MAVEN Python Toolkit Users’ Guide

2017-June-14

Table of Contents

1. Toolkit Installation

1.1. System Requirements

ToolKit INStallation ... ——————————— 1
1.1. System ReqUIrements ... sssss s sssssssssssssssssssssnsss 1
1.2. Downloading the TOOIKIt......csssssssss s 2
1.3. Updating the TOOIKILtcconnrnimmsmsmsiissmsssnssssssssssssssss s 2
1.4. Required Data Directory StrucCture....... s 2
1.5. Starting the TOOIKit.....usss s 3
1.6. Getting MOre HElP ... s ssssssases 4

TOOIKIt ROULINES ...t sss s s sasasssssnns 4
2.1. Downloading Data Using the TOOIKit.......ocmmmmmmssssssssss 4

2.1.1. (6 (o314 01 o U I i1 (<L 4
2.2. Reading data into Python MemOTry ... ss 6

2.2.1. T U PP ST PPTON 6

2.2.2. Q=Y U B 0 0 (016 =) W =T} U1 (= 8
2.3. Manipulating Key Parameter Data........mmmsssssssssssssssssssssss 9

2.3.1. INSTEU_SEATCR couvceeeeeeeeece ettt s s bbb 9

2.3.2. 031 PPN 10
2.4, Plotting Key Parameter Data.......c.ommmmssssssssssssssssssssssssssssssssss 12

2.4.1. PLOT et —————————————————— 12

2.4.2. ALEPIOT ettt e 13

2.4.3. STANAATAS covveeeereereeecseeee e s bbb s s s bR s 14

2.4.4. COTOTIA cureerersreresseesessseseessessessessessessessessessessessessessessssssssesssssesusssnsssessessessessessessessessnssnssssnssesussssussssessesnensesens 15

2.4.5. 0123 = o 1] PP OO 16
2.5. Interpolating Model RESUILSccocvrrrmimimnmnmnmsmsmssisssssssssssssssssssssssssssss s ssssssssessaens 17

2.5.1. INEETPOI_IMOAEL ...t bbb s 17

2.5.2. Create_MOAE]_IMAPS ..ottt s bbb bbb 18
2.6. Plotting of Key parameter data in 2D........ccuummmsssssssssssssssssssssssssss 19

2.6.1. TNLAP 20 1 eeueereeseeseessesseesseessesseesse s sss e s es s b s R SR R s AR R R 19

A. Appendix: KP Data Structures in the TOOIKitc.ccocommmnmnmnsmsnsmsnssssmsssssnsssssssssesas 20

The MAVEN Toolkit currently requires Anaconda version 4 or above. It can be

obtained from the following link:

https://www.continuum.io/downloads

https://www.continuum.io/downloads

Anaconda will install the python programming language, as well as numerous
software libraries used for scientific computing. This toolkit is only available for
python version 3.

1.2. Downloading the Toolkit

The easiest way to install the toolkit is simply typing the following command in the
terminal:

>>pip install pydivide

This will install pydivide and all of the dependencies automatically.
The following command may also be necessary:

>>conda install -c bokeh nodejs
This will install nodejs for the plotting software.

The MAVEN Toolkit is also available for download at the MAVEN Science Data
Center github page:

https://github.com/MAVENSDC

However, installing the toolkit this way will require changing your python path so
that your Anaconda installation can find this library. It will also require installing all
of the dependencies of the Toolkit manually. Unless you are familiar with
python/Anaconda, it is highly recommended that you install the toolkit via the pip
command above.

1.3. Updating the Toolkit

You can install the latest version of the toolkit by typing the following command in
the terminal:

>>pip install pydivide --upgrade
1.4. Required Data Directory Structure

The toolkit requires data files to be stored in a particular directory structure. This
directory structure matches the SDC and SSL directory structure. However, a user is
able to choose the root directory location for the data to be stored (will refer to this
as the ROOT DATA DIR). When you first use a download or read procedure, you will
be prompted to select this ROOT DATA DIR. After the selection is made, it is saved
inafile (mvn_toolkit prefs.txt), and can be changed later if desired. A user can
also choose to set an environment variable ROOT DATA DIR instead of using the

https://github.com/MAVENSDC

preferences file. The remaining directory structure will then be automatically
generated under this ROOT DATA DIR. The toolkit download procedures will
download files into this directory structure, and the read procedure expects to find
data files there as well. The directory structure that is created (and required) looks
like:

<ROOT_DATA DIR>/maven/data/sci/kp/insitu/<YYYY>/<MM>/
kp/iuvs/<YYYY>/<MM>/

And if you choose to download the level 2 data using the Toolkit routine
(download files), the following will be created (and required):

<ROOT DATA DIR>/maven/data/sci/sta/12/<YYYY>/<MM>/
sep/12/<YYYY>/<MM>/
swi/1l2/<YYYY>/<MM>/
swe/l12/<YYYY>/<MM>/
lpw/12/<YYYY>/<MM>/
mag/12/<YYYY>/<MM>/
iuv/12/<YYYY>/<MM>/
ngi/12/<YYYY>/<MM>/
euv/12/<YYYY>/<MM>/
acc/1l2/<YYYY>/<MM>/

e Note: If you are on Windows, the forward slashes (/) will be back slashes (\).
e <ROOT_ DATA DIR>ischosen by the user.
e <YYYY>and <MM> will be created as files for those year/month exist.

1.5. Starting the Toolkit

The toolkit was developed under the assumption that most users would be using it
in an interactive command line environment. To start up an interactive session of
python, type the following command in the terminal:

>>IPython
The terminal should display that an interactive version of python has begun. Then
to start a toolkit session, type:

>>import pydivide
The toolkit commands are now ready to be used by typing them into the terminal.
If you want to do more sophisticated data analysis than the toolkit currently offers,
there are several other libraries you can import as well that provide functions

similar to IDL and MATLAB. These libraries include:

>>import scipy

>>import numpy
>>import pandas

These packages are automatically included in an Anaconda installation, so you do
not need to download them separately. Instructions on how to use these libraries
are beyond the scope of this text, but helpful guides for these projects and others
can be found here:

https://www.scipy.org/docs.html

NOTE: You do not need to import these libraries in order for the pydivide toolkit to
work, you only need the initial “import pydivide” command.

1.6. Getting More Help

If you have any further problems or questions, either with installation or operation
of the Toolkit, feel free to contact the developers at
maven divide@lasp.colorado.edu

2. Toolkit Routines

Here we list the routines available in the MAVEN Toolkit and provide static
documentation for their usage. For each, we will list the procedure name, followed
by a brief description of what the code does, including the required and optional
arguments that can be passed to the procedure. Next, we display an example usage
of the procedure, followed by a comprehensive listing of all of the required
arguments, then the optional arguments.

2.1. Downloading Data Using the Toolkit
2.1.1. download_files

Description
This procedure downloads in-situ and/or IUVS Key Parameter (KP) data files
from the MAVEN SDC web server. It can also download specific instrument data,
though the toolkit does not specifically work with these files.

Example Usage

— Download all available KP data files for the in situ instruments between 1 January
2015 and 31 January 2015, inclusive:

>> pydivide.download_files(start_date='2015-01-01', end_date='2015-01-31",
insitu=True)

— List all available CDF in-situ KP files on the server:

https://www.scipy.org/docs.html
mailto:maven_divide@lasp.colorado.edu

>> pydivide.download_files(insitu=True, list_files=True)

Download all new (those files on the server that are not found in your local data
directory) text (ASCII) IUVS KP files through 6 April 2015:

>> pydivide.download files(iuvs=True, new_files=True, end_date='2015-04-
06")

List to screen all available Level 2 data files for the SWIA instrument.

>> pydivide.download_files(instruments='swi’', list_files=True, level='L[2")

List all available Level 2 data files for the SWIA instrument for the month of
January, 2015.

>> pydivide.download files(start_date='2015-01-01', end_date='2015-01-31",
instruments="swi’', list files=True, level='L[2")

Download all available Level 2 data files for the NGIMS, STATIC, and EUV
instruments that currently exist at the SDC server, but not in your local data
directory.

>> pydivide.download_files(instruments=['ngi’, 'sta’, 'euv'],
new_files=True)

Required Arguments

Either insitu, iuvs, or at least one instrument must be specified.

List of all accepted Arguments

e insitu: Boolean variable. Search/download in-situ KP data files
e iuvs: Boolean variable. Search/download IUVS KP data files
e cdf files:Boolean variable. Search/download CDF formatted data files

(*.cdf)

e text files:Boolean variable. Search/download ASCII formatted data files
(*.tab)

e new files:Boolean variable. Search/download only files that exist on the
server

e list files: Boolean variable. Le, “dry run.” List to standard output
(usually, the screen) the files that would be downloaded based on the
provided arguments; but do not download any data.

e update prefs: Boolean variable. Before searching/downloading data, open
up a dialogue window to allow the user to update the
mvn_toolkit prefs.txt file containing the location of the
ROOT_DATA_DIR. Once the new path is selected, the search/download will
proceed according to the remaining arguments.

e only update prefs: Boolean variable. Asupdate prefs=True;butdo
not attempt to search download and data.

e exclude orbit file:Boolean variable. Do not download an updated
version of the orbit number file from http://naif.jpl.nasa.gov/naif/.

e filenames: scalar or an array of specific filename strings to
search/download. The full filename must be provided (e.g.,
mvn_kp insitu 20150129 v00 r01.tab); wildcards are not recognized.

e start date: (format="vvvy-mMM-DD’) Search/download only data from
start date (inclusive) to present.

e end date: (format="vYvvy-MM-DD’) Search/download only data from prior to
end_date (inclusive).

e local dir: Specify a directory to which to download files. This overrides
(but does not overwrite) the target listed in the mvn toolkit prefs.txt
file.

e instruments: Scalar or an array of 3-character string abbreviations (the
instrument-specific directory names in the directory structure) of
instruments for which the data are to be downloaded/searched.

e level: A string that specifies what level data you wish to download. This
will only work when an instrument is specified. Options include 10, 11, I1a,
11b, 11c, 12,123, 12b, 13, 134, 13b, 13c. By default, level 2 data is downloaded.
Level 2 is generally the level where data is calibrated sufficiently for science
use.

2.2.Reading data into Python Memory
2.2.1. read

Description
This procedure ingests a subset of locally available KP data into one or two data
structures in python memory (depending on the provided arguments). The data
structure variables thus produced are the primary inputs to the various plotting
routines contained within this Toolkit.

In its simplest form, the read routine will quickly and efficiently return all
MAVEN KP data with a single command. Through the use of a variety of
keywords and options, however, the user may use the same routine to extract
any subset of KP data according to their needs.

The first time a user calls read, a dialog will appear that ask for the location for
ROOT_DATA_DIR, where on their machine MAVEN KP data is stored (see
Required Directory Structure). If a user has already run a download routine,
then this selection has already been made and saved.

After the first time, the Toolkit routines will remember this location and not
prompt the user again. However, should the user wish to change this, or access

http://naif.jpl.nasa.gov/naif/

KP data in an alternate directory, they can re-enter this dialog via optional
keywords (below).

Example Usage
— Read one day’s worth (10 April 2015) of in-situ and IUVS KP data

>> insitu, iuvs = pydivide.read('2015-04-10")

— Read in-situ and IUVS KP data from a given start time (1:05:01 on 5 April 2015)
to a given end time (14:22:11 on 22 April 2015). NB, the procedure also accepts
time/date strings in the following convention: ‘yyyy-mm-dd hh:mm:ss’.

>> insitu, iuvs = pydivide.read(['2015-04-10 ©1:05:01', '2015-05-22
14:22:11'7)

— Read in five days (19 April 2015 to 24 April 2015) of in-situ and IUVS data,
downloading any new files from the SDC server that are not already stored locally

>> insitu, iuvs = pydivide.read(['2015-04-19 00:00:00', '2015-04-24
00:00:00'], download_new=True)

Required Arguments
time:
The user is required to provide a constraint on the window for which data is to be
retrieved from the local disk and stored in the local ipython data structure(s). These
constraints may be provided in one of following formats:

1. As adate string (format="YYYY-MM-DD’)

2. Asadate/time string (format="YYYY-MM-DD HH:MM:SS’)
At a minimum, the user is required to input a single time from which the KP data
will be read. If the user inputs a single time, then the routine will read data for the
default time period, beginning at the entered time. Alternately, the user may enter
time as a two-element array that corresponds to the beginning and end times to be
read. N.B., the default read period, if only a single time or orbit is entered by the user,
is defined a single day (86400 seconds) if a date and time is entered.

Returns

insitu_output:

This user-defined variable will be the name of the structure returned that contains
all the in-situ instrument KP data as well as the spacecraft position and orientation
information. The INSITU_OUTPUT structure is always filled with some data, even if
only IUVS data is requested via keyword because it also contains the spacecraft
position and orientation information that is needed for later visualization.

iuvs_output:

This user-defined variable will be the name of the structure retuned that contains all
the IUVS KP data.

List of all accepted Arguments

e time: Must be the first argument after the procedure call.
— Description above in “Required Arguments”

e insitu_ only: Boolean variable. Setting this keyword will read in only the
KP data from the in-situ instruments. If this keyword is set, the third
required argument (iuvs output) becomes unnecessary and is ignored.

e Instruments: Scalar or an array of 3-character string abbreviations (the
instrument-specific directory names in the directory structure) of
instruments for which the data are to be downloaded/searched.

2.2.2. read_model_results

Description

This procedure reads the results of a given simulation result into python
memory as a dictionary object containing sub-dictionaries for metadata,
dimension information, and model tracers. This function can read in any of the
models currently on the MAVEN Science Data Center with the “.nc” extension:

https://lasp.colorado.edu/maven/sdc/public/pages/models.html

You will need to download the desired model before running this procedure.

Example Usage

Read the Michigan group’s lonospheric model for Mars Season: 270° and Mean
Solar Activity (check these).

>> model = pydivide.read_model results(’
/path/to/file/MGITM_ L2270 F136.nc")

Read the LATMOS group’s lonospheric model for Mars Season 270°, and Solar
Maximum levels of solar activity.

>> model =
pydivide.read_model_results('/path/to/file/Heliosares_Ionos LS270 SolMax.nc'

)

Required Arguments
filename:
The file name of the simulation result that is to be read in.

Returns

output:

https://lasp.colorado.edu/maven/sdc/public/pages/models.html

This user-defined variable will be the name of the structure returned that contains
the simulation results as a dictionary object. Roughly, the output will look like:

output

_ meta
_ longsubsol
_ 1s
_ etc

_ dim
_ lat/x
_ lon/y
_ alt/z

\ variablel
_ dim_order (x,y,z or z,y,x for example)
_ data
_ variable2
_ dim_order
_ data

_ variable
For example, the data for variable 1 can be accessed via the command:
>>output[‘'variablel']['data’]

And the subsolar longitude can be accessed with:

>> output[‘meta’]["Longsubsol ']

2.3. Manipulating Key Parameter Data

Once the MAVEN KP data have been read into python memory, all data fields may be
searched for values that fall within defined parameters. These searches may be run
simultaneously. For example, it is possible to use these procedures (see examples
below) to find all data records when the spacecraft was between altitudes of
1000km and 2000km, and the STATIC measured O* densities greater than 3000cm-3.

2.3.1. insitu_search

Description
Search an existing in-situ data structure for data consistent with a set of
requirements, and output a new data structure containing only those data
consistent with the down-selection.

Example Usage
— Find all data records that have a STATIC measured O+ density greater than
3000cm3 and less than 1000000 cm-3, and store the results in insitu new.

>> insitu_new = pydivide.insitu_search(insitu,
parameter='static.oplus density', min=3000, max=1000000)

Required Arguments

insitu in:

The previously created in-situ KP data structure from which a subset of data are to
be extracted.

Returns

insitu_out: This user-defined variable will be the name of the structure returned
that contains all of the requested extracted subset of in-situ KP data.

Either parameter or /1ist must be present.

List of all accepted Arguments

e insitu in:The inputin-situ key parameter data structure produced by a
previous call to read or insitu search.

e 1list: Boolean variable. Display an ordered list of all parameters present in
the input data structure, insitu in. The items are listed by index, and by
instrument followed by name. N.B,, if this keyword is present, no down-
selection of data based on any provided criteria will be performed, and there
will be no output data structure.

e will be performed, and there will be no output data structure.

e parameter: Either the name or index (see the /11ist keyword) of the Key
Parameter to be searched. This may be a single integer or string, if searching
on a single parameter, or an array of integers or strings to search on multiple
parameters simultaneously.

e min: This is the minimum value for a given search criteria. If not included,
then the minimum is assumed to be negative infinity. Like the parameter
keyword, this may be either a single value (if parameter is only a single
name) or an array of values, where each corresponds to the respective
parameter name.

e max: This is the maximum value for a given search criteria. If not included,
then the maximum is assumed to be infinity. Like the parameter keyword,
this may be either a single value (if parameter is only a single name) or an
array of values, where each corresponds to the respective parameter name.

2.3.2. bin

Description
This routine provides the user with a convenient and efficient way to bin in-situ
Key Parameters in one to eight defined dimensions. These guide dimensions may
be any of the other Key Parameters within the data structure. The size of each

10

bin is user definable and the output bins may be averages, standard deviations,
and medians.

Example Usage

— Bin the STATIC O* characteristic energy according to spacecraft latitude and
longitude, at one degree resolution in latitude, and two degree resolution in
longitude. N.B,, this assumes the entire KP data table has been read in.

>> output = pydivide.bin(insitu, parameter = 'static.oplus_char_energy’,
bin_by=['spacecraft.geo Llatitude', 'spacecraft.geo longitude'] , avg=True,
binsize=[2,1])

— Bin the SWIA H* density according to spacecraft altitude, with 10km resolution,
returning the averaged value (to output) and its standard deviation (to
output std) in each bin.

>> output, output_std = pydivide.bin(insitu, parameter =
'swia.hplus_density', bin_by="'spacecraft.altitude’, binsize=10 , avg=True,
std=True)

Required Arguments
insitu_in:
The first argument must be an in-situ key parameter data structure created from
read.

to bin:
The second argument lists the Key Parameter to be binned. Only one key
parameter may be binned at a time by this procedure.

bin by:
The third parameter lists the parameters - by index or name - by which to bin
the requested key parameter.

binsize:

Keyword that accepts the array defining the bin size to use for each of the
binning dimensions. The number of elements of binsize must equal the
number of elementsin bin by.

NOTE: At least one of the following arguments must be set as well: avg, std,
median, density.

Returns
output:

11

The requested key parameter binned according to the requested dimensions is
output to this user-supplied variable. This procedure can output up to 4
variables, one for each of the keywords: avg, std, median, density.

List of all accepted Arguments

e avg: Boolean variable. Calculate the average within each bin and return the
information in an array.

e std: Boolean variable. Calculate the standard deviation within each bin and
return the information in an array.

e median: Boolean variable. Calculate the median within each bin and return
the information in an array.

e density: Boolean variable. Array containing the number of values of the
input data parameter that fall within each bin.

¢ mins: Array of minimum values for each provided binning (number of
elements of mins must equal number of elements of by bin).

e maxs: Array of maximum values for each provided binning (number of
elements of maxs must equal number of elements of by bin).

2.4. Plotting Key Parameter Data

These are procedures that will produce “traditional” Abscissa versus Ordinate plots
of one or more parameters against time or altitude. In each case, the data structure
previously created by read must be provided to the procedure as an argument.

2.4.1. plot

Description
Plot time series data from a MAVEN in-situ KP data structure. At present, this
procedure will not work with IUVS KP data.

Example Usage
— Plot the H+ density from SWIA against time, identifying the parameter by name.

>> pydivide.plot(insitu, parameter='swia.hplus_density")
— Create three plots of three attributes all on the same plot

>> pydivide.plot(insitu, parameter=['swia.hplus_density’,
'static.oplus_char_energy', 'spacecraft.altitude'] , SamePlot=True)

— List all KP data attributes present in a data structure. This is useful if you do not
know the name of the attribute you wish to plot, or its index number.

>> pydivide.plot(insitu, list=True)

12

— Create a plot of H* density from SWIA, for a subset of the data contained within
the read in data structure, using the t ime keyword to limit the plotted data to
between 2 and 12 UTC on April 10t

>> pydivide.plot(insitu, parameter='swia.hplus_density', time=['2016-04-16
02:00:00', '2016-04-10 12:00:00'1])

Required Arguments
kp_data:
The first argument must be an in-situ key parameter data structure created from
read, Or insitu_search.

parameter:

At least one KP parameter must be provided. This can be either passed as the
name(s) of the parameter(s), such as swia.hplus density,or
spacecraft.altitude, or the index or indices of the parameters, the values of
which can be obtained by using the 1ist keyword, described below.

List of all accepted Arguments

e kp_data: The input in-situ key parameter data structure produced by a
previous call to read or search.

e parameter: The Key Parameter value(s) to be plotted. The full list can be
found in Appendix A, or at the command line by using the /1ist keyword
(see below).

e 1list: Boolean variable. Display an ordered list of all parameters present in
the data structure. The items are listed by index, and by instrument followed
by name. If instead this keyword is assigned to a variable, then the list is
stored in that variable as an array of strings.

e time: Define a range of times to be plotted, this keyword will accept strings
as scalars or arrays. See the time keyword under “Required Arguments” in
read for additional details.

e sSamePlot: Boolean variable. Set true to plot everything on one chart, and
false to create a stack of charts (True by default).

e title: Stringvariable that sets the title of your plot.

2.4.2. altplot

Description

Generate a plot of in-situ key parameter data plotted versus altitude, rather than
time. Altitude is plotted on the x-axis.

Example Usage
— Exactly the same as plot.

13

Required Arguments
See plot above.

List of all accepted Arguments
See plot above.

2.4.3. standards

Description
There are twenty-five standardized plots created from the in-situ KP data found
on the MAVEN SDC website. This procedure generates a direct graphics window
that contains all, or a subset of, those twenty-five plots, from the data provided
by the user. Most of the plotted parameters are directly from the Key Parameter
data; though in some cases, the plotted quantities of interest have been derived.

Example Usage

— Plot all twenty-five standard plots. Normally, you will not want to do this, since
this command will generate a single window with 25 rows of very narrow plots.
But it might be useful in a quick-look case, so this keyword has been retained.

>> pydivide.standards(insitu, all_plots=True)

— Generate a figure containing only three plots: the Magnetic field standard plot in
Mars Solar Orbital coordinates (x, y, z, and magnitude) the standard spacecraft
ephemeris information (sub-spacecraft latitude /longitude, subsolar
latitude/longitude, local solar time, solar zenith angle, and Mars season), and the
H*/He** and pick-up ion omni-directional fluxes from STATIC. Also customize the
title.

>> pydivide.standards(insitu, mag_mso=True, eph_angle=True,
static_flux=True, title='Random Plots")

Required Arguments
insitu:
The first argument must be an in-situ key parameter data structure created from
read.

Data Selection Keywords:
The following keywords identify which among the data that feed the
standardized plots are to be presented in the generated figure. Each of these
data selection keywords may be used in conjunction with any of the other data
selection keywords. lL.e., they are not exclusive, but additive keywords. At least
one of these must be set:

o all plots: Generate all 25 plots

o euv: EUVirradiance in each of three bands

o mag mso: Magnetic field, MSO coordinates

14

o mag geo: Magnetic field, Geographic coordinates

mag_cone: Magnetic clock and cone angles, MSO coordinates
mag_dir: Magnetic field: radial, horizontal, northward, and eastward
components

ngims neutral: Neutral atmospheric component densities
ngims_ions: [onized atmospheric component densities
eph_angle: Spacecraft ephemeris information

eph_geo: Spacecraft position in geographic coordinates
eph_mso: Spacecraft position in MSO coordinates

swea: electron parallel/anti-parallel fluxes

sep_ion: lon Energy fluxes

sep _electron: Electron Energy fluxes

wave: Electric field wave power

plasma_den: Plasma densities

plasma_temp: Plasma Temperatures

swia h vel: H* Flow velocity in MSO coordinates from SWIA
static_h_ vel: H* flow velocity in MSO coordinates from STATIC
static_o2_ vel: O2* flow velocity in MSO coords from STATIC
static flux: H*/He** and Pick-up Ion omni-directional fluxes
static_energy: H*/He** and Pick-up Ion characteristic energies
sun_bar: Indication of whether MAVEN is in sunlight

solar wind: solar wind dynamic pressure

ionosphere: Electron Spectrum shape parameter

altitude: Spacecraft altitude

sc_pot: Spacecraft potential

o

0O O O O O O O 0O O O O 0O O O OO OoOOoOOoOOoO OoO Oo

List of all accepted Arguments
e insitu: The inputin-situ key parameter data structure produced by a
previous call to read or insitu search.
e list plots: Display a list of all available plots and a brief description
e title: The title of the plots

2.4.4. corona

Description
Create altitude plots of the corona limb scans from IUVS Key Parameter files.
These scans contain radiance and density data of various species.

Example Usage
— Plot all IUVS radiance and density data for all species on one plot

>> pydivide.corona(iuvs)

15

— Plot IUVS radiance and density data for H, O and 0_1304 for orbit numbers 2540
and 2546. Also make the title Testing1234.

>> pydivide.corona(iuvs, species = ['H', '0', '0_1304'], orbit_num = [2540,
2546], title='Testingl234")

Required Arguments
kp_data:

The first argument must be an IUVS key parameter data structure created from
read.

List of all accepted Arguments

e kp data: The input IUVS key parameter data structure produced by a
previous call to read.

e density: Boolean variable. Plot the density, default is true.

e radiance: Boolean variable. Plot the radiance, default is true.

e orbit num: Integer or list of integers to specify the orbit number(s) plotted.

e species: A string or list of strings to only plot certain chemical species.

e log: Boolean variable. Set true to turn into a log plot.

e SamePlot: Boolean variable. Set true to plot everything on one chart, and
false to create a stack of charts (True by default).

2.4.5. periapse

Description

Create altitude plots of the periapse limb scans from IUVS Key Parameter files.
These scans contain radiance and density data of various species.

Example Usage
— Plot the N2 density and radiance data for orbit 1307 on a log plot

>> pydivide.periapse(iuvs, log=True, species='N2', orbit_num=1307)

Required Arguments
kp_data:
The first argument must be an IUVS key parameter data structure created from
read.

List of all accepted Arguments

e kp_data: The input IUVS key parameter data structure produced by a
previous call to read.

e density: Boolean variable. Plot the density, default is true.
e radiance: Boolean variable. Plot the radiance, default is true.
e orbit num: Integer or list of integers to specify the orbit number(s) plotted.

16

e obs_num: Integer or list of integers to specify the observation number(s)
plotted. There are up to 3 periapse observations per orbit.

e species: A string or list of strings to only plot certain chemical species.

e log: Boolean variable. Set true to turn into a log plot.

e sSamePlot: Boolean variable. Set true to plot everything on one chart, and
false to create a stack of charts (True by default).

2.5. Interpolating Model Results

These are procedures that are designed to read in outputs from simulations of the
Martian lonosphere, Exosphere, and Thermosphere, and interpolate them to either
the spacecraft trajectory of a given in-situ key parameter data structure, or a given
altitude.

2.5.1. interpol_model

Description
Given the structure containing the model results read in using
read model results, and an in-situ key parameter data structure as input,
this procedure produces a data structure containing all of the simulation’s
parameters interpolated to their values at the positions (latitude, longitude,
altitude) taken from the spacecraft ephemeris.

Example Usage

— Interpolate all model tracers to the spacecraft trajectory using nearest neighbor
interpolation.

>> results = pydivide.interpol _model(insitu, file =
'/path/to/file/Elew 18 06 14 t00600.nc', nearest=True)

Required Arguments
kp_data:
The first argument must be an in-situ key parameter data structure created from
read, Or insitu_search.

model:
The second argument provides the source of the simulation data to be
interpolated to the spacecraft trajectory.

file:
If “model” is not provided, you can provide the full path to a model and the script
will read in the model file.

Returns
output:
An array of values with the interpolated values at each point

17

List of all accepted Arguments
e nearest: Boolean variable. If set to True, instead of interpolating the nearby
values, it will just return the value of the nearest neighbor point to the
spacecraft

2.5.2. create_model_maps

Description
Given the path to a model file, this will generate a png file contour map of a
model at a specific altitude. These maps can be used as a background in the 2D
maps described in the next section.

Example Usage

— Interpolate all model tracers to the spacecraft trajectory using nearest neighbor
interpolation.

>> pydivide.create_model_maps(altitude=170, file =
'/path/to/file/MGITM_LS090 FO70 _150812.nc")

Required Arguments
altitude:
The altitude of output map

file:
If “model” is not provided, you can provide the full path to a model and the script
will read in the model file.

Returns
A png file will be created in the same directory as the model file provided to the
function.

List of all accepted Arguments

e nearest: Boolean variable. If set to True, instead of interpolating the nearby
values, it will just return the value of the nearest neighbor altitude.

e linear: Boolean variable. If set to True, will perform a simple linear
interpolation between two altitude layers. Default is True.

e transparency: Numerical value between zero and one. Zero is a completely
transparent map.

e ct: A string variable that sets the color tables to use. A list of allowed
colortables can be found here:
https://matplotlib.org/examples/color/colormaps reference.html

e fill: Boolean variable. If set to True, fills in the contour levels rather than
generate lines.

e numContour: Specify the number of contour lines. The default is 25.

18

https://matplotlib.org/examples/color/colormaps_reference.html

2.6. Plotting of Key parameter data in 2D
2.6.1. map2d

Description
This routine will produce a 2d map of Mars, either in planetocentric or the MSO
coordinate system, with the MAVEN orbital projection and a variety of
basemaps. The spacecraft orbital path may be colored by a given in-situ Key
Parameter data value.

Example Usage
— Plot the spacecraft altitude along the MAVEN orbital track along the surface.

>> pydivide.map2d(insitu, 'spacecraft.altitude’)

— Plot the spacecraft altitude along the MAVEN orbital track along the surface, using
the MOLA altimetry basemap, and also plot the path of the subsolar point.

>> pydivide.map2d(insitu, ’'spacecraft.altitude’, basemap='mola’,
subsolar=True)

— Plot the CO2* density from NGIMS along the MAVEN orbital track along the
surface, limiting the displayed map domain to +60° latitude and 90° to 270°
longitude in MSO coordinates.

>> pydivide.map2d(insitu, ‘ngims.co2plus_density’', map_limit=[-
60,90,60,270], mso=True)

Required Arguments
insitu_data: The in-situ Key Parameter data structure
parameter: In-situ Key Parameter by which to color the spacecraft trajectory.

List of all accepted Arguments

e parameter: In-situ Key Parameter by which to color the spacecraft
trajectory. I

e time: This keyword enables the user to plot a subset of the in-situ KP data.
By default, the all of the data contained within the passed structure are
plotted. The user can choose the plotted time range in the format [yyyy-mm-
dd hh:mm:ss, yyyy-mm-dd hh:mm:ss].

e basemap: The name of the basemap to display upon which the spacecraft
data will be overplotted. If notincluded, a basic lat/lon grid is used as the
backdrop. Choices include:

o 'MDIM": The Mars Digital Image Model.
'MOLA'": Mars Topography in color.
'MOLA_BW': Mars topography in black and white.
'MAG': Mars crustal magnetism.

o O O

19

o '/path/to/file.png": User-defined basemap.

e subsolar: Boolean variable. Plot the path of the subsolar point along the
surface of Mars.

e mso: Boolean variable. Plot using the MSO map projection.

e 1list: Boolean variable. Display an ordered list of all parameters present in
the data structure. The items are listed by index, and by instrument followed
by name. N.B., No data will be plotted if this keyword is provided; all plotting
keywords will be ignored.

e map limit: Alist of 4 numbers that specify the bounding box displayed on
the map: [x0, y0, x1, y1]

e alpha: A number that sets the transparency of the trajectory.

e title: Astring that sets the title of the generated plot

A. Appendix: KP Data Structures in the ToolKit

The Key Parameter data read in by read are held within python as a dictionary of
instruments, with each dictionary key referring to a “dataframe” object. The name
of the dictionary is defined by the user at the time that read is used to read the raw
Key Parameter data files, or at the time that insitu search is used to select a
subset of an existing structure of Key Parameter data. For the rest of this section,
this name will be assumed to be kp_data. Not alldictionary keys/ dataframes will
be present, according to the subsetting performed either during the read or
search. Full in-situ and IUVS Key Parameter data structures have the following
form. Dataframe columns are in lower case, while dictionary keys are listed in CAPS
and boldface. For more information, refer to Table 13 of the MAVEN In-Situ
Instruments Key Parameters SIS document.

e KP_DATA
o INSITU
= time_string
= time
= orbit

* inbound/outbound flag
= SPACECRAFT

e GEOX
GEO_y
GEO_z
MSO_x
MSO_y
MSO_z
GEO_longitude
GEO_latitude
SZA
Local_time

20

Altitude
Attitude_geo_x
Attitude_geo_y
Attitude_geo_z
e Attitude_mso_x
e Attitude_mso_y
e Attitude_mso_z
e Mars_season
Mars_sun_distance
Subsolar_point_GEO_longitude
Subsolar_point_GEO_latitude
SubMars_point_Solar_longitude
SubMars_point_solar_latitude
APP
Attitude_geo_x
Attitude_geo_y
Attitude_geo_z
Attitude_mso_x
Attitude_mso_y
Attitude_mso_z
LPW
Electron_density
Electron_density_qual_min
Electron_density_qual_max
Electron_temperature
Electron_temperature_qual_min
Electron_temperature_qual_max
Spacecraft_potential
Spacecraft_potential_qual_min
Spacecraft_potential_qual_max
Ewave_low
Ewave_low_qual

“0” = perfect
— “100” =100% error
e Ewave mid
e Ewave_mid_qual

— “0” = perfect

— “100”=100% error
e Ewave_high
e Ewave_high_qual

“0” = perfect

— “100” =100% error

EUV

21

— Quality flags contain: “0” = good data, “1” = off-nominal pointing,
“2” = aperture closed

irradiance_low

irradiance_low_qual

irradiance_mid

irradiance_mid_qual

irradiance_lyman

irradiance_lyman_qual

MAG

— All quality flags are 0=normal data; 1=abnormal data.
MSOx
MSOx_qual
MSOy
MSOy_qual
MSOz
MSOz_qual
GEOx
GEOx_qual
GEOy
GEOy_qual
GEOz
GEOz_qual
RMS
RMS_qual

NGIMS

— All densities are abundances or upper limits in cc1. All quality
flags are % error (1 sigma). Quality flag of “-1” indicates density is
an upper limit.

He_density

He_density_qual

O_density

O_density_qual

CO_density

CO_density_qual

N2_density

N2_density_qual

NO_density

NO_density_qual

Ar_density

Ar_density_qual

CO2_density

CO2_density_qual

O2Zplus_density

02plus_density_qual

22

CO2plus_density
COZ2plus_density_qual
NOplus_density
NOplus_density_qual
e Oplus_density
e Oplus_density_qual
e (CONplus_density
e CONplus_density_qual
Cplus_density
Cplus_density_qual
OHplus_density
OHplus_density_qual
Nplus_density
Nplus_density_qual
SEP
— Energy fluxes and their quality flags are in units of eV/cm?/s.
Quality flags are standard uncertainty in ion energy flux based on
Poisson statistics.
lon_energy_flux_1
lon_energy_flux_1_qual
lon_energy_flux_2
lon_energy_flux_2_qual
lon_energy_flux_3
lon_energy_flux_3_qual
lon_energy_flux_4
lon_energy_flux_4_qual
Electron_energy_flux_1
Electron_energy_flux_1_qual
Electron_energy_flux_2
Electron_energy_flux_2_qual
Electron_energy_flux_3
Electron_energy_flux_3_qual
Electron_energy_flux_4
Electron_energy_flux_4_qual
Look_direction_1_MSOx
Look_direction_1_MSQOy
Look direction_1 MSOz
Look_direction_2_MSOx
Look_direction_2_MSQOy
Look_direction_2_MSOz
Look_direction_3_MSOx
Look_direction_3_MSOy
Look_direction_3_MSOz
Look direction_4 MSOx

23

Look_direction_4_MSOy
Look_direction_4_MSOz

STATIC

STATIC Quality Flag
COZ2plus_density
CO2plus_density_qual
Oplus_density
Oplus_density_qual
02plus_density
02plus_density_qual
CO2plus_temperatrure
COZ2plus_temperature_qual
Oplus_temperature
Oplus_temperature_qual
02plus_temperature
02plus_temperature_qual
02plus_flow_v_appx
02plus_flow_v_appx_qual
02plus_flow_v_appy
02plus_flow_v_appy_qual
02plus_flow_v_appz
02plus_flow_v_appz_qual
02plus_flow_v_MSOx
02plus_flow_v_MSOx_qual
02plus_flow_v_MSOy
02plus_flow_v_MSOy_qual
02plus_flow_v_MSOz
02plus_flow_v_MSOz_qual
Hplus_omni_flux
Hplus_char_energy
Hplus_char_energy_qual
Heplus_omni_flux
Heplus_char_energy
Heplus_char_energy_qual
Oplus_omni_flux
Oplus_char_energy
Oplus_char_energy_qual
02plus_omni_flux
O2plus_char_energy
O2Zplus_char_energy_qual
Hplus_char_dir_MSOx
Hplus_char_dir_MSOy
Hplus_char_dir_MSOz
Hplus_char_angular_width

24

Hplus_char_angular_width_qual
Dominant_Pickup_ion_char_dir_MSOx
Dominant_Pickup_ion_char_dir_MSOx_qual
Dominant_Pickup_ion_char_dir_MSOy
e Dominant_Pickup_ion_char_dir_MSOy_qual
e Dominant_Pickup_ion_char_dir_MSOz
e Dominant_Pickup_ion_char_dir_MSOz_qual
¢ Dominant_Pickup_ion_char_angular_width
e Dominant_Pickup_ion_char_angular_width_qual
SWEA
— Unless noted, quality flags all reflect ‘Statistical Uncertainty”
Solarwind_e_density
Solarwind_e_density_qual
Solarwind_e_temperature
Solarwind_e_temperature_qual
Electron_parallel_flux_low
Electron_parallel_flux_low_qual
Electron_parallel_flux_mid
Electron_parallel_flux_mid_qual
Electron_parallel_flux_high
Electron_parallel_flux_high_qual
Electron_antiparallel_flux_low
Electron_antiparallel_flux_low_qual
Electron_antiparallel_flux_mid
Electron_antiparallel_flux_mid_qual
Electron_antiparallel_flux_high
Electron_antiparallel_flux_high_qual
Electron_spectrum_shape
Electron_spectrum_shape _qual
— Floating point number from 0 to 1. “Zero” means no evidence for
ionospheric electrons, “one” means no evidence for solar wind
electrons.

SWIA

— Unless noted, quality flags are 0 for bad, and 1 for good, indicating
whether the distribution is well-measured and decommutation
parameters are definite.

Hplus_density

Hplus_density_qual

Hplus_flow_velocity_ MSOx

Hplus_flow_velocity_MSOx_qual

Hplus_flow_velocity_MSOy

Hplus_flow_velocity_MSOy_qual

Hplus_flow_velocity_MSOz

Hplus_flow_velocity_MSOz_qual

25

Hplus_temperature
Hplus_temperature_qual
Solarwind_dynamic_pressure
Solarwind_dynamic_pressure_qual

IUVS

PERIAPSE# (NOTE: “#” will either be 1, 2 or 3)
— Time_start

— Time_stop

— Scale_height

— scale_height_unc

— density

— density_unc

— density_sys_unc

— Radiance

— Radiance_unc

— Radiance_sys_unc

— Temperature

— Temperature_unc

— Sza

— Local_time

— Lat

— Lon

— Lat_mso

— Lon_mso

— Orbit_number

— Mars_season_ls

— Spacecraft_geo

— Spacecraft_mso

— Sun_geo

— Sun_mso

— Spacecraft_geo_longitude

— Spacecraft_geo_latitude

— Spacecraft_mso_longitude

— Spacecraft_mso_latitude

— Subsolar_point_geo_longitude
— Subsolar_point_geo_latitude
— Subsolar_point_mso_longitude
— Subsolar_point_mso_latitude
— Spacecraft_sza

— Spacecraft_local_time

— Spacecraft_altitude

— Mars_sun_distance
CORONA_LORES_HIGH

— Time_start

26

— Time_stop

— Scale_height

— scale_height_err

— density

— density_err

— Radiance

— Radiance_err

— Temperature

— Temperature_err

— Sza

— Local_time

— Lat

— Lon

— Lat_mso

— Lon_mso

— Orbit_number

— Mars_season_ls

— Spacecraft_geo

— Spacecraft_mso

— Sun_geo

— Sun_mso

— Spacecraft_geo_longitude
— Spacecraft_geo_latitude

— Spacecraft_mso_longitude
— Spacecraft_mso_latitude
— Subsolar_point_geo_longitude
— Subsolar_point_geo_latitude
— Subsolar_point_mso_longitude
— Subsolar_point_mso_latitude
— Spacecraft_sza

— Spacecraft_local_time

— Spacecraft_altitude

— Mars_sun_distance
APOAPSE

— Time_start

— Time_stop

— Ozone_depth

— Ozone_depth_err

— Auroral _index

— Dust_depth

— Dust_depth_err

— Radiance

— Radiance_err

27

Sza_bp

Local_time_bp

Sza

Local_time

Lat

Lon

Lat_mso

Lon_mso

Orbit_number
Mars_season_ls
Spacecraft_geo
Spacecraft_mso

Sun_geo

Sun_mso
Spacecraft_geo_longitude
Spacecraft_geo_latitude
Spacecraft_mso_longitude
Spacecraft_mso_latitude
Subsolar_point_geo_longitude
Subsolar_point_geo_latitude
Subsolar_point_mso_longitude
Subsolar_point_mso_latitude
Spacecraft_sza
Spacecraft_local_time
Spacecraft_altitude
Mars_sun_distance

28

