
DistAlgo Language Description

Yanhong A. Liu, Bo Lin, and Scott Stoller

liu@cs.stonybrook.edu, bolin@cs.stonybrook.edu, stoller@cs.stonybrook.edu

Revised November 19, 2016

DistAlgo is a language for distributed algorithms. We describe DistAlgo language constructs
as extensions to conventional object-oriented programming languages, including a syntax for
extensions to Python.

There are four components conceptually: (1) distributed processes and sending messages,
(2) control �ows and receiving messages, (3) high-level queries of message histories, and (4)
con�gurations.

High-level queries are not speci�c to distributed algorithms, but using them over message
histories is particularly helpful for expressing and understanding distributed algorithms at a
high level. Some conventional programming languages, such as Python, support high-level
queries to some extent, but DistAlgo query constructs are more declarative, especially with
the support of tuple patterns for messages.

1 Distributed processes and sending messages

1.1 Process de�nition

A process de�nition is of the following form. It de�nes a type of processes named p, by
de�ning a class p that extends class process. The process_body is a set of method de�nitions
and handler de�nitions, to be described.

class p extends process:

process_body

The syntax of process de�nition could be made simpler and clearer:

process p:
process_body

but it would make process a keyword, which is usually a reserved word, whereas process as
a class name is not reserved and can be de�ned or rede�ned to be anything else.

−→ in Python syntax:

class p (process):

process_body

A special method setup may be de�ned in process_body for initially setting up data in the
process before the execution starts. For each parameter v of setup, a process �eld named

1



v is de�ned automatically and assigned the value of parameter v ; additional �elds can be
de�ned explicitly in the method body of setup.

A special method run() may be de�ned in process_body for carrying out the main �ow of
execution.

A special variable self refers to the current process. Fields of the process may be de�ned
by including the �eld name as a parameter of method setup, or by explicitly pre�xing the
�eld name with self in an assignment to the �eld. References to �elds of the process do
not need to be pre�xed with self. References to methods of the process do not need to be
pre�xed with self either. Also, method de�nitions implicitly include parameter self.

1.2 Process creation

Process creation consists of statements for creating, setting up, and starting processes.

A process creation statement is of the following form. It creates n new processes of type p

at each node in the value of node_exp, and assigns the resulting process or set of processes to
variable v . Expression node_exp evaluates to a node or a set of nodes, specifying where the
new processes will be created. A node is a running DistAlgo program on a machine. A node
is identi�ed by a string of the form name@host, where name can be speci�ed on the command
line when starting the node, and host is the host name of the machine running the node;
@host can be omitted if the node is running on the same machine. All nodes communicating
with each other must have the same cookie, which can be speci�ed on the command line
when starting the node. The number n and clause at are optional; the defaults are 1 and
local node, respectively. When both the number n and clause at are omitted, a single process
is created and assigned to v ; otherwise, a set of processes is created and assigned to v .

v = n new p at node_exp

−→ in Python syntax:

v = new(p, num = n, at = node_exp)

A process setup statement is of the following form. It sets up the process or set of processes
that is the value of expression pexp, using method setup of the process or processes with the
values of argument expressions args. If the values of args are available when the process or
processes are created at a call to new, the call to setup can be omitted by inserting tuple
(args) after p in the call to new.

pexp.setup(args)

−→ in Python syntax:

setup(pexp, (args)) Note: You must add a trailing comma if args is a single argument.

A process start statement is of the following form. It starts the execution of the method run

of the process or set of processes that is the value of expression pexp.

pexp.start()

−→ in Python syntax:

start(pexp)

2



1.3 Sending messages

A statement for sending messages is of the following form. It sends the message that is value
of expression mexp to the process or set of processes that is the value of expression pexp. A
message can be any value but is by convention a tuple whose �rst component is a string,
called a tag, indicating the kind of the message.

send mexp to pexp

−→ in Python syntax:

send(mexp, to = pexp)

2 Control �ows and receiving messages

2.1 Yield points

A yield point preceding a statement is of the following form, where identi�er l is a label
and is optional. It speci�es that point in the program as a place where control may yield to
handling of received messages.

-- l:

−→ in Python syntax:

-- l

which is a statement in Python, where l is any valid Python identi�er.

2.2 Handling messages received

Handling messages received can be done using handler de�nitions and message history vari-
ables.

A handler de�nition is of the following form. It handles, at yield points labeled l1 , ...,
lj , un-handled messages that match mexp sent from pexp, where mexp and pexp are parts
of a pattern; previously unbound variables in a pattern are bound to the corresponding
components in the value matched. The from and at clauses are optional; the defaults are
any process and all yield points. The handler_body is a sequence of statements to be executed
for the matched messages.

receive mexp from pexp at l1, ..., lj:
handler_body

We could use the noun handler in place of receive, but handlers are not named and called
with their names; instead, yield points are named, and handlers are executed at the speci�ed
yield points.

−→ in Python syntax:

3



def receive(msg = mexp, from_ = pexp, at = (l1, ..., lj)):
handler_body

where _ is added after from because from is a reserved word in Python.

Message histories, i.e., the sequences of messages received and sent, in variables received

and sent, respectively, can be used in expressions. Sequence received is updated at the
next yield point if there are un-handled messeges, by adding un-handled messages before
any matching receive handler executes. Sequence sent is updated at each send statement,
by adding each message sent to a process.

In particular, the following two equivalent expressions return true i� a message that matches
mexp sent from pexp is in received. The from clause is optional; the default is any process.

received mexp from pexp
mexp from pexp in received

−→ in Python syntax:

received(mexp, from_ = pexp)
(mexp, pexp) in received

Similarly, the following expressions use sent.

sent mexp to pexp
mexp to pexp in sent

−→ in Python syntax:

sent(mexp, to = pexp)
(mexp, pexp) in sent

2.3 Synchronization

Synchronization and associated actions can be expressed using general, nondeterministic
await statements.

A simple await statement is of the following form. It waits for the value of Boolean-valued
expression bexp to become true, with an implicit yield point for handling messages while
waiting. It is a short hand for await bexp: pass in a general, nondeterministic await state-
ment.

await bexp

−→ in Python syntax:

await(bexp)

A general, nondeterministic await statement is of the following form. It waits for any of
the values of expressions bexp1 , ..., bexpk to become true or a timeout after t seconds, with
an implicit yield point for handling messages while waiting, and then nondeterministically
selects one of statements stmt1 , ..., stmtk , stmt whose corresponding conditions are satis�ed
to execute. The or and timeout clauses are optional.

4



await bexp1: stmt1
or ...

or bexpk: stmtk
timeout t: stmt

−→ in Python syntax:

if await(bexp1): stmt1
elif ...

elif bexpk: stmtk
elif timeout(t): stmt

An await statement must be preceded by a yield point; if a yield point is not speci�ed
explicitly, the default is that all message handlers can be executed at this point.

3 High-level queries of message histories

3.1 Comprehensions

A comprehension is a query of the following form plus a set of parameters�variables whose
values are bound before the query. For a query to be well-formed, every variable in it must
be reachable from a parameter�be a parameter or be the left-side variable of a membership
clause whose right-side variables are reachable. Given values of parameters, the query returns
the set of values of exp for all values of variables that satisfy all membership clauses vi in

sexpi and condition bexp. When sexpi is a variable si , clause vi in si can also be written as
si(vi). When bexp is true, , bexp can be omitted.

{exp: v1 in sexp1, ..., vk in sexpk, bexp}

To indicate that a variable x on the left side of a membership clause is a parameter, add
pre�x = to x; this is only needed for the �rst occurrence of such a variable. Notation =x

means a value that is equal to the value of parameter x; it is equivalent to using a fresh
variable y instead and adding a conjunct y=x in condition bexp. This notation can generalize:
one can add as pre�x any binary operator that is a symbol not allowed in identi�ers, uses
the parameter value as the right operand, and returns a Boolean value. For example, >x
means a value that is greater than the value of parameter x.

−→ in Python syntax:

setof(exp, v1 in sexp1, ..., vk in sexpk, bexp)

where _ is used in place of = to indicate parameters. This forbids the use of variable
names that start with _ in the query. Also, only for sexpi being variable received or sent can
clause vi in received or vi in sent be written as received(vi) or sent(vi), respectively.

5



3.2 Aggregations

An aggregation is a query of one of the following two forms, where agg is an aggregation
operator, including count, sum, min, and max. The query returns the value of applying agg

to the set value of the comprehension expression comprehension_exp, for the �rst form, or to
the multiset of values of exp for all values of variables that satisfy all membership clauses vi
in sexpi and condition bexp, for the second form.

agg comprehension_exp
agg (exp: v1 in sexp1, ..., vk in sexpk, bexp)

−→ in Python syntax:

agg(comprehension_exp)
aggof(exp, v1 in sexp1, ..., vk in sexpk, bexp)

where len is used in place of count.

3.3 Quanti�cations

A quanti�cation is a query of one of the following two forms plus a set of parameters. The
two forms are called existential and universal quanti�cations, respectively. Given values of
parameters, the query returns true i� for some or all, respectively, values of the variables
that satisfy all membership clauses vi in sexpi , expression bexp evaluates to true. When
an existential quanti�cation returns true, all variables in the query are also bound to a
combination of values, called a witness, that satisfy all the membership clauses and condition
bexp.

some v1 in sexp1, ..., vk in sexpk has bexp
each v1 in sexp1, ..., vk in sexpk has bexp

Parameters are indicated as for comprehensions. Also as for comprehensions, when sexpi is
a variable si , expression si(vi) can be used in place of vi in si . When bexp is true, the has

clause can be omitted.

−→ in Python syntax:

some(v1 in sexp1, ..., vk in sexpk, has = bexp)
each(v1 in sexp1, ..., vk in sexpk, has = bexp)

where pre�x _ or a params clause is used to indicate parameters, as for comprehensions.

3.4 Patterns

In the clauses v1 in sexp1, ..., vk in sexpk in all of comprehensions, aggregations, and
quanti�cations, a tuple expression texpi , called a tuple pattern, may occur in place of variable
vi . Previously unbound variables in texpi are bound to the corresponding components in the
matched elements of the value of sexpi . The underscore (_) is used as a wild card that can be
bound to anything. In general, any data construction expression can be used as a pattern;
we use only tuple patterns because messages are by convention tuples.

6



4 Con�gurations

4.1 Channel types

The following statement con�gures all channels to be �rst-in-�rst-out (FIFO). Other options
for channel include reliable and {reliable, fifo}. When these options are speci�ed, TCP
is used for process communication; otherwise, UDP is used.

configure channel = fifo

−→ in Python syntax:

config(channel = 'fifo')

Channels can also be con�gured separately for messages from certain types of processes to
certain types of processes, by adding clauses from ps and to qs, or arguments from_ = ps

and to = qs in Python syntax, where ps and qs can be a type of processes or a set of types
of processes. Each of these clauses is optional; the default is all types of processes.

4.2 Message handling

The following statement con�gures the system to handle all messages received at each yield
point; this is the default. Other options for handling include one.

configure handling = all

−→ in Python syntax:

config(handling = 'all')

4.3 Logical clocks

The following statement con�gures the system to use Lamport clock. Other options for clock
include vector; it is currently not supported.

configure clock = Lamport

−→ in Python syntax:

config(clock = 'Lamport')

A call logical_time() returns the current value of the logical clock.

4.4 Overall

A DistAlgo program is written in �les named with extension .da. It consists of a set of
process de�nitions, a method main, and possibly other, conventional program parts. Method
main speci�es the con�gurations and creates, sets up, and starts a set of processes.

DistAlgo language constructs can be used in process de�nitions and method main and are
implemented according to the semantics described; other, conventional program parts are
implemented according to their conventional semantics.

7



5 Other useful functions in Python

5.1 Logging output

The following method prints the values of expressions exp1 through expk in their str()

representation, separated by the value of str_exp and pre�xed with system timestamp, process
id, and the speci�ed integer level l , to the log of the node that runs the current DistAlgo
process; the printing is done only if level l is greater or equal to the default logging level or
the level speci�ed on the command line when starting the node. The log defaults to console,
but can be a �le speci�ed on the command line when starting the node.

output(exp1, ..., expk, sep = str_exp, level = l)

Argument sep is optional and defaults to the empty space. Argument level is optional
and defaults to logging.INFO, corresponding to value 20, in the Python logging module; see
https://docs.python.org/3/library/logging.html#levels for a list of prede�ned level
names.

5.2 Importing modules

The following statement is equivalent to Python statement import module as m.
It takes DistAlgo module module, which must end in a DistAlgo program �le name excluding
extension .da, compiles the program �le if an up-to-date compiled �le does not already exist,
and assigns to m the resulting module object if successful or raises ImportError otherwise.

m = import_da(module)

8


