen read by the compiler, analyzed,
and trandated. After this has been completed, we can execute the trandated program. We
can write these steps as the following a gorithm:
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Algorithm 4.1. The compilation algorithm:

1. Read program Bsasar from storage or main memory.
2. Analyze program Rsasa) and trandlate it into an equivalent program RrimaL -
3. Execute PorimaL ON the PRIMAL processor.

|

Thisshould look familiar. Itisanother version of the fetch-execute cycles we have discussed
in Chapter 3. The only difference is that the first two steps are executed once, whereas the
last may be executed severa times. In this sense, Algorithm 4.1 reflects the usua process
of compilation and execution which is used in the case of many high-level programming
languages. The algorithm can, however, often be refined. The approach outlined above is
rather coarse-grained in the sense that a complete program is first read, then analyzed and
trandlated, and subsequently executed. An alternative approach isrepeatedly to read only the
minimal amount of program text that can be sensibly analyzed, trandated, and executed, and
then continue with the next piece of minimal program text. Expressing thisin an algorithm,
we have the following:

Algorithm 4.2. Theinterpretation agorithm:

1: Read the next minimal piece of program text Rsasa. from storage or main memory
that can be processed.

2. Analyzeandtranslate Rsasar iNto an equivalent piece of PRIMAL instructions BrimaL -
3. Execute PorimaL ON the PRIMAL processor. Then continue with Step 1.

|

This agorithm reflects the usual behavior of so-called inter preters (although, in practice,
there are a few subtleties that we have ignored here). Typically, so-called command lan-
guages that form the (textual) interface between ahuman being and acomputer are executed
by interpretation. There are also interpreted implementations for some high-level languages
such as Pascal, and even Ada, although with some restrictions.

Algorithm 4.2 resembles our fetch-decode-execute cycles more than Algorithm 4.1 does.
But as you can imagine, using compilers instead of interpreters will generaly lead to more
efficient target programs, as the complete source program can be analyzed, rather than just
small parts of it. Nevertheless, it isimportant to realize that the effect of both algorithmsis
the same, namely that a program written in a high-level language is eventually executed in
the form of atranslated version at alower level of abstraction.
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45 Towardsan extensible BASAL computer

We have comealongway. At thispoint we have demonstrated that we can sensibly speak
about a virtual processor that implements the BASAL programming language. For one
thing, this allows us to construct programs at a satisfactory level of abstraction. Unfor-
tunately, BASAL as presented so far is not useful enough. It has no facilities for 1/0 —
features that simply cannot be missed when talking about computers. In terms of vir-
tual hardware, our BASAL processor lacks any means of controlling virtual peripheral
devices. There are essentially two solutionsto this problem.

First, we can add a number of language constructsto BASAL that will permit usto de-
scribe how 1/0O takes place. It would then be up to the devel opers of the virtual processor
to ensure that such 1/0 constructs are properly implemented. What it meansis that the
BASAL compiler generates the right instructions by which disks, terminals, etc. are ma-
nipulated. The disadvantage of this approach isthat the language determinesto acertain
extent what kind of peripheral devices are useful or not. Thisis not aways such a good
idea

The second solution is to employ memory-mapped 1/0 facilities. What do we mean
by this? Assuming that the real processor which is part of the virtual processor uses
memory-mapped I/0, it would be convenient if we could manipul ate the registers associ-
ated with peripheral devices, asif they formed part of our BASAL language. In particular,
suppose we could explicitly associate variables with memory locations of the real pro-
cessor, which in turn correspond to 1/0 registers. In that case, replacing a value of such
a variable would mean that we would be changing that register. The only problem with
this approach is that if we use a different real processor as part of our language imple-
mentation we might need to change the association of variables with memory locations.

In this section we shall see how, by employing memory-mapped I/O in BASAL, we
can gradually build atrue virtual computer, consisting of avirtual processor aswell as
severa virtual peripheral devices.

45.1 Controllingthetrandation process

As we have mentioned above, each variable in BASAL is associated with one or more
memory |locations when the compiler starts doing its work. By associating variables to
memory locations, we are capable of later executing a BASAL program by means of its
PRIMAL counterpart. Exactly which memory locations are associated to a variable is
not known in advance, and in fact, should be of no concern in general. However, if we
are to make peripheral devices that are attached to our real processor also available to
BASAL programs the association between variables and memory locations does become
important.3

SWe noteat this point, however, that associ ating vari abl esto specific memory locationsis not something
that should be left to anormal BASAL user. Aswe shall discuss further below and in the next chapter, itis
the task of operating system developers to make various hardware-rel ated facilities available through so-
called service programs. An ordinary user can then subsequently make use of these programs. Hardware-
related details should thus be hidden from normal users.
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Being a subset of Ada, BASAL has inherited Ada's advanced features to express the
relationship between, on the one hand, data types and variables, and on the other, the
organization of memory. We start with looking at a simple example.

Organizing memory

TheBASAL language has no predefined datatypefor representing bit strings. Supposewe
wish to make such adatatype available. In that case, we might begin with the following
two type declarations:

subtype BIT is INTEGER range 0..1;
type BITSTRING32 is array (0..31) of BIT;

Now suppose we declare a variable bitstring as

bitstring : BITSTRING32;

When compiling our program, the compiler will probably reserve one or several memory
locations so that acompl ete series of 32 integer variables (that, admittedly, can only take
the value 0 or 1) can be stored. Which memory locations the compiler reserves, or how
it represents the values that can be assigned to bitstring is, in principle, not important, as
long as it is done in a unique way. Nevertheless, we can change this in two ways if so
desired: (1) we can explicitly instruct the compiler to organize bit string variablesin a
way that we like, and (2) we can instruct the compiler to associate variables to specific
memory locations.

With respect to the organization of memory, we can specify in BASAL how many bits
each variable of the type BITSTRING32 should occupy by writing

for BIT'SIZE use 1;
for BITSTRING32'SIZE use 32;

What we have specified hereisthat each variable of thetype BITSTRING32 should occupy
precisely 32 consecutive bitsin main memory. We say that itssizeis 32 bits. Thismeans
that each time we declare a variable of the type BITSTRING32 it will be associated with
exactly 32 consecutive bits of main memory. Which bits can be specified by stating with
which memory location avariable isto be associated. For example, by writing

for bitstring use at 40;

the variable bitstring will be associated with memory location 40: it isthe compiler’sjob
to ensure that this happens. Now, inall cases, variablesin BASAL are also assumed to oc-
cupy aconsecutive seriesof words, thefirst word referred to as#0. Thismeans, for exam-
ple, that if each word in main memory consists of 16 bits, that bitstring(0) . . . bitstring(15)
correspond to the word at memory location 40, whereas bitstring(16) . . . bitstring(31) will
correspond to memory location 41. Figure 4.10 shows this placement of bitstring into
main memory. Of course, if the size of aword is 32, then bitstring will fit nicely into
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bit #0
40 000000000
A1 00000000000 7‘

Figure 4.10 The placement of the variable bitstring in main memory by additional specifica-
tions.

one memory location.

Let’slook at another example of defining the memory organization which, in fact, we
shall come across afew times in succeeding chapters. Consider the following type dec-
larations

subtype CARDINAL is INTEGER range 0..65535;
type SOME_RECORD is
record
fieldl : CARDINAL;

field2 : CARDINAL;
end record ;

At thispoint we want to associate each variabl e of thetype SOME_RECORD with precisely
two consecutive memory locations, of which the first is reserved for element field1, and
the second for field2. It is not difficult to see that each variable of the type CARDINAL
requires only 16 bits of storage in order to represent all 65,536 = 216 different values. In
order to ensure that indeed precisely 16 bits are used for this purpose, we write

for CARDINAL'SIZE use 16;

Now first assume that main memory is organized into 16-bit words, i.e. each memory
location occupies 16 bits. In order to ensure that each variable of type SOME_.RECORD
occupies precisely two locations, we use the following representation clause:

for SOME_RECORD use
record
field1 at O range 0..15;
field2 at 1 range 0..15;
end record ;

What we have specified hereisthat element field1 of each variable of type SOME_.RECORD
is to be associated with the (first) 16 bits of word #0 of the memory locations that the
variable uses. The second field isto be associated with word #1. To ensure that precisely
two words are used to store variables of thistype, we need to specify the required size.
This can be done by means of the following representation clause:

for SOME_RECORD'SIZE use 2*16;
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Now how can we actually associate a variable someObject with, say, memory locations
156 and 1577 Thisis actually quite easy. We first declare the variable someObject:

someObject : SOME_RECORD;

and proceed by specifying precisely whereit isto be stored by specifying the location of
the first word in memory:

for someObject use at 156;

The effect of thisis that someObject.field1l will be associated with memory location 156,
occupying precisely 16 bits, and that someObject.field2 is associated with location 157.

> But suppose now that each word in main memory consists of 32 bits instead of 16. In that
case, we need to change our representation clauses. First assume that we still want to asso-
ciate each field of SOME_RECORD with a different memory location. The problem then is
that we need to specify exactly which 16 bits of each memory location the respective fields
are to occupy. Suppose we decide that this should always be the last 16 bits. In that case,
we need to change the representation clauses for SOME RECORD as follows:

for SOME_RECORD use
record
field1 at O range 16..31;
field2 at 1 range 16..31;
end record ;
for SOME_RECORD’'SIZE use 2*32;

It should also be clear that each variable of SOME RECORD will aso nicely fit into one word.
An aternative representation clause to achieve just that would be the following:

for SOME_RECORD use
record
field1 at O range 0..15;
field2 at O range 16..31;
end record ;
for SOME_RECORD'SIZE use 1*32;

In this case, the first field would always be mapped to the first 16 bits, whereas the second
field would occupy the second series of 16 consecutive hits.

Exploiting memory-mapped |/0O

By controlling the way that a compiler organizes main memory when transating vari-
ables, we can now easily make various peripheral devicesavailableto BASAL programs,
assuming that the real processor employs memory-mapped 1/0. This is best illustrated
by means of a simple example.

Assume that the 1/0 processor handling all communication to a (character-oriented)
screen uses the registers shown in Table 4.1, which have been mapped to the indicated
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Table 4.1 The memory-mapped registers of adisplay 1/0O controller

| register | address | purpose |
MONXPOS 20 requires an integer value for the x-
position of the cursor

MONY POS 21 requires an integer value for the y-
position of the cursor

CHARREG 22 a register containing the Ascil rep-
resentation of the character to be
represented

SCRCTRL 23 aregister for controlling what should
happen with the screen as awhole

addresses. All registers are assumed to have length 8. Animportant register iSSCRCTRL
which isfurther specified asfollows. The 1/O processor continuously reads thisregister,
and as soon asthelast bitis“1” (i.e. SCRCTRL containsthe bit string (xoooxxx1)), it sub-
sequently readsthe valuesin the other registers and sendsthese to the display. Hereafter,
we assume the I/O processor resets the last bit to “0”.

For simplicity, also assume that each word in memory occupies precisely 8 bits. What
we need at this point is ameansto display acharacter on the screen by providing its po-
sition, as well as the character itself. This can be described in BASAL by means of the
following package specification:

package DISPLAY is

subtype SMALLCARD is INTEGER range 0..255;

for SMALLCARD'SIZE use 8;

procedure WRITE(char : in CHARACTER; xpos, ypos : in SMALLCARD);
end DISPLAY;

Note how we have deliberately forced each position to be specified by means of apositive
integer smaller than 255, and that each x or y position will occupy precisely 8 bits of
storage. In other words, it will fit nicely into one of the registersof our display controller.
Now look at the package body of Listing 4.14 inwhich further implementation detailsare
given.

A few remarks about package DISPLAY are in order. First, we have declared a type
BITSTRINGS in order for us to manipulate the registers as ordinary bit strings. Again, a
bit string is organized as a consecutive series of hits. In the declaration of the data type
SCREEN_REGISTERS, each field correspondsto exactly one of theregistersof the display
controller. Its representation clause ensures that variables of type SCREEN_REGISTERS
will be associated with precisely four consecutive memory locations. Consequently, the
fragment

screenRegSet : SCREEN_REGISTERS;
for screenRegSet use at 20;
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package body DISPLAY is
subtype BIT is INTEGER range 0..1;
type BITSTRINGS is array (0..7) of BIT;
for BITSTRING8'SIZE use 8;

type SCREEN_REGISTERS is
record
xScreenPos : SMALLCARD;
yScreenPos : SMALLCARD;
asciiChar : SMALLCARD;
screenCtrl : BITSTRINGS;
end record ;

for SCREEN_REGISTERS use
record
xScreenPos at 0 range 0..7;
yScreenPos at 1 range 0..7,
asciiChar at 2 range 0..7;
screenCtrl at 3 range 0..7;
end record ;
for SCREEN_REGISTERS’'SIZE use 4 * 8;

screenRegSet : SCREEN_REGISTERS;
for screenRegSet use at 20;

procedure WRITE(char : in CHARACTER;xpos, ypos : in SMALLCARD) is
begin
screenRegSet.xScreenPos := Xpos;
screenRegSet.yScreenPos = ypos;
screenRegSet.asciiChar := CHARACTER’POS(char);
screenRegSet.screenCtrl(7) :=1;
end WRITE;

end DISPLAY;

Listing 4.14 An implementation of the package DISPLAY.

ensures that the variable screenRegSet is not only associated with the memory locations
of the display registers; its fields are appropriately organized with each register in the
way we intended. The procedure WRITE should now be easy to understand. We first set
the correct valuesin each register, after which the control bitisset to 1 in order to display
the character on the screen.®

41t should be noted that our implementation is rather simple, and missing anumber of details, for some
characters may becomelost because we are not synchronizing with the display. We leave these matters at
the moment, but shall return to synchronization in the next chapter.
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4.5.2 Virtual devices
Displaysrevisited

If we assume that package DISPLAY is aways available (i.e. it isaways placed in main
memory when the PRIMAL computer isswitched on), itisclear that we now at least have
one albeit rather smple 1/0 function available. By simply writing, for example,

DISPLAY.WRITE('A',10,30);

we are now able at least to display a character (inthiscase‘A’) on the screen at the spec-
ified position. Of course, our package DISPLAY istoo simple to be of any practical use.
For example, thereisno easy way of clearing ascreen, or perhaps scrolling it up or down.
In fact, we have not even assumed that the display controller supports such operations.
Nevertheless, such functions can be added with relative ease. To illustrate, suppose we
wish to make a procedure available that would clear the entire screen. In that case, our
package specification would become something like:

package DISPLAY is
subtype SMALLCARD is INTEGER range 0..255;
for SMALLCARD'SIZE use 8;
procedure WRITE(char : in CHARACTER; xpos, ypos : in SMALLCARD);
procedure CLEAR_SCREEN;
end DISPLAY;

All we need to do next is add an implementation of the procedure CLEAR_SCREEN to our
package body. Thisisreally not toodifficult. Assumethat our display isconstructed from
72 lines, each line having a width of 120 characters. We could then extend the package
body of DISPLAY with the following procedure CLEAR_SCREEN:

procedure CLEAR_SCREEN is
BLANK : constant CHARACTER'VAL(32);
begin
for yPosin 1..72 loop
for xPos in 1..120 loop
WRITE(BLANK, xPos, yPos);
end loop ;
end loop ;
end CLEAR_SCREEN;

Now the important point to note here isthat we have added something to the working of
adisplay that was not provided previously. In other words, we have extended the func-
tionality of that what was provided by the hardware. The display now appears to support
additional functions. We have thus created a virtual display, one that is partly imple-
mented in hardware, and partly in software. Staying in thisline of reasoning, we can say
that we have extended our BASAL virtual processor with a component that may justifi-
ably bereferred to asavirtual (peripheral) device. The actual implementation of this
device is shielded from other packages. Only what we can do has been made available
by means of the procedures described in the package specification.
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Service programs

Why are we making such a big fuss about this? Well, there is a good reason. Suppose
that the BASAL virtual processor isto be implemented by means of a compiler that gen-
eratesinstructionsfor a PRIMAL processor. Also, assume that thisreal processor can be
attached to various peripheral devices. Following the approach we have outlined above,
it should be clear that these devices can be made available to BASAL programs by means
of anumber of packages. Each package correspondsto apartial implementation of avir-
tual device, and consistsof two parts. (1) aspecification part describing the functionality
of the device by describing what you can do with it; and (2) a body describing how this
functionality is actually realized. The point isthat you never need to know what a pack-
age body looks like, and that’s just fine because you will never be able to make use of
thisknowledge in any case.

But what does this mean when compiling a BASAL program? First, assume that al
packages used to access peripheral devices have aready been compiled, and that their
PRIMAL counterparts have been placed somewhere in main memory. In that case, the
BASAL compiler for our own program need merely to know exactly where these pack-
ages are placed, and subsequently generate code just for our BASAL program, adding
references to the appropriate procedures and variables implemented by the packages. In
this sense, the packages cannot only be seen as a convenient means for accessing the
hardware, they can also be viewed as an extension of the BASAL programming language.
Putting it differently, we say that we have madeacollection of servicesavailabletoBASAL
programs.

Developing services, and implementing them in theform of what werefer to asservice
programs, isamajor issue when devel oping general -purpose computers and communi-
cation systems. What it means, isthat if we can standardize the servicesin the sense that
we can come to a common agreement on

e Which services should be provided and
e How they should be made available

we can then develop programs for awide range of different hardware. Because thereis
no need to know anything about how service programs are actually realized, it is clear
that if we chooseto use a different real processor, then this should have no effect on our
BASAL programs. we should still be able to compile them in the usual way. Developing
and implementing the type of services we have been discussing so far is the problem of
developing oper ating systems. Operating systems form the topic of the next chapter.

4.5.3 Linkingand loading

We need to discuss one more important issue: how do we make service programs (or
any program for that matter) available? The point to note is that our BASAL programs,
aswell asall the service programs that we wish to make use of, are compiled separately.
In the end, we will find ourselves with a collection of PRIMAL programs that need to
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be connected to each other in such a way that their instructions can be executed as if
belonging to a single program. Making service programs available, and subsequently
getting the final result to work as intended, isthe job of alinker and aloader.

Linking programs

Linking programs together is really not difficult, at least if the compiler takes special
measures. Let's start by considering a general problem. Suppose we were to compile a
BASAL program. Aswe have mentioned, the compiler will associate variablesto mem-
ory locations, athough in most casesit iscompletely irrelevant which locationsthese are.
The exception to thisruleis, of course, formed by variables that need to be explicitly as-
sociated with memory-mapped /O registers. Now supposethat the compiler, when trans-
lating a program prog;, associates some variable varl to memory location Loc1. Like-
wise, assume that when it subsequently compiles a second program progy, it associates a
variable var2 belonging to prog, with location Loc2. Thismay all seem acceptable, but
we are going to bein trouble if we want prog; and prog, to be placed in memory at the
sametime, and it turns out that LOC1 = LOC2.

Theproblemiseasily solved if all addressesin aprogram areinterpreted as being rela-
tiveto the program’sstart address. So, for example, if prog, isplaced in memory starting
at address 1200, then Loc1 actually denotes memory address 1200 + Loc1. Now sup-
pose that we wish to link several programs prog;, . .., progy together, to which end we
start by first concatenating the programs into one large program totalProg. Clearly, all
addresses occurring in prog; can be left unaltered. Addresses in prog,, however, will
have to be converted to addresses that are now relative to the start address of total Prog.
If size(prog;) denotesthe size of program prog;, then the addresses occurring in prog, are
to be incremented by size(prog, ). Likewise, the addresses occurring in progs are to be
incremented by size(prog, ) + size(prog,), etc. Concatenating a collection of programs
and converting the addresses in thisway is precisely what alinker does.

L oading programs

The last step that needs to be done is placing, i.e. loading the linked program into main
memory. Thisstep is so easy that it is often directly done by the linker. What it implies
isthat the linked program generally needsto be transferred from disk into main memory.
As soon as it has been placed, the loader must take care of the fact that the cpu starts
executing the first instruction. Thisisreally simple. The points to note are that:

1. Theloader knows exactly where thefirst instruction has been placed, and
2. When loading the program into main memory, the current program that is being
executed is the loader.

Consequently, the loader need essentially consist of the following instruction as its last
one to be executed:

JMP  instrl
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Figure 4.11 Extending the BASAL language with a number of service programs.

where instrl is the address of the first instruction of the loaded program that needs to be
executed.

The overall view

We can now summarize our approach to the development of a virtual computer as fol-
lows. First, in order to access the hardware in a convenient way we write so-called ser-
viceprogramsin BASAL, and compilethese programsinto PRIMAL. Theobjectiveisthat
these service programs will be made available to ordinary BASAL programs. Therefore,
we need merely writeaBASAL program, compileit, and link it with the service programs
we wish to use. After linking all the compiled programs together into one big program
we simply load the latter into main memory, and start its execution. Thisisoutlined in
Figure 4.11.

And this is where we end for now: with a virtual computer that is now easy to pro-
gram because it has a high-level programming language as its interface, combined with
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anumber of servicesthat hide hardware details of the underlying real processor. Indeed,
we have gained thislevel of abstraction not by extending the hardware but by making use
entirely of software solutions. The only topic we have not said much about is the type of
service programs that we want to make available. Thisisthe subject of the next chapter.

4.6 Discussion and further reading

The material presented in this chapter is essential for an understanding of computer and
communication systems. It formsthe bridge between systemsthat areimplemented solely
in hardware and those that are additionally implemented through software. In essence,
we have discussed only two issues: (1) the principle of constructing executabl e programs
interms of machineinstructions, and (2) the same principle, but now applied to programs
written in a high-level programming language. The crux of the matter lies in the auto-
mated execution of the latter. A quick review of what we have been doing seems to be
in order here.

4.6.1 Machinelanguages

By theend of the previous chapter, we had reached a point whereit should be clear that we
could program a computer by providing it with a series of instructionsthat it would sub-
sequently execute. In this chapter we have introduced a simple yet effective instruction
set, alsoreferred to asamachinelanguage. Our PRIMAL instruction set hasbeen derived
from an existing language, namely that of the M otorola 680x0 family of processors. The
instructions it comprises have been represented in the form of symbols, i.e. rather than
givinginstructionsintheir pureform asbit strings, we have used atextual representation.
Such arepresentation is called an assembly language. The development of instruction
sets has aready been discussed in the previous chapter, and we shall therefore leave that
issue here. But in order to complete the picture, we do need to be more specific about
the distinction between machine and assembly languages, and put the latter into context
when using high-level languages such as BASAL.

Assemblers. Using atextual representation for machine languagesisthe common way
of developing programs at that level. But this does bring us to the same problem that we
encountered with high-level languages such as BASAL, namely that we need to convert
our symbolsinto the actual bit string representations of instructionsin order to have our
assembly language programs executed. To that end, a so-called assembler isused. An
assembler ismuch likeacompiler. Itisaprogram that takes atextual representation of a
program as input and produces an equivalent representation in the form of a series of bit
strings representing the actual instructions. The point to realize when using assemblers
(or machine languages for that purpose) is that programs are highly dependent on the
hardware. In principle, an assembly program can only be executed by the processor that
implements the underlying machine language.
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Assembly languagesin practice. Aswe have stated, this hardware-dependent feature
of assembly languages is not attractive when writing programs that are inherently inde-
pendent of the processor that executes them. But there are more serious drawbacks in
using assembly languages. Above all, assembly programming is difficult. The reason
for this is that the languages are completely tailored to getting a processor to execute
instructions — they are in no way supportive when expressing solutions to generdl, i.e.
hardware-independent problems. In other words, they lack sufficient means for abstrac-
tion.

This feature is aready demonstrated by the simple examples of PRIMAL programs:
they are difficult to comprehend if you do not know in advance what they should be do-
ing. And indeed, developing assembly programs is generally an extremely error-prone
process. Many mistakes are introduced and more time is often spent in removing these
mistakes (or “bugs’ as they are called) than developing the initial program in the first
place. Nevertheless, assembly programs are still being developed to date, and mostly
just for two reasons. (1) when high-level languages lack sufficient support for capturing
machine dependencies, or (2) when performance starts playing a crucial role. We return
to thefirst issue below when putting BASAL into context.

Performance criteria are often used to justify the need for assembly programming in-
stead of using some high-level language. These justifications were completely in order
during the period when compilers for the first high-level languages became available.
Then, it was simply a fact that the machine language programs generated by compilers
were not as efficiently executable as their hand-coded counterparts. This is no longer
true. In fact, when comparing some hand-coded sol utions to those generated by a com-
piler when using ahigh-level language, the opposite can even be observed (Patterson and
Hennessy, 1994). This should come as no surprise. The great amount of expertise which
has been gathered by engineersin the last three decades has found its way into compil-
ers. This expertise is such that it cannot be expected to be comprehended in its total by
a single person hand-coding assembly solutions. Compilers are simply better in many
cases.

Despite these discouraging words on the use of assembly languages, it is our opinion
that they still form an excellent vehicle to comprehend what is going on at the level of
processors. In this sense, an assembly language is the primary representative of many
design decisionstaken during the development of processors. If you want to experiment
with writing PRIMAL programs or, more precisaly, programs for the 680x0 processors,
you will find Clements (1994) an excellent starting point. Not only does the author pro-
vide acomprehensive and well-structured approach to 680x0 program devel opment, the
book also contains a software package that will allow you to develop programs on Intel
80x86-based machines. In addition, a good introduction is also given by Bacon (1986).
Full details on the 680x0 instruction set can be found in Motorola (1986). If you have
difficulties understanding the various addressing modes of the 680x0, it isinstructive to
take alook at the PDP-11 instruction set, which inspired the devel opers of the Motorola
processor. In that case, consult Meyer (1982) who not only explainsthe PDP-11, but also
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puts the machine into context by describing computer architecture and organization.

4.6.2 High-level languages

However, as we have said, machine (or assembly languages) are not the way to go in the
case of program development. For that purpose we need to abstract from the hardware
and be able to write solutionsin the form of programsthat are relatively easy to compre-
hend. For thisreason, we haveintroduced the high-level programming language BASAL.
Thislanguage is (aAlmost) a subset of the language Ada, developed in the early 1980s. It
is instructive to see why and how Ada has been developed, and to see what its present
status is. After that, we shall briefly look at some other popular languages, motivating
our choice to use Ada as our basisfor the rest of this book.

The Ada programming language

The development of the Ada programming language is an initiative of the United States
Department of Defense (DoD). The problem that the DoD was confronted with, was the
very large amount of money spent on software development. Most administrative soft-
ware was written in alanguage called coBoL, most scientific and engineering programs
were written in FORTRAN, but the diversity of programming languagesfor so-called em-
bedded systemswasvery large. Embedded systems consist of amixture of components,
of which acomputer isjust one (Cooling, 1991). For example, an aircraft control system
typically consists of many components that measure all kinds of characteristics and that
subsequently pass these data to a computer for analysis. The computer, in turn, passes
control signals back to other componentsin order to keep the aircraft properly in flight.
A problem with embedded systems is the intricate interaction between components and
a computer. The construction of software for such systems is often a tremendous engi-
neeringtask. Theideaarosethat if asingle programminglanguagewere used inthisarea,
that software development costs would drop considerably. The development of Adain
the late 1970s and early 1980s was the resullt.

Adaistypically theresult of acommittee. With some exaggeration one might say that
it has every compromise that you can think of. Indeed, the language is a difficult one to
learn, but if you take into account the goals that had to be fulfilled, then this will come
as no surprise. The most important anong these are:

e Ada should support the development of large programs. This implied that pro-
grams should be able to be devel oped by teams of engineers, each team working on
itsown and providing other teamswith finalized parts of the complete software sys-
tem. The concept of a package (of which we have discussed only the most salient
features) was devel oped towards thisaim.

e Software parts should be amenable to re-use i.e. teams should be able to develop
solutions that could easily be adopted for other problems. The so-called generic
units was one of the results. Generic units are not an easy concept to implement.
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¢ |t should be possibleto define separately executable unitswithin asingle Ada soft-
ware system. These units, called tasks, will be introduced in Chapter 6. In prac-
tice, they not only haveintricate semanticsbut are even moredifficult toimplement
efficiently.

e For our purposes perhaps the most important requirement was that of advanced
means for data abstraction. In particular, this meant that the language should in-
corporate facilities that would allow devel opersto completely separate the logical
organization of data from its actual representation at the level of processors. We
have discussed many of these featuresin Section 4.5.1.

It is primarily for the third and fourth issues that we have chosen Ada as our base lan-
guage. To date, no other popular language has integrated these two featuresinto asingle
language the way that Ada has done. The facilities for data abstraction puts Adain a
remarkable position compared to other languages. From a practical point of view, how-
ever, Adais not always the best high-level language to use when building computer and
communication systems, as we shall discuss next. The main reason for thisis that the
language is so intricate that devel oping compilers that generate (1) correct code and (2)
efficiently executable codeis still adifficult task to accomplish. 1t ismostly for the latter
reason that other, simpler programming languages are used. However, the expressive-
ness of thelanguage makesit an excellent vehicleto demonstrate | ow-level programming
at a sufficient level of abstraction.

If you want to learn more about Ada, Barnes (1980) provides an overview of the lan-
guage and a compl ete description can be found in Barnes (1994). Using Adafor the de-
velopment of software is described in Booch and Bryan (1994). But if you really want
to know what the language is all about, you will have to consult the reference manual
(ANSI, 1983). A recent update of the language is described in | SO/IEC (1995).

Alter native programming languages

Itis completely beyond the scope of thisbook to go into any detail on programming lan-
guages. But we feel it would also be a serious omission if we did not say a few words
on high-level languages in general. In particular, we shall pay some attention to three
popular languages that in flavor are similar to BASAL, but for one or other reason were
not used asabasisin thisbook. In the following we shall briefly discuss Pascal, Modula-
2/3, and C/C++. A general overview on programming language conceptsis presented in
Ghezzi and Jazayeri (1987); a more recent presentation can be found in Bal and Grune
(1994).

Pascal. A popular language that is generally used as afirst programming language, is
Pascal (Wirth, 1971). Pascal is a descendant of so-called structured programming lan-
guages developed in the 1960s, but was one of thefirst that could easily be implemented
on small computer systems. This was due to its simplicity. As such, it has become not
only widely used for educational purposes but also for programming personal comput-
ers. Approximately 25 years after its invention, Pascal has grown into a language with
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many variants, and often ill-engineered constructs in order to support access of all pos-
sible hardware features. Also, constructs have been added in order to support the con-
struction of large programs. Nevertheless, the core language is still an excellent vehicle
for learning programming in thefirst place. Inthat sense, Wirth (1973, 1976a) will show
you how to do it the right way.

Modula-2/3.  Wirthrecognized that Pascal was not suited for systemsprogramming, i.e.
developing programs at a sufficient level of abstraction, but still being able to access all
hardware features. To thisend, and also to provide the right means for developing large
programs, he devel oped Modula(Wirth, 1976b). Modulawas |ater followed by Modula-
2 (Wirth, 1983) which to date is often used as an alternative to Pascal. The languageis
similar to BASAL in many ways, in that it allows programmers to modularize their soft-
wareinto so-called modul es (comparableto packages), and to map variablesonto specific
memory address, thus allowing a convenient means of memory-mapped I/O program-
ming. The language has been kept small, and is practically suitable for the development
of what we have called service programs. Comparing it to Ada, however, Modulalacks
the concept of atask. Instead, there is only a primitive way of specifying so-called co-
routines. If you want to know more about Modula-2, especially for low-level program-
ming, Christian (1986) will be of help.

Recently, Modula-2 has been upgraded to its third version, known as Modula-3. The
main distinction with its predecessor is that more advanced data structuring techniques
have been added, and that co-routines have been replaced with the more advanced con-
cept of so-called threads. The language still needs to find its way to widespread use. A
good introduction to Modula-3 is given by Harbison (1992), whereas Nelson (1991) pro-
vides more specific information on its advanced features.

C and C++. The C programming language is perhaps one of the most disliked, and at
the same time most used language for developing systems programs. The language was
developed by Kernighan and Ritchie in the 1970s when they wanted to have the right
means for developing an operating system. Their ideas had two remarkable results: the
C language and UNIX (we will talk about UNIX later). The language proved that it was
possible to develop ailmost entirely portable system software, in particular so-called op-
erating systems, something that until then was considered hardly realistic. The crux of C
liesinitssimplicity. Comparing it to assembly languages, a programmer has just enough
facilities to make the latter readable. Indeed, this meant that developing C programsis
not always that smple. Data abstraction was hardly provided, and certainly, there were
no advanced features such astasks. Worse still, the datatyping facilities that were incor-
porated into the language could easily be misused to do all the things that characterize
ill-engineered software. Nevertheless, when in good hands, the language is extremely
powerful and compilation of programs that can be efficiently executed on awide range
of platformsisyet to be seen supported by other languages. At present, the language has
been standardized, and the interested reader is referred to Kernighan and Ritchie (1988)
for a compl ete description of the language, augmented with many illustrative examples.
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An extension that allowsfor better program construction is C++ devel oped by Strous-
troup (1987). However, although C++ does provide for enhanced data structuring (in the
form of so-called object-oriented constructs), it does not allow low-level programming
in the way that Ada or Modula-2/3 supports. Also, you will find no concept of atask in
C++. A good source on learning C++ is Lippman (1991).

4.6.3 Compiler technology

An important topic that we have hardly touched upon is the automated trandlation of
BASAL into PRIMAL through a compiler. But if we are to use high-level programming
languages, then compilersthat can translate programswritten in such languages into effi-
ciently executable code are essential. And, of course, compilation should be correct, i.e.
the (machine) program which is the result of compilation should do exactly the same as
if the original program were immediately executed. Constructing correct compilers that
generate efficiently executable code is difficult.

The correctness of the compiler is often affected in an unexpected way: the language
that isto be translated is simply not well defined. This may seem strange but you have
to realize that developing alanguage is no easy task. The consequence may be that some
language semantics may simply not have been provided, or may not be precise enough
to allow a compiler developer to achieve a correct set of translation rules. To thisend, a
large area of (theoretical and practical) research has been explored for developing means
to expressthe semanticsof programming languagesin acompl ete and unambiguousway.
We have skipped thissubject entirely. A good starting point for the fundamental s of spec-
ifying what a programming language stands for is Watt (1991).

But assuming that in some way or other we have a good idea of the syntax and se-
mantics of a programming language, we are still confronted with the considerable task
of actually devel oping the compiler. Fortunately, alot of work can be avoided by making
use of so-called compiler-compilers. A compiler-compiler is a program that generates
acompiler, or at least an important part of it. What it meansin practice is that the less
critical parts of acompiler, namely the lexical analyzer and the parser, can be generated
almost entirely if a precise definition of the syntax of alanguage is given. Without go-
ing into any further details here, the reader isencouraged to experiment with the Lex and
Yacc toolkit (Mason and Brown, 1990) which is standard available for UNIX systems,
and for Ms-DOS systems. In that respect, it is also worth taking alook at Kernighan and
Pike (1984) in which the implementation of a simple desk calculator is given.

Thereally difficult part of compiler construction startswith the actual trandlation rules,
i.e. taking a parse tree as input and generating code. The problem is that if we were to
apply simple code generation rules such asthe onesillustrated in Section 4.4.2 the result
would be an unacceptable inefficiently executable program. Instead, we have to con-
sider all kinds of code optimizations. In practice, this often means that the code genera-
tor should take into account that (1) hardware resources (such as memory and registers)
are optimally used, and (2) code should not be generated on a per-statement basis, but
rather for complete portions of a program. The second requirement simply states that a
code generator can perform better if it first analyzes what a series of statements actually
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accomplishes, instead of just generating code for each statement separately. Intuitively,
thisisclear. How it can berealized in a compiler is something totally different. A brief
but highly instructive and readabl e account on code generationisgivenin Aho and Sethi
(1977).

A classic and excellent textbook on compilersis Aho et al. (1986). A practical, il-
lustrative approach on how to construct compilersis presented in Fischer and LeBlanc
(1991). Loadersand linkersare discussed in Graham (1975) and Presser and White(1972).
But, asisthe case with much intricate software, it is probably most illustrative to look at
the actual implementations of compilers. Unfortunately, few references actually provide
the source code of compilers. Nevertheless, the code presented in Welsh and McKeag
(1980) describing acompiler for asubset of Pascal will be agood, and well-documented
starting point. Many details can also be found in Barron (1981). One of the few books
that provide many details of source codeis Holub (1990), in which a complete compiler
(writtenin C) is described for a subset of C.

Exercises

1. Writing down PRIMAL instructionsisfine, but how do we get the computer to “un-
derstand” these instructions?

2. Explain the difference between a JuMP and BRANCH instruction. Take into ac-
count the role of the status register.

3. Why isit not should agood ideato also map the registers of the PRIMAL processor
into the same address space as main memory? It would seem that we could do with
far fewer instructionsin that case.

4. Can you think of a good reason why PRIMAL does not have any instructions for
dealing with floating-point numbers?

5. Explainindetail what happenswhen using subroutinesinaPRIMAL program. Take
into account the working of the stack and the role of the program counter.

6. Why istheinstruction

BSR offset

not exactly the same as executing the two instructions

PUSH PC
BRA offset

7. Consider the following BASAL statements:

foriin 1..12 loop
X=X+ 2;
end loop ;
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How would you expressthisin PRIMAL?
Consider the following declarationsin BASAL:
type SOME_RECORD is
record
field1 : INTEGER,;

field2 : INTEGER;
end record ;

someRecord : SOME_RECORD;

How would you represent the variable someRecord in PRIMAL?

Adapt the program shown in Listing 4.4 so that initialization is done column by
column.

What kind of PRIMAL addressing mode would you use when representing BASAL
array variablesin PRIMAL?

Explain the difference between the three types of parameters supported by BASAL
procedures.

Modify the package STACK_PACKAGE sothat, for example, thesituationthat avalue
is pushed onto a full stack is properly handled. (Hint: provide additional parame-
tersthat indicate whether an operation succeeded or not.)

Outline the implementation of the package body for the parameterized package
GENERAL_QUEUE as given on page 172.

Provide an outline for representing BASAL proceduresin PRIMAL. Assume that a
procedure has no parameters.

*How would you expect that an input parameter as used in BASAL is represented
in PRIMAL? And what about an output parameter?

Explain in your own words what the underlying principles are of avirtual proces-
Sor.

*What is the difference between compilation and interpretation?

Explain what is actually specified by a representation clause, and why you would
want to have such clausesin thefirst place.

Do representation clauses make any senseif the underlying real processor does not
support memory-mapped 1/0?

Justify the term “virtual device” asintroduced in Section 4.5.2.

Explain what is meant by a service program, and how such programs can be seen
as an extension to alanguage such as BASAL.
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Chapter 5

Operating systems

In this chapter we consider the problem of extending a computer with service programs
that will allow us to execute several programs simultaneously. In essence, we shall dis-
cussthe core functionality of so-called operating systems. Therefore, we start with iden-
tifying asimple problem which can only be solved by acomputer that supports multiple,
independent programs. From there, various derived problems need to be solved. In par-
ticular, we consider memory management, scheduling issues, and program interference.
We finish our discussion by taking acloser ook at some architectural features of operat-
ing system kernels.

5.1 Support for multiple programs

In the previous chapter we demonstrated how we could implement a virtual processor,
and how we could subsequently extend its programming language by constructing ser-
vice programs. Most of these programs are directly or indirectly related to managing
peripheral devices. In thissection, we start with taking a closer look at one such service
program, namely onethat isused to transfer databetween adisk and main memory. What
we will seeisthat if no special measures are taken during the data transfer the cpu will
simply have to wait until the transfer is completed. Thisis realy something we do not
want. Instead, it would make more sense to put the cpu to work by letting it execute the
instructions of some other program. And just as simple as this strategy may seem, we
will demonstrate that it raises many problems that need to be solved. These problems,
and their solutionswill be discussed in this chapter. But let’s start by taking alook at the
source of all the troubles we are yet to encounter.

511 Anexample: disk I/O

Imaginethat our processor liesat the heart of acomputer to which anumber of peripheral
devicesisattached. In particular, assume we have asimple hard disk which isinterfaced

201

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



202 Operating systems

Table 5.1 Theregisters, their mapping, and their meaning of the example disk controller

| register | address | semantics |
DISKSECTOR 10 specifies the sector number.
DISKTRACK 12 specifies the track number.
DISKSURFACE 14 specifies the required surface.

DISKMEMADDR 16 specifies the start address in main
memory where the datais|ocated that
isto be either read from or written to
the hard disk.

DISKCTRL 20 usedtoinitiatethe actual datatransfer.

to the computer by an I/O controller which we refer to as the disk controller. We are as-
suming that the controller usesdirect memory access(DMA) for datatransfer. Aswehave
explained in Chapter 3, this means that the controller can directly access main memory,
from which it can either copy data into its internal buffer or, similarly, copy data from
its buffer to main memory. In order to do so, it must know (1) exactly where datais (to
be) located on the disks of the actual hard disk, (2) where it is (to be) located in main
memory, and (3) how much data it needs to transfer. This means that on the one hand,
the surface, the track, and the sector are to be specified, as well as on the other the start
address of the data in main memory. With respect to the third point, we shall ssmplify
matters and assume that our disk controller always transfers datain blocks of 512 bytes.
Communication with the disk controller takes place through a number of 16-bit regis-
terswhich are accessible via memory-mapped 1/0. The registers and their addresses are
specified in Table 5.1.

It isimportant to recall that our PRIMAL processor assumes that memory can be ad-
dressed per byte. This meansthat each (16-bit) register DISKSECTOR, DISKTRACK, and
DISKSURFACE occupies 2 bytes. Register DISKMEMADDR is used to contain the start
address in main memory of the data that isto be transferred. In the case of PRIMAL, we
need 32 hits, i.e. 4 bytes, to store such an address. Register DISKCTRL isassumed to be
8 hitswide. The disk controller will only start transferring dataif thefirst, i.e. left-most,
bitis“1”. Assoon asdatatransfer has completed, we assumeit then resetsthisbitto“0”.
The second hit is used to indicate if data should either be written to disk (in which case
it should be set to “0”) or read from disk (to whichend itissetto“1").

Now first consider a software specification for our hard disk. This can be done by
means of the BASAL package specification DISK, givenasListing 5.1. We assumethe ex-
istence of apackage MEMORY that providesadatatype MEMORY.ADDRESS, which can be
used for representing memory addresses. Our own data type DISK.ADDRESS is used for
specifying the exact location of dataon adisk. Notethat the representation clausesensure
that a variable of type DISK.ADDRESS can be mapped to registers DISKSECTOR, DISK-
TRACK, and DISKSURFACE respectively. The procedures READ and WRITE are used for
transferring data. In both cases they take a disk address and a memory address as input,
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package DISK is
—— We assume that there is a package MEMORY available that will provide
—— us with, at least, a data type ADDRESS representing locations in main
—— memory. Recall that this data type is to be referenced using a dot
—— notation, i.e. MEMORY.ADDRESS.

subtype CARDINAL is INTEGER range 0..65535;
for CARDINAL'SIZE use 16;

—— Analogous to MEMORY.ADDRESS, we define a separate data type ADDRESS
—— for representing where data blocks are located on a disk. Because we are

—— using memory-mapped I/O, we also have to provide the representation

—— of this data type in main memory.

type ADDRESS is
record
sector, track, surface : CARDINAL;
end record ;

for ADDRESS use
record
sector at O range 0..15;
track at 2 range 0..15;
surface at 4 range 0..15;
end record ;
for ADDRESS'SIZE use 3*16;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS);
procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS);
end DISK;

Listing 5.1 The specification of the package DISK.

after which the disk controller handles the transfer. An implementation of our package
DISK isgivenin Listing 5.2.

First, we have used three variabl es headPosition, memoryAddress, and diskControl which
are mapped onto the respective registers of the disk controller. The implementations of
the proceduresREAD and WRITE arerather straightforward. For example, in order to read
ablock of data, we first copy the right disk address and memory address into the appro-
priate registers, set the second bit of register DISKCTRL, and start the data transfer by
setting the leftmost bit to “1” by the assignment

diskControl(0) := 1;
Then, we simply wait until the hardware resets this bit to “0” again, indicating that data

transfer has completed. Thisisdone by repeatedly checking the value of the leftmost bit
through the while statement (execution of anull statement has no effect whatsoever)
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package body DISK is

subtype BIT is INTEGER range 0..1;
type BITSTRINGS8 is array (0..7) of BIT;
for BITSTRING8'SIZE use 8;

headPosition : ADDRESS;
memoryAddress : MEMORY.ADDRESS;
diskControl : BITSTRINGS;

for headPosition use at 10;
for memoryAddress use at 16;
for diskControl use at 20;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS) is
begin

headPosition := source;

memoryAddress := destination;

diskControl(1) := 1; —— set to read data from disk to memory
diskControl(0) := 1; —— start data transfer
while diskControl(0) = 1 loop
null ;
end loop ;
end READ;

procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS) is
begin

headPosition := destination;

memoryAddress := source;

diskControl(1) := 0; —— set to write data from memory to disk

diskControl(0) := 1; —— start data transfer

while diskControl(0) = 1 loop

null ;

end loop ;

end WRITE;

end DISK;

Listing 5.2 An implementation of the package DISK.

while diskControl(0) = 1 loop
null ;
end loop ;

This type of waiting is aform of polling. Within a program P, a procedure is called in
which acheck takes place on aregular basisto see whether some external event hastaken
place. In our example, the external event is the setting of the leftmost bit to “0” by the
disk controller. Because thisis the only event that is checked, and moreover because it
is checked continuously, this form of polling isreferred to as busy waiting.

Now the point isthat data transfer may take sometime, at |least in the order of several
to tens of milliseconds. This may not seem much, but if you realize that processors to
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MAIN_PROCEDURE

/Q\
AN
NN

write ()

READ

Figure 5.1 An example of related procedures, together forming a program.

date can execute in the order of (tens of) millions of instructions per second, it should be
clear that we are indeed wasting valuable cpu time. Thereisone obvioussolution to this
problem: let the cPU devote itstimeto executing instructions of some other program P*.
And here’'s where the problems start.

5.1.2 Theproblems

We first have to identify the programs that are candidates for having their instructions
executed. Now how did we execute the instructions of, for example, READ in the first
place? In general, thisprocedure will have been called from within some other procedure
P1 also forming part of our program P. In turn, we may expect that P1 has been called
by yet another procedure, say P2, and so on. In the end, there will be amain procedure
whoseinstructionswere executed by the processor and which eventually resulted in call-
ing the procedure READ. Thisisillustrated by the graph shown in Figure 5.1 in which a
node represents a procedure, and an arc from node p to q the fact that procedure p will
sometime during its execution call procedure g. A program isthus considered as consist-
ing of amain procedure and all those procedures that are eventually executed due to the
fact that they are directly or indirectly called from the main procedure.

Returning to our initial problem of not wanting to waste cpu time during data trans-
fer on behalf of aprogram P, we wish to identify another program P* whose instructions
can be executed in the meantime. Denote by P the collection of procedures belonging to
program P. Assumethat dataisto be transferred between main memory and a peripheral
device on behalf of a procedure p € P. Now first suppose we select another procedure
q € P whose instructions are to be executed in the meantime.® It is easily seen that se-
lecting g is not only senseless, it iswrong. The whole idea of executing instructions of
P is that this occurs in a purely sequential order. If we were to simply start executing
some other instructions of P (now contained in our selected procedure g), we would vio-
late this sequential execution order —something which issimply not permitted. The only
solution, therefore, isto select procedures from some other program P* which do not be-

11t should be noted that the assumption that we coul d even select such aprocedureis not redlistic. How-
ever, the assumption is made here for the sake of argument only.
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longto P. Inthat casewewouldreally let the cPU executeinstructionsfrom acompletely
different set of procedures. For now, assume that we have such a program P* available.
Introducing multiple programs then quickly leads to the following issues:

Problem 1. Placing several programsin main memory. The first problem we will
have to deal with is the placement of more than one program into main memory. This
isnot really amajor problem until you realize that programs may have varying memory
requirements in terms of size, and that these requirements may even change during the
execution of a program (think of stacks, for example). Also, we have to ensure that the
execution of instructions belonging to one program does not corrupt the datathat belongs
to another program.

Problem 2: Getting a suitable program. Stating that we can ssimply let the cPu exe-
cute instructions from some other program isfine, but doesimpose two problems. First,
we have to find a suitable program. Clearly, a program that is also waiting for the com-
pletion of 1/0 is not a candidate for the cPu. We are thus confronted with a scheduling
problem. And even if we have found a suitable program, our problems are not over. In
particul ar, we have to address the question how we can let the cPU continue with execut-
inginstructionsfor program P*, but later continuewhereit had |eft off inprogram P. This
isthe problem of context switching and which we shall briefly discussin Section 5.3.1.

Problem 3: Avoiding program interference. Thisisaserious problem. Suppose that
we have duplicated the package DISK so that program P* can also issue data transfers for
the hard disk. Duplicating the package, i.e. placing another copy of it into main mem-
ory, will not lead to duplication of the hard disk. In particular, all communication with
the disk controller still proceeds through its single set of registers. And as long as the
disk controller is doing its work on behalf of program P, P* should be prohibited from
manipulating these registers. Thisisthe problem of program synchronization, atopic to
which we will also need to pay attention.

Problem 4. Reactingto hardwaresignals. Our problems started with the fact that we
wanted the CPU to execute the instructions of another program. Thisisfine, but one way
or another we will have to complete the execution of the program that we left off when
thel/Oisfinished. Thisisaproblem of interrupt handling. Itisnot amajor problem, but
it does require that the software for handling peripheral devices be properly organized.
In general, we shall see that this problem can be generalized to that of properly handling
hardware signals.

In the following four sections, each of these problems will be further explained and so-
lutions presented. At the end, we will have discussed the basic functionality of an oper-
ating system. We conclude this chapter by taking alook at operating systemsin general,
and will show how we have been working towards the implementation of arather sophis-
ticated virtual computer.
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5.2 Memory management

Thefirst problem that we are going to tackleisthat of placing several programsinto main
memory.

5.2.1 Program relocation

Suppose we have written a BASAL program, i.e. a collection of packages consisting of
procedures, and that these packages are subsequently compiled to PRIMAL code. Aswe
have discussed, the compiler will need to allocate memory locations to variables, and
also keep track of the memory locations that contain the generated PRIMAL instructions.
If we knew for certain that we would always have the main memory all to ourselves, we
could instruct the compiler to allocate memory locations to data and instructions starting
at, say, address 0. However, if several other programs are also to reside in main memory,
we haveto be careful about allocating memory locationsfor they might already have been
taken for usein another program. When giving the matter some thought, thisapproachis
seen to be unworkable. For onething, it isunacceptableto | et the process of compilation
depend on the previous allocation of memory to programs that have nothing to do with
the program that is currently being compiled.

But why not pretend that we have main memory all to ourselves? The only thing we
need to do is adapt the hardware so that it can make a distinction between relative and
absolute addresses. A relative address in this case is always considered to be relative
with respect to the first address of memory that is occupied by a program, where it is
assumed that a program always uses a contiguous piece of main memory. If we ssimply
register thisfirst address, we can easily convert relative addresses to absolute addresses
which denote actual physical memory locations. What it meansisthat we implement (in
hardware), afunction ABSthat converts arelative address a.¢ to an absol ute address ag,s
according to

aps = ABSaw)
ABS&e) = &+ apase (5.2)

where ap, denotes the so-called base address, the absolute start address of a program.
This principleis shownin Figure 5.2.

The figure illustrates a program of which the translated procedures have been placed
in a contiguous piece of memory starting at address 1400. This start address has been
loaded into the so-called base register. Relative addresses are given to the left of the
program, starting at relative address 0. At relative address 100, the value 2304 has been
stored. Now assume the PRIMAL instruction

MOVE 100, DO

is executed. In this case, addresses are taken relative with respect to the value stored in
the base register. In other words, in order to obtain the right data, we first add the value
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1400

1500

base register

Figure 5.2 Using relative addressing and its conversion to absol ute addresses.

contained in the base register to each address occurring in an instruction, in this case
resulting in the absolute address 1500. In our example, the value 2304 is then loaded
into register DO. The only exception to thisrule iswhen variables have been allocated to
specific memory locations, as is the case with memory-mapped /0. Consequently, the
PRIMAL instruction set will haveto providethe meanstoindicateif addressingisrelative
or not. It should be clear, however, that cal cul ating the absol ute addresses can be entirely
donein hardware.

5.2.2 Procedure protection

There is till another fundamental problem when several programs may reside in main
memory: how we prevent a program from corrupting the data of another program. Asan
example, consider the following piece of PRIMAL code, a subroutine which is assumed
to be a part of a program:

NASTY:

MOVE #END, AO Move the address of the last instruction into register AO
LOOP: MOVE #0,(A0) And store 0 at the location identified by A0

ADD #4, A0 Increment the address stored in AO by 4

BRA LOOP And repeat this forever
END: RTS This instruction will never be executed

The point isthat as soon as NASTY is called, we first save the address of the last instruc-
tion of the subroutine. From that point on, we simply store the value O in this memory
location, as well as in each location beyond NASTY. Although we may expect that the
hardware will refuse to execute any more instructions at the point when memory is ex-
hausted, clearly, if no special measures are taken we will presumably have corrupted a
lot of data. In particular, al the datathat is stored in those memory locationsthat are lo-
cated at addresses higher than thelast instruction of NASTY will have been changed. Now
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Figure 5.3 Using hardware to check if addresses are referenced within the proper limits.

if some of this data belonged to another program that was aso placed in main memory,
our subroutine isaproblematic oneindeed. A rather unacceptably problematic one to be
sure.

To solve this problem, computers may have in addition to a base register, alimit reg-
ister in which the absolute end address of a program is saved. Each time an instruction
addresses some data or the address of a procedure or subroutine, thisrelative addressis
first converted to an absolute address, and then checked against the end address. If itis
out of range, the execution of the instruction will simply not take place, but instead, an
out-of-limit signal will be generated (we will return to thislater). In terms of our above-
mentioned function ABSthat converts relative addresses, we have

B _ ) adtapmse  1f0< & < Qimit — Apase
Babs = ABS(arel) = { out-of-limit otherwise (5.2

The use of alimit register is shown in Figure 5.3. Note that for each program there will
be a separate value for the (base register, limit register) pair.

5.2.3 Memory allocation

Now that we have seen that we can load a program anywhere in memory without having
to affect itsaddressing, it istimeto consider how we can manage the placement of several
programs. Suppose we have five programs as shown in Table 5.2, where the completion
time denotes the time to compl ete the program from the moment it is placed in memory.
The size of each program is given in units of kilobytes (KB).2

21 KB = 1024 bytes.
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Table 5.2 Five programs to be placed into memory
| program | P P P Py B

size 1024 595 320 560 482
completiontime | 2 3 4 4 2
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Figure 5.4 Placing programs into memory.

Now assume we have a total main memory of 2048 KB at our disposal. We then at-
tempt to load as much programs in main memory as possible, starting with P;. Initialy,
programs Py, P,, and P; can be loaded, as shown in step 1 of Figure 5.4. After 2 time
units have elapsed, program P; is finished and can be replaced by Py, so that we obtain
the situation as shown in step 2. Finally, program P, will finish after another time unit
has elapsed, so that P5 can be loaded into memory.

Although everything seemsto bein order, it is, in fact, not. Imagine what would hap-
pen if we had a very large number of programs. In the course of time, memory would
be partitioned into contiguous chunks each allocated to a program, and a number of free
chunksthat can still be used. The problem isthat the free chunks tend to scatter all over
memory, and moreover, also tend to grow increasingly smaller. And as free chunkstend
to become smaller, it should be clear that the maximum size aprogram can have in order
to be loaded into memory decreases as well. The result is that we have what is called
a completely fragmented memory. The solution to this problem is quite ssimple. If an
allocated chunk of memory is no longer needed (so that it becomes free), we simply try
to amalgamate it with a neighboring free chunk. This principleis shown in Figure 5.5.

The question that needs to be addressed is how we can keep track of allocated and
free chunks of memory. The answer is quite simple. We do this by means of software.
First, it isnot hard to imagine how we can represent a contiguous chunk of memory. We
merely need to record its start address and its size. This can be represented by means of
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Figure 5.5 The process of returning a previously allocated chunk of memory.
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the following BASAL datatype:

type MEMCHUNK is
record
startAddress : MEMORY.ADDRESS;
sizeOfChunk : INTEGER;
end record ;

where, again, we assumethat the datatype ADDRESS is provided by apackage MEMORY,
used for representing memory addresses. Inaddition, we simply need to keep track of the
free memory chunks, to which end we can use an array freeChunks declared as:

freeChunks : array (1..NCHNK) of MEMCHUNK;

In this case, we assume that a maximum of NCHNK free chunks can be administrated.
Now, in order to load a program into main memory (which, as we have seen in Sec-
tion4.5.3, isdoneby meansof aloader), theloader will haveto request acontiguous piece
of available memory. Later, when the program hasfinished, thismemory chunk will have
to be returned. Therefore, if we implement our memory administration by means of a
package MEMORY (the same one that provides us with a definition of what a memory
addressis), we can expect that its specification will be quite similar to the following:
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package MEMORY is
type ADDRESS is ...;

procedure REQUEST(
size : in INTEGER,; start : out ADDRESS; done : out BOOLEAN);
—— Request a contiguous piece of free memory of [size] units. If allocation
—— succeeded, [start] will indicate the start address of the allocated chunk and
—— [done] is set to TRUE. If allocation was not possible, [done] is set to FALSE.

procedure RELEASE(start : in ADDRESS; size : in INTEGER);
—— Return a contiguous chunk of memory starting at address [start] and having a
—— size of [size] units.

end MEMORY:

The actual BASAL implementations of these two procedures is not very interesting. It
merely involves manipulating the array freeChunks, although, admittedly, the amount of
codeismorethan you might expect at first. However, thereisnothing really sophisticated
about theimplementation. Theimportant point to noteisthat we have constructed apiece
of software in the form of a service program MEMORY that allows us to keep track of
available memory. Combined with the hardware solutions for program relocation and
protection, we are now at least capable of placing multiple programsin a single main
memory.

It is worth taking a closer look at two more advanced methods of memory manage-
ment. (\We note that the following two subsections can be skipped on first reading.)

> 5.24 Advanced memory management: paging

The main disadvantage with memory management as described above is that whenever a
large program isto be placed into memory it may take along time before there is a contigu-
ous block of free memory available in which the program fits. This problem can be allevi-
ated by making use of a paging mechanism. Paging is the subject of this section.

Principles of paged systems

In paged computer systems memory is partitioned into equally sized pages. Typically, the
page size (which is generally fixed per computer system) ranges between 128 and 4096
memory locations. An addressis broken into apage number and a page offset, asillustrated
in the following example.

Example5.1. Suppose that main memory consists of 2° = 1048576 locations, and that
it is partitioned into pages each having a size of 2 = 256 memory locations, so that there
isatotal of 2% div 28 = 212 = 4096 pages. If an instruction in a program refers to address
26251, then thisis converted into a page number p and page offset o0, according to

p = 26251 div 2 = 102
0 = 26251 mod 2 = 139
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where “div” denotes integer division and “mod” is the modulo operator, i.e.

26251 mod 22 = 26251 — (26251 div 2) x 28 = 139

Calculating the page number and page offset may seem alot of work, but due to the fact that
addresses arejust bit strings, and page sizes are aways chosen amultiple of 2, we can easily
find the page number and offset by stripping off bits in the representation of the address.
To illustrate, because our example computer has a total of 2° memory locations, we can

represent addresses as bit strings of length 20. In that case, address 26251 corresponds to
the following it string of length 20:

26251 — 00000110011010001011
12 8

As can be readily verified, the last 8 bits correspond to the binary number 1000101% =
139;9, whereas the first 12 bits correspond to 110011G = (26251 div 22) = 102;.

|

Now suppose we have a program that cannot be loaded into memory because there is not a
contiguous block of free memory available that islarge enough for it. What we can do then
ispartition the program into logical pages and subsequently try to assign physical pages that
are available in memory. Let's see how thisworks. Again, assume that we have a page size
of 256 memory locations, and that our program requires atotal of 9 logical pages, numbered
Lo,...,Lg. Now suppose that the first free page in memory is physical page R. What we
then do is use this page for logical page Ly. In other words, we apply the mapping

Lo«— Ps

Wethen continue our search. If the next free pageis page By, wethen assign Ly to Pog. This
process continues until we have assigned all logical pages to free physical pages. While
doing so, we keep track of these mappings in a so-called page table. In the end, we may
find that for our example program we have constructed the following table:

|Oglcal page: | Lo | L1 L, L3 La Ls Lg L, Lg
physical page: | Bs | Py | Ps7 | Pagg | Pros | Pig7o | Posaz | Pasasa | Pasoz

What happens is that whenever an instruction is executed that refers to the relative address
arq, this relative address is converted to an absolute address aps Using the page table. In
terms of our address-conversion function ABS, we can specify this as follows. Denote by
PAGEpr[L] the physical page corresponding to the logical pageL for agiven apage table PT.
Let K denote the page size. In that case, it should be clear that for any relative address gy
we can find itslogical page LOG(a4 ), and thusits corresponding physical page PHYS gq )
as
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LOG(ay) = &g divK
PHYSae) = PAGEpr[LOG(ar)]

We then have for the absolute address gys:

aaps = ABS(ae) = (PHYS(a) x K)+ (ara mod K) (5.3)

For example, suppose our program contains the instruction

MOVE 1000, DO

Address 1000 is then converted to the logical page number Lygoo/256 = L3, and the offset in
that page 1000 mod 256 = 232. Because Lz was mapped to physical page Bgg Which was
recorded in the page table, we see that the instruction is effectively converted to

MOVE 74216, DO

where 74216 = 289 x 256 + 232. Note that, in the context of our discussion on program
relocation, the address 1000 is indeed arelative address, whereas 74216 is an absolute ad-
dress. However, the base register in paged computer system has been completely replaced
by the concept of a page table.

A note on the pagetable

An interesting aspect of paged systems is the interaction between hardware and software.
Obvioudly, if we want these systems to work efficiently, conversion of logical to physical
page humbers should be done by the hardware. But in order to do so, we need a page table.
What we can do is put this page table in main memory, and adapt the hardware such that it
has an additional pagetable register that contains the address of the first entry of the page
table. Each time amemory location is referenced, the hardware interprets the logical page
number as an index in the page table. To that end, it adds this number to the value stored in
the page table register in order to locate the physical page number.

Example5.2. Returning to our example computer which had 2° memory locations avail-
able, we can use the first 12 bits as an index into a page table that can contain 22 = 4096
entries. The relative address 1000 corresponds to the following bit string:

1000 — 000000000011 11101000
12 8

We then take the value of the entry #3 in the page table to find the physical page to which
logical page L3 has been mapped. This principle isillustrated in Figure 5.6.

|
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Figure 5.6 Address conversion in paged computer systems.

The important point to note here is that a memory manager which is entirely constructed
in software fills a page table with appropriate physical page numbers. The hardware sub-
sequently uses this table to do the actual conversion from logical to physical page number.
To illustrate, suppose aloader wants to place a program into main memory. In that case, it
will first request the memory manager for a page table, instead of just a contiguous chunk
of memory as previously. A page table can be represented in BASAL by the following data

type:

type PAGETABLE is array (0.. MAXPAGES-1) of INTEGER range 0..MAXPAGES-1;

where MAXPAGES indicates the maximum amount of pages that can be allocated to a pro-
gram. Now, for each program there will be a separate variable table of type PAGETABLE that
contains the mapping of logical pages to physical pages. This page table will be filled by
means of the service program implemented as the package MEMORY. As soon as this has
been done, the loader need merely load the address of the variable table into the page table
register in order for the program to be executed.

Sharing pages

An important advantage of paging isthat certain pages can be shared by several programs.
For example, the instructions of a program can be considered as non-modifiable data® |f

3Writing so-called self-modifying code was once considered to be awell-engineered solution to prob-
lems. A program could modify itself by treating its own instructions as data, and subsequently modify the
bit strings that made up certain instructions. Today, you should not say to anyone that you like this.
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Figure 5.7 Sharing of pages in a paged computer system.

we were to duplicate instructions because several programs execute the same procedures,
then it would seem that we are wasting memory. Instead, it would be more efficient if the
instructions were placed in memory once, and used by several programs. Paging offers us
aconvenient means to implement this scheme.

When compiling a program, the compiler can separate the program into at least two dif-
ferent, non-overlapping regions. One, which we refer to as the data region, contains all
the variables associated with the program. The data region is unique to each program. The
second region, called the code region, contains only instructions. The code region may be
shared with other programs. (Note that making a distinction between data and code regions
isindeed feasible. What it means is that the program counter is always loaded with an ad-
dress that refers to an instruction located in a code region, whereas almost every other ad-
dress refers to data located in the dataregion.) In order to load a program into memory, we
start with requesting a page table for the data region. Then, if the code region is aready
located in memory (on behalf of another program), we merely need to fill in the remain-
ing entries of the page table so that they refer to the associated pages containing instruc-
tions. Otherwise, the page table will have to be handled by the memory manager because
wewould need additional memory to place the code region aswell. This principle isshown
in Figure 5.7.

An excellent candidate program for sharing its code region is a service program. Recall
that in our description of the problem of avoiding program interference we assumed that we

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Memory management 217

had duplicated the package DISK on behalf of a program P. We needed to duplicate the
package in order to let this program also make use of the hard disk. Using shared pages, it
is then necessary to assign only additional pages for the variables that occur in the package.
All translated instructions need not be duplicated but can instead be located in a number of
shared pages. Each time a new program is to be executed, pages are allocated for its own
data and code regions, plus additional pages for containing the data related to the service
programs.

Thereis, however, animportant exception to thisrule and which isthe source of many prob-
lemsrelated to program interference. Without going into too much detail at thispoint, recon-
sider our package MEMORY on page 211. Now clearly, the variabl e freeChunks which records
the available chunks of memory should not be copied for each program, but instead, should
be shared between all programs. Thisis caused by the fact that it is global information on
the availability of main memory that should be maintained independently of the program
currently being executed. What this means is that each reference to this data should not be
considered as a relative reference, but rather as an absolute reference to a specific part in
memory where this variable has been stored. How can we achieve this? Giving the matter
some thought, it is not hard to see that we can actualy store this, and similar global vari-
ables, in aseparate physical page that isto be shared by all programs. Indeed, this solution
is perfectly in order, except for the fact that we need to prevent two programs from modify-
ing that page at the same time. How such program interference can be avoided is discussed
below.

5.2.5 Advanced memory management: virtual memory

In the previous section we discussed how relative addresses can be converted to physical ad-
dresses by using apagetable. Sofar, we have assumed that the length of arelative addressis
the same as that of a physical address. This means that the logical address space is exactly
the same as the physical address space. Perhaps somewhat surprisingly, we can do better
than that. In particular, we can make the logical address space considerably larger than the
physical address space. In other words, to programsit will seem asif the size of main mem-
ory ismuch larger than it actually is. This technique, which we shall briefly describe here,
is therefore known as virtual memory?

In order to extend the logical address space beyond the size of main memory, a part of sec-
ondary storage (i.e. disks) is used to store logical pages that currently cannot be placed in
main memory. This part of the secondary storage is a'so known as the swap space. What
happens is the following. First, asin paged systems, a memory manager maintains a page
table indicating the relation between the logical pages of a program and the actual physical
pages with which they are associated. However, whereas in pure page systems each logical
page was always associated with a physical page, this need hold no longer for virtual mem-
ory systems. Instead, alogical page may temporarily not be associated with aphysical page
implying that it has not been placed in main memory. Thisisillustrated in Figure 5.8. An
additional bit is used to indicate the presence of a page in main memory. In the example,

4We note that this technique has until recently been used only infairly large computers. However, now
you can buy laptop computersthat also support virtual memory.
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Figure 5.8 Address conversion in virtual memory systems.

we have expanded the width of an address from 20 to 24 bits, effectively leading to avirtual
memory that is 2* = 16 times larger than physical memory.

In terms of our address-conversion function ABS we can then express the calculation of an
absolute address as follows. We use the notation PAGEst[L| =L to indicate that the logical
page L is presently not associated with aphysical page, i.e. L isnot placed in main memory.
Using our previous notations LOG and PHYSwith

LOG(ag) = &g divk
PHYSae) = PAGEpr[LOG(ar)]

We then have for the absolute address gys:

(PHYS(arg) x K) 4 (arg mod K) if PHYS(a¢) #L (5.4)

Bevs = ABS(2ra) = { out-of-memory otherwise

This definition of ABSstrongly resembles (5.3) except for the fact that calculation of an ab-
solute address may fail because there is no associated page. Also, you should realize that in
the case of pure paged systems we have

max{are } = max{ s}

whereas in virtual memory systems,

max{are } > Max{aaps}
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Now suppose an instruction refersto an addressin alogical pagethat is currently not placed
inmain memory. Thismeansthat the dataor instructions contained in that page are till to be
found in the swap space and that, one way or the other, this page will have to be transferred
from swap space to main memory in order for the CPU to continue execution of the program.
Of course, this can be done by yet another service program. The moment it is detected that
alogical page should be transferred to main memory, this service program is automatically
invoked (how thisisactually doneisdescribed further below). The service program initiates
adatatransfer from swap space to main memory, thereby merely copying the logical page
from swap space. As soon as the requested page is in main memory, the memory manager
updates the page table to which the logical page belonged, and the execution of the program
can proceed where it had |eft off.

Of course, there is a problem when we are running low on available physical pages. In that
case, room will have to be made by removing one or several other logical pages from main
memory. Animportant design decision ischoosing theright replacement strategy that pre-
scribeswhich logical pageisto beremoved. Toillustrate, suppose wewereto remove alog-
ical page that will soon be needed again. In that case, another datatransfer will soon haveto
be initiated again, a situation which we would preferably want to avoid. Page replacement
strategies are targeted towards finding the best page to replace. But how do we know what
the best page is? When giving the matter some thought, you will come to the conclusion
that finding such a page requires knowledge of which pageswill bereferenced in the future.
That's asking rather too much.

Therefore, to aleviate such problems, most strategies attempt to select the least recently
used logical page, i.e. alogical page to which no reference has been made for along time.
The hypothesisisthat such alogical page can be expected to remain unreferenced for some
time in the future. In addition, logical pages that have not been modified while placed in
main memory are preferred to modified ones. Because the memory manager always copies
alogica page when placing it in memory, non-modified pages can simply be removed with-
out having to update their counterpart as stored in the swap space. Modified pages thus re-
quire an additional datatransfer from main memory to the swap space. Asit turnsout, main-
taining an administration in order to find the least recently used page is so time-consuming
that compromises have to be made. What happens in practice is that the hardware gener-
ally provides an additional two administration bits per physical page. The reference bit is
automatically set whenever a reference to that page is made. The modify bit is set by the
hardware whenever data contained in the page is changed. Furthermore, the reference bitis
periodically reset to 0 so that referenced pages that have not been referenced for sometime
will appear as non-referenced ones. So, for example, a page with its reference bit equal to
0, and its modified bit equal to 1, indicates that this page has been modified, although some
time ago. We shall not go into further detail here, but instead refer the interested reader to
Silberschatz and Galvin (1994) or Tanenbaum (1992).

5.3 Process management

At thispoint it should be clear that we can indeed place several programsin main mem-
ory. This brings us to our next problem, namely finding a suitable program with which
to continue when 1/O is being done on behalf of another program. But before doing so,
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we first take a closer look at the more fundamental problem of switching over from one
program to another.

5.3.1 Context switching

Suppose the cPU has been executing instructions of a program P and has come to a point
wheredatatransfer between main memory and aperipheral deviceistotakeplace. Rather
than letting the cpu wait until data transfer is completed, we assume that it should con-
tinue with executing the instructions of another program, say P*. In this section we shall
only be concerned with the problem of how we can switch from executing instructions
that belong to P to executing instructions that belong to P* in such a way, that we can
later switch back to P to the point where we had previously left off.

When giving the matter some thought, the solutionis—in principle—quite simple. At
the moment we initiate a data transfer on behalf of P we also know the next instruction
of P that isto be executed: its address has been stored (by the hardware) in the program
counter. So what we can do is simply save this address somewhere, and load the pro-
gram counter with the address of the next instruction of P* that we want to execute. Of
course, we assume that we had previously saved this address as well. The moment we
load the program counter with this new address, the cpu continues with the execution
of instructions that belong to P*.

But surely, thisisnot enough. For onething, the stack that has been constructed on be-
half of P has nothing to do with the one which was built on behalf of P*. Consequently,
we have to save the value of the stack pointer (i.e. register sP) which it had when ex-
ecuting P, and reload it with the value it previously had when executing P*. And this
method can be repeated for any other register of the cpu. What it meansisthat we have
to save the complete processor context of P, and restore the processor context of P.
The processor context of aprogram P at atimet isthusthe collection of values stored in
the registers of the cpu (and which are affected by P). An important observation is that
the processor context changes during the execution of instructions. Now the whole idea
isthat the processor context al so uniquely determinesthe execution status of aprogram.
In other words, if werestore apreviously saved processor context of a program P, we ex-
pect that execution continues at the point where we had last saved the processor context
of P. The effect of saving and restoring a processor context is shown in Figure 5.9.

How can werealize such amechanism? Asmay be expected, asolution can befoundin
softwareand in particular by means of another service program. We start with devel oping
adatatypefor representing aprocessor context for the PRIMAL processor. To that end, we
make adistinction between dataand addressregisters, aswell asthe program counter and
the status register (see also Section 4.2.1). These data types will form part of a package
called CONTEXT, outlined in Listing 5.3.
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Figure 5.9 Context switching: relinquishing the cpu in favor of another program. Adapted
from Silberschatz and Galvin(1994).

package CONTEXT is

type DATA_REGISTER is (D0,D1,D2,D3,D4,D5,D6,D7);
type DATA_REGISTER_SET is array (DATA.REGISTER) of BITSTRING32;

type ADDRESS_REGISTER is (A0,A1,A2,A3,A4,A5,A6,A7);
type ADDRESS_REGISTER_SET is array (ADDRESS_REGISTER) of BITSTRING32;

type DEFINITION is
record
dataRegister : DATA_REGISTER_SET,
addressRegister : ADDRESS_REGISTER_SET,
programCounter : BITSTRING32;
statusRegister : BITSTRINGS;
end record ;

end CONTEXT:

Listing 5.3 The data types for defining a processor context.
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package CONTEXT is
type DATA_REGISTER is (D0,D1,D2,D3,D4,D5,D6,D7);
type DATA_REGISTER_SET is array (DATA_.REGISTER) of BITSTRING32;

type ADDRESS_REGISTER is (A0,A1,A2,A3,A4,A5,A6,A7);
type ADDRESS_REGISTER_SET is array (ADDRESS_REGISTER) of BITSTRING32;

type DEFINITION is
record
dataRegister : DATA_REGISTER_SET,
addressReqgister : ADDRESS_REGISTER_SET;
programCounter : BITSTRING32;
statusRegister : BITSTRINGS;
end record ;

MAXPROG : constant INTEGER = ..;

subtype PROGRAM_ID is INTEGER range 1..MAXPROG;

type PROCESSOR_CONTEXTS is array (PROGRAM._ID) of DEFINITION;
currentProgram : PROGRAM_ID;

processorContext : PROCESSOR_CONTEXTS;

procedure SWITCH(nextProgram : in PROGRAM._ID);
—— Switch processor context from the calling program, registered as [currentProgram],
—— to [nextProgram], so that execution proceeds with instructions belonging to the
—— next program.
end CONTEXT;,

Listing 5.4 The complete specification for describing processor contexts.

For each program, we have to be able to save and restore its processor context. Also,
we have to keep track of the program that is currently executing. This can be achieved
by means of the following declarations (exact declarations are given below):

currentProgram : INTEGER range 1..MAXPROG;
processorContext : array (1..MAXPROG) of CONTEXT.DEFINITION;

where MAXPROG is the maximum number of programs that can be supported. At this
point we have all the necessary declarations for saving and restoring processor contexts.
By putting these into a separate service program in the form of the package CONTEXT,
we need merely supply aprocedure for actually switching from one processor context to
another. Thisleadsto a more accurate specification for the package CONTEXT as shown
inListing 5.4.

Ignoring for now where and how the procedure SWITCH is actually called, saving and
restoring the processor context roughly consists of executing the following three consec-
utive steps:

1. Savethe value of each register into the appropriate field of processorContext.

2. Administrate that there is another program that is now current by assigning the
value of nextProgram tO currentProgram.
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3. Restore the value of each register by assigning it the value as stored in the appro-
priate field of processorContext(nextProgram).

These steps coincide with what is shown in Figure 5.9.

> However, thereisasubtle issue that we are ignoring here if these three steps were indeed to
be executed asindicated: weare saving thewrong valuefor the program counter. Toexplain,
note that the value of the program counter is saved during thefirst step above. In particular,
assumeit isthelast thing we do as part of the first step. This meansthat the program counter
refersto an instruction that forms part of the second step. What thisimpliesisthat when we
restore the program counter during the third step we will immediately continue where we
had previoudly left off. We thus continue with executing the first instruction of the second
step. This eventually leads us to restoring the program counter again (in the third step),
which thus brings usinto an infinite loop of executing the second and third step.

What we should have done is the following. First, we should have saved the location of
thefirst instruction that follows the call to the procedure swiTCH. As soon aswerestore the
value of the program counter, execution then immediately continues with this instruction.
Second, thisimpliesthat restoring the program counter should also bethelast thing wedo as
part of the third step, for any instruction of Step 3 that follows the restoring of the program
counter will never be executed. How these matters are dealt with in practice is beyond the
scope of this book, as they involve discussing some detailed and specific parts of PRIMAL
code. We therefore refer the interested reader to Clements(1994) which includes a detailed

discussion on context switching.

5.3.2 From processor contextsto processes

Before we discuss our original problem of selecting a suitable program, let’s take a step
back and see what we are doing at this point. With the conceptsintroduced so far, we are
capable of placing several programs into main memory, and also of switching the cpu
between those programs. The approach so far has been strictly bottom-up. We identified
what aprogram was and how we could usethe cpu more efficiently by switching between
programs at appropriate moments. But from the perspective of aprogram, nothing really
spectacular is happening. When we observe how its instructions are executed, it seems
asif thereisone cpu that is devoted entirely to executing the program. One way or the
other, we have created yet another image of avirtual processor.

Let’sseewhat thisvirtual processor lookslike. First, it consists of aprocessor context:
atrueimage of theregistersthat belong to the real processor executing theinstructions of
aprogram. But there ismore. Whenever a program P isnot being executed, itisasif its
virtual processor iswaiting for some event to happen. For example, when we choose to
let the cPU start executing the instructions of anext program becauseit had just initiated
I/0O on behalf a previous program, it is asif the virtual processor that was executing P
isindeed waiting for 1/0 to complete. Similarly, when a program has not been placed in
main memory, its virtual processor is completely idle: it really has nothing to do. The
idea of having a virtual processor exclusively dedicated to executing the instructions of
asingle program brings us to the concept of a process.
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Let P denote a program described in the programming language LANG(P).
A process PROC(P) of P isadescription of aseries of actionsor operations
towardsthe completion of P, asif the program were executed by the (virtual)
processor implementing LANG(P).

Note that a process is a description of the behavior of a program. Consequently, if we
pretend that the procedures that make up a program are actually executed, we can indeed
view a program in execution as a process.

> Our definition deviates slightly from what is given in many textbooks on operating systems.
Most textbooks indeed define a process as a program in execution. However, this definition
isnot avery accurate one. Toseethis, let’sconsider aprogram P{p, g}, wherePisaprogram
consisting of the procedures p and g. So PROC(P{p,q}) denotes the process associated
with P.

Now nothing prevents us from bringing the program P in execution by two different pro-
cesses PROC, (P) and PROC,(P). These processes execute the same program, but may in
the end do different things depending on the input data of a process. Examples are service
programs for identical devices (disks, terminals). On the other hand, we might have another
program P*{p,r} which has the procedure p in common with P{p,q}. P and P have dif-
ferent associated processes, because they are different programs. By association this also
holds for their contained procedure p, which is the same in both programs.

Now, what we need is a description that will allow us to talk about processes as con-
sumers of resources and services. For example, a process requires the cpu in order to
have its associated program executed; similarly, it requires memory and peripheral de-
vices, etc. Thisimpliesthat in order to implement processes for our purposes we have
to administrate the use of hardware resources. In particular, this means that we have to
provide variables for administrating the processor context (which has already been dis-
cussed above), as well as variables for keeping track of the page table, data and code
regions (discussed in Section 5.2.4), CPU execution time, etc. Last, but not |east, we will
also have to provide the right means for describing when the program of a process is
ready to be executed by a cpu. Therefore, we introduce the concept of a process state.
In particular, we make a distinction between the following situations, which are shown
in Figure 5.10. Let P denote the program associated with the process PROC(P).

New. The process has just been created.
Ready. Theinstructions of P can be executed.
Running. The program is currently being executed by the cpu.

e A

In waiting. Theinstructions of P that are to be executed next are placed in main
memory, but execution must wait for the availability of one or other resource.

5. Out waiting. Theinstructionsof P that are to be executed next are nolonger placed
in main memory. In addition, execution must wait for the availability of one or
other resource.
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| transition | reason

1
2

3
4
5
6,8

7,9

10

the process has been created.

the process has been selected for
execution.

atime glice has expired.

the process has terminated.

the process requires aresource that is
currently not available.

the required resource has become
available.

the process has to make room for an-
other process.

the process is placed back into main
memory.

Figure5.10 The genera state-transition diagram of a process.
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6. Out ready. Theinstructions of P can be executed, but are currently not placed in

main memory.

7. Halted. The process has terminated.

Of course, it is not possible to make atransition from one state to an arbitrarily chosen
next state; Figure 5.10 also shows the transitions that are possible.

Clearly, processesthat are suitable for execution by the cpu are those that are residing
in stateready. And these are precisely those processes that are not waiting for aresource
to become available, and of which the associated program has been placed in main mem-
ory. Selecting one of these so-called ready processes can proceed according to different
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package CPU_SCHEDULER is
subtype PROCESS_ID is CONTEXT.PROGRAM_ID;

type BASIC_STATE is (NON_EXISTENT, EXISTS, HALTED);
type EXISTS_STATE is (READY, RUNNING, WAITING);
type MEMORY_STATE is (IN.MEMORY, OUT_MEMORY);

type PROCESS_STATE is
record
basic : BASIC_STATE;
exists : EXISTS_STATE;
memory : MEMORY_STATE;
end record ;

procedure SET_BASIC_STATE(

proc : in PROCESS_ID; state : in BASIC_STATE);
procedure SET_EXISTS_STATE(

proc : in PROCESS._ID; state : in EXISTS_STATE);
procedure SET_MEMORY_STATE(

proc : in PROCESS._ID; state : in MEMORY_STATE);
procedure GET_PROCESS_STATE(

proc : in PROCESS_ID; state : out PROCESS_STATE);

procedure SCHEDULE_NEXT(nextState : in EXISTS_STATE);

—— To be called when the current process wants to relinquish the CPU, thereby setting
—— itself in [nextState]. The process returns from this procedure call only after

—— it has been scheduled again by some other process.

currentProcess : PROCESS_ID; —— A globally accessible variable.
end CPU_SCHEDULER,;

Listing 5.5 Initial data types for describing cpu scheduling.

strategies. For example, each process may have an associated priority, or the least re-
cently selected ready process may be chosen. So, finding a suitable program isno longer
areal problem. But who isgoing to do this? Again, the answer isto be found in software
by means of a so-called CPU scheduler. Let’'s start by describing some data types that
will alow us to administrate processes adequately. First, the state of a process can be
represented by means of the data types and operationsin Listing 5.5. For completeness,
we have also added procedures for setting and retrieving the state of a process, as well
asaprocedure SCHEDULE_NEXT, and aglobal variable currentProcess which are used for
scheduling purposes. Scheduling is discussed below.

But, of course, we need to keep track of more things. Using the declarations from the
previous sections, we can represent a complete process by means of a so-called process
control block, which can be represented in BASAL asshown in Listing 5.6.

Now suppose a process needs to give up the cpu for somereason. In that case, it need
merely call thecpu scheduler in order to find anext program that can be executed. There-
fore, we provide a procedure SCHEDULE_NEXT as part of a package CPU.SCHEDULER
which also contains the declarations given so far, and some additional administration
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type PROCESS_CONTROL_BLOCK is
record
state : PROCESS_STATE;
dataTable : MEMORY.PAGETABLE; —— See Section 5.2.4
codeTable : MEMORY.PAGETABLE;

end record ;

Listing 5.6 Definition of a process control block.

package body CPU_SCHEDULER is
.b.rocessTabIe : array (PROCESS_ID) of PROCESS_CONTROL BLOCK;

procedure SCHEDULE_NEXT(nextState : in EXISTS_STATE) is
nextProcess : PROCESS.ID;
nextlsFound : BOOLEAN,;
begin
—— The process that is calling this procedure will be‘currentProcess’.
—— A good candidate to start searching for next is its successor as
—— administrated in the process table. But before doing so, set the
—— current process in its desired [nextState].
processTable(currentProcess).state.exists := nextState;
nextProcess := currentProcess mod CONTEXT.MAXPROG + 1;
nextlsFound := FALSE;
while not nextlsFound loop
if processTable(nextProcess).state.basic = EXISTS and
processTable(nextProcess).state.exists = READY and
processTable(nextProcess).state.memory = IN.MEMORY
then
—— You found an appropriate candidate for executing next.
nextlsFound := TRUE;
else
—— The presently inspected process is not eligible to be executed.
—— Continue searching by inspecting its successor.
nextProcess := (nextProcess mod CONTEXT.MAXPROG) + 1;
end if ;
end loop ;
currentProcess := nextProcess;
CONTEXT.SWITCH(nextProcess);
end SCHEDULE_NEXT;
end CPU_SCHEDULER;

Listing 5.7 Outline of an implementation for a cCPU scheduler.

variables. This procedure (shown in Listing 5.7) takes as parameter the EXISTS_STATE
to which the calling process should be set. We will see how thisfeature is used when we
reconsider our implementation of the package DISK.

The point isthat aprocesswhichisgoing to give up the cpu keeps searching (now pre-
tendingto bethe cpu scheduler) for the next existing processthat isready and in memory.

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



228 Operating systems

Other selection criteria can be taken into account as well but have not been included in
our outline. Thefirst processthat meetsall criteriaisthen selected asthe current process,
and a context switchismade. (It should be noted that the code shown israther simplified.
In practice, much more checking needs to be done to find the most suitable program.)

At this point we are now able to adjust our DISK package as presented in Section 5.1.
Instead of using the repetitive statement

while diskControl(0) = 1 loop
null ;
end loop ;

we can now let the cpu continue with executing the most suitable program by means of
the statement:

CPU_SCHEDULER.SCHEDULE_NEXT(CPU._SCHEDULER.WAITING);

where we indicate that the calling process should be put into the state WAITING. How
we can eventually continue with the disk driver is discussed further below. For now, it
should be clear that we have achieved the means to let a number of processes share a
single cpu. But if we look again at what we have done from the perspective of a pro-
cess, we have actually accomplished something quite spectacular. For example, suppose
a process PROC; wantsto read some data from disk. To that end, it calls the procedure
READ from package DISK. This procedure call will eventually lead to the required data
transfer, but will also suspend the process by letting the cpu continue with the execution
of instructions that belong to an entirely different process, say PROC,. That some other
process will be executed, however, is completely hidden from PROC,. To PROC; it still

seems as if the CPU is executing instructions on its behaf. What we have thus accom-
plished is an image of a computer that consists of several processors or, in other words,
we have avirtual multiple processor computer at our disposal. The spectacular thing
about it is that we have realized thisimage entirely in software, and it turned out that it
was not that difficult either. But we also introduce new problems as will be discussed in
the next section.

5.4 Processinterference

Probably one of the most intricate issues to deal with in cases where multiple processes
co-exist, isunwanted interference. Generally, this can happen when the CPuU isexecuting
instructionson behalf of aprocess PROC; and which alter datathat is stored on behalf of
another processPROC,. Thereare several solutionsfor avoiding interference, depending
on the type of interference that can occur:

1. First, it may be necessary to let processes explicitly synchronize, meaning that a
process PROC; isforced to wait until a process PROC, has reached a certain sit-
uation. Synchronization can generally be realized through software, althoughiit is
convenient to have some rudimentary hardware support.
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2. Besides synchronization, we also have to deal with the fact that during execution,
the hardware may interrupt the cpu. In that case, any execution of instructions by
the cpu should not interfere with those it was executing just before the interrupt
occurred.

3. Finally, providing service programs may seem in order, but they become useless if
we cannot impose their use. What we need is a mechanism to force processes to
make use of service programs so that we can control the avoidance of unwanted
process interference.

Each of these subjectsis discussed in the following three subsections.

54.1 Synchronization: semaphores

Imagine that a process PROC; has just issued a data transfer by calling the procedure
READ as part of the service program DISK. This call will eventually result in a context
switch to another process PROC, as explained in the previous section. Now assume that
while data transfer is taking place on behalf of PROC,, process PROC, calls the proce-
dure WRITE from DISK, which, of course, should be perfectly in order. Thereisonly one
problem. Thedisk driver can handle only asinglerequest at atime. Thismeansthat pro-
cess PROC, will have to wait until the data transfer on behalf of PROC; isfinished. It
can then issue a new request by setting the disk driver’sregisters, and subsequently wait
again until its own request has been processed. We first identify exactly where process
PROC, should be suspended. Reconsidering our implementation of WRITE, it is not too
difficult that this point can be identified as follows:

procedure WRITE(source : in ADDRESS; destination : in ADDRESS) is
begin
— WAIT HERE UNTIL A PREVIOUS REQUEST IS FINISHED —

headPosition := destination;
memoryAddress := source;
diskControl(1) := 0;
diskControl(0) := 1;

CPU_SCHEDULER.SCHEDULE_NEXT(CPU_SCHEDULER.WAITING);
end WRITE;

It would seem that a solution to this problem should not be that difficult to find, but, it
did take afew years before a generally accepted mechanism was introduced. 1n 1965 the
Dutch mathematician Edsger Dijkstra devised the concept of a semaphore. A binary
semaphoreisaBoolean variable which, apart from itsinitialization, can be accessed by
only two standard operations: wait and signal. The definition of these operationsisgiven
asfollows:

wait(s) 1 when Sdo S« false
signal(s) :: S« true
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where
when Sdo S« false

adheres to the semantics that the execution of a process is postponed until s is TRUE.
Then the process will continue, but will also immediately set s back to FALSE again.

An important aspect of the wait and signal operations is that they are both atomic.
An atomic operation is characterized by the fact that if N processes PROC,,...,PROCy
simultaneously execute such an operation, then the result is the same asif the operation
was executed N times in some arbitrary sequence, once by each process PROG. Thisis
best explained by means of a simple example.

Example 5.3. Supposethat several people have access to the same bank account. There
are only two operations that can be performed: withdraw(x) by which an x amount of
money is removed, and deposit(x) which increases the savings at the account. Now, as
you might imagine, drawing money from the account or depositing some money each
requiresaseriesof actions. For example, in order to draw money, wefirst haveto check if
enough money isavailable, and if so, decrease the savings by the amount that isrequired.
Expressing thisinformally in BASAL could be done as follows:

procedure WITHDRAW(amount : in INTEGER; result : out INTEGER) is
currentAmount : INTEGER,;
begin
currentAmount := the present savings;
if currentAmount > amount then
—— It is safe to withdraw some money. Adjust the savings.
present savings := present savings — amount;
result := amount;
else
—— Only give the amount that has been saved.
result := present savings;
present savings := 0;
end if ;
end WITHDRAW;

Apart from the fact that thisisnot avery realistic way of getting money, it doesillustrate
that we need to perform several activitiesto achievethefinal result. Moreover, in order to
keep the savings account consistent, it isessential that no two personsdraw money at the
sametime. Instead, one will have to wait for the other to finish. The order in which they
draw money isirrelevant; what is relevant is that our administration is still correct. In
that sense, WITHDRAW (and likewise its counterpart DEPOSIT) will have to be an atomic
operation.
O

Let'stakeacloser ook at the operationswait and signal. First, assumewe havean imple-

mentation available asaBASAL package with the following specification part (wereturn
to itsimplementation later):
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package SEMAPHORE is
subtype DEFINITION is BOOLEAN;

procedure WAIT(sema : in out DEFINITION);
procedure SIGNAL(sema : in out DEFINITION);
end SEMAPHORE;

Assume that the program of a process has included the procedure call

SEMAPHORE.WAIT(sema);

somewherein one of its programs. Then, when sema is FALSE, the execution of the pro-
gram is postponed until sema becomes TRUE. Moreover, if the program call succeeds
(which can happen only if sema is TRUE), execution proceeds but the semaphoreisalso
immediately set to FALSE again. Consequently, any other process that called the proce-
dure WAIT will be postponed when it is executed. Postponement is maintained until the
Statement

SEMAPHORE.SIGNAL(sema);

Is executed. It is thus seen that semaphores can be used to serialize the behavior of a
collection of processes. In a sense, a semaphore acts as alock through which only one
process can pass at atime. Entering that lock can only take place by execution of WAIT;
leaving the lock is accompanied by a call to SIGNAL.

It should be clear that our problem of the disk driver can indeed be solved by using
semaphores. The point isthat the code section of the procedure WRITE (and that of READ
aswell) should only be executed on behalf of, at most, one process at atime. In terms of
the lock we mentioned above, the code section forms alock for al processes that want
to make use of the disk driver. We can then adapt our implementation as shown in List-
ing 5.8.

The important point to note here is that semaphores provide us with a means to let
communication take place according to a ssmple protocol, namely that a process must
wait until a semaphore has the right value. Thisis quite similar to the way processors
synchronize by means of abus. They first try to claimexclusively the bus for themselves
by setting a high signal on the bus request line, and wait until the grant signal is passed
on. This action corresponds to the execution of a WAIT(sema) operation for a semaphore
sema. When the grant signal is set on the line, exactly one processor can pick it up and
prevent any other processor from taking over the bus. As soon as the processor has fin-
ished its bus transfer, it puts a high signal on a bus release line, so that the grant signal
can be propagated to the other processors (of which, again, only one will succeed in get-
ting access to the bus). From a certain perspective, we see that we have made a software
equivalent to something that was already available in the hardware.
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package body DISK is
lock : SEMAPHORE.DEFINITION := TRUE;

procedure WRITE(source : in MEMORY.ADDRESS: destination : in ADDRESS) is
begin
SEMAPHORE.WAIT(lock):

headPosition := destination;
memoryAddress := source;
diskControl(1) :=0;
diskControl(0) :=1;

CPU_SCHEDULER.SCHEDULE_NEXT(CPU_SCHEDULER.WAITING);

SEMAPHORE.SIGNAL (lock);
end WRITE;

en.c'i. DISK;

Listing 5.8 An adaptation of the procedure WRITE for our example disk driver.

> Implementing semaphores

Thereis, however, apractical problem with semaphores: their implementation. For exam-
ple, if westrictly followed the definition of the wait operation, the following implementation
would seem to be in order:

procedure WAIT(sema : in DEFINITION) is
begin
while not sema loop
null ;
end loop ;
sema = FALSE;
end WAIT;

There are two problems with this solution. First, we see that valuable cpu time can till
be wasted due to the while statement. As avoiding busy waiting was the main reason we
started our discussions, the solution above does not seem to be avery good one. The second
problem is perhaps more serious. Aswe have stated, the wait and signal operations need to
be atomic. In other words, they should be executed without any interference. The solution
above does not meet this demand. Let’s take a closer look at these two issues.

Avoiding busy waiting. A solution to the problem of busy waiting is to apply the same
technique aswedid previoudly. If a process notices that the wait-operation cannot immedi-
ately be successfully completed, it records itself as waiting for the semaphore in question,
and schedules another process. Likewise, upon executing the signal -operation by a process
PROC, this process activates exactly one other process PROG that was waiting (by set-

ting processTable(PROG,).state.exists t0 READY) if the latter was waiting for the semaphore
to become TRUE again.
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type DEFINITION is —— Definition of a semaphore type.
record
value : BOOLEAN;
queue : QUEUE.DEFINITION;
end record ;

procedure WAIT(sema : in out DEFINITION) is
begin
if not sema.value then
QUEUE.APPEND(sema.queue, CPU_SCHEDULER.currentProcess);
CPU_SCHEDULER.SCHEDULE_NEXT(CPU_SCHEDULER.WAITING);
else
sema.value := FALSE;
end if ;
end WAIT;

Listing 5.9 An initial implementation of the wait operation.

This scheme can be realized as follows. First, let’s assume we have a package QUEUE at
our disposal that will allow us to handle queues of processes. This package can be derived
from our parameterized package GENERAL QUEUE described in Listing 4.13 (page 172) as
follows:

package QUEUE is new GENERAL_QUEUE(ELEMENT =- CONTEXT.PROGRAM.ID);

Using this package allows us to implement the procedure WAIT as shown in Listing 5.9. To
that end, we have adapted the definition of semaphores in such away that each semaphore
has not only an associated value but also an associated queue for administrating processes
that are waiting for the value to become TRUE.

If aprocess finds that the sesmaphore is currently FALSE, it appends itself to the semaphore’'s
gueue, and schedules another process. Otherwise, it sSimply sets the value of the semaphore
to FALSE and immediately continues. By setting the value to FALSE, no other process can
pass beyond the procedure until it becomes TRUE again. We leave it as an exercise for the
reader to outline a solution for the procedure SIGNAL.

Implementing atomicity. The problem of atomicity is perhaps a more serious one. In
order to understand, you have to realize that a process can be interrupted in its execution
by a peripheral device. Aswe shall explain below, the effect of such an interrupt is that
some other process may temporarily continueits execution. On thisaccount we may assume
that, conceptually, there may be two processes PROG and PROC, simultaneously execut-

ing WAIT(sema). Assume that the value of the semaphore sema isinitially TRUE. What can
happen is that first, process PROC; starts with testing this value, and finds it to be TRUE.

At that moment, and before it comes to setting the value to FALSE, an interrupt may occur,
eventualy leading to process PROG, executing the if statement as well, and also finding
sema.value to be TRUE. However, this may never be allowed to happen. At any moment, at
most one process may conclude that sema.value iS TRUE, and thus that it may proceed.

The problem isthat the statements of the procedures WAIT and SIGNAL, respectively, should
again be protected asif they were locks, just as the statements of WRITE above. Obviously,
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we cannot immediately use semaphores to establish what we want (this is also left as an
exercise for the reader). What it means in practice, is that we have to resort to hardware
solutions. For example, the 680x0 family of processors supports a special test-and-set in-
struction that takes the form

TAS address

To simplify matters, what thisinstruction doesisfirst test if the value stored at memory loca-
tion address iszero (i.e. TRUE), and then immediately setsit to anon-zero value (i.e. FALSE).
This allows us to implement rather primitive binary semaphores by means of the following
two subroutines (where sema is a symbolic name for a memory location):

PWAIT: TAS sema Test if the value at address sema is zero, and
set it to a non-zero value
BNE PWAIT If the value was not zero, try testing it again
RTS Otherwise, return from this subroutine
PSIG: MOVE #0, sema Simply set the value at address sema to zero
RTS ‘ And return from this subroutine

But, you might say, this solution is also not satisfactory because we are still making use of
busy waiting. However, thereisan important difference from our previousimplementations.
The solution aboveisto be applied only in those cases where we may expect that await oper-
ation will shortly be followed by asignal operation. In other words, if any process that cals
PWAIT finds the semaphore’s value to be FALSE, it can expect that it need only wait briefly
before this value becomes TRUE again. Only in these cases is busy waiting justified. It is
beyond the scope of this book to show in detail how procedures like WAIT and SIGNAL can
be made atomic. The matters are simply too technical, and the interested reader is referred
to references at the end of this chapter. It isimportant, however, to note that semaphores are
nearly always supported by the collection of service programs that are provided as part of
the software that goes with the computer you buy. Inthe end, their implementation isalways
supported by hardware.

5.4.2 Interrupt handling

Itistimeto look at another problem that we mentioned in Section 5.1: reacting to hard-
ware signals. The point isthat after data transfer has completed the hardware will sig-
nal this completion by interrupting the cpu. How thisis done at the hardware level has
been discussed in Section 3.4.1. But we haveto ensure that the cPu eventually continues
with executing the instructions of the program that it had |eft off. The problem is easily
generalized to the following question: How can we ensure that certain instructions are
executed on account of a hardware signal, and in such away that this does not interfere
with the current execution of instructions?

When giving the matter some thought, it is seen that we have to deal with a rather
strange problem. We have to devise a software response to ahardware signal. The prob-
lemislessintricatethanit seems. Asexplainedin Section 3.4.1, any signal that interrupts

DOWNLOADED BY WIZARD.Z@FOXMAIL.COM



Processinterference 235

lolofofofol1][0f1}—=
interrupt
register

ONOUAWNRO
NN EEEREE
~lolol-lolololole
|~~~k oololo
ololoklolklolole
lolololklololole
R lelkkRlolklole
oclololololklolole
R kkRRlolokle
lololololololkle
olkloklellokk
rlokkkleklok
oclokklklkFFe
NNNEEEEEE
ool lolololole
NN EEEE
olololklolklolole
NEEEENEEREE
P~ ek oklolo
BEEEEREEE
P~k Rk ooklo
Y

lo[ala[alolalolalolal2]1]ol2]2]1]ol1]o]a]*
program counter

Figure5.11 The principle of an interrupt table.

the cpu is aways accompanied by an identification of that signal, for example, by stor-
Ing a unigque number in some special-purpose register. This number can then be used to
identify the first address of a series of instructions that the cpu should execute when it
isinterrupted. To that end, we can use an interrupt table, which worksin the same way
as the page table discussed in Section 5.2. The principleisillustrated in Figure 5.11.

Each time the hardware wants to interrupt the cpu, the identification of the interrupt
signal isfirst loaded into a special register, which we refer to as the interrupt register.
Then, as soon asthe cpu can handletheinterrupt, it startswith automatically pushing the
current value of the program counter (and presumably also of other registers) onto the
stack. In order to find exactly how it should handle the interrupt, it takes the value found
intheinterrupt register asanindex to theinterrupt table, which containsthe address of the
first instruction to execute. It continuesto execute the series of instructionsstarting at the
indicated address until it encounters a so-called return from interrupt instruction. At
that point, the interrupt has been completely handled, and execution returns to the point
where it had | eft off before the interrupt occurred. Theinstructionsthat are executed asa
consequence of an interrupt form aspecial type of program, called aninterrupt handler.

Toillustrate, we construct asimpleinterrupt handler in BAsAL. We add the following
procedure INTERRUPT_HANDLER to our package specification of DISK:

package DISK is
procedure INTERRUPT_HANDLER;

for INTERRUPT_HANDLER'CALL use at 5;
end DISK;

What we have specified here is that the procedure INTERRUPT_-HANDLER can only be

CALLed viainterrupt #5. (We note that we have purposefully deviated from the syntax
and semanticsof Adafor the sake of simplicity. Precise detailson how interrupt handlers
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can be specified in Adacan be found in ANSI (1983).) Using thisinformation, the com-
piler will then insert the start address of thefirst instruction of INTERRUPT_HANDLER into
entry #5 of the interrupt table. The implementation of the interrupt handler can now be
outlined as follows:

package body DISK is

procedure INTERRUPT_HANDLER is
waitingProcess : CPU_SCHEDULER.PROCESS.ID;
begin
waitingProcess := process that originally initiated the data transfer;
CPU_SCHEDULER.SET_EXISTS_STATE(
waitingProcess, CPU_SCHEDULER.READY);
end INTERRUPT_HANDLER;

end DISK:

In this case, we assume that we can identify the process that had originally initiated the
data transfer via the variable waitingProcess. The package CPU_.SCHEDULER includes a
procedure SET_EXISTS_STATE for altering the present state of a process. Furthermore,
also assuming that the disk controller uses interrupt #5 to identify itself, the cpu will

execute the procedure INTERRUPT_HANDLER by simply setting the state of the process
waiting for completion of the datatransfer toREADY. In principle, thisisenoughto sched-
ulethe processlater (i.e. restoreits processor context) so that it can continuewhereit had
left off. The complete implementation of our ssimple disk driver is summarized in List-

ings 5.10 and 5.11.

> It should now also be clear how we can handle other hardware signals. For example, in
the case of virtual memory we have to initiate a data transfer when alogical pageisnot in
memory. What happens is that the hardware inspects the first bit of an entry in the page
table as shown in Figure 5.8. If the bit indicates that the logical page is not in memory, the
identifier of a page fault isfirst stored in the interrupt register, after which the actual signal
is generated that will interrupt the cpu. From there on, the story continues analogously to
our disk driver interrupt handler. In this case, a procedure is executed that initiates the data
transfer and which then schedules another process to be executed.

5.4.3 Forcingthe useof service programs

We are gradually approaching our final topic on service programs. What we have been
doing so far isintroducing problems that are related to supporting multiple programsin
a computer. We have shown that by introducing service programs most of the problems
could be handled by software, occasionally with some additional help by the hardware.
So far, so good. Thereisonly one thing we haveto ensure, namely that processes indeed
make use of these service programs. Otherwise, we will still find ourselves in a lot of
trouble. For example, supposethat someonewritesaprivate version of the package DISK,
including a procedure that setsthe registers of the disk driver. Obviously, something like
this should not happen, but can we prevent it with the solutions introduced so far? The
answer is negative.
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package DISK is
subtype CARDINAL is INTEGER range 0..65535;
for CARDINAL'SIZE use 16;

type ADDRESS is
record
sector, track, surface : CARDINAL;
end record ;

for ADDRESS use
record
sector at O range 0..15;
track at 2 range 0..15;
surface at 4 range 0..15;
end record ;
for ADDRESS'SIZE use 3*16;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS);
procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS);

procedure INTERRUPT_HANDLER;
for INTERRUPT_HANDLER'CALL use at 5;
end DISK;

Listing 5.10 The specification part of the revised version of DISK.

What we need is an additional mechanism that prevents non-service programs making
use of certain partsof memory. In particular, those memory locationsthat are used for the
registers of 1/0 controllers, as well as those for page tables, interrupt tables, etc. should
not be directly accessible by non-service programs. In order to establish this, we need
support from the hardware. In general, the problem is solved by making a distinction
between two operation modes for the cPu. When operating in kernel mode all special
memory locations may be accessed. In user mode only the remaining memory locations
can —in principle — be referenced. Of course, an individual program may be further re-
stricted by meansof alimit register. The use of the user and kernel mode variesfrom sys-
tem to system, and generally differs between processors. Indeed, itisahighly hardware-
dependent feature.

The next step is to organize the service programs into a separate part of memory, as
shown in Figure 5.12. Now because we need to separate service programs from ordi-
nary programs, we shall also have to find a safe way of passing parameters to service
programs. This can be accomplished by means of a system call which is generally im-
plemented by using a special hardware TRAP instruction. The mechanismisillustrated
in Figure 5.12. What happensis that in order for a program to call a service program it
first identifies the service program, and then copies the parametersto acommonly acces-
siblelocation. Typically, the registers of the cpu can be used for this purpose. Then the
TRAP instruction is executed by which the cpu switches to kernel mode.

At that point, the cPu continues with executing a so-called trap handler that identifies
the required service. Thiscorrespondsto step 1 in Figure 5.12. The trap handler, which
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package body DISK is
subtype BIT is INTEGER range 0..1;
type BITSTRINGS is array (0..7) of BIT;
for BITSTRING8'SIZE use 8;

headPosition : ADDRESS;
memoryAddress : MEMORY.ADDRESS;
diskControl : BITSTRINGS;

lock : SEMAPHORE.DEFINITION := TRUE;

for headPosition use at 10;
for memoryAddress use at 16;
for diskControl use at 20;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS) is
begin
SEMAPHORE.WAIT(lock);

headPosition := source;

memoryAddress := destination;

diskControl(1) := 1;

diskControl(0) :=1;
CPU_SCHEDULER.SCHEDULE_NEXT(CPU_SCHEDULER.WAITING);

SEMAPHORE.SIGNAL(lock);
end READ;

procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS) is
begin
SEMAPHORE.WAIT(lock);

headPosition := destination;

memoryAddress := source;

diskControl(1) := 0;

diskControl(0) := 1;
CPU_SCHEDULER.SCHEDULE_NEXT(CPU_SCHEDULER.WAITING);

SEMAPHORE.SIGNAL(lock);
end WRITE;

procedure INTERRUPT_HANDLER is
waitingProcess : CPU_SCHEDULER.PROCESS._ID;
begin
waitingProcess := process that originally initiated the data transfer;
CPU_SCHEDULER.SET_EXISTS_STATE(
waitingProcess, CPU_SCHEDULER.READY);
end INTERRUPT_HANDLER,;

end DISK;

Listing 5.11 The implementation part of the revised version of DISK.

issimilar to an ordinary interrupt handler, isfollowed by ajump to the requested service
program (step 2). Again, the start address of the service program will have been storedin
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@ instructions and data @

of a program

indicate requested service;
! copy parameters;
******* n-- execute TRAP;

copy results;

part in memory where
other programs reside

Figure5.12 Theinteraction between service programs and a program requesting a service $to
be performed.

aservice table, which is comparabl e to the page table and interrupt table mentioned pre-
viously. After the service has finished, execution continues where it had | eft off (step 3),
thereby switching the cPuU back to user mode and leaving it to the program to copy the
resultsinto its own variables.

5.5 On operating systems

So where do we stand? So far we have illustrated how a number of service programs
can be constructed that allow multiple programs to be placed in memory and which can
jointly make efficient use of the available hardware. Moreover, when we consider these
service programs, it is seen that they makethe hardware much easier to use. For example,
aprogram that wantsto initiate adatatransfer need not be concerned with other programs,
because any interferenceishandled entirely by the service programs. What we have been
doing is explaining the core functionality of aso-called operating system. An operating
system can be defined as a collection of service programs that allow the hardware of a
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computer system to be used easily, and to be used efficiently. Inthissection we shall take
acloser look at operating systems, in particular how they are organized and what type of
functionality they generally offer.

5.5.1 Theevolution of operating systems

If you read most textbooks on operating systems, you will find that many subjects are
presented that will not be discussed in thischapter. In order to put thingsinto perspective,
and to understand why we are diverging from the more usual approach, let’stake a brief
look at the history of operating systems.

Conventional operating systems

Conventional operating systems originated from the same problem we described in Sec-
tion 5.1: waste of valuable cpu time. In the 1950s computers were only capable of exe-
cuting asinglejob (comparabl e to our concept of aprogram) that had to runto completion
until the next job could be executed. Hardly any support for programming a computer
was provided. For example, the first systems required that programmers explicitly pro-
grammed the hardware in machine language, including all routinesto handle 1/O. Later,
service programs and high-level languages and their compilers were made available so
that at least some convenient level of abstraction was supported. But although the prob-
lem of programming these systems was somewhat alleviated, it still required the inter-
vention of a human operator to run a series of jobs. Also, while a job was doing 1/0
(mostly printing its results) the computer would remain idle. And each time ajob was
finished, the computer would then need to be activated again in order to process the next
one.

Thefirst solution to tackle the problem of wasted cpu time was found in batch pro-
cessing systems. Theideawasto first collect anumber of jobs onto asingletape, or asa
consecutive series of sets of punched cards, then execute these jobsin arow, and finally
collect the output on a separate tape. While the next batch was being executed, the out-
put tape was processed separately by printing the results off line. This approach at |east
had the advantage that computational work and printing was done simultaneously. And
with abit of luck, you could have your nice program calculating z < X"+ y™ for various
values of x and y completely processed within several hours.

Thisapproach had two severe problems. First, usershad to wait too long for their jobs
to be completely processed, and second, the manufacturer had to provide two separate
computers. The solution was found in the 1960s by means of timesharing systems. Us-
ing asingle computer, users could be connected to the system by means of terminalsthat
would allow them interactively to edit, compile, and execute their programs. The only
thing that was needed was support for having multiple programsin asingle system. With
the price of hardware still very high, it wasfelt that only large general-purpose comput-
ing systemswould provide a sufficiently low price/utilization factor. Apart from whether
thiswas true, it did bring a major problem, namely that the operating systems that had
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to accompany these large computing systems were extremely difficult to develop, and
many projects have failed for precisely this reason.

Now while manufacturers were devel oping large mainframe computers to satisfy ev-
eryone’s needs, there was al so an approach to the devel opment of so-called minicomput-
ers. These much smaller systems could often deal with only a few different programs
at atime, but were far cheaper than their mainframe counterparts, because the operat-
ing system was much easier to develop. Consequently, these systems became afford-
able for small groups who would then no longer need to rely on the large, centralized,
and often bureaucratic computing centers where the mainframes were sited. The trend
towards smaller systems continued rapidly, although buying a computer system still in-
volved putting alot of money on the table. Software, i.e. the operating system, had be-
come more sophisticated in order to get the most out of the hardware. In fact, it was
becoming amajor task of manufacturers to provide not only the right hardware but also
the right software to support program development and user interaction adequately.

Towards smaller systems

But things started to change. In the mid-1970s AT& T Bell Laboratories developed an
operating system called UNIX.°> UNIX was unique in two ways. First, more than 90%
of the system’s core functionality was written in a high-level language (C). The func-
tionality included all the aspects we have discussed in the previous sections, plus one
extra, namely that of afile system (we will return to thislater). But above all, thisfunc-
tionality could be realized in no more than approximately 10000 lines of code. Up to
then, this approach was unheard of. In order to make the system really useful, numer-
ous general -purpose utility programs were added for the user’s convenience. However,
where such programs were normally included as part of a complete operating system, in
the case of UNIX they were just add-ons to the kernel (which comprised only 5-10% of
acomplete system). The developers of UNIX demonstrated that operating systems could
be kept small, flexible, and hardware-independent.®

But the real impact came with the introduction of microprocessorsin the early 1980s.
Microprocessors made personal computing affordable and created a large demand for
software that is flexible and user-friendly. Two operating systems have dominated the
world of personal computing: Ms-DOS for Intel-based microprocessors, and UNIX for
the more powerful workstations (often based on RisC processors). Now at first, personal
computers were stand-al one systems meaning that a single computer was supplied with a
keyboard, monitor, mouse, and printer. The only way to exchange datawith another com-
puter was by carrying floppy disks from one system to another. During the mid-1980s it
became custom to connect personal computers by means of anetwor k, which put an ad-
ditional burden on operating systems. They now also had to provide the right means for
communication with other computers.

SThisisthe only statement we shall make concerning the story of UNIx —and it isfar too little to appre-
ciate what actually happened. The interested reader is referred to Salus (1994) for a historical overview.

6You should read Garfinkel et al. (1994) if you want to know why some people think UNIX is not so
good.
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Figure 5.13 The global interaction between two different operating systems connected in a
computer network.

Current technology: microkernels

This communication involved the exchange of data. Now one of the core functionalities
of operating systemsis providing aflexible means of storing data and programs through
files. A fileis a software abstraction of actual storage devices such as disks and tapes.
Thismeansthat you can write datato afile, aswell asread datafrom it. In addition, files
that contain programs can be compiled and executed. By incorporating it asa core func-
tionality it is easier to keep operating systems efficient. And this is what most (older)
operating systems usually do in the sense that the compl ete organization of afile system
is constructed as part of the kernel of the operating system. This has an important im-
plication: if you want to change that part, you will (1) have to have the source code of
the operating system at your disposal, and (2) know exactly what you are doing, for you
may expect that any change in the kernel will affect other parts as well. In other words,
any changes to the kernel of an operating system will generally have to be done by the
manufacturer.

When hooking different computers into the same network, this is an unfortunate sit-
uation, for each kernel will presumably have to be adapted in order to accept data from
another system. In order to transfer data from one file to another, where both files each
resort under the regime of a different operating system, each kernel must be adapted in
order to allow for the communication and conversion of filesto take place. Thisapproach
isillustrated in Figure 5.13, where we see that the kernel itself needs to be adapted. So
much for flexibility.

The solution to this problem is evident. Rather than incorporating the notion of afile
into the core of an operating system, devise afile system as an additional utility service.
And thisis precisely the current trend in operating systems. The ideais to develop so-
called microkernels that only have a bare functionality. Then, in the case of coupling
several computersin anetwork, the microkernels need only provide for basic communi-
cation means which is generally restricted to transferring small packets consisting of a
series of bytes. Figure 5.14 illustrates this approach. In this case, the file subsystem can
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Figure 5.14 The global interaction between two microkernels.

be completely replaced by the user of the microkernel, as it has been placed outside that
kernel. And although it can still be expected that only an expert can do this, it should
be clear that no adaptations to the kernel are necessary. In fact, replacement of the file
subsystem can actually be done during normal operation of the microkernels.

What we have been doing in this chapter is discussing what these microkernels ook
like and how they are realized. The only functionality we have not considered is that
of communication. This subject will be treated extensively in succeeding chapters. File
systems will be treated in the next section as an example of how the functionality of a
microkernel can be extended. For now, in the following subsections we shall resort to
paying attention to the organization of microkernels.

5.5.2 Architectural aspects of operating system kernels

Despite the fact that microkernels may berelatively small, they are still to be considered
intricate pieces of software. Organizing amicrokernel into a structured set of modulesis
essential in order to keep the system manageable and flexible. In general, microkernels
are organized into four groups of modules, each providing a separate service:

1. Process management

2. Memory management

3. Device management

4. Interprocess communication.
Interprocess communicationisdiscussed extensively in thefollowing chapters. Here, we

shall consider briefly the organization of each of the other services, and how they interact
with each other. The overall architecture is shown in Figure 5.15.

Process management

Process management can be logically organized into three components. a dispatcher, a
CPU scheduler, and some general process administration, as shown in Figure 5.16.
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Figure 5.15 The overall architecture of amicrokernel with four modules.
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Figure 5.16 Thelogical organization of process management.

A dispatcher is a small procedure which establishes context switches between pro-
cesses. In this sensg, it is the program CONTEXT.SWITCH explained in Section 5.3.1.
From alogica point of view, a dispatcher always interacts with the cpu scheduler. It
either dispatches the cpu to the scheduler so that the latter can find a suitable process to
which to assign the cpu, or is activated by the scheduler again when such a process has
been found. There are two situations when the dispatcher is activated. First, a process
that needs to synchronize with another process (including synchronization on account of
[/0) will eventually have to relinquish the cpu. Second, whenever an interrupt has been
handled, it is generally the case that the interrupted process will no longer be the most
suitable one to which to assign the cpu. In that case too, the scheduler must be set to
work by activating the dispatcher.
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Figure5.17 Thelogical organization of memory management.

Aswe have already discussed, in order to find the most suitable process for the cpu,
we will need to have a scheduler that takes care of that. Conceptually, a cPu scheduler
is just another process that inspects and updates the process administration in order to
schedule the next process. For efficiency reasons, however, the scheduler is generally
implemented as an ordinary procedure similar to our procedure SCHEDULE_NEXT shown
in Listing 5.7. In that case, a process or interrupt handler directly calls the scheduler
procedure in which a suitable next process is found, and in which the dispatcher is then
activated.

Memory management

Memory management is generally organized into a few components as shown in Fig-
ure 5.17. A key roleis played by the actual memory administration unit which keeps
track of the occupied and available chunks of memory. Generally, it need not be much
more sophisticated than our example administration discussed in Section 5.2.

Processes may regquest more memory, or otherwise return previously allocated mem-
ory chunks. In systemsthat do not support advanced memory management such as pag-
ing or virtual memory thisisabout all thereistoit.

> However, when paged or virtual memory is supported, some additional checking will need
to be doneto seeif requests are valid. To thisend, there will be aseparate memory adminis-
tration per process in which al information concerning the page tables and current memory
usage per process is stored. Some interaction with process management will be required,
which primarily concentrates on properly activating the so-called page handler. Like the
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cpPu scheduler, a page handler can be conceptually considered as a separate process which
is activated whenever a page needs to be transferred between main memory and the swap
space. There are two occasions when this can happen:

1. Inthe case of virtual memory systems, as soon as a virtual address refers to data that
isnot located in main memory the hardware (by means of a so-called memory man-
agement unit, or MMU) will generate an interrupt which in turn causes a page fault
handler to be invoked, as explained in Section 5.4.2. Thisinterrupt handler, in turn,
will require the process manager to schedul e the page handler so that the required data
can be brought into main memory.

2. When novirtual memory issupported, the page handler will occasionally be scheduled
in order to allow acomplete program to be placed in main memory. The page handler
in that case may have to remove another program in order to make room. Obviously,
the page fault handler shown in Figure 5.17 which is only responsible for passing in-
terrupts to the dispatcher will then not be needed.

Again, in many systemsthe page handler isaprocedure that isdirectly called rather than ex-
plicitly scheduled. However, it isimportant to note that thisisonly donein order to achieve
efficiency. Conceptually, we can consider the page handler as a separate process.

Device management

Device managementisgenerally organized intheform of so-called devicedrivers. There
are al types of device drivers. Some can be amost as small as our example package
DISK, others are so complex that it takes an expert to understand them. Nevertheless, de-
vicedrivers are dways more or lesssimilarly structured. In general they consist of three
parts:

e A request handler that deal swith communication between the driver and processes
requesting 1/0

e A device handler that passes information from the request handler to the 1/O con-
troller

e Aninterrupt handler that dealswith informationthat ispassed by thel/O controller
to the driver.

Thisgeneral organizationisshowninFigure5.18. Whenthedriver israther simple (which
is often so when dealing with simple keyboards, monitors, and storage devices), the re-

quest handler and device handler arerarely explicitly distinguished. The main difference
between the two isthat the request handler is device independent in the sense that it has
no knowledge of the actual means of communicationwith the /O controller. Detailscon-

cerning the location and setting of registers are completely hidden in the device handler.

However, in the case of extremely difficult drivers, like those used for laser printers, the
device driver itself is organized as a layer of handlers, with only the lowest layer being

programmed for a specific 1/O controller. Also, the interrupt handler is sometimes not

required, e.g. in the case of a monitor.
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Figure 5.18 The genera architecture of a device driver.

Whenever a process issues an 1/0 request, it passes this to the request handler, which
again can be considered as a separate process. The request handler generally queuesthe
request in such away that several 1/O requests can be handled simultaneously, and in the
most efficient way. For example, in most disk driversthe request handlers organizes the
requests such that arm movement is minimized. In the end, it passes the best request to
the device handler which sets the registers of the 1/0 controller.

As so