
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 3: Naming

Systems
system = a bunch of resources, glued together with names
often the best way to view or build
often most interesting action is in the names

[cloud with components & connections]
what are the resources?
 often can view them as just three basic types

* Fundamental abstractions
 storage

mem, disk
layered: data struct, FS, disk arrays

interpreters
cpu
programming language e.g. java VM

communication
 wire, ethernet
layered: internet, ssh, unix pipe

we'll talk about all these abstractions during the course

Why these abstractions?
many components fit these molds
they work well together
hardware versions are cheap
for these abstractions, general techniques known
to increase performance, fault tolerance, functionality

Names
 all three abstractions rely on names

memory stores named objects
interpreter manipulates named objects
communication link connects named entities

 much of sys design is naming --- glue

DNS Example
what does web.mit.edu mean?
 you can look it up and turn it into an IP address

18.7.22.69
 Internet knows how to send data to IP addresses

 how does the translation work?

The big picture
my laptop O/S shipped with IP addrs of a few "root name servers"
these are hard-wired, in a file, about a dozen
198.41.0.4 (virginia)

128.63.2.53 (maryland)

 ...

 this list doesn't change much, otherwise old computers would break

my laptop picks a root server, sends it a query,

asking for IP address of the string "web.mit.edu"

each root server has exactly the same table, the root "zone"

edu NS 192.5.6.30

 edu NS 192.12.94.30

 com NS 192.48.79.30

 ...

 finds entries in root zone that matches suffix of "web.mit.edu"

 returns those records to my laptop

now my laptop knows who to ask about edu

re-sends request to one of the edu servers

each edu server has a copy of the edu zone

nyu.edu NS 128.122.253.83

mit.edu NS 18.72.0.3

 mit.edu NS 18.70.0.160

 returns the two MIT records to my laptop

now my laptop forwards request to an MIT server

each MIT server has a copy of the mit.edu zone

web.mit.edu A 18.7.22.69

 bitsy.mit.edu A 18.72.0.3

csail.mit.edu NS 18.24.0.120

 ...

DNS has a hierarchical name space
diagram of a tree

Where do the zone files come from?
 each zone centrally but independently administered
root by IANA, an international non-profit org
com by VeriSign, a company
MIT IS maintains its zone files, updates them on its servers

Why this design?
everyone sees same name space (at least for full names)
scalable in performance
via simplicity, root servers can answer many requests

via caching, not really described here

via delegation (keeps table size down)

contrast to single central server

scalable in management

MIT control own names by running its own servers

fault tolerant

There are problems:
who should control root zone? .com?
 load on root servers
 denial-of-service attacks
 security problems: how does client know data is correct?
how does verisign know i'm ibm.com when I ask it to change NS?

DNS has been very successful
25 years old
design still works after 1000x scaling
you can learn more about DNS from Chapter 4 of the notes

How do systems use DNS?
user-friendly naming (type a URL)
web page tells browser what to do on button press
i.e. connects one page to the next

Adobe PDF Reader contains DNS name for where (later) to check for upgrades
allows services to change IP address of servers (change hosting service)
DNS servers can give different answers to different clients

 turn www.yahoo.com into IP address near client

Naming goals
let's step back
1. user friendly
2. sharing

diagram: A and B both know N, refers to ...

3. retrieval (sharing across time)

A knows N, refers twice to ... over time

4. indirection

 diagram: A knows fixed N, refers to variable N', refers to ...

5. hiding
hide implementation
control access (access only if you know name, or hook to hand ACLs)

Naming systems are common, since so powerful
phone numbers
files / directories
e-mail addresses
 function/variable names in programs

Example: virtual addressing
often called "virtual memory" or "paging"

Why this example?
naming mechanism
well designed
solves many problems
basis for many neat o/s features

Memory
this is review from 6.004
 also Chapter 5 in notes
diagram: CPU, address/data wires, DRAM
DRAM an array of bytes
indexed with "physical address"
let us say 32-bit addresses
could have up to 4 GB of DRAM
example: LD R4, 0x2020

Why physical addressing not sufficient?
many reasons, as we will see
here's one: what if program too big to fit in DRAM?
but still fits in 2^32 bytes
e.g. two-megabyte program, only one megabyte of DRAM

Demand Paging
diagram: cpu, dram, disk
want some data to be in memory, some on disk
when program refers to data that's not in memory,

move something else from memory to disk,

load in the desired memory from disk

called "demand paging"

that's the original motivation, not so relevant any more

Virtual Addressing Idea

 diagram: MMU, two arrays of memory cells

set of arrows from left to right

"virtual addresses" vs "physical addresses"

s/w ONLY loads/stores using virtual addresses

phys addrs ONLY show up in the mapping table

conceptually, translations for all 2^32

some refer to physical memory

others to disk locations

 how to implement?
if per-byte mappings, 16 GB!
not practical to have a translation table with entry per byte addr

Page Tables
how to make the mapping table small?
divide virtual addresses into contiguous aligned "pages"
upper (say) 20 bits are "virtual page number"
MMU only maps page number -> upper 20 bits of a phys address
then use lower 12 va bits as lower 12 pa bits

Example:
page table:
0: 3 (i.e. phys page 3)
1: 0
 2: 4
 3: 5

 register R3 contains 0x2020

LD R4, (R3)

CPU sends (R3)=0x2020 to MMU

virtual page number is 2

offset is 0x20

 thus pa = 4*4096 + 0x20 = 0x4020

MMU sends 0x4020 on wires to DRAM system

Page table small enough to fit in DRAM
has 2^20 entries, probably 4 bytes each
now page table is only 4 MB, not so big

Where is the page table?
in memory
so can be modified with ordinary instructions

CPU Page Table Base Register points to base
so a memory reference conceptually requires *two* phys mem fetches
one to get the page table entry
one to get the actual data

allows us to keep multiple page tables, quickly switch

will come in handy later...

Flags
"Page Table Entry"
20 bits, plus some flags
Valid/Invalid, Writeable/ReadOnly
MMU only does translation if valid and correct read/write
otherwise forces a "page fault":
save state

 transfer to known "handler" function in operating system

Demand paging
page table:
0: 1, V
1: -, I
2: 0, V

and only two pages of physical memory!

if program uses va 0x0xxx or 0x2xxx, MMU translates

fault if program uses va 0x1xxx

handler(vpn):

(ppn, vpn') = pick a resident page to evict

write dram[ppn] -> disk[vpn']

pagetable[vpn'] = -, I

read dram[ppn] <- disk[vpn]

pagetable[vpn] = ppn, V

Demand paging discussion
picking the page to evict requires cleverness
e.g. least recently used

we are treating DRAM as a cache for "real" memory on disk

can do that b/c programs use "names" (va) for memory

we have full control over what the names mean

 map to DRAM

or arbitrary action in page fault handler

What do operating systems use page tables for?
Demand paging
Lazy loading of big programs
Zero fill
 Address spaces for modularity, defend against bugs

one page table per running program

one program cannot even name another program's memory!

Shared memory for fast communication

two different names for same physical page

tight control over what's shared

Copy-on-write fork

Distributed shared memory

Closing
keep your eyes out for naming systems
be aware in your own work
when introducing naming might help

finish up at start of next day

using virtual addressing as an example of naming
has turned out to be powerful, many uses of one underlying mechanism

diagram: cpu, mmu, ram, simplified mapping table
programs "name" data with virtual addresses
mapping is valid (refers to dram), or causes "page fault" to o/s
o/s fills in entry, returns

program never the wiser

what can you do with this naming mechanism?
demand page from disk: support big programs
lazy start from disk

 address spaces: different mappings for different programs
o/s switches depending on which program is currently running
cannot even *name* each other's memory
contains bugs

shared memory, e.g. X client and server (on same machine)
distributed shared memory
build parallel programs on a cluster of separate machines
but with shared memory, all one big program

diagram: draw other machine, its ram and map

page fault: fetch, mark him invalid

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 4: Client/server

Modularity
how to impose order on complex programs?
break into modules
 [big Therac-25 blob => components, interactions]
goal: decouple, narrow set of interactions

Modularity (2)
what form does modularity take?
interactions are procedure calls
C -> P, P returns to C

procedure clarifies interface, hides implementation

P(a) { ... }

C() { ... y = P(x); ... }

Enforced?
 is the interface enforced?
 is the implementation hidden?

What actually happens when C calls P?
6.004

 they communicate via a shared stack, in memory

[stack: regs, args, RA, P's vars, maybe args...]

C: push regs, push args, push PC+1, jmp P, pop args, pop regs, ... R0
P: push vars, ..., pop vars, mov xx -> R0, pop PC

Call Contract
 P returns
 P returns to where C said
 P restores stack pointer
P doesn't modify stack (or C's other memory)
P doesn't wedge machine (e.g. use up all heap mem)

Soft modularity
at a low level, none of call contract is enforced!
want: spec + contract
spec: we cannot hope to enforce (e.g. does sqrt() return the right answer?)
contract: is purely mechanical, we can try to enforce
goal: programmer need only worry about spec, not contract
== Enforced Modularity
there are many ways to enforce modularity

we'll look at one today

Client/server
note much of prob from sharing same machine and memory
so: put C and P on separate machines
interact only w/ msgs
[diagram: two boxes with a wire]
Examples: web client / server, AFS, X windows (about to read)

Code + time diagram
Client:

 put args in msg (e.g. URL)

send msg

wait for reply

 read result from reply
Server:

 wait for req msg

get args

compute...

put result in reply msg (e.g. content of index.html) send reply

goto start

C/S Benefits
1. protects control flow (e.g. return address)
2. protects private data
3. no fate sharing (crashes and wedges don't propagate)
4. forces a narrow spec (for better or worse, no global vars)
c/s enforces most of call contract

bugs can still propagate via messages

but that's a fairly restricted channel

easier to examine than all of memory

spec still programmer's problem: ensure server returns the right answer

C/S helps with Multiple Parties
it turns out c/s has benefits more than just enforced modularity
[diagram: emacs, AFS, print]
emacs on workstation, AFS, print server
workstation uses multiple servers
AFS has multiple clients
print server might be both server and client of AFS
e.g. client sends file name to print server

AFS server is a "Trusted Intermediary"
1. get at your data from multiple physical locations
2. share with other clients
 3. control the sharing (private vs public data, ACLs)

private, friends, public

bugs in one client don't affect other clients

4. servers physically secure, reliable, easy to find

these c/s benefits are as important as enforcing modularity

e.g. e-mail server, eBay

RPC
 c/s involves a lot of nasty error-prone msg formatting &c
why not hide details behind real procedure interface?

Example:
imagine this is your original single-program ebay implementation:
ui(){
print bid("123", 10.00);

}

bid(item, amt) {

 ...
 return winning;

}

you want to split at bid() w/o re-writing this code

Client stub
 idea: procedure that *looks* like bid() but sends msg
client stub:

 bid(item, amt){

put item and amt in msg;

send msg;

wait for reply;

winning <- reply msg;

return winning;

now original ui() is using a server!

Server stub
 want to use original bid() code on server
server stub:
 dispatch(){

while(1){

read msg

item, amt <- msg;

w = bid(item, amt)

msg <- w;

send msg;

}

}

Marshal / unmarshal
need standard way to put data types into messages
a message is a sequence of bytes

standard size for integers, flat layout for strings and arrays
typical request message format:
proc# id 3 '1' '2' '3' 10.00???

Automatic stub generation
tool to look at argument and return types: run it on bid()
generate marshal and unmarshal code
generate stub procedures
saves programming
ensures agreement on e.g. arg types

RPC very successful at simplifying c/s, but

RPC != PC
 despite syntactic similarity
amazon web, warehouse back-end
[time-line]
user (browser) wants to place an order
RPC 1: check inventory(isbn) -> count
what if network loses/corrupts request?

loses reply?

warehouse crashes?

 stub can hide these failures by timeout + resend

wrap loop around stub

leads to duplicates -- OK, no side effects

RPC 2: ship(isbn, addr) -> yes/no

request lost?

reply lost?

warehouse crashes?

 can stub hide these failures by retrying?

are duplicates OK?

How do RPC systems handle failure?
a couple of approaches, often called "failure semantics"
1. at least once

 client keeps re-sending until server responds

-> more than once

 -> error return AND success

 only OK for RPCs w/o side effects e.g. check inventory

2. at most once

 client keeps re-sending (may time out + error)

server remembers requests and suppress duplicates

-> error return AND success

 is it OK for ship()?

not if we also want to charge credit card iff book shipped
if client gives up, or crashes, did the book ship?

3. exactly once

this is often what we really want: just do it

hard to do in a useful way, will see practical versions later

most RPC systems do #1 or #2

RMI code slide
 you feed first part to the rmic stub generator

it produces implementation of BidInterface for main() to call

and server dispatch stubs

the server stubs call your implementation of bid() (not shown)

public interface ensures client/server agree on arguments (msg format)
procedure call to bid() looks very ordinary!
but around it there are non-standard aspects

Naming.lookup() -- which server to talk to?

server has registered itself with Naming system

lookup() returns a proxy BidInterface object

has bid() method, also remembers server identity

try/catch
this is new, every remote call must have this, for timeouts/no reply

Summary
Enforced modularity via C/S
RPC automates details
 RPC semantics are different
 Next: enforced mod on same machine

RMI code slide (l4.ppt):

public interface BidInterface extends Remote {
public String bid(String) throws RemoteException;

}

public static void main (String[] argv) {
try {
BidInterface srvr = (BidInterface)

Naming.lookup("//xxx.ebay.com/Bid");

winning = srvr.bid("123");

System.out.println(winning);

} catch (Exception e) {

System.out.println ("BidClient exception: " + e);

}

}

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 5: Operating System Organization

Plan for next few lectures
 general topic: modularity
just talked about one module per computer (c/s)
more details on net-based c/s later in course

now: modules within one computer

L5: o/s organization -- tools for enforced modularity

L6: concurrency

L7: threads

 o/s interesting design artifact in itself

O/S Goals
multiplexing: one computer, many programs
cooperation: help programs interact / communicate / share data
protection (bugs, privacy)
portability (hide h/w differences and e.g. amt of RAM)
performance (improve, and don't get in the way)

Key techniques to achieve those goals?
virtualization
 abstraction

Virtualization
 computer has h/w resources
a few CPUs, one mem system, one disk, one net i/f, one display
but you want to run many programs (X, editor, compiler, browser, &c)
idea: give each program a set of "virtual" resources
as if it had its own computer

CPU, memory

Virtualization example: CPU
multiplex one CPU among many programs
so each program thinks it has a dedicated CPU
give the CPU to each in turn for 1/n-th of the time
h/w timer that interrupts 100 times/second
save registers of current program (CPU registers)
load previously-saved registers of another program
continue
 transparent to the programs!
much more to say about this in the next few lectures

some systems virtualize all h/w
"virtual machine monitors"
 give each subsystem (program?) a complete virtual computer

precisely mimic complete hardware interface
early IBM operating systems shared computer this way

one computer, many VMs

each user can run their own o/s

VMWare, Parallels on Mac, Microsoft Virtual PC
virtualization by itself makes cooperation hard

compiler wants to see editor's output

not so easy if each thinks it has a dedicated virtual disk

Abstraction
 abstraction: virtualize but change interface

 change interfaces to allow sharing, cooperation, portability

Abstraction examples:
really "abstract virtual resources"
disk -> file system
display -> window system
cpu -> only "safe" instrs, e.g. no access to MMU, clock, &c
??? -> pipes

What does an abstraction look like?
 usually presented to programmer as set of "system calls"
see slide (l5.ppt)
you're familiar with FS from UNIX paper
chdir asks the kernel to change dir
rest of code reads a file
 system call looks like procedure, we'll see it's different internally

main() {
int fd, n;
char buf[512];

 chdir("/usr/rtm");

 fd = open("quiz.txt", 0);

n = read(fd, buf, 512);

write(1, buf, n);

close(fd);

}

How to manage / implement abstractions?
how to enforce modularity?
e.g. want prog to use FS *only* via system calls

mechanism: kernel vs user

 [diagram: kernel, programs, disk, &c]

kernel can do anything it likes to h/w

user program can *only* directly use own memory, nothing else

asks kernel to do things via system calls

w/ this arrangement, enforcement more clear, two pieces:

keep programs inside their own address spaces

control transfers between user and kernel

enforcing address space boundaries
use per-program pagemap to prohibit writes outside address space

kernel switches pagemaps as it switches programs

that's how o/s protects one program from another

program's address space split

kernel in high addresses

user in low addresses

 PTEs have two sets of access flags: KR, KW, UR, UW
all pages have KR, KW
only user pages have UR, UW
convenient: lets kernel directly use user memory, to impl sys calls

CPU has a "supervisor mode" flag
if on, Kx PTE flags apply, modify MMU, talk to devices
if off, Ux PTE flags, no devices

 need to ensure supervisor mode = on only when exec kernel code

orderly transfer from user to kernel
1. set supervisor flag
2. switch address spaces
3. jmp into kernel

and prevent user from jumping just anywhere in kernel

and can't trust/user user stack

can't trust anything user provides, e.g. syscall arguments

system call mechanics
App:
chdir("/usr/rtm")

R0 <- 12 (syscall number)

R1 <- addr of "/usr/rtm"

SYSCALL

 SYSCALL instruction:

 save user program state (PC, SP)

set supervisor mode flag

jump to kernel syscall handler (fixed location)

Kernel syscall handler:

save user registers in per-program table

set SP to kernel stack

 call sys_chdir(), an ordinary C function

 ...

 restore user registers

SYSRET

 SYSRET instruction:

 clear supervisor mode flag

restore user PC, SP

continue process execution

this is procedure call with enforced modularity
though only protects kernel from user program
user program can do only two things
use just its own memory
or jump into kernel, but then kernel is in charge

SYSCALL combines setting of supervisor mode and jumping to known location
would be a disaster to let user program specify target

how to use kernel's enforced modularity?
how to arrange module boundaries for system services?
two main camps: microkernel vs monolithic

the microkernel vision
 implement main o/s abstractions as user-space servers

FS, net, windows/graphics

apps, servers interact with messages

kernel provides minimum to support servers

inter-process communication (messages / RPC)

processes -- address space + running program

most interaction via messages

only two main system calls: send() and recv()

why are microkernels attractive?
elegant, simple

 direct support for client/server
kernel is small, fewer bugs
kernel can be optimized to do one thing well (messages)
hard modularity among different servers, vs bugs
uniform port scheme -> uniform security plan
control access by giving (or not giving) port access rights

easier to distribute (messages allows services on other hosts)

where did this idea go?
implementations were slow around 1990 -- e.g. Mach
many messages, esp if you have many servers

tended to end up with a few huge servers, so little modularity win
the message idea was influential, e.g. Apple's OSX

monolithic kernels -- the (so far) winning design
it's too much of a pain to separate lots of servers
easier and more efficient to have one big program

what's in the Linux kernel?

 FDs processes

 FS

disk
 term net cache

 drivers alloc

 enet disk RAM CPU MMU

complex: 300+ sys calls, not just two+ as in microkernel
much of complexity hidden beneath uniform interfaces -- OO style
e.g. all storage devices look the same to the file system
USB flash key, hard disk

all network hardware looks the same to network code
 so not as complex as it looks

why have monolithic kernels mostly won vs microkernels?
tradition, advantages of microkernels are subtle
efficiency: procedure call or mem refs rather than messages
efficiency: better algorithms via integration among modules
balance between file system cache and amt of mem for processes

easy to add microkernel-style messaging, user-level servers
X, sshd, DNS, apache, database, printer

what doesn't work so well in [monolithic?] kernels?
device drivers are buggy, cause crashes
lots of rules e.g. for user pointers passed as arguments
tricky bug-prone programming environment

bad at shared resource management (mem, disk)
compiler uses lots of mem -> laptop unuseable
backup program uses disk -> laptop unuseable (so I don't back up...)
modularity is soft for resource management

Summary

 o/s virtualizes for sharing/multiplexing
abstracts for portability and cooperation
provides enforced modularity in two useful ways:
program / kernel
program / program

supports two kinds of c/s: program -> kernel, program -> program
next: specific techniques for client/server on single computer

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 6: Client/server on one computer

Intro
 how to implement c/s on one computer
valuable in itself
 involves concurrency, an independently interesting topic

DP1 is all about concurrency

what do we want?
 [diagram: X client, X server, NO KERNEL YET]
client wants to send e.g. image to server
goal: arms-length, so X srvr not vulnerable to client bugs

idea: let kernel manage interaction
client/srvr interact w/ trusted kernel, not each other
[diagram: X client, X server, kernel]
let's focus on one-way flow (can use two for RPC)
buffer memory in kernel
each entry holds a message pointer

send(m) to add msg to buffer

receive(m) to read msg out of buffer

finite buffer, so send() may have to wait

buffer may be empty, so receive() may have to wait

why does buffer have multiple entries?

sender / receiver rates may vary around an average

let sender accumulate a backlog when it's faster

so receiver has input when sender is slower

very much like a UNIX pipe

problem: concurrency
some data structure inside kernel, s() and r() modify it
what if s() and r() active at same time? may interfere
concurrency a giant problem, will come up many times
let's start simple:
each program gets its own CPU
there is only one memory system

[diagram: two CPUs, one memory]

system calls run on both CPUs!

i.e. if program A calls send(), send() runs on A's CPU

send() and receive() interact via single shared memory system

data structure
 "bounded buffer"
 [diagram: BUFFER[5], IN, OUT]
each array entry: pointer to message buffer
IN: number of messages put into BB
OUT: number of messages read out of BB
IN mod 5 is next place for send() to write
OUT mod 5 is next place for receive() to look
example: in = 28, out = 26
two messages waiting, slots 1 and 2

in > out => BB not empty

in - out < 5 => not full

send() code slide
p is "port", points to instance of BB, so we can have many of them

 e.g. one per c/s pair, or one per UNIX pipe

loop to wait until room ("busy-wait")

write slot

 increment input count

receive() code slide
loop to wait until more sends than recvs
if there's a message
increment p.out AFTER copying msg
since p.out++ may signal send() to overwrite

if send() is waiting for space

I believe this simple BB code works
[show slide with both]
even if send() and receive() called at same time
concurrency rarely work out this well!

Assumptions for simple BB send/recv
1. One sender, one receiver
2. Each has its own CPU (otherwise loop prevents other from running)
3. in and out don't overflow
 4. CPUs perform mem reads and writes in the order shown

oops! this code probably won't work as shown!

compiler might put in/out in regs, not see other's changes

CPU might increment p.in before writing buffer[]

I will assume memory R/W in program order

Suppose we want multiple senders
e.g. so many clients can send msgs to X server

would our send() work?

Concurrent send()
A: send(p, m1) B: send(p, m2)

what do we *want* to happen?

what would be the most useful behavior?

 goal:

two msgs in buf, in == 2

we don't care about order

Example prob w/ concurrent send()
on different cpus, at the same time, on the same p
A B
 r in, out

 r in, out

w buf[0]

 w buf[0]

r in=0

 r in=0

 w in=1

 w in=1

 result: in = 1, one message in bounded buffer, and one was lost!

This kind of bug is called a "race"
once A puts data in buffer, it has to hurry to finish w/ incr of p.in!

Other races in this code

 suppose only one slot left

A and B may both observe in - out < N

put *two* items in buf, overwrite oldest entry

Races are a serious problem
easy mistake to make -- send() looks perfectly reasonable!
hard to find
 depends on timing, may arise infrequently
e.g. Therac-25, only experienced operator typed fast enough

How to fix send()'s races?
original code assumed no-one else messing w/ p.in &c

only one CPU at a time in send()

== isolated execution

 can we restore that isolation?

Locks
 a lock is a data type with two operations

acquire(l)

s1

 s2

 release(l)

the lock contains state: locked or unlocked

 if you try to acquire a locked lock

acquire will wait until it's released

if two acquire()s try to get a lock at same time

one will succeed, the other will wait

How to fix send() with locking?
[locking send() slide]
associate a lock w/ each BB
acquire before using BB
release only after done using BB

high-level view:

no interleaving of multiple send()s

only one send() will be executing guts of send()

likely to be correct if single-sender send() was correct

Does it matter how send() uses the lock?
move acquire after IF? [slide]

Why separate lock per bounded buffer?
rather than e.g. all BBs using same lock
that would allow only one BB to be active

but it's OK if send()s on different BBs are concurrent

lock-per-BB improves performance / parallelism

Deadlock
 big program can have thousands of locks, some per module
once you have more than one lock in your system,
you have to worry about deadlock

deadlock: two CPUs each have a lock, each waiting for other to release
example:
implementing a file system
need to ensure two programs don't modify a directory at the same time
have a lock per directory

 create(d, name):

acquire d.lock

if name exists:

 error

 else

 create dir ent for name

 release d.lock

 what about moving a file from one dir to another? like mv

move(d1, name, d2):

acquire d1.lock

acquire d2.lock

delete name from d1

 add name to d2

 release d2.lock

 release d1.lock

 what is the problem here?

Avoiding deadlock
look for all places where multiple locks are held
make sure, for every place, they are acquired in the same order
then there can be no locking cycles, and no deadlock

for move():

sort directories by i-number

lock lowere i-number first

 so:

 if d1.inum < d2.inum:

 acquire d1.lock

acquire d2.lock

else:

 acquire d2.lock

acquire d1.lock

this can be painful: requires global reasoning

acquire l1

print("...")

does print() acquire a lock? could it deadlock w/ l1?

the good news is that deadlocks are not subtle once they occur

Lock granularity
how to decide how many locks to have, what they should protect?
a spectrum, coarse vs fine
coarse:
 just one lock, or one lock per module
e.g. one lock for whole file system

more likely correct

but CPUs may wait/spin for lock, wasting CPU time

"serial execution", performance no better than one CPU

fine:

 split up data into many pieces, each with a separate lock

different CPUs can use different data, different locks

operate in parallel, more work gets done

but harder to get correct

more thought to be sure ops on different pieces don't interact

e.g. deadlock when moving between directories

always start as coarse as possible!
use multiple locks only if you are forced to, by low parallel performance

How to implement acquire and release?
Here's a plan that DOES NOT WORK:
acquire(l)
while l == 0
 do nothing
l = 1

 release(l)

l = 0

 Has a familiar race:

 A and B both see l = 0

 A and B both set l = 1

 A and B both hold the lock!

If only we could make l==0 test and l=1 indivisible...
most CPUs provide the indivisible instruction we need!
differs by CPU, but usually similar to:
RSM(a)

r <- mem[a]

mem[a] <- 1

return r

 sets memory to 1, returns old value

RSM = Read and Set Memory

How does h/w make RSM indivisible?
a simple plan
two CPUs, a bus, memory
only one bus, only one CPU can use it
there's an arbiter that decides
 so CPU grabs bus, does read AND write, releases bus
arbiter forces one RSM to finish before other can start

How to use RSM for locking?
acquire(l)
while RSM(l) == 1
do nothing

always sets lock to 1

if already locked: harmless

if not locked: locks

 RSM returns 0 iff not already locked
only one of a set of concurrent CPUs will see 0
tidbit: you can implement locks w/ ordinary LOADs and STOREs
i.e. w/o hardware-supported RSM

it's just awkward and slow

look up Dekker's Algorithm

Summary
BB is what you need for client/server on one computer
Concurrent programming is tough
Locks can help make concurrency look more sequential
Watch out for deadlock
 Next: more than one program per CPU

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.003 Lecture 7: Threads and Condition Variables

topic: virtual processors / threads
monday: client/server / bounded buffer w/ one CPU per program
today: more programs than CPUs
only one CPU (no busy looping!)
or a few CPUs, many more programs

also fewer programs than CPUs (CPUs may need to be idle!)

goal: virtualize the processor

multiplex CPU among many "threads"

thread abstraction
 state of a runnable program
so CPU multiplexing == suspend X, resume Y, suspend Y, resume X
other abstractions for multiplexing CPU are possible
this is a useful and traditional one

 controlled by "thread manager" or "scheduler"

what is the required state?

how to save state for suspend?

how to resume from saved state?

send() from previous lecture
illustrates why we want threads and multiplexing
[send slide]
loops waiting for BB to be non-full
burns up a lot of CPU time
if one CPU, maybe receive will never run!
we'd like to let receive() run...

send w/ yield
[send/receive slide]
yield() gives up the CPU
lets other threads run
 e.g. a receive() may have been waiting and called yield()
someday yield() will return

after other thread yield()s

e.g. it tries to receive() but BB is empty

how to implement yield()?
yield() is the guts of the thread implementation
suspend one, resume another

data:
 threads[] table: state, sp
thread stack 0, stack 1, ...
cpus[] table: thread
t_lock (coarse granularity...)

[yield version 1 slide]

what happens in yield?
send calls yield
how does it know what thread is running?
per-CPU register CPU() contains cpu #

cpus[] says what's happening on each CPU

RUNNING -> RUNNABLE

 RUNNING means some CPU executing it now
RUNNABLE means not executing, but could

save SP (the CPU register)

look for a different thread to run

 ignore the RUNNING ones

mark "new" thread as RUNNING, so no other CPU runs it

restore saved SP of new thread

 that is, load it into CPU's SP register

return

questions:
what state does yield save?

just SP

what is on the stack? local vars, RA, send()'s saved registers &c

we might need to save/restore callee-saved registers too

what happens in return after restoring?
this use of SP might not work, depends on compiler

I'm assuming compiled code does not change SP in body of yield()

and that return basically just pops RA off stack

more complex in real life

what does t_lock protect?

indivisible set of .state and .sp

indivisible find RUNNABLE and mark it RUNNING

 don't let another CPU grab current stack until we've switched

Questions?

motivate notify / wait
[send with yield slide]
send() and receive() still chew up CPU time
e.g. send() waits for receive to free up a slot in BB
e.g. receive() waits for BB to be non-empty

repeated yield() expensive if many threads waiting

want send to suspend itself

have receive wake it up when there is space

do it in a general way

don't want receive to have to know abt all threads waiting in send

"condition variable"
 object that acts as a rendezvous
two methods:
 wait(cvar, lock) -- release(lock), yield, return after notify(cvar)
notify(cvar) -- wake up all threads currently in wait(cvar)

notify has no memory: if no threads wait()ing, no effect at all

wait() and then notify(): wait returns

notify() and then wait(): wait does not return

each BB has two condition variables:
 notfull (send waits on this if full)
notempty (recv waits on this if empty)

[send with wait/notify]
if full, waits, receive will someday free up a slot and notify(p.notfull)
waits in a loop, re-checks after wait returns
maybe multiple senders waiting, but only one slot freed up

that is, wait() returning is only a hint

 you always ought to explicitly check the condition

notifies notempty in case one or more receives are waiting

no harm if no-one is waiting

holds lock across while test and use of buffer

 so no other send() can sneak in and steal buffer[] slot

why does wait() release p.lock? why not have send() release it?
i.e. why not
while p.in - p.out == N:

release

 wait(p.notfull)

acquire

notify might occur between release and wait

no effect, since no threads waiting at that point

then send()'s wait() won't return, even though there's a msg!

this is the "lost notify" problem

avoiding lost notifies
wait(cvar, lock)

caller must hold the lock

 wait() atomically releases lock and marks thread as waiting

so no notify can intervene
re-acquires lock before returning

notify(cvar)
caller must hold the lock

 so, implicitly, condition variable always associated with a particular lock

implementing wait
thread table additions:

 new state: WAITING

 threads[].cvar (so notify can find us)

big Q: where to release the lock?

[wait() slide]

acquire t_lock first, then release the lock, then WAITING

ensure that notify() holds both!

b.t.w. need to modify yield()

[wait+notify() slide]

notify() caller holds lock, notify() acquires t_lock

so receive's notify() holds both locks
either executes before send acquires lock

or after sending thread suspends

(but NOT between send's check and suspension)

if before:

 send() acquire waits until receive is done

send() will see empty slot and not wait

if after:

 notify() will see WAITING send thread, and mark it RUNNABLE

but now we must revisit yield()
[yield v1 again]
t_lock already held, not need to set state (easy)
yield might find there is nothing RUNNABLE!!! (harder)
this thread WAITING, but receive() running on another CPU

loops forever while holding t_lock

so no other CPU can execute notify()

so no thread will ever be RUNNABLE

 system will hang

how to fix yield()?
[yield version 2 slide]
don't acquire t_lock, don't set to RUNNABLE
release+acquire in "idle loop"
still spins indefinitely while no runnable threads
BUT lets other CPUs execute notify()

t_lock held on return, but wait() releases it

note I've also set the SP to a per-CPU stack, before idle loop

why?

yield() v1 runs idle loop on calling thread's stack

someone might notify() it

some other CPU in idle loop might run the thread

now two CPUs are executing on the same stack

e.g. calling functions like acquire, which modify the stack

thus per-CPU stack for yield() to use when not in any thread

pre-emptive scheduling
what if a thread never calls yield()?

we are in trouble, no way to multiplex that CPU

compute-bound, or long code paths, or broken user programs

too annoying to require programmer to insert yield()s

we want forcible periodic yield

how to pre-empt?
timer h/w, generates an interrupt 10 times per second
interrupt saves state, jumps to handler in kernel
timer():
yield()

return

will the resulting stack resume correctly?
interrupt pushes PC + regs on current thread's stack
when not running, stack looks like:
 ...

 RA to thread at time of interrupt

registers

RA to timer()

so yield() returns to interrupt handler, which returns to interrupted code

what if timer interrupt while you are in yield already?
would call yield recursively
deadlock: already holding t_lock
acquire should disable interrupts
release should re-enable

 not just for here, but all uses of locks

what if timer interrupt after idle loop releases t_lock?
again, recursive yield()
but invalid cpus[][CPU()].thread
so fix yield() to null out .thread
and fix timer interrupt to yield only if valid .thread

Summary
closing thought: how to kill a thread? might be running...

 threads are virtual processors
allow many threads, few CPUs
the foundation of time-sharing

we had to integrate:
yield()
condition variables
 interrupts for pre-emption
missing: creation (easy), exit (harder)

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 2009 Lecture 8: Performance

Performance: why am I lecturing about it?
often has huge effect on design
often forces major re-design as loads grow
faster CPUs haven't "solved" performance
problems have grown too, e.g. Internet-scale

disk and net latency hasn't improved

Performance Introduction
 your system is too slow

[diagram: clients, net, server CPU, server disk]

perhaps too many users, and they are complaining

what can you do?
1. measure to find bottleneck

 could be any of the components incl client

you hope to find a dominating bottleneck!

2. relax bottleneck

 increase efficiency or add hardware

Decide what you mean by "performance"
throughput: requests/second (for many users)
latency: time for a single request
sometimes inverses:
 if it takes 0.1 second of CPU, and one CPU, then throughput = 10/sec
often not inverses

 w/ 2 CPUs, latency still 0.1, but throughput 20/sec

queuing and pipelining

I will focus on throughput, appropriate for heavily loaded systems
most systems gets slow as # of users goes up

at first, each new user uses some otherwise idle resources

then they start to queue

[graph: # users, reply/sec, linear up, hits a plateau]

[graph: # users, delay, stays at zero then linear up (queuing delay)]

How to find bottleneck?
 1. measure, perhaps find that e.g. cpu is 100% used

but maybe not, e.g. cpu 50% use and disk 50% used, just at different
times
 2. model

 net should take 10ms, 50ms CPU, 10ms disk

3. profile

tells you where CPU time goes

4. guess

you will probably have to do this anyway

test hypothesis by fixing slowest part of system
can be difficult:
 if disk busy all the time, should you buy a faster disk / two disks?

or more RAM?

You may need to make application logic more efficient
fewer features, better algorithms
I cannot help you with that -- application-specific
but there are general-purpose techniques

The main performance techniques
1. caching
2. I/O concurrency
3. scheduling
4. parallel hardware (two disks, two CPUs, &c)
these are most useful when many waiting requests
but that will often be the case if your server is heavily loaded

I'm going to focus on disk bottlenecks
Every year it gets harder to be CPU-bound
what tricks for good disk performance?

hitachi 7K400: 400 GB. 7200. 8.5ms r seek, 9.2ms w.
567 to 1170 s/t. 10 heads. abt 87000 cylinders.

primer on disks
[disk slide]
physical arrangement
rotating platter: 7,200 RPM, 120/sec, 8.3 ms / rotation
continuous rotation

 circular tracks, 512-byte sectors, about 1000 sectors/track
perhaps 100,000 tracks, concentric rings
multiple platters, 5 for 7K400, so 10 surfaces
cylinder: set of vertically aligned tracks

one disk arm, head per surface, they all move together

can only read from one head at a time

three movements required:
"seek" arm to desired track: varies w/ # tracks, 1 to 15 ms
wait for disk to "rotate" desired sector under head: 0 to 8.3ms
 read bits as they rotate under head at 7200

disk performance?
big multi-track sequential transfers:

one track per rotation

512*1000 / 0.0083

62 megabytes/second

that is fast! unlikely to be a bottleneck for most systems

small transfers, e.g. 5000-byte web page:

from *random* disk location

 seek + rotate + transfer

 avg seek: 9 ms

avg rotate: 1/2 full rotation for random block

transfer: size / 62 MB/sec

9 + 4 + 0.1 = 13.1ms

 rate = 5000 / 0.0131 = 0.4 MB/sec

i.e. 1% of big sequential rate. this is slow.

sadly this is typical of real life

Lesson: lay your data out sequentially on disk!

caching disk blocks
use some of RAM to remember recently read disk blocks
this is often the main purpose of RAM...

your o/s kernel does this for you

table:

 BN DATA

 read(bn):

if block in cache, use it

else:

 evict some block

 read bn from disk

 put bn, block into cache

hit cost: about 0 s to serve a small file from RAM

 miss cost: 0.010 to read a small file from disk

eviction / replacement policies
important: don't want to evict something that's about to be used!
least-recently-used (LRU) usually works well
if it's been used recently, will be used again soon

LRU bad for huge sequential data that doesn't fit

if you read it over and over (or even only once)

if it's been used recently, won't be used again for a while!

don't want to evict other useful stuff from cache

 random? MRU?

how to decide if caching is likely to work?
productive to think about working set size vs cache size
you have 1 GB of data on disk and 0.1 GB of RAM
will that work out well?
 maybe yes:

if small subset used a lot (popular files)

if users focus on just some at a time (only actively logged in users)

if "hit" time << "miss" e.g. disk cache

if disk I/O signif fraction of overall time

maybe no:
if data used only once
if more than 0.1 GB read before re-use (i.e. people read whole GB)
if people read random blocks, then only 10% hit probability
if hit time not much less than miss time
 e.g. caching results of computation

i/o concurrency
what if most requests hit but some have to go to disk?
and you have lots of requests outstanding

[time diagram: short short long short short]

we don't want to hold up everything waiting for disk

idea: process multiple requests concurrently

some can be waiting for disk, others are quicker from cache
can use threads

 note: threads handy here even if only one CPU

special case: prefetch (works w/ only one thread)

special case: write-behind

scheduling
sometimes changing order of execution can increase efficiency
if you have lots of small disk requests waiting
sort by track
results: short seeks (1ms instead of 8ms)
the bigger the backlog, the smaller the average seek
system gets more efficient as load goes up!

higher throughput

 "elevator algorithm"

maybe you can sort rotationally also, but that's hard

cons: unfair -- increases delay for some

if you cannot improve efficiency
buy faster CPU/net/disk if you can
otherwise buy multiple servers (CPUs + disks) -- but how to use?
strict partition of work: easiest
users a-m on server 1 (cpu+disk)

users n-z on server 2 (cpu+disk)

no interaction, so e.g. no need for locks, no races

hard if e.g. some operations involve multiple users -- bank xfers
perhaps factor out computing from storage
front end / back end
front end can get data for all needed users from back end
works well if CPU-bound or FEs can cache

Pragmatics
programmer time costs a lot
hardware is cheap
programming most worthwhile if allows you to use more h/w

show slide
going to look at a quiz question from a few years ago
as practice, and to illustrate performance ideas
quizzes often present some new pretend system, ask lots of
questions about it and effects of changes

worth practicing a bit (old exams), takes some getting used to

OutOfMoney

serving movie files, to clients, over net

single CPU, single disk

each file is 1 GB, split into 8 KB blocks, randomly scattered

Q1: 1153 seconds

seek + half rotation + (8192 / 10 MB/sec)

0.005 + 0.003 + 0.0008 = 0.0088 sec/block
times 131072 = 1153

if layout were better, how long would it take?

mark adds a one-GB whole-file cache

Q2: 1153 seconds

does that mean the caching scheme is bad?

Q3: B

what behavior would we expect to see for each of those reasons if
it were true?

in what circumstance would that caching scheme work well?

how could it be improved?

Threads: what is the point? do we expect threads to help?

Why do we think it is telling us where it calls yield? What is the

significance of those points? (I/O concurrency)

Why might non-pre-emptive be important?

new caching code:

1. 4 GB
 2. reads each block independently: *block* cache, not whole-file

Why might per-block caching be important? Probably second-order, to
fix a bug in the question: that otherwise GET_FILE_FROM_DISK might

prevent all other activity.

Q4: 100% hit rate.

Maybe an artifact of having sent a first non-concurrent request.

What if he had started by sending many requests in parallel?

Q5: Ben is right. One CPU, threads are non-pre-emptive.

What if two CPUs, or pre-emption? Would this lock be enough?

Might need to protect all uses of cache, disk driver, network s/w,

maybe best done inside each of these modules.

Might want to do something to prevent simultaneous disk read of same

block, i.e. make IF, GET, and ADD indivisible. Though a spin-lock is

probably not the right answer. Per-block busy flag, wait(), notify().

Q6: 0.9 * 0 + 0.1 * 1153 = 115.3

Q7: E

The cache is bigger than the total data in use, so no replacement

is ever needed.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 9: Networking Introduction

ideas for more content
 load-shedding / feedback options (pricing &c)
why did the internet approach win?
what was the other plan?

voice / video on internet actually works

despite best effort non-guarantee

why? video is elastic.

voice actually a lot harder despite low bitrate

why QoS isn't needed (elastic adaptive applications?)

burstyness and flat-rate fixed-rate pipes make pricing complex
my dsl company sells one way, buys in bulk another
they take on a big risk -- what if i start downloading 24 hours per day?

old internet maps
http://www.nthelp.com/maps.htm
MCIWorldcom 2000 most hair-raising

First of 5 lectures on data networks.
 Overview today: identify the problems and design space
Dig into details over next four lectures.
* network are a useful systems building block
* internal workings are a good case study of system design.

Internet in particular an example of a very successful system.

complex enough to be a subject of science, like the weather

What is the goal of data networking?
Allow us to build systems out of multiple computers.
Your problem may be too big for one computer.
You may want multiple computers for structural reasons: client/server.
more fundamental reason:
 A key use of computers is for communication between people, orgs.

People are geographically distributed, along with their computers.

So we're forced to deal with inter-computer comms.

System picture:
Hosts. Maybe millions of them. All over the world.
[No cloud yet, but leave room. circular hosts.]

What are the key design problems to be solved?
I'll classify into three types:
O: Organizational, to help human designers cope.
E: Economic, to save operators money.
P: Physics.

E: universality.
Want one net, many uses

Rather than lots of small incompatible/disconnected network worlds.

e.g. Fedex builds its own data net for its customers to track packages
private nets sometimes good for reliability, predictable service,

security
The more people that use a network, the more useful it is for everybody.
Value to me is proportional to N people using the same net.
Value to society is proportional to N^2.

http://www.nthelp.com/maps.htm

 What technical tools help us achieve universality?
Standard protocols make it easy to build systems.
But don't want to prevent evolution by freezing design w/ standards.
Hard: standardize just what's required to make net generally useful,
but not the things that might need to be changed later.

One universal net means it's *not* part of each system design.

It's a black box; simplifies design of systems that use it.

Symbolically, a cloud that hides internal workings.

[draw network cloud]

E: topology.
[three new pictures; circular hosts, square switches]
Look inside the cloud.
 Wire between every pair?

pro: network (wires) is transparent, passes analog signals.

It's never busy. Never any question of how to reach someone.

con: host electronics. laying wires expensive.

Star network. "switch". Federal Express in Memphis.

pro: less wire cost. easy to find a path.

con: load and cost and unreliability of hub.

Mesh topology. Routers and links.

pro: low wire cost. limited router fan-out. some path redundancy.

con: shared links, higher load. complex routing.

O: routing.
Find paths given dst "address".
Harder in mesh than in star or hierarchy.
[diagram: two available paths]

change far away may require re-routing

-> has a global element, thus scaling problems

many goals:

Efficiency: low delay, fast links

Spread load

Adapt to failures

Minimize payments

Cope w/ huge scale

Routing is a key problem.

O: addressing.
Hosts need to be able to specify destination to network.
specifically, the address you give to the routing system
18.7.22.69, not web.mit.edu

ideal:
 every host has a unique ID, perhaps 128 bits assigned at random
routing system can find address, wherever it is
so i can connect to my PDA, whether i left it at home or in the office

no-one knows how to build a routing system for large #s of flat addresses!
maybe can layer on top of something else, but not directly

In practice, encode location hints in addresses.

hierarcical addresses, e.g. 18.7.whatever

[diagram: 18 area, 18.7 area, ...]

rest of inet knows only 18, not every host in 18

Trouble if hosts move or topology changes.

hard to exploit non-hierarchical links (rest of Inet can't use MIT-

Harvard)
routing and addressing often very intertwined

E: sharing.
Must multiplex many conversations on each physical wire.
1. how to multiplex?

A. isochronous.
 [input links, router1, router2, link, repeating cycle]
reserved b/w, predictable delay, originally designed for voice
called TDM

 B. asynchronous

data traffic tends to be bursty - not evenly spaced

you think, then click on a link that loads lots of big images

wasteful to reserve b/w for a conversation
so send and forward whenever data is ready
[diagram: input links, router1, link, router2, output links]
divide data into packets, each with header w/ info abt dst

2. how to keep track of conversations?
A. connections
 like phone system
you tell network who you want to talk to
figures out path in advance, then you talk
reqired for isochronous traffic
can allow control of load balance for async traffic
maybe allow smaller packet headers (just small connection ID)
connection setup complex, forwarding simpler

B. connectionless / datagrams
many apps don't match net-level connections, e.g. DNS lookups
each packet self-contained, treated separately
packet contains full src and dst addresses
each may take a different route through network!
shifts burden from network to end hosts (connection abstraction)

E: Overload
 more demand than capacity
consequence of sharing and growth and bursty sources
how does it appear?
isochronous net:
 new calls blocked, existing calls undisturbed
makes sense if apps have constant unchangeable b/w requirements

async net:
[diagram: router with many inputs]
overload is inside the net, not apparent to sending hosts.
net must do something with excess traffic
depends on time scale of demand > capacity
very long: buy faster links
short: tell senders to slow down
 feedback
 elastic applications (file xfer, video with parameterized compression)
can always add more users, just gets slower for everyone
often better than blocking calls

very short: don't drop -- buffer packets -- "queuing"
demand fluctuates over time
 [graph: varying demand, line for fixed link capacity]
buffers allow you to delay peaks into valleys
but only works if valley comes along pretty quick!
adds complexity. must drop if overload too much. source of most Inet

loss.

 Behavior with overload is key.

[Graph of in rate vs out rate, knee, collapse.]

Collapse: resources consumed coping with overload.

This is an important and hard topic: congestion control

E: high utilization.
How much expensive capacity do we have to pay for?
Capacity >= peak demand would keep users happy.
What would that mean?
 single-user traffic is bursty!

[typical user time vs load graph -- avg low, peak high]

Worst case is 100x average, so network would be 99% wasted!

e.g. my one-megabit DSL line is almost entirely idle

too expensive in core to buy Nusers * peak

But when you aggregate async users -- peaks and valleys cancel.

[a few graphs, w/ more and more users, smoother and smoother]

peak gets closer and closer to average

100 users in << 100x capacity needed for 1 user.

less and less idle capacity, lower cost per bit transmitted

"Statistical multiplexing."

Hugely important to economics of Internet

Assumes independent users

mostly true -- but day/night, flash crowds

50% average daytime utilization maybe typical on core links

 Once you buy capacity, you want to get as close to 100% as possible.
fixed cost, want to maximize revenue/work
may need feedback to tell senders to speed up!
want to stay at first knee of in/out graph.
Or maybe less to limit delay
[graph: load vs queuing delay]

P: errors and failures.
 Communication wires are analog, suffer from noise.
Backhoes, unreliable control computers.
General fix: detect, send redundant info (rxmt), or re-route.
How to divide responsibility?
You pay your telecommunications provider, so they better be perfect?
Leads to complex, expensive networks: each piece 100% reliable.

You don't trust the network, so you detect and fix problems yourself.
Leads to complex host software.

Decision of smart network vs smart hosts turns out to be very important.
Locus of complexity pays costs but also has power.
"Best design" depends on whether you are operator or user.

P: speed of light.
foot per nanosecond.
14 ms coast to coast, maybe 40 ms w/ electronics.
Request/response delay. Byte per rtt -> 36 bytes/second.
[picture of pkt going over wire -- and idle wire]

Need to be more efficient.

 Worse: delay hurts control algorithms. Change during delay.

Example: Slow down / speed up.

Result: Oscillation between overload and wastefully idle.

O: wide range of adaptability.

 One design, many situations.

Applications: file xfer, games, voice, video.

Delay: machine room vs satellite.

Link bit rate: modem vs fiber optics.

Management: a few users, whole Internet.

Solution: Adaptive mechanisms.

Internet in design space
Asynchronous (no reservations)
Packets (no connections)
No b/w or delay guarantees
May drop, duplicate, re-order, or corrupt packets -- and often does
Not of much direct use! End hosts must fix
 but gives host flexibility, room for innovation

"best effort"

Next lecture: start to talk about solutions.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 10: Layering, Link Layer

Let's design a data network.
How do we organize our design?

Reminder: mesh networks.
 [draw host/switch/mesh picture]

Idea: protocols.
Two entities (peers) are talking.
Protocol formally defines structure of conversation.
Typically sequence of messages -- packets.
Format:
 Specific set of message types.

What does each bit of the message mean?

[example: ethernet paper, dst, src, data, checksum]

Rules for what happens next, state machines.

Semantics: what does it mean?

 Often you can learn all you need from the formats...

But there are many levels of communication.
[draw the on *mesh* net, nested...]
Analog waveforms on a wire.
Messages from one switch to the next.
Similarly for host / switch.
Application to application.
There are many interacting protocols here.
How do we organize them?

Idea: layers.
Intuition: protocols nest.
Inner protocols building blocks for outer ones.
Let's formalize that way of organizing multiple protos.
Choose and define a useful protocol. [box <--> box]
Define s/w interface so other layers can use it. [stack up]
It may in turn use more primitive layers. [stack down]
Can build up functionality this way.
But use modules, abstraction to control complexity.
Hard part: choosing useful layer boundaries.

6.033 layer model:
[draw stacks for host, switch, host]
Physical: analog waveforms -> bits.
Link: bits -> packets, single wire.
Network: packet on wire -> packet to destination.
End-to-end: packets -> connections or streams.
Application.
physical almost always tightly bound to Link.
And application isn't a generally useful tool.
Note: layer may have many clients
multiple apps using e2e, multiple e2e using net
need a way to multiplex them

Note: net layer may use multiple links

So the real picture in one host

app1 app2 app3

TCP UDP

 IP

 Eth WiFi

 Layers == outline of data networking topic.

Stack of layers:
Repeated scheme for layer interaction
Each layer adds/strips off its own header.
Encapsulates higher layer's data as "payload".

[add to pkt diagram; interior header &c]

Each layer may split up higher layer's data.

[stream split into payloads of packets]

Each layer multiplexes multiple higher layers.

[put protocol # field into packet]

Each layer is (mostly) transparent to higher layers.

data delivered up on far side == data in

Physical Layer
Built out of wires.
 We will only talk about one direction.
Just build two for bi-directional communication.
 [picture: Sender, wire, Receiver]
can send "signals": voltages, optical power levels.
What we want is a stream of bits.
 problems:

which value, 0 or 1? vs noise

when to sample at receiver

Straw man one:
 3 wires: data bit, ready, ack
[picture]
speed of light limits data speed.
coast-to-coast: 30 bits/sec

one mile: 200 kbits/sec

Straw man two:
 Assume sender and receiver have accurate oscillators.
 I.e. same frequency.

[draw the two oscillators]

Sender sends one bit per clock period.

[picture of waveform. mark sampling spots.]

Easy problem: phase changed by wire delay.

Hard problem:

You can probably build one accurate clock.

You probably can't build two that agree.

You can never assume synchronized clocks in dist systems.

Straw man three:
 Send the clock on a separate wire?
Expensive, skew between wires if fast or long

The right answer:
Idea: clock recovery from the signals themselves.
Receiver keeps a local clock.
Adjusts it if signal transitions aren't on clock transitions.
balanced signals: you need transitions! no strings of zeroes.
So can't directly encode 0/1 as high/low signals.

 Ethernet/Manchester has four wave-forms == "symbols"

LH: 0 bit

 HL: 1 bit

 LL: idle

 HH: unused

 so only 2 of 4 codes used. [picture]

Could be more efficient: 8 symbol values per 2 bits. [picture]

LLH: 00

 LHL: 01

 HLL: 10

 HLH: 11

 others unused, e.g. LLL, to aid clock recovery

Why not 128 signals per 127 bits?

single signal error wrecks 127 bits...

Could we declare this to be a layer?
Is it a generally useful abstraction?
No: no way to share. Just bits.

Link Layer: Bits to Packets/Frames
Why packets? Why not continuous data?
Need to inter-mix packets from different conversations.

How do we delimit packets?

Packet framing
Link has two states: idle, sending data.
Need to signal the state transitions.
Idle -> Sending (start of packet).
Sending -> Idle (end of packet).
Let's signal idle with all low signals.
LL not used by Manchester to send bits

Start of packet easy: just send a one bit.
Might want some longer alternating sequence for clock recovery.
e.g. 8x LH followed by HL, in case rcvr misses first few LH

Called a preamble.

[packet picture: preamble, data, end-mark]

mark end of packet?
special code that cannot ordinarily appear in the data stream.
transform data stream to eliminate magic bit sequence.
OR two zero signals in manchester scheme.

what if end-of-packet signal corrupted? wreck next packet?
why don't we use a length field at start instead of a special code?

Can we put an interface here, and make a layer?
Not yet: how do we know whose packet is whose?
Really indicating which layer above us.
All we need is a number in the packet header.

We could turn this into a layer.
By convention, link layer detects errors.

What should we do about errors?
 E.g. noise corrupts some bits.

We need to define the link layer abstraction.

What can it reasonably *guarantee*?

Could just ignore the problem, let higher layer deal.

 Careful higher layers probably check anyway.
Can we guarantee to deliver all packets perfectly?

Hard for link layer to make this guarantee.

Ask previous switch to re-send? Complex, buffering.

What if switch failes? => link cannot guarantee!

Maybe app doesn't care anyway, e.g. real-time voice.

Realistic answer:

 Guarantee that all packets delivered are correct.

We're allowed (expected) to discard corrupted packets.

Example of "best effort" contract.

This means link layer just *detects* bit errors.

Error detection
 best plan depends on error patterns.

single bit due to short noise.

microwave oven wipes out many packets.

coding wipes out one block of e.g. 2 bits.

example: xor byte at the end.

[picture: vertical column of bytes, xor at bottom]

detects any one bit error, some multi-bit errors.

doesn't detect e.g. byte exchange.

much more sophisticated schemes available!

usually called "checksums".

Error correction
 A single bit error causes link layer to discard whole packet.
Seems wasteful.
 We can often squeeze out a little more performance.
Here's a plan for correcting one-bit errors.
[add a 9th bit to each byte.]
Still have to discard if there are two incorrect bits.

What does our link-layer protocol look like?
[refer back to Protocol board]
Format: mostly framing, also proto #.
What's the abstraction?
 exposes packets. (not e.g. files...)

allows sharing among higher protocols.

best-effort: may not deliver a packet.

will rarely give you a corrupted packet.

Ethernet MAC operates at about this level.

Now we can move a packet along a single wire.
Next lecture: move packet along a path of switches.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 11

Sam Madden

Network Layer

Today: Network layer.

Job of network layer is to find and forward packets along a path between sender and
receiver in a multi-hop network.

Show example network:

"routers"

Network layer interface

Two main jobs:

Forwarding -- sending data over links according to a routing table
Routing -- process whereby routing tables are built

Forwarding:
Show routing table in network

Point out that many routing tables are possible (example)

Show stack -- annotate with "net_send" and "link_send" and "net_handle" and
"e2e_handle" calls, encapsulation

Show link selection in stack

Forwarding -- mechanical. Just perform a lookup in a table.

Pseudocode.

forwarding_table t

net_send(payload, dest, e2eprot):
pkt = new packet(payload,dest,e2eprot)
net_handle(pkt)

net_handle(pkt):
if (pkt.dest == LOCAL_ADDR):

e2e_handle(pkt.payload, pkt.e2eprot)
else:

link_send(t[p.dest].link, pkt)

Routing -- compute the forwarding table

How to compute forwarding table? Manually -- not scalable.

Centrally -- not a good idea (why?)

- need a routing algorithm to collect
- collection requires many messages
- hard to adapt to changes

Path Vector Algorithm -- Distributed

Each node maintains a forwarding table T , with:
"e2e_handle" calls, encapsulation

Dest Link Path

Two steps:
advertise (periodic)

send T to neighbors

integrate(N,neighbor, link) -- on receipt of advertisement from neighbor
merge neighbor table N heard from neighbor on link into T

Merging:
for each dest d w/ path r in N:

if d not in T, add (d, link, neighbor ++ r) to T
if d is in T, replace if (neighbor ++ r) is shorter than old path

Example:

(If everybody picks best path to every dest, you can see that for a network with most
distant nodes separated by N hops, in N rounds everyone will know how to reach
everyone else in N steps.)

Q: what is the purpose of keeping the path in the table?

Problems:

- permanent loops?
- won't arise if we add a rule that we don't pick paths with ourselves
in them; this is what we need the path for!

- temporary loops -- arise because two nodes may be slightly out of date
example
- soln: add send count -- "TTL" -- to packet

- failures / changes -- repeat advertisements periodically,
remove paths in your table that aren't re-advertised

(e.g., a path P that begins with router R should be in the

next advertisement from R.)

- graph changes -- same as failures

How does this work on the Internet:

At first, internet was a small network like this

Show evolution slides

What is the problem with using path vector here?

Network is huge

> 1 B nodes on network

Even if we assume most of those are compters that connect to only
their local router (so don't really need to run the path vector
protocol), there are still many millions of routers in the Internet

Each router needs to know how to reach of these billions of computers

With pure path vector, each node has a multi-billion entry table (requiring
gigabytes of storage)

Each router has to send these gigabyte tables to each of its neighbors;
millions of advertisements propagating around. Disaster.

Solution: hierarchical routing

Subdivide net into areas; with multiple levels of routing

One node representative of each area; perform path vector at area level. Within each
area, free to do whatever. (For example, use more hierarchy.)

(e.g., a path P that begins with router R should be in the

How to name nodes:

area.name

On Internet, this is IP address

E.g., 18.7.22.69 -- this is mit.edu

Internet routers running -- BGP -- advertise prefixes of these address

Show advertisements (e.g., "18.*.*.*"...)
17.1*.*.*

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 12

Sam Madden

End to End Layer

Last time: network layer -- how to deliver a packet across a network of multiple links

Recall that network layer is best effort, meaning:

- packets may be lost, reordered, garbled

- losses due to no route, queue overflow, packet corruption / collisions, etc.

- reordering due to packets taking different routes, retransmissions

Network layer is also message oriented.

E2E layer addresses these limitations. Some things applications might want:

1. Connection, stream of data, rather than having to explicitly divide data into
messages

2. All packets to arrive (reliable)

3. No duplicates (at most once)

4. Packets arrive in order

5. Efficiency

Not all applications need all of these -- for example, in voice chat app, you might prefer
more predictable latency w/ some packets being dropped, rather than all packets
arriving with unpredictable latency.

This list above is roughly what Internet's TCP gives you. Internet provides other
protocols, like UDP (none of the above) or RTP (streaming, but not reliable)

Different E2E layers will provide different subsets of these features. Goal is to build
these features without modifying network layer.

E2E Interface

Diagram: (including port->app table), packets

Streaming connection (add entries to port->app table)

src dest

conn = open_stream(dest, port) conn = listen(port)

send(conn, bytes1)

send(conn, bytes2) bytes = recv(conn)

close_stream(con)

E2E layer fragments streams up into packets that it sends to network layer.

Reliability --> At least once

All packets arrive, and no packets are corrupted

For corruption, typically packets have some kind of checksum, which is checked when

the packet is received.

How to ensure all packets arrive?

Idea:

have receive send an acknowledgement for every packet. Set a timer on the sender,

and when the ack doesn't arrive after that much time, resend.

associate a unique sequence number with each packet.

attach sequence number to the ack.

Diagram:

How to set the timer interval? 1 s? 1ms? Networks vary a lot! In a local wired network,
might see e2e latencies < 1ms. In a cellular network, or intercontinenal network, might
see latencies > 1s.

Too short --> always resending

Too long --> underutilization of network (show)

So what should we do? Adapt timeout!

Measure round trip time (RTT) and adjust.

RTT = time between packet sent and ack received

Just use one sample? No.

Just use last time + error? No. -- too much variability, even on one network (show

slides)

Use some average of recent packets.

To avoid having to keep window of averages around, can use exponentially weighted

moving average:

(show slides)

Ok, so now we set the timer appropriately. Ensures that at least one copy of every data

item arrives.

Can we have duplicates? (yes, why?)

What to do about this?

At most once delivery

On receiver, keep track of which packets have been ack'd (in a list). When a duplicate
packet arrives, resend ack, but don't deliver to app.

Diagram:

When can you remove something from list of acks? Since acks can be delayed or lost,
could receive resent packets quite a bit later. One typical solution is to attach last msg

id received on messages from sender.

At least once delivery and at most once delivery together are exactly once delivery.

Bit of a misnomer.

Issues:

- Suppose receiver crashes after receiving message but before sending ack; reboots
--> did it process the message or not, what if it receives message again?

We will talk much more about building reliable systems and these issues after spring
break.

- What does an ack mean? Typically just that the E2E layer handed the packet off to
the application, not that the application processed the message.

(Skip?) How big to make sequence numbers?

16 bits? In gigabit net, with 1 kbit packets, will send 1 million packets / sec. So will
exhaust sequence number space in about 60 ms. Packets could easily be delayed
this long.

32 bits? 4000 seconds. Better, but some connections will last this long. Need to
recycle sequence numbers.

Note that the protocol thus far deliver stuff in order b/c it only has one outstanding
message at a time.

At this point, we've built a streaming, exactly once, in order delivery mechanism.
Problem is it is SLOOW.

Show diagram:

Suppose RTT is 10 ms. Can only send 100 packets / second. If packets are 1000 bits,

then we are only sending at 100 Kbit/sec. Not good!

Can we just make packets bigger?

How big would they have to be for gig-e? 10,000 times bigger --> 10 mbits. Huge!

Retransmissions are super expensive, and we aren't doing a very good job of

multiplexing the network.

Solution: smaller packets, but multiple outstanding at one time.

"window" of outstanding packets

Show diagram:

Still wasteful, since sender waits an RTT. Solution: slide window:

Note that if the window size is too small, may still end up waiting.

So, how big to make windows? Want to be able to "cover" delay.
Suppose we have a measure of RTT.

And suppose we know the maximum rate the network can send (either because of

links, delays in the network, or limits at the sender or receiver),

Max packets outstanding is then

window = RTT x rate

"bandwidth delay product"

Of course, this assumes we can measure the rate accurately, which turns out to be

hard because rate depends on what is happening inside the network (e.g., what other

nodes everywhere else inside the network is doing.) This is the topic for next time.

Acks and windows -- two possibilities:

- acks are per-message, as above.
+ precise (only retransmit one packet)
- can resend data that doesn't need to be resent if ack is lost

- acks are cumulative
e.g., indicate the sequence number up to which all packets have been seen
+ one ack can cover many packets (fewer acks)
- sender doesn't know exactly what was lost, so has to retransmit a lot more

In practice, use both:
- cumulative in common case (e..g, every n packets)

- selective when there are single losses

Out or order delivery

Even though all packets arrive, packets may not arrive in order, because of windowing

Solution: re-ordering buffer.

Fixed size buffer at receiver recording out of order packets. If a packet arrives in order,
deliver to app. Otherwise, add to out of order buffer while we wait for more recent
packet to arrive. Diagram:

When a missing packet arrives, go ahead and send prefix of buffer to app.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 13

Sam Madden

Congestion Control

Last time, we saw how the end to end layer ensures exactly once delivery,
using windows to efficiently make use of the network.

Couple of loose ends:

- Reordering -- packets may arrive at the receiver out of order

recv(p)
slot = p.sno - last
if (slot > last + size)

drop
else

new = slot is empty

if (new) put p in slot

ack p

if (slot == last and new)

deliver prefix to app

slot += size(prefix)

Cumulative acks

So far, have presented acks as being selective -- for a specific packet

In Internet, sometimes cumulative acks are used

in figure above, when p1 arrives, would send ack(2), indicating that all packets up to 2
have been received.

+ insensitive to lost acks
(if using selective acks, a dropped ack requires a packet retransmit. Here, if the
ack for P2 was lost, when P0 arrives, receiver knows P2 arrived.)

- sender doesn't know what was lost

here, sender has sent p3, p4, and p5; p4 and p5 have been receiver, but
only receives an ack for up to p2.

can lead to excessive retransmission

In the TCP, both cumulative and selective acks are used:

common case, use cumulative, so that a lost ack isn't problematic
when acking a packet for which later packets have arrived,

use selective acks, so that sender knows what has arrived

Choosing the window size

Last time, we send that the window size should be:

Window = Rate x RTT

Where Rate is the maximum rate the receiver can accept packets at

This will keep the receiver busy all the time

E.g., suppose receiver can handle 1 packet / ms , and RTT is
10 ms; then window size needs to be 10 packets for receiver to
always be busy

2 questions:

1) How does the receiver know how fast it can process packets?

2) What if the network can't deliver packets as fast as the receiver can process?

1) It doesn't. In practice it doesn't matter that much -- just set it to be big enough. For
example, on 100 Mbit ethernet, with 10 ms RTT,

window = 100 Mbit/sec * .01 sec = 1 Mbit = 128 KB

So what if the network can't handle packets at this rate -- is that a problem?

Suppose sender and receiver can both communicate at 3 pkts / sec, but that there is a
bottleneck router somewhere between the sender and receiver that can only
send 1 pkts / sec. Suppose RTT is 2 sec (so receive window is 6 pkts)

After 1 sec, there will be 2 packets in this router's queues
After 2 seconds, there will be 4 packets

Congestion collapse = delivered load constantly exceeds available bandwidth

Notice that if we could adapt RTT on sender fast enough, that would help, since we'd
sender fewer duplicates.

But we could still get into trouble if we have a big window and there is a slow
bottleneck.

Why does congestion arise?

Routers in the middle of the Internet are typically big and fast -- much faster than the
end hosts. So the scenario above shouldn't arise, should it?

Issue: sharing. Sources aren't aware of each other, and so may all attempt to use
some link at the same time (e.g., flash crowds). This can overwhelm even the beefiest
routers.

Example: 9/11 -- everyone goes to CNN. Apple -- releases new products.

What do do about it:

Avoid congestion:
Increase resources? Expensive and slow to react; not clear it will help

Admission control? Used in telephone network. Some web servers do this, to
reduce load. But its hard to do this inside of the network, since routers don't really
have a good model of applications or the load they may be presenting.

Congestion control -- ask the senders to slow down.

How do senders learn about congestion?

Options:

1) Router sends feedback (either directly to the sender, or by

flagging packets, which receiver then notices and propagates
in its acks.)

Works, but can be problematic if network is congested because these
messages may not get through (or may be very delayed)

2) Assume that packet timeouts indicate congestion.

What to do about congestion:

- Increase timeouts.
- Decrease window size.

Need to do this very aggressively -- otherwise it is easy for congestion to collapse to

arise. CC is hard to recover from.

TCP does both of these:

Timeouts: exponential backoff

On retransmitted packet, set:

set timeout = timeout * c ; c = 2

up to some maximum

timeout increases exponentially

After ack's start arriving (losses stop)
, timeout is reset based on RTT EWMA (as in last class)

2 windows: receive window + "Congestion Window":

Window size = min(congestion window, receiver windoow)

On retransmitted packet:

CW = CW/2

(Min size = 1)

On ack'd packet:

CW = CW + 1 (up to receive window size)

To initialize window quickly, use TCP "slow start":

At the start of the connection, double CW up to receive window, unless
losses occur:

Slow start -- while connection is starting only

On each ack:

CW = CW * 2 (max receive window)

Is TCP "fair"?
no ; applications aren't required to use TCP in which case they won't obey congestion
rules. Applications can also use multiple TCP connections.

So why does this work? Apparently because most traffic is TCP.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

DNS, CDNs Lecture 14

Sam Madden

DNS

What is the relationship between a domain name (e.g., youtube.com) and an IP
address?

DNS is the system that determines this mapping.

Basic idea:

You contact a DNS server, give it a query

It responds with the answer, or forwards your answer on to some other
server

Example:

Whenever a server answers a query, it adds it to a cache

When you get a response, you add it to a cache

Each cached value has a duration after which you are supposed to look
up the name again

At the top of the DNS hierarchy are root servers

Then servers for .com, .edu, etc ...

Then servers for MIT, youtube, etc....

Show cached

dig +norec csail.mit.edu

A record vs NS Record
TTL

Observe that A records expire much sooner than NS Records

Example:

csail.mit.edu

dig
dig edu@E.ROOT-SERVERS.NET.
dig mit.edu @G.GTLD-SERVERS.NET.
dig csail.mit.edu @bitsy.mit.edu.

How do you get your DNS server initially?

- Your admin tells it to you
- DHCP (Domain Host Configuration Protocol) -- you send out a broadcast on

the local link -- DHCP server responds (via another broadcast message) with:

- An IP address for you to use
- The IP address of a "gateway" router for you to use
- The IP address of a DNS server to use
-

DNS has some fancy features:

- One physical machine can have multiple names

- One name can correspond to multiple IP addresses

DNS load balancing

DNS server picks which name to return

most DNS servers cycle through these in "round robin" fashion

Example:

dig google.com

;; ANSWER SECTION:

google.com. 282 IN A 209.85.171.100

http:edu@E.ROOT-SERVERS.NET
http:@G.GTLD-SERVERS.NET
http:@bitsy.mit.edu
http:google.com

google.com. 282 IN A 74.125.45.100
google.com. 282 IN A 74.125.67.100
Content delivery networks (CDNs -- e.g., Akamai)
Use DNS to provide scalability and adapt to load

Suppose I have some content that is accessed a lot -- e.g., a video on youtube

I can balance load amongst my local servers using DNS load balancing, but I still have
to own the servers.

Puts a huge load on my servers to deliver it; can't adapt to load spikes (e..g, the
"slashdot" effect.)

Also, for users that are far away (e.g., in Asia or Australia), they have to download that
content over long distance and thin pipes, and ISPs in Australia have to pay a lot for
than bandwidth.

For content -- like this video -- that is accessed repeatedly, would be be better to not
have to go all the way to San Bruno CA everytime.

Idea: create a local cache

Solution 1: Proxy cache. For every URL, look up in a local cache (perhaps run by
your ISP) to see if the content is there. If it is, fetch it. Otherwise, get original data. Just
like DNS requests, web pages can have cache lifetimes associated with them which
proxy caches respect.

Problems:

- Helps ISP but not necessarily content provider
- requires clients to configure their browsers to use proxy caches
- Doesn't address slashdot effect

Exist so called "transparent proxies" that can do this filtering automatically, but this may
be distasteful to users, especially if their ISP is doing it (companies do this all the time.)

Solution 2: Content Distribution Networks (e.g., Akamai)

Show diagram:

http:google.com
http:google.com

Give example:
nytimes.com
dig graphics8.nytimes.com

From both MIT network and cellular network

Observe that TTL for answer is very short -- Why? -- Handle slashdot effect -- can

dynamically start using more and more akamai servers for a particular request

Akamai -- company

Gives a way for content provider to offload load from server

Also helps ISP if server is inside ISP (creates an incentive for ISPs to participate!)

Akamai has thousands of caches all over the world

When a request for content -- like from images8.nytimes.com arrives -- it uses dns to

forward user to the nearest server.

Determining the "nearest" server and how many servers to allocate is their secret

sauce.

For dynamic content, Akamai also works.

Example -- show attempt to select best route back to Akamai, maintenance of
reachability info, etc.

Akamai is a more general example of something called an overlay network.

An overlay is a way to create a network with new features or a different structure by
building on top of an existing network.

Akamai creates an overlay on top of the IP network that chooses the best route from
amongst a collection of IP servers.

Overlays are used widely to extend the network with new features, for example :

Provide a different topology (e.g., direct connection of clients)
- E.g., for administrative reasons (VPNs)
- Or for performance reasons (Akamai)

Provide a different addressing mechanism (e.g., content addressability, P2P)

VPN example:

Companies want to allow remote users or sites to have access to their
corporate Internet sites

Good old days might have done this with a modem, but that's slow, and
a pain to run.

VPN provides a way for remote users to appear to be on internal network
while actually being external.

Idea is to "tunnel" traffic over public internet using an overlay (client and
server inside of network):

Diagram:

This is a simple example, but in principle can create complex multi-hop
VPNs.

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 15 Building Fault Tolerant Systems from Unreliable Components

Sam Madden

So far what have we seen:

Modularity

RPC

Processes

Client / server

Networking

Implements client/server

Seen a few examples of dealing with faults -- e.g., providing exactly once semantics in
a best-effort system.

Goal of this part of the course is to understand how to systematically build reliable
systems from a collection of unreliable parts.

Basic way this is going to work is to introduce redundancy, e.g.:

- in TCP this takes the form of sending data multiple times;

- today: a general technique -- replication of critical system coponents

- next time: in a file system or database it often takes the form of writing data in more

than one place.

Some high level points:

- These techniques improve reliability but building a perfectly reliable system is
impossible. Best we can do is to get arbitrarily close to reliable. Our guarantees are
going to be essentially probabilisitc.

- Reliability comes at a cost -- hardware, computational resource, disk
bandwidth, etc. More reliability usually costs more. Have to decide -- as with TCP --
whether the additional reliability is worth the cost. Always a tradeoff.

This lecture:

Understand how to quantify reliability

Understand the basic strategy we use for tolerating faults

Look at replication as a technique for improving reliability / masking faults

Going to do this in the context of disk systems, but many of these lessons apply

to other components. (Will come back to this at the end.)

Why disks?

Diagram (disk, cable, computer, controller, file system sw)

Where do failures happen?
(Everywhere.) Show slide.

Fault anywhere in this system makes compute unusable to user.

Goal is to improve the general availability of the system.

Measuring Availability

Mean time to failure (MTTF)

Mean time to repair (MTTR)

Availability = MTTF / (MTTF + MTTR)

MTBF = MTTF + MTTR

Suppose my OS crashes once every month, and takes 10 minutes to recover
MTTF = 720 hours (43,200 minutes)
MTTR = 10
43200 / 43210 = .9997 ("3 nines") -- 2 hours downtime per year

General fault tolerant design process:

- Quantify probability of failure of each component
- Quantify costs of failure
- Quantify costs of implementing fault tolerance

Probabilities here are high for many components, but

HOWEVER, Unlike other components, disk is the one that if it fails your data is gone --

can always replace the CPU or the cable, or restart the file system.

You can replace the disk, but then your system doesn't work. So cost of disk failure is

high.

Ok, so why do disks fail?

show disk slide

spinning platters

magnetic surface

data arranges in tracks and sectors

heads "float" on top of surface, move in and out to r/w data

what can go wrong?
whole disk can stop working (electrical fault, broken wire, etc.)

sector failures:

can read or write from the wrong place (e.g., if drive is bumped)
can fail to read or write because head is too high, or coating too thin
disk head can contact the drive surface and scratch it

previous slide suggests disks fail often. what does the manufacturer say?

show Seagate slide

Mean time between failure : 700,000 hours
80 years? 80 years ago we were programming with abacuses.

What's going on here? How did they measure this?

Ran, say, 1000 disks for say 3000 hours (3 million hours total)
Had 4 failures
So claimed that they 1 failure every 750,000 hours

What does the actual failure rate look like? Bathtub (5 years)

So what does this 700,000 hours actually tell us? Probability of failure in the bottom of
the tub. Helpful if I am running a data center with a thousand machines and want to
know how frequently I will have to replace a disk. About 1 % failure rate per disk per
year.

Would buying a more expensive disk help?

not really (show slide) -- double the MTTR, 5x the price

Coping with failures:

1st type of failure -- sector errors

What can I do
(show arch diagram -- with disk, firmware, driver, FS)

1) Silently return the wrong answer

2) Detect failure -
each sector has a header with a checksum
every disk read fetches a sector and its header
firmware compares checksum to data
returns error to driver if checksum doesn't match

3) Correct / mask
Re-read if firmware signals error (if an alignment problem)
(Many other strategies)

These are general approaches -- e.g., could have checksums at the application level
(in files), or a backup to recover / correct from a bad file.

Disks have checksums -- how much do they help?

(Show SIGMETRICS slide)

1.7 million drives

10% of drives develop errors over 2 years

These are unrecoverable read failures
Would have resulted in bad data going to file system

Do disks catch all errors? (Show FAST08)
1.5 million drives, 41 months, 400,000 corrupt reads on 1000 disks
(Don't know how many reads were done, but each drive probably read millions
of blocks -- so we are talking trillions of reads.)

Very small fraction of uncaught failures.

But they do happen; however, many systems assume they don't (e.g., your

desktop file system.)

What about whole disk failures?

Powerful solution: replication

Write everything to two or more disks

If read from one fails, read from the other

Diagram:

write (sector, data):
write(disk1, sector, data)
write(disk2, sector, data)

read (sector, data)
data = read (disk1, sector)
if error

data = read (disk2, sector)

if error

return error

return data

Does this solve all problems? (No)
Uncaught errors

Can do voting / TMR -- diagram

Other parts of the system that fail
Show Non-stop Slide
Replicate everything, including operating system -- run N

copies of every application, compare every memory read / write
Cost is huge, performance is pport

Assumes failure independence
(what about a power failure)

Not what app wants -- application is writing large data items that span multiple
blocks; what if there is a power failure halfway through those write

Summary
Disks:

lifetime about 5 years
1 %/ year random total failure
10% of disks will develop unreadable sectors w/in 2 years
small fraction of uncaught errors

Replication is a general strategy that can be used to cope

URLs:

http://h20223.www2.hp.com/NonStopComputing/downloads/
KernelOpSystem_datasheet.pdf

HP Integrity NonStop NS16000 Server data sheet - PDF (May 2005)

http://www.usenix.org/events/fast08/tech/full_papers/bairavasundaram/
bairavasundaram.pdf

http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_10.pdf

http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_10.pdf
http://h20223.www2.hp.com/NonStopComputing/downloads/KernelOpSystem_datasheet.pdf
http://www.usenix.org/events/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

---- ---

6.033 Lecture 16 -- Atomicity

Sam Madden

Last week: saw how to build fault tolerant systems out of unreliable parts

Saw how a disk can use checksums to detect a bad block, and how we can use
replication of disks to mask bad block errors.

Goal today is to start talking about how we can make a a multi-step action look like a

single, atomic action.

Why is this important? Example>

Two bank accounts, balances stored on disk

Transfer routine

xfer(A, B, x):
A = A - x //writes to disk

<--------------- crash!
B = B + x // writes to disk

Lost $x. Note that replication doesn't fix this (unless I can prevent the system from
crashing completely.) Even if the write to A happens just fine, we've still lost x dollars.

Notice that what has happened is we've exposed some internal state of this action that
should have been atomic.

What we'd really like is some way to make this action either happen or not happen.

E.g., to preserve money.

This is called "all or nothing atomicity" -- either it happens or it doesn't.

Related problem: concurrency. Suppose two people run:

A = 10; B = 20
U1 U2

transfer(A,B,5) transfer(A, B, 5)

suppose A = A-X is actually

R0 = read(A)
R0 = R0 - X

write(A, R0)

Outcomes:
A = 0, B = 30 (correct)

U1 U2
RA

RA

WA

WA

A = 5 (not correct!)

These two actions weren't isolated -- they saw each other's intermediate state.

Should have only allowed A = 0, B = 30.

Isolation goal: outcome of concurrent actions is equivalent to some serial execution of
those actions.

E.g., A & B == A then B or B then A.

Note that we have already seen a way to do this with locks, but that requires complex
manual reasoning. For example, suppose a user issues a series of transfer that
should be done atomically:

transfer(A,B)

transfer(C,D)

transfer(D,A)

can't just push locking logic into transfer -- procedure that does transfer has to do
locking to provide isolation.

Goal is to develop an abstraction that provides both all-or-nothing atomicity and serial
equivalence for concurrent actions.

This abstraction is called "atomic actions" or "transactions"

Works as follows:
T1 T2
begin begin
transfer(A,B,20) transfer(B,C,5)
debit(B,10) deposit(A,5)
...
end end
aka "commit"

Properties:
- User doesn't have to put explicit locking anywhere.

- All or nothing

- Serial equivalence

- No need to pre-declare the operations -- things become visible when
"end" is issued.

Extremely powerful abstraction. Tricky to implement, but makes programmers life
easy.

Most common system that uses these techniques is a database. Rather than

representing data as abstract files, it represents data as tables with records.

For example:

Accounts:

Customers:

...

Can write transactions that read and modify a mix of multiple tables, e.g.

- complex transfer ops between accts or
- delete a customer and all of his accounts.

...
Today -- start talking about implementing all-or-nothing property without isolation
(which we will address in a couple of lectures.)

Suppose we've got a file of database balances (e.g., an excel spreadsheet) stored in a
single file

Imagine that the file is loaded into memory, and that the "save" operation works as
follows:

save(file):

for each record r in file:

if r is changed

write b to file

Q: what is the problem with this?

might get have way through writing file and crash, then file is in some
intermediate state

version 2 ("shadow copy")

save(file):

copy(file,fnew)

for each record r in fnew:

if r is dirty, write r o fnew

move(fnew, file) //rename --- commit point!

requires an atomic rename operation

after crash, either have old version or new version

atomic rename:

unlink(file)
<--- crash! (file disappears)

link(fnew,file)
unlink(fnew)

actual:
link(fnew, file)

<-- crash! (two copies of file!)
unlink(fnew)

link command is the "commit point" -- after it happens, atomic action is guaranteed to
finish in it's entirety (the "all" part of "all or nothing")

File system state on disk

directory block:

name inode#
file 1
fnew 2

inode 1:
blocks: A, B, C
refcount: 1

inode 2:
blocks D, E, F
refcount: 1

link:

(CP) modify directory block

update refcount

<---- crash!

<---- crash!

//both file and fnew exist, but different
//both fnew and file point to new file

//refcount wrong

unlink:
<---- crash! //both fnew and file exist, refcount wrong

modify directory block
<---- crash! // only file exists, refcount wrong

update refcount

assume a single disk write is atomic -- disks mostly implement this (e.g., using a
capacitor that "finishes" a write)

will see the details of how files systems can ensure this property without this
assumption in Thursday's recitation (or see the notes -- section 9.2 discusses); basic
idea is to write two copies of the block, return the one that is valid using checksums

"recover": (restart processing to ensure all or nothingness)
scan fs, fix refcounts
if exist(fnew) and exist(file)

remove(fnew) // file is either old or new

Q: when is the commit point? just after the modify directory block in link

some way towards our vision of atomicity; problems:
- have to copy the whole file every time, even if we only modified a few records

- only works for one file -- what if changes span multiple files?

(e.g., both customer and accounts table)

- could arrange all the databases you want to edit in a directory,
atomically rename new directory

- requires fixes directory structure beforehand

- unclear how concurrency works. can achieve isolation if we only
allow one user to access at a time, but that's very restrictive.

(we would rather allow different uses to concurrently access different parts of a file)

Going to address these limitations next time, but before we do
some key features of this approach:

- we write two copies of the data
- switch to new copy
- remove old copy

All of our atomicity schemes are going to work like this -
Golden rule of recoverability:

NEVER OVERWRITE ONLY COPY OF DATA.

Next time we will develop a general atomicity preserving scheme that works for
multiple objects.

Doesn't require us to copy all blocks of an object -- only those we modify.

Idea is to write a log of each change we make, reflecting the state of the object that
was changed before and after the change. Can then use this log to go from any
intermediate state to the "before" state or the "after" state.

E.g.,: Database A, Database B; A10 v0 B7 v0
Before:

A10 v0 B7 v0

After:
A10 v1 B7 v1
Log:

W(A10 v0,A10 v1)

W(B7 v0, B7 v1)

(Log records contain both old and new copies)

Suppose crash, come back, and find disk has A10 v1, B7 v0
Can use the log to go back to both being version 0 or both being version 1

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 17 -- Logging

Sam Madden

Last time: introduced atomicity

two key ideas:
- all or nothing

- isolation

saw transactions, which are a powerful way to ensure atomicity

begin

xfer(A,B,10)

debit(B,10)

commit (or abort)

started talking about

all-or-nothing without isolation
(isolation next time)

saw idea of shadow copies, where you write changes into a secondary copy, and then
atomically install that copy

(show slide)

this gets at the key idea of atomicity -- the golden rule

never overwrite the only copy

most atomicity schemes work kind of like this -- you make changes to some separate
copy of the data, and then have a way to switch over to that new copy when needed.

if you crash mid-way through making changes, old copy is still there. typically when
you crash, because transaction was incomplete, you just revert to old copy.

shadow copy approach has some limitations; what are they?

- only works for one file at a time (might be able to fix using, e.g., shadow
directories)

- requires us to make a whole copy of the file

shadow copies are used in many places -- e.g., text editors , (emacs)

today we are going to learn about a general method for all-or-nothing atomicity that
addresses these limitations -- logging.

basic idea is that after every change, you record the before and after value of the
object you changed.

let's work with bank account balances; suppose we have the following table in
memory

account id balance
A 100
B 50

suppose I do
begin
debit (A,10)
debit (B, 20)
end

begin

deposit (A,50)

what kinds of things do I keep in the log:
transaction begin / commit / abort

transaction id
updates

tid

variable updated

before (undo) / after (redo) state

log:

begin 1

update 1 A before: 100; after: 90

update 1 A before: 50; after: 30

commit 1

begin 2

update 2 A before: 90; after 140

crash!

this log now records everything I need to determine the value of an object

read(var, log):
cset = {}
for r in log(len-1) ... log(0)

if r is commit

cset = cset U r.TID

if r is update

if (r.TID in cset and r.var = var)

return r.after

but this is really slow, since i have to scan the log after every read

what is the commit point? (when commit record goes to log)

(writes, however, are fast, since i just append to the log, probably sequentially)

how to make this faster? keep two copies -- "cell storage" -- e.g., the actual table
contents, in addition to log on disk. reads can just read current value from cell storage,
and writes can go to both places.

read(var)
return read(cell-storage,var)

write(TID,var, newval)
append(log,TID, var, cell-storage(var), newval)
write(cell-storage,var,newval)

let's see what happens:

state:

A 100 --> 90 --> 140

B 50 --> 30 -> 60 -> 30 -> 40

begin log:

debit (A,10) begin T1

debit (B, 20) update(A, T1, 100, 90)

commit update(B, T1, 50, 30)

commit T1

begin begin T2

deposit (B,30)
abort

update(B,T2, 30, 60)
abort T2

begin
debit (B,20)
commit

begin T3
update(T3,B, 30, 40)
commit T3

begin
deposit (A,50)
crash

begin T4
update(T4,A,90,140)
abort T4

After crash, cell storage has the wrong value for A in it. What should we do?

Need to add a recover procedure, and need to do a backwards pass on the log to
undo the effects of uncommitted transactions. (undo the "losers")

Anything else we need to do?

Also need to do a forward pass on the log, to redo the effects of cell storage writes in
case we crashed before writing cell storage but after doing append. (redo the
"winners")

recover(log):
cset = {}
for each record r in log[len(log)-1 ... 0] //UNDO

if r is commit, cset = cset U r.TID
if r is update and r.TID not in cset:

write(cell-storage, r.var, r.before)
for each record r in log[0...len(log)-1] //REDO

if r is update and r.TID in cset:
write(cell-storage, r.var, r.after)

Why backwards pass for UNDO? Have to do a scan to determine cset. If we do this
scan backwards, we can combine with UNDO.

Why forwards pass to REDO? Want the cell-storage to show the results of the most
recent committed transaction.

other variants possible -- e.g., redo then undo, forward pass for undo (with previous
scan to determine c set), etc.

what if I crash during recovery?
OK -- recovery is idempotent

example: after crash: A=140; B=40
cset = {1, 3}

UNDO

A -> 90

B -> 30

REDO

A -> 90

B -> 30

B -> 40

T1 and T3 committed, and in that order.

Optimization 1: "Don't REDO updates already in cell storage"

Possible to optimize this somewhat by not REDO updates already reflected in cell
storage. Simplest way to do this is to record on each cell a log record ID of the most
recent log record reflected in the cell. Diagram:

UPDATE(tid,logid,var,before,after)

(in our example, all we needed to actually do was UNDO A->90)

Q: Why did I write the log record before updating the cell storage? What would have
happened if I had done these in opposite order?

cell storage would have value but might not be in log
recovery wouldn't properly undo effects of updates

This is called "write ahead logging" -- always write the log before you update the data

Optimization 2:
Defer cell storage updates

Can keep a cache of cell storage in memory, and flush whenever we want. Doesn't

really matter, as long as log record is written first, since logging will ensure that we
REDO any cell storage updates for committed transactions.

read(var):
if var in cache

return cache[var]
else

val = read(cell-storage, var)

add (var,val) to cache

return val

write(var,val)

append(log,TID, var, cell-storage(var), newval)

add (var,val) to cache

Optimization 3:

Truncate the log.

If log grows forever, recovery takes a long time, and disk

space is wasted.

Q: What prefix of the log can be discarded?

A: Any part about completed transactions whose changes are definitely
reflected in cell storage (because we will never need to reapply those
changes.)

Idea:

checkpoint:
write checkpoint record
flush cell storage
truncate log prior to checkpoint

Write checkpoint.

Write any outstanding updates to cell storage to disk. This state written to disk

definitely reflects all updates to log records prior to the checkpoint. Truncate the log

prior to the checkpoint.

Most databases implement truncation by segmenting the log into a number of files that

are chained together. Truncation involves deleting files that are no longer

used.

Diagram:

Logging -
good read performance -- cell storage, plus in memory cache
decent write performance -

have to write log, but can write sequentially;
cell storage written lazily

recovery is fast -- only read non-truncated part of log

Limitations -
external actions -- "dispense money", "fire missile"

cannot make them atomic with disk updates

writing everything twice -- slower?

Next time -

isolation of multiple concurrent transactions

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 18 -- Isolation + Concurrent Operations

Sam Madden

Key Ideas:

Serial equivalence

Two-phase locking

Deadlock

So far, we've imagined only one transaction at a time -- in effect, a big lock around the
whole system (database, file system, etc.).

What's wrong with that? Why does one transaction at a time utilize the system less
than running everything serially? (Might expect the opposite to be true, since
switching between transactions presumably has some overhead!)

- Hard to exploit multiple processors
- Might want to perform processing on behalf of one transaction while

another waits for disk or CPU

Our goal in isolation is serial equivalence -- want final outcome of transactions to be
same as running transactions one after another.

A = 50
B = 10

xferPercent(A,B,.2) xferPercent(A,B,.2)

A = 40
B = 20

A = 32
B = 28

xfer(A,B,10)
RA // t = .1A
WA // A = A - t
RB
WB // B = B + t

Example "schedule":

RA
WA // a= 40

RA
WA // a= 32

RB
WB // B = 20

RB
WB // B = 28

Serializable? Yes. Why?
Outcome is the same.

RA
RA

WA // a= 40
WA // a = 40

RB
WB //B = 20

RB
WB // B = 30

Not serializable!

Is there some test for serializability?

What went wrong in this second example?

T1's read of A preceded T2's write of A, and T2's read of A preceded T1's write of A.

To formalize, define "conflict" -- two R/W operations o1 in T1 and o2 in T2 conflict if
either o1 or o2 is a W and both are to the same object.

(aren't worried about two read operations.)

A schedule is serializable if all conflicting operations in a pair of transactions T1 and
T2 are ordered the same way -- e.g., T1-T2 or T2-T1

Why? Suppose they weren't. Then one transaction might read something before
another transaction updated it, and update it afterwards, as in example above. First

transactions effects are lost!

Easy way to test for serializability: conflict graph

Make a graph with nodes as transactions
Draw arrows from T1 to T2 if op1 in T1 conflicts with op2 in T2 and op1

precedes op2

Example:

Now that we understand what it means for a schedule to be serializable, our goal is to
come up with a locking protocol that ensures it.

We want to ensure that all conflict operations are ordered in the same way. Use locks
to do that. Don't require the programmer to manually get locks.

Instead, transaction system acquires locks as it reads objects.

Locking protocol:
before reading/writing an object, get lock on it

(if lock isn't available, block)

Can I release right away? (No! example):

T1 T2
Lock A

Lock A
RA Block
WA

Release A
Lock A
Lock B

//T2 "sneaks in" and makes its updates, violates serializability

RA
WA
RB
WB

Release A
Release B

Lock B
RB

WB
Release B

Exposed value of B before updating that T2 shouldn't have been able to see -- not
serializable.

Locking protocol:

before reading/writing an object, get lock on it

(if lock isn't available, block)

release locks after transaction commit

Lock A Lock A (block)
RA |
WA |

Lock B |
RB |
WB |

commit	 |
release A, B	 |

v
RA
WA
Lock B
RB
WB

(force T2 to happen completely after T1 -- clearly given up some concurrency; note
that if T2 access other objects, e.g., C, first, that wouldn't be a problem.

will address this limitation in a minute.)

Issue: deadlocks

What if T2 tried to get lock on B first?

No transaction could make progress.

Can we just require transactions to always acquire locks in same order? No, because
transactions may not know what locks they are going to acquire -- e.g., things that are
updated may depend on the accounts that are read (suppose we deduct from all accts
with value > x).

So what do we do about deadlocks? Simple: abort one of the transactions and force it
to rerun. This is OK because apps must always be prepared for possibility that
transaction system crashes and their action aborts.

How do we tell that transactions are deadlocked?

Two basic ways:

1) If a transaction waits more than t seconds for a lock, assume it is
deadlocked and restart it.

(Simple, may think a long running transaction a deadlock.)
MySQL does this.

2) Build a "waits for graph" -- if T1 is waiting for lock held by T2,
draw an edge from T1 to T2. If there is a cycle, then there is
a deadlock.

Example:

Making locking protocol more efficient:

Optimization 1:

Once a transaction has acquired all of its locks, it can proceed with out any other

transaction interfering with it.

Lock point:

It will be serialized before any other transaction that it conflicts with.

If a transaction is done reading/writing an object, it can release locks on that object
without affecting serialization order. Doesn't have to wait until the end of the
transaction since it isn't going to use the value again.

Example:

lock A
RA
WA

lock A (block)

lock B <--- lock point
release A

RA
WA

RB
lock B (block)

WB
release B

RB

WB

THis is called two phase locking:
Phase 1 -- acquire locks, up to lock point
Phase 2 -- release locks, after done with object and after lock point

Optimization 2:

Shared vs exclusive locks

Notice that two read operations of the same object don't conflict -- e.g., if I have two
read only transactions, I can interleave their operations however I want and still get the
same answer. Protocol didn't allow this, however.

Idea -- have two types of locks: shared (S) locks and exclusive (X) locks. Can have
multiple transactions with an S lock, but only one with an X lock.

Transaction can upgrade from S to X if it is the only one with an S lock.

Two phase locking protocol w/ shared locks
Before reading an object, acquire an S lock on it
Before writing an object, acquire an X lock on it

Release locks after lock point

In practice, variants of two phase locking are used:

1) Never release write locks until after transaction commit? Why?

T2 reads A written by T1 before T1 commits -- now T1 aborts, T2 must also
abort.

Strict two phase locking

2) Never release any locks until transaction commit? Why?

Can't tell when we are done with locks

Rigorous two phase locking

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lec 19 : Nested atomic actions, and multisite atomicity

Sam Madden

So far, we've focused on the case where transactions are running on just one system,

and where all of transaction either commits or aborts.

Today -- several additional goals

- Nested atomic actions -- the ability to have sub-actions which may or may not
succeed, that don't affect the outcome of the whole action (nested atomic actions)

- Multisite actions -- transactions that span multiple sites

(Distributed transactions); why?

- Performance (2 machines store a database, both machines participate
in querying or updating of their part of the DB.)

- Administrative -- two databases owned by two different organizations,
want to run commands that span both

Example: travel site:

Single System:

Wanted nested actions to allow subtransactions to run to completion without
committing, and then commit subtransactions

Begin 	(Parent P)
Begin (A)

Reserve JB

End

Begin (B)

Reserve USAir ---> if this aborts, JB reservation isn't lost
End ---> if this aborts, P can try something else without

losing JB reservation
End

Parent P
Sub xaction A | Commit iff

Sub xaction B | P commits

Goals:

A + B's effects aren't visible externally unless P commits.

(Once P commits, A + B's effects both visible)

A + B can independently abort

B shouldn't see A's effects unless A has finished.

Once A has reached and, it shouldn't abort unless A aborts (since B
may use its results)

We are going say that the a nested transaction that has reached its "End"
has "tentatively committed" -- it is ready to commit, but is waiting for outcome of
its parent to be decided.

Changes to protocol:
Locking:

When to release A/B's locks? Before P commits? No -- because P might abort!
Only after P commits.

But B should be able to read A's data after it has reached "End".

Change lock acquire protocol to check to see if waiting for a lock

from a tentatively committed transactions w/ same parent

Logging:
Need to keep separate begin / end for subactions, in case one of them aborts

and we crash, so we are sure its effects are undone.

During log processing, when we encounter a sub-transaction, only want to
commit it if its parent commits

Begin P
Begin A
UP seatmap1
Tentative Commit A (Parent P)
Begin B
UP seatmap 2
Tentative Commit B (Parent P)
End P

Recovery: scan backwards, determining winners, undoing losers

(e.g., sub actions that abort or sub actions whose parent aborted)
scan forwards, redoing winners

Multisite Actions

Similar protocol and rules -- suppose now that JB and USAir are separate reservation
systems, each with their own data.

There is one coordinator that the user connects to and who makes reservations on
these subsystems. Diagram (with internet)

Like before, want JB to commit only if USAir commits, and vice versa.

Harder than before, because now JB / USAir might crash independently, and

messages might be lost / reordered.

Separate logs for each site, including coordinator.

To deal with message losses, going to use a protocol like exactly once RPC.

Diagram:

Basic protocol is as follows:

Coordinator sends tasks to workers

Once all tasks are done, coordinator needs to get workers to enter prepared
(tentatively committed) state

Tentatively committed here means workers will definitely commit if coordinator tells
them to do so; coordinator can unilaterally commit

Protocol (with no loss): (prepare, vote, commit, ack)

Why not just send COMMIT messages to all sites once they've finished their share of
the work?

One of them might fail during COMMIT processing, which would require us to be able
to ABORT suboords that have already committed.

Suppose messages are lost? Use timeouts to resend prepare, commit messages

Crashes? Need to make sure that logs on workers ensure that they can recover into

the tentatively committed state.

Log records:

Write TC record on workers before "Yes" vote.

Commit record still written on coordinator -- that is commit point of the whole
transaction

Coordinator also writes a "done" message

Suppose worker crashes:

Before prepare?

After prepare?

Suppose coordinator crashes:

Before prepare

After sending some prepares

After writing commit?

After writing done?

How does coordinator respond to "TX?" inquiry? Does it keep state of all xactions

forever? (No -- once it has received acks from all workers, it knows they have received

outcome.)

Notice that workers cannot forget state of transaction until after they hear commit /

abort from coordinator, even if they crash. This makes protocol somewhat impractical

in cross-organizational settings.

What to do instead?

Use compensating actions (e.g., airlines will allow you to cancel a purchase free of

charge within a few hours of making a reservation.)

2PC provides a way for a set of distributed nodes to reach agreement (e.g., commit or

abort.) Note, however, that it only guarantees that all nodes eventually learn about

outcome, not that they agree at the same instant.

"2 Generals Paradox" (slides)

Can never ensure that agreement happens in bounded time (though it will eventually
happen with high probability.)

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Today: Consistency and Replication

Sam Madden

Exam: Mean 55. If your grade was low -- don't sweat it. What matters is how you
performed relative to the mean.

Last few lectures: seen how we can use logging and locking to ensure atomic
operation, even in the face of failures.

But -- we might want to do better than just recover from a crash. We might want to be
able to mask the failure of a system -- make the system more available.

Previously seen that replication is a powerful tool that help accomplish that. Today we
will investigate replication in a bit more detail, and look some problems that arise with
maintaining replicated systems.

Replication used in both the local area -- e.g., two replicas on the same rack of a
machine room, as well as the wide area -- two replicas in different buildings, states,
etc.

Wide area replication important for disaster recovery. "Half width of a hurricane."

Let's look at how we might apply replication to a system:

(Send requests to both; if one is down, just send to the other one.)

What could go wrong:

(Network partition. Some other client sends requests to other machine. Now they are
out of sync.)

Solutions:

- Eventual consistency -- have some way to sync up after the fact (exposed
inconsistency -- this could have never happened if we didn't have a replicated
system.)

- Strict consistency -- "single-copy consistency" -- ensure that an external user
can't tell the difference between one machine and several machines.

strict consistency and availability fundamentally at odds, esp. in the face of network
partitions.

In above example, when the eventual consistency approach allowed either client to
receive answers.

In strict consistency approach, best we can do is to designate one replica as the
"master" (or authority) and allow clients talking to it to proceed. Other clients -- talking
to other replica -- will not get service.

Eventual consistency

Easier to provide (usually) than strict consistency. Typical way that this works is to

associate a time stamp (or version number) with each data item.

Have replicas periodically compare time stamps, use freshest. This is what Unison

does.

DNS is an example of eventual consistency -- suppose I change:

db.csail.mit.edu from IP X to IP Y

Effect won't be visible immediately; instead, will propagate when the timeout on the
DNS record expires. Remember -- DNS servers cache lookups for a fixed amount of

time.

(Show slide)

This means that the machine with IP X may receive requests for db.csail.mit.edu for

some period of time.

Inconsistency is considered acceptable here. Providing strict consistency here would

be very hard: I'd have to contact every cache in the world and ensure they were

updated, or would have to have no caching and have every request come to
csail.mit.edu on every lookup. Neither is OK.

One challenge with eventual consistency is what to do if there are concurrent updates
to the same data. Not a problem in DNS because there is one master for each
subdomain (e.g., csail.mit.edu) that totally orders updates. But in a system like Unison,
we can have multiple updates to the same data item, which is problematic and
requires some kind of manual conflict resolution.

Will see another example of eventual consistency next recitation, and see some of the
additional pitfalls that concurrent updates to the same item can lead to.

Strict Consistency -- Replicated State Machines

Basic idea is to create n copies of system. Same starting state. Same inputs, in the
same order. Deterministic operations. Ensures the same final state.

If one replica crashes, others have redundant copies of state and can cover for it.
When that replica recovers, it can copy its state from the others.

But what about network partitions -- replica may have missed a request, and may not
even know it!

If requests come from different clients on different sides of the partition, then replicas
can see different requests. Diagram:

One option: create an ordering service that totally orders all requests. When a
network partition happens, one replica may miss some requests, but it can detect that

and request those operations from other replicas before proceeding.
Diagram:

(Single point of failure -- will return to that in a minute.)

Degenerate version: Single Master Replication

Diagram:

All updates go to a single master, which is responsible for propagating updates to the

replicas.

Seems like it might fix the problem because now there is only one master.

If master fails, switch over to one of the replicas. What's the problem here?

May have been writes which propagated to some of the replicas, but not others. How

do replicas know what the current state is?

 (They don't -- might think they could talk to each other and figure out the most update

any of them had seen. But there might be something the crashed primary saw that

they hadn't.)

Does two phase commit solve this problem?

(No. Suppose following

M R

WA
WA

prepare

ok
prepare

commit
-----crash!------

)

One approach is to simply tolerate some inconsistency -- e.g., accept that replicas may
not know about the outcome of some transaction.

In practice, this is what is done for wide area replication -- e.g., in a database system.

How does the client know which server to talk to?

Ordering Service

How to build a reliable ordering service?

1 node -- low availability.

Use a replicated state machine. Diagram:

 Still have problem with partitions. Typically solution is to accept answer
if a majority of nodes agree on it.

Challenge: network partitions, message re-orderings, dropped messages.

This problem is called agreement:

Agreement protocol (sketch)

Leader: Worker

next(op)

accept(op)

commit

agree(op)

accept_ok(op)

Phase 1: Leader node proposes next op to all others (propose)

Phase 2 : If majority agrees, it tells all others that this is the next op (accept)

Phase 3: Once a majority acknowledge accept,

Send out next op!

Reason for this protocol is we want to allow other nodes to continue if leader goes

away.

Other nodes:

If after a random timeout can't contact leader, propose themselves as new leader. If

majority agree, they are new leader.

(Nodes only respond to prepare / accept requests from their current leader.)

Once a new leader has been chosen, it checks to see if any node has accepted
anything. If not, it restarts protocol.

If some nodes have agreed but no node has seen an accept, doesn't matter, because
that transaction must not have committed yet, so leader can safely abort it.

Once a leader has received an accept_ok from from a majority, it knows that even if
there is a network partition, where it is in the minority partition, majority partition will
have at least one node that has committed.

Otherwise, majority partition might just have one node that is prepared, new node
might assume that the transaction didn't commit and propose something else.

Nodes outside of the majority are inconsistent and need to recover, even if they have
already sent an accept_ok message.

Commit point is when n/2+1th worker writes accept(ok).

Example 1 -- network partition

Example 2 -- failure of a leader

These agreement protocols are very tricky to get right, which is why I'm only sketching
the idea here. Take 6.828 to learn more.

Protocol sketch:
N : number of replicas (odd, e.g., 3 or 5)
votes = 0
voters = {}
R = 0 //must persist across reboots
opQ = new Queue() //must persist across reboots

do(op):
opQ.append(op)
broadcast("next op is opQ[R], in round R");

periodically:
if (R < opQ.len)

broadcast("next op is opQ[R], in round R ");

next(op,from, round):
if (R < round):

wait to see if any more votes for R arrive
if (R < round):

recover
return

if (op == opQ[R] && from not in voters):
votes++;

voters = voters U from

if (votes > N/2):
notifyWorkers (opQ[R])
R = R + 1
voters = {}
votes = 0

if (N/2 - votes > N - len(voters)
deadlock

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Security intro
Nickolai Zeldovich
==============

key ideas for today:
key to security is understanding what the attacker can do
principles: reduce trust (least privilege), economy of mechanism

--- board 1 --

security / protection
permeates computer system design
if you don't design it right upfront, can be hard to fix later
much like naming, network protocols, atomicity, etc
will affect all of the above

give examples of security problems
SLIDE: general security stats

critical problems that allow attackers to take control over

windows machines -- about once a week

 SLIDE: not surprising, then, that china controls computers in embassies
SLIDE: even medical devices like pacemakers are vulnerable to attacks

so what is protection? back to first board
prevent access by bad guys
allow access by good guys
policies [lots of them, and we can't really cover all possibilities]
[.. so much like with other topics] -> mechanism

--- board 2 --

real world vs computer security
same:

lock - encryption

checkpoints - access control

laws, punishment

different:
attacks are fast, cheap, scalable

~same effort to compromise 1 or 1,000,000 machines

can compromise machines all over the world

no need to physically be present at the machine

no strong notion of identity

global; few laws

--- board 3 --

policy goals: positive vs negative
Nickolai can read grades.txt -- easy

why easy? build system, if it doesn't work, keep fixing until it does
John cannot read grades.txt -- hard

seems just the opposite of the above
we can try asking John to log in and try to access grades.txt
not enough: have to quantify all possible ways John might get grades.txt

tries to access the disk storing the file directly
tries to access it via a browser (maybe web server has access?)
tries to read uninitialized memory after Nickolai's editor exits

 tries to intercept NFS packets that are reading/writing grades.txt

 tries to sell you a malicious copy of Windows
tries to take the physical disk out of server and copy it
tries to steal a copy of printout from the trash
calls the system administrator and pretends to be Nickolai

hard to say "regardless of what happens, John will not get grades.txt"

 not enough to control access via one interface

must ensure all possible access paths are secure

 we've seen some positive goals (e.g. naming) in 6.033 already
some negative goals too (transaction must not be "corrupted")
security is harder because attacker can do many things
with transactions, we knew what's going to happen (crash at any point)
most security problems are such negative goals

--- board 4 --

threat model
 the most important thing is to understand what your attacker can do
then you can design your system to defend against these things

 C -> I -> S

 typical setting:
client named Alice, server named Bob
an attacker (router) in the network, Eve, is eavesdropping
alternatively, Lucifer, a malicious adversary, can send, modify packets

does attacker control the client? server?

 frequent assumption:

no physical, social engineering attacks

only intercept/send messages

might or might not compromise server, client

 this picture applies even on a single machine

processes from diff. users making calls into the OS kernel

 consider costs as well (both security and insecurity have a price)
convenience, HW expense, design, ..

right side of the board:
basic goals

- authentication [SLIDE: kentucky fax]
- authorization [who is authorized to release prisoners?]
- confidentiality NOTE: quite diff. from authentication!
- auditing
- availability

--- board 5 --

policies / mechanisms
hardware: confine user code

mechanism: virtual memory, supervisor bit

authentication: kernel initializes page table, supervisor bit
HW knows current state

authorization: can access any virtual memory address in current PT
cannot access privileged CPU state

Unix: private files

mechanism: processes, user IDs, file permissions

authentication: user password, when user starts a process

authorization: kernel checks file permissions

firewalls: restrict connections

mechanism: packet filtering

authentication: connection establishment

authorization: list of allowed/prohibited connections

seemingly weak mechanism, but surprisingly powerful in practice

bank ATM: can only withdraw from your acct, up to balance

mechanism: app-level checks in server process

authentication: card & PIN

authorization: track account balance

 cryptography: next lectures

--- board 6 --

challenges
bugs

hard to build bug-free systems, write perfect code
expect bugs, try to design your system to be secure despite them
in recitation tomorrow, will look at some of these bugs

complete mediation

requires careful design

SLIDE: paymaxx bug

many mechanisms: hard to enforce coherent policy

want to ensure that bank policies are followed

what mechanisms do we have?

 virtual memory isolates processes

kernel, file system implements ACLs

bank ATM implements its own checks

web banking might implement other checks

system used by bank employees has other checks

firewalls at different places in the network

interactions between layers

[caching/timing, naming, memory reuse, network replay]

SLIDE: naming problem with symlink attacks

SLIDE: password checking one character at a time

--- board 7 --

safety net approach
be paranoid -- make assumptions explicit

attackers will try all possible corner cases
consider the environment

if you are relying on network security, check for open wireless networks
if you are reusing, relying on another component, make sure it's secure

code meant to run on non-networked system used on the web?

never expected to deal with malicious inputs

consider dynamics of use

suppose only Nickolai should access grades.txt

who can specify permissions for the grades file?

 who can modify editor on Athena? or set permissions on it?
who can control name translation for that file?

 defend in depth
even if you have a server on a "secure" company network, still want
to require passwords. what if someone brings an infected laptop?

right side of the board:
humans: weakest link

- UI
- safe defaults

--- board 8 --

design principles
open design, minimize secrets

figure out what's going to differentiate bad guys vs good guys
focus on protecting that, make everything else public
authentication: ID public, sth. that proves you're that ID is secret
SSNs, credit card numbers fail at this

SSNs used both as ID and as credentials for authentication
 unclear what part of credit card number is really secret
some receipts star-out first 12 digits, other star out last 4

economy of mechanism

simple security mechanism

multiple security mechanisms interfere

try hard to reduce security policies to existing mechanisms

design to minimize "impedance mismatch" between security mechanisms
usually a number of app layers between client and real object
right side: diagram: Client-WebApp-FS-Disk
suppose this is paymaxx which stores user tax data
would be great if policy were enforced on obj directly

then wouldn't have to trust the server app code
suppose Obj is file -- mechanism is file permissions

if diff users store their data in 1 file, can't use OS prot
if we carefully design files 1 per user, may be able to use OS

 least privilege: minimize TCB
TCB (trusted computing base)
usually don't want to trust the network (next lectures will show how)
break up your app into small components, each with least needed

privilege

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Nickolai Zeldovich

key ideas for today:
open design
identity vs authenticator
authenticating messages vs principals (message integrity, bind data)
public key authentication

--- new board --

security model
C - I - S
 last time:

talked about some general ideas for how to build secure systems
defensive design: expect compromise, break into parts, reduce privilege
last recitation, saw examples of what can cause parts to be compromised

for the rest of the lectures:

assume that we can design end-points to be correct & secure

(hard but let's go along with this for now)

figure out how to achieve security in the face of attackers

attackers can look at, modify, and send messages

basic goals that we want to achieve

inside the server: guard - service

authentication

authorization

confidentiality

--- new board --

basic building block: crypto
let's look at how you might implement encryption
two functions, Encrypt and Decrypt

 C -> E -> I -> D -> S

 military systems, E and D are secret

closed design

 problem: if someone steals your design, you're in big trouble

hard to analyze system without at the same time losing secrecy

key principle in building secure systems: minimize secrets!

--- new board --

open design
big advantage: if someone steals design & key, can just change keys
can analyze system separately from the specific secret key
minimizes the secrets

 important principle in designing systems:
figure out precisely what secrets distinguish bad guys from good guys
it's very hard to keep things secret
knowing what's important will allow you to focus on the right things

 same diagram but with keys going into E & D

example of symmetric key crypto: one-time pad
XOR the message with random bits, which are the key
quickly describe XOR, why you get the original message back
problem: key is giant (but scheme is perfectly secure)

stream ciphers: various algorithms that generate random-looking bits
no longer perfectly unbreakable, just requires lots of computation
SLIDE: RC4

attack if keys reused
C->S: Encrypt(k, "Credit card NNN")
S->C: Encrypt(k, "Thank you, ...")

 XOR two ciphertexts and known response to get unknown request message!
never reuse keys with symmetric crypto! (one-time pad!)

--- new board --

previously needed shared keys, doesn't scale

RSA: public-key cryptography
keys for encryption, decryption differ
SLIDE: RSA algorithm

short example computation?

p = 31, q = 23, N = 713

e = 7, d = 283

m = 5

c = m^e mod N = 5^7 mod 713 = 408

m = c^d mod N = 408^283 mod 713 = 5

 difficult to generate e from d, and vice-versa

assumption: factoring N is hard!

 much more computationally expensive than symmetric-key crypto!
important property: don't need a shared key between each party

encrypting a message for someone is diff. than decrypting it
server can use the same key for many clients sending to it

 similarly tricky to use in practice

how to represent messages?

small messages are weak

large messages are inefficient

can multiply messages together

need something called padding

crypto mechanisms rely on computational complexity
pick key sizes appropriately -- "window of validity"

--- new board --

principal authentication
principal/identity: a way of saying who you are
authenticator: something that convinces others of your identity

open design principle sort-of applies here

want to keep identity public, authenticator private
focus on what's distinguishing good guy from bad guy

usually there's a rendezvous to agree on an acceptable authenticator

authenticator types: right side of the board
real world: SSN

bad design: confuses principal's identity and authenticator
passwords

assuming user is the only one that knows password, can infer that
if someone knows the password, it must be the user

server stores list of passwords, which is a disaster if compromised
common solution: store hashes of passwords

define a cryptographic hash:
H(m) -> v, v short (e.g. 256 bits)
given H(m), hard to find m' such that H(m') = H(m)

foils the timing attack we had last time
in theory hard to reverse
dictionary attack: try short character sequences, words

physical object

magnetic card: stores a long password, not very interesting

smartcard: computer that authenticates using crypto

biometric
oldest form of authentication: people remember faces, voices
can be easy to steal (you leave fingerprints, face images everywhere)
unlike a password, hard to change if compromised
more of an identity than authentication mechanism

 need to trust/authenticate who you're providing your authenticator to!
fake login screen, fake ATM machine can get a user's password/PIN
next recitation you'll read more about what happens in the real world
web phishing attacks: convincing you to authenticate to them

--- new board --

suppose we trust our client (e.g. laptop, smartcard, ...)
how to design protocol?

board: C - I - S diagram
client sending a message saying "buy 10 shares of Google stock"

simple version: just send password over the network
attacker has password, can now impersonate user

better version? send a hash of a password
attacker doesn't get our password (good, probably)
but the hash is now just as good -- can splice it onto other msg!

 ** need both authentication AND integrity **

 better? include checksum of message, eg CRC

attacker can re-compute checksum! need checksum to be keyed

 better yet: send a hash of [message + password], called a MAC

message authentication code

if you're going to do this: look up HMAC

best: establish a session key, minimize use of password (long-term secret)
send a message to the other party saying "i will use this key for a bit"
use that key to MAC individual messages

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Nickolai Zeldovich

high-level ideas for today:
public key authentication
certificate authorities
 session keys
network protocols and attacks: be explicit

Authentication, Authorization
=============================

--- board 1 --

setting: client and server sending messages over the internet
want to achieve: authentication, authorization, confidentiality

last time: how to authenticate requests given a shared secret
stock trading example: "buy 100 shares of google"
password, hash the request and password together

 [pw] [pw]

C --- I --- S

 <---------

m, H(m + pw) m: "GOOG shares cost $100"

 ---------->

 m, H(m + pw) m: "buy 100 shares of GOOG"

--- board 2 --

now: what to do if we don't have a shared secret ahead of time?
 e.g. stock quotes coming from web server

 want a pair of functions SIGN and VERIFY

Shared Public
 key key

SIGN(m, K1) -> sig H(m+K1) m^e mod N

VERIFY(m, sig, K2) sig==H(m+K2) sig^d mod N == m

MAC Signature

 SLIDE: RSA reminder

TELL STUDENTS that both of these examples are crippled
want to use HMAC and better public-key signature schemes
these are just for your intuition

 formalize previous password-based authentication: MAC
new: different sign, verify keys
key property of public-key signatures: others can verify but not generate!

attacks on SIGN, VERIFY for authentication [right side of board?]
crypto attacks

figure out the key or find ways to violate crypto's guarantees
authentication

modification

reordering

extending

splicing

 for example RSA as-described is vulnerable to multiplying messages
also need to take care to condense string into an integer

--- board 3 --

what does it even mean to authenticate someone in this case?
 how do you know what public key to use for someone?
idea: split up into authenticating a name, and then trusting a name
someone is going to manage names for us

 symmetric

S <-> PW <-> trust

 asymmetric
S <-> K1 <-> name <-> trust

 \----V----/

trust someone to tell us these bindings

--- board 4 --

talk to a server, get a response and signature with server's key
now talk to a key-naming server to ask it, what's this guy's name?
key-naming server responds, along with its own signature
must trust key-naming server ahead of time
otherwise might need to talk to another key-naming server...

SIGN("GOOG is $100", K1), K2

 [C knows K2_ca]

C <--------- S

^

|

\----> CA

"Who is K2?"

SIGN("K2 is quotes.nasdaq.com", K1_ca)

--- board 5 --

idea: don't actually need to query the key-naming server all the time
give key-naming server's signed response to original server
typically called a "certificate"

 [K2_ca]

C <--------------- S

m: "GOOG is $100"

SIGN(m, K1_q), K2_q

SIGN("K2_q is quotes.nasdaq.com", K1_ca)

delegation: certificates might be chained
otherwise everyone has to talk to the root certificate authority

this is roughly how DNSSEC works
user trusts the top-level certificate

SIGN("K2_q is quotes.nasdaq.com", K1_nasdaq), K2_nasdaq

SIGN("K2_nasdaq is *.nasdaq.com", K1_ca)

THE ENTIRE CHAIN HAS TO BE TRUSTED!
 and infact the weakest possible way to construct the chain is the problem

how would one of these CAs decide who the next guy is?
used to be that you have to go to a town office and get a business license

can specify any name you want, can probably find some town that's lax
now it's just verified by email on your domain registration

one popular CA will send email to webmaster@domain.com to ask if it's OK

SLIDE: easy to spoof this process, even for well-known companies!
reiterate: weakest link in the chain is what matters

SLIDE: rarely-used mechanisms are a disaster for security
Verisign designed a certificate-revocation list for this purpose
not part of the usual workflow, so never tested!
indeed, when time came to use it, noone knew how to find this CRL!

in practice users would think that a secure website was secure, end of story
didn't bother thinking about what server they were actually talking to
new kind of certificates now that involve "extended validation"
 pops up a green bar showing the name of the company that was validated

alternative: blindly trust & remember keys
vulnerable first time around
 SSH
 add a certificate exception in a browser

--- board 6 --

ok, now have public keys for both parties, what next?
asymmetric encryption/signatures are computationally-expensive
most protocols use public keys to establish symmetric session key

then use symmetric encryption or MACs for subsequent messages

session key protocol: denning-sacco
A wants to talk with B, need to establish symmetric session key
1. A -> S: A, B
2. S -> A: SIGN({A, Ka}, Ks), SIGN({B, Kb}, Ks)
3. 	 A picks a session key Kab

A -> B: SIGN({A, Ka}, Ks), ENCRYPT(SIGN(Kab, Ka), Kb)

4. A and B communicate using Kab to do symmetric encryption/MACs

(usually not a good idea to use same key for two purposes, so
maybe Kab is actually two keys, one for encrypt, one for MAC)

--- board 7 --- [to the right?]

desired goals

mailto:webmaster@domain.com

 1. secrecy: only A, B know Kab
2. authentication: A, B know other's identity

 is this true?
1. A knows Kab, and the only person that can decrypt msg 3 is B
2. A knows the only person that can decrypt Kab must be B

B knows the only person that could have sent Kab was A (signed!)

turns out the protocol is broken!
recipient can't really infer the party on the other end is A!
suppose B was malicious (e.g. A visited a malicious web site)
can impersonate A to some other party (e.g. another web site)

.. get {C:Kc}_Ks
3. B -> C:

 SIGN({A, Ka}, Ks), ENCRYPT(SIGN(Kab, Ka), Kc)

what recipient can infer is that A signed this message, but so what?

it wanted to use Kab to talk to someone, but not necessarily us (rcpt)!

MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Nicolai Zeldovich

high-level ideas for today:
attacks on network protocols
principles for building secure protocols
secure comm. channel abstraction; encryption and MAC
authorization: lists vs tickets
 how to put it all together (security in HTTP)

Protocol Security
=================

SLIDE: reminder of Denning-Sacco protocol

--- board 1 --

protocol-level attacks
impersonation: passwords are particularly bad [if used on multiple sites]
replay
reflection

SLIDE: reminder of how Denning-Sacco is broken
SLIDE: how to fix Denning-Sacco

protocol goals [right side of the board]
appropriateness [explicitness?]

explicit context, name principals
forward secrecy [compromised keys do not reveal past communication]

session keys, version numbers
freshness [distinguish old and new messages]

[later:] timestamp, nonce

--- board 2 --

replay attack example:
C -> S: "Buy 100 shares of GOOG", HMAC(m, pw)
attacker retransmits the message many times!

 what's the fix? include a nonce, sequence number, timestamp, ..

--- board 3 --

reflection attack example
suppose Alice and Bob share a secret (e.g. password)
want to ensure that the other party is present / alive
shared key K between A & B

 A -> B: ENCRYPT(Na, K)

B -> A: Na

 B -> A: ENCRYPT(Nb, K)

A -> B: Nb

 attack: Lucifer pretends to be Alice, whereas Alice is really disconnected
Bob asks Lucifer to decrypt challenge using their shared key
Lucifer doesn't have the key, but can ask Bob to prove himself to Alice

Bob will decrypt his own challenge and send it to Lucifer!

--- board 4 --

hard to reason about all these individual things when building a system
these building blocks are too low-level
common solution: abstraction of a secure communication channel

 C <===> S

 provides either confidentiality & authentication, or just authentication

+ long-lived comm

- short-lived sessions, many nodes

- offline messages, outside the model [e.g. confidentiality-only]

 for -: have to use the lower-level abstractions we've been talking about

plan: use some protocol like denning-sacco to establish session key
or two keys, one for encryption, one for MACs
use session key for symmetric crypto for secure comm channel

 need to include sequence numbers in messages to avoid replay, splicing

example: SSL/TLS in browsers
SLIDE: overview of SSL/TLS from wikipedia

 [[encryption attacks:

ciphertext-only

known-plaintext

chosen-plaintext

chosen-ciphertext

]]

SLIDE: just for fun, watch what's happening on the wireless network
explain what tcpdump does

SLIDE: explain what we get out of it: packet headers, etc

SLIDE: gmail not encrypted

SLIDE: facebook not encrypted; plaintext

why don't people use SSL everywhere?
they probably should
some technical reasons: performance

bandwidth, CPU to encrypt messages is negligible now

but SSL requires handshake: 2 more RTTs

--- board 5 --

secure comm channel =/= security
lots of trust assumptions underlying security of comm channel

claim: you're sending/receiving data to/from a particular entity
who is the entity? someone that a CA verified as being that entity

show amazon.com's certificate

who are all of the CAs? show list of all CAs in a browser?
 Edit -> Prefs -> Security -> List Certificates

where do these CAs come from? comes with browser from Mozilla or MS
 what can go wrong?

maybe my trust in the name is misplaced (confusing name? amaz0n.com?)
maybe CA failed to properly verify the name?
maybe one of the CAs was compromised?
maybe one of the CA's keys was disclosed, stolen, guessed?
your laptop was compromised, someone added an extra trusted CA root?

alternatively, just modified your browser to do arbitrary things
higher-level problems

credentials leaked
incorrect access control

--- board 6 --

authorization
 lifetime of authorization:

1. authorization
2. mediation
3. revocation

 revocation --\
 authorize -\ |

V V
 client -> guard -> server -> object
guard checks whether request should be allowed

--- board 7 --

how does this guard work?
logically, an access matrix

 F1 F2 F3
 A R R RW
 B RW RW -
C -- RW R

 principals on one axis -- need authentication
objects on another axis -- guard needs to understand what's going on
entries are allowed operations

where does this matrix get stored? [right side of board]
lists (ACLs in Unix, AFS): store column with the object

authentication: figure out who the user is
authorization: add user to ACL
 mediation: look up that user's entry in the object's column

tickets (Java ptr, some URL, some cookies, Kerberos, certs): user stores
row

 must ensure the user can't tamper with his own row!
authorization: out of scope -- however the user got the ticket (eg.

pw)
 mediation: look up current object in the user's supplied row

--- board 8 --

 advantage: ticket model allows delegating privileges easily
advantage: decouples authorization check from authentication check

can change the two parts of the system separately

disadvantage: need to get ticket first

disadvantage: revocation is difficult

plan A: chase down every ticket with each user
plan B: invalidate all outstanding tickets, require users that are

still authorized to get new tickets

--- board 9 --

good ways to generate ticket?
HMAC is easy
[resource/rights, gen#/timeout?, ...], HMAC'ed with server key
gen# supports revocation
timeout similarly helps control ticket distribution [Kerberos]

 so let's see how this would work in practice

ticket to access directory /mit/6.01

expires 11/11/2009

ticket = { /mit/6.01, 11/11/2009, MAC(/mit/6.01 + 11/11/2009) }
ticket = { /mit/6.011, 1/11/2009, MAC(/mit/6.011 + 1/11/2009) }

CRUCIAL: ensure all signed messages are unambiguously marshalled!

capabilities = naming + tickets
combine names and tickets together
can't talk about an object without also talking about the rights to it
would have avoided the symlink attack

 file descriptors in Unix are sort-of like this

managing this matrix can be hard (either rows or columns)
common simplification: roles or groups

--- board 10 --

how are all these components put together?
example: web browser/server interaction
secure comm channel: SSL
 client (browser) authenticates the server's name
server authenticates client's certificate (MIT personal certificates)
otherwise server gets a connection to someone that hasn't authenticated

yet

 message sequence

server: identify yourself \

client: username, password > SSL (usually)

server: here's a cookie (ticket) /

client: request 1 and cookie (ticket)

client: request 2 and cookie (ticket)

...

 SLIDE: plaintext cookies: enough to log into google calendar

SLIDE: plaintext cookies 2: list of other sites

http:/mit/6.01

 often these cookies are valid even after you change your password!
because it's just a signed ticket stating your username
good idea: include pw gen# in cookie/ticket

tickets and ACLs not as different as they sound
tickets often issued based on underlying ACLs
ACLs often used to decide higher-level ops based on lower-level tickets

e.g. server certificate = ticket for server's principal

but other checks apply to server's name

client cert/cookie = ticket for that user's client privileges
but other checks apply to client's name

	6.033 Lecture 3: Naming
	6.033 Lecture 4: Client/server
	6.033 Lecture 5: Operating System Organization
	6.033 Lecture 6: Client/server on one computer
	6.003 Lecture 7: Threads and Condition Variables
	6.033 2009 Lecture 8: Performance
	6.033 Lecture 9: Networking Introduction
	6.033 Lecture 10: Layering, Link Layer
	Lecture 11
	6.033 Lecture 12
	6.033 Lecture 13
	DNS, CDNs
	Lecture 15 Building Fault Tolerant Systems from Unreliable Components
	6.033 Lecture 16 -- Atomicity
	6.033 Lecture 17 -- Logging
	Lecture 18 -- Isolation + Concurrent Operations
	Lec 19 : Nested atomic actions, and multisite atomicity
	Today: Consistency and Replication
	Security intro
	Lec 22
	Lec 23
	Lec 24

