
Macro-driven metalanguage for writing Pyramid Scheme programs

Marcin Konowalczyk1, 2, a)

1)Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K.
2)UCLA Samueli School of Engineering, University of California, Los Angeles, 7400 Boelter Hall, Los Angeles, CA 90095, United
States

(Dated: March 30, 2021)

In this work we present a metalanguage which allows simpler writing of Pyramid Scheme programs. We first intro-
duce the Pyramid Scheme itself, pointing out some more interesting features. We then proceed to define a base
lisp-like notation for Pyramid Scheme (called psll), and expand on it with local macros (and semi-local) macro
expansions which allow for higher-level constructs. Notably, we introduce strings, arrays and preprocessor defini-
tions which can be used akin to functions. The entire project is available on GitHub at MarcinKonowalczyk/psll-
lang.

Keywords: syntax tree; pyramids; compilation; horizontal gene transfer; sorting; code golf

I. INTRODUCTION

In ancient Egypt, pyramids were constructed as the rest-
ing places of deceased pharaohs, containing not only their
mummified remains but also an assortment of keywords
and type literals the pharaoh will need in their journey
though afterlife. Pyramid Scheme (PS) is a variant of the
Scheme dialect of Lisp, which honours these ancient tradi-
tions and accompanies us thorough our journey of compu-
tation.
Pyramid Scheme was designed by Conor O’Brien, in early
2017 (date of the earliest commit to the GitHub repository).1

It is a turing-complete esoteric programming language (es-
olang)2,3 which uses tree-like, as opposed to a serial, code
structure. Compilers make use of an intermediate repre-
sentation of the language in the form of an abstract syntax
tree (AST).4 In contrast to most contemporary languages /
frameworks, which build on top of the existing infrastruc-
ture to create “the stack” of software,5,6 Pyramid Scheme
aims to shed any unnecessary abstractions, including that
of the AST. The computation in Pyramid scheme is there-
fore represented as a literal syntax tree (LST) of ascii-art
pyramidal constructs.
Pyramid Scheme is supported by the “Try It Online!” repos-
itory of online interpreters,7 and, like many other esolangs,
has been featured in many code golfing challenges.8 Code
golf involves writing a program in a freely-chosen program-
ming language which performs a certain operation under
some constraint. This usually comes in the form of the
smallest number of characters in the source code and is
a platform for one to either learn a new programming lan-
guage, or explore the depths of an already known one. Code
golfing provides one with a set of goals which is almost-
orthogonal to what one finds in everyday programming,

a)Electronic mail: marcin.konow@lczyk.xyz

1^.^.....^.............^......^......^....^
2^-/.\.../.\.........../.\..../.\..../.\...-^
3^-/out\./set\........./out\../out\../out\../.\
4/.\-----^-----^.......^-----.^-----.^-----./out\
5/set\.../x\.../+\...../.\..../.\..../.\....^-----
6 ...^-----^..---..^---^.../chr\../chr\../chr\../x\
7 ../x\.../#\...../x\./1\.^-----.^-----.^-----..---
8 ..---..^---.....---.---/.\..../.\..../.\
9/l\............./43.\../49.\../61.\

10/ine\............-----..-----..-----
11-----

Listing 1. A simple Pyramid Scheme program. It takes one
input from stdin – (set.x.(#.stdin)), increments it by one –
(set.x.(+.x.1)) and prints the result computation to the com-
mand line. Try it online!

and therefore often sheds new light on old, seemingly well-
known ideas.

II. PYRAMID SCHEME

The original and, so far, the only implementation of PS is
written in Ruby.1 The LST of the program is first parsed and
then mapped to a recursive evaluation chain. An example
of one such program can be seen in Listing 1.
PS parser reads the body of each pyramid verbatim, con-
catenated line by line.9 The parser begins at the tip (ˆ), and
walks down the left (/) and the right (\) side, collecting the
characters in-between. When the two sides run out, it first
checks for the presence of the pyramid base (-),10 and then
for the tips of the child pyramids, if present. The pyramids
may connect only on these corners, such that, for example,
the first pyramid with chr (which constructs a character +
to be printed) in Listing 1 rightfully does not consider the
pyramid 1 of the set branch as its child.
Note, however, that this allows for an existence of direct con-

https://github.com/MarcinKonowalczyk/psll-lang
https://github.com/MarcinKonowalczyk/psll-lang
mailto:marcin.konow@lczyk.xyz
https://tio.run/%23%23dZDRCoMwDEXf@xWFPY4SRBnsX0JhuILC3IY6cF/fpUlbV91SzDEl9zbk@R4vQ381U9u5wXmvOSwd4XfYPaySfwMaiZJTxKqAEQUJHq8ZNUxuXiVyt4VGJXITwkpOI3G1AQtJk8xh4XzEv1NFpdLZPfhwFV6CthtxhwVVdD5EZ6qgwt9DBUeVXbk/kL7dQLwhuGGxfGjq0ADNmXGq4lr6uysa19cyVLr2vv4A

nection between neighbouring branches of the LST – in List-
ing 1, for example, the first print statement (out keyword),
shares the node x with its neighbouring branch. This is an
interesting parallel to the phenomenon of the lateral gene
transfer observed in genetics, and suggests a more-proper
description of the PS to be that of a Ewok village syntax tree
(EVST).11,12 Although this is undoubtedly one of the more
interesting and powerful features of PS, it has not yet been
implemented in the project described herein shortly, and
therefore will not be considered further, but left for future
work.
The specification of the pyramid structure does not pre-
clude the existence of a pyramid with no content. Such a
0-height pyramid is falsey and evaluates to 0.1314 A pyramid
with no content does however both evaluate its children,
and pass them as an its output. This make the 0-height
pyramid an important construct for code packing, as can
be seen in the first branch in Listing 1
There are two types operators in PS: ones which implicitly
evaluate both of their children, as well as those which do
this only under certain circumstances. The first group maps
very closely to its underlying Ruby implementation. There
are basic binary arithmetic and comparison operators: +,
*, -, /, ˆ, =, ! and <=>. Keyword out prints all of its inputs
and chr converts number to a character. The keyword arg
indexes arrays (or input arguments), and keywords # and "
convert back and forth from and to a string. # character also
allows one prompt user for input if given a (semi)keyword
line.151

The second group of operators conditionally evaluates only
one of their children. set sets the variable denoted by its left
child to the evaluated right one. loop and do evaluate the
right child subtree as long as the left one is truthy (with the
difference being when is the check made – before and after
right subtree evaluation respectively). Finally, keyword ?
evaluates the right subtree only if the left one truthy, else it
evaluates to zero.

III. PSLL

In order to assist the programmer in harnessing the power
of Pyramid Scheme, we introduce a meta-language - Pyra-
mid Scheme lisp-like notation (psll).
a. Bracket structure Lets consider the LST approxima-
tion of the full EVST structure of Pyramid Scheme. Every
node of the LST consists of at most three pyramids - a par-
ent and two children, maybe. A node will, therefore, be
represented by a bracket containing exactly three, space-
separated words, brackets or null-markers (_). Only the first
entry is allowed to be a word. A simple statement in such no-
tation may be (set.(x._._).(+.(x._._).(1._._)) – the sec-
ond branch from Listing 1, increment variable x by one. Al-
though this is sufficient to re-serialize any PS program, one
quickly notes the cumbersomeness of having to specify the
empty space explicitly. Therefore we add a simple macro-

like expansion where, firstly, each lone word in the 2nd or
3rd position is considered to be in a bracket of its own, and
secondly each bracket with length of less than 3 is expanded
up to the length of 3. Hence the increment branch can be
written as (set.x.(+.x.1)), since x→(x)→(x._._). This also
means that keywords with less than two arguments do not
need to specify explicit null-markers for the second argu-
ment. Lastly // denotes a comment. Hence, the program
from Listing 1 can be written as:

1 ..(set.x.(#.line)).//.Get.x.from.stdin
2 ..(out._.x).//.Print.x
3 ..(set.x.(+.x.1)).//.Increment.x
4 ..//.Print."+1=".and.then.the.value.of.x.again
5 ..(out.(chr.43)).(out.(chr.49)).(out.(chr.61)).(out.x)

Listing 2. LST approximation of the program from Listing 1 in
simple psll notation.

Note that the LST approximation has been applied, such
that x from out and set are now different. To get the code
in Listing 1 the PS source has been modified by hand post
compilation.
This type of local macro (compile-time code alteration) ex-
pansion is at the core of psll. Such macros do not add
any expressive power to the language,16 but allow one to
use higher-level constructs and simplify writing programs.
All of the functionality, which will be described shortly, has
been implemented by repeatedly leveraging a single python
function which performs a depth-first walk through the AST
and applies functions at the appropriate nodes (Listing 3).

1 def.tree_traversal(ast,.pre_fun=None,.str_fun=None,
2post_fun=None,.final_fun=None):
3ast2.=.[].#.Since,.ast.is.immutable,.build.a.new.ast
4for.node.in.ast:
5if.node.is.None:
6ast2.append(node)
7elif.is_string(node):
8ast2.append(str_fun(node).if.str_fun.else.node)
9elif.is_tuple(node):

10node.=.pre_fun(node).if.pre_fun.else.node
11node.=.tree_traversal(node,.pre_fun,.str_fun,
12post_fun,.final_fun)
13node.=.post_fun(node).if.post_fun.else.node
14ast2.append(node)
15else:
16raise.TypeError
17ast2.=.tuple(ast2)
18final_fun(ast2).if.final_fun.else.None
19return.ast2.#.Return.ast.back.as.a.tuple

Listing 3. Core psll function performing a depth-first walk
through the abstract syntax tree and application of appropriate
functions.

b. Implicit bracket expansion Each bracket must have
exactly three elements. For small expressions this is almost
always the case, but becomes problematic for larger, flow-
control and loop structures where each such expression
can contain an arbitrarily large number of sub-expressions

which would then have to be manually nested in empty sub-
trees. An overfull bracket is one containing more than two
other brackets, such as:
..(.(out.1).(out.2).(out.3).(out.4).(out.5).)

gets expanded as:
..(.(((out.1).(out.2))..((out.3).(out.4)))..(out.5).)

sigbovik-submission Each neighbouring pair of elements of
the parent gets put together into a bracket, until the length
of the parent is less than 2. Then, each bracket with exactly
2 other brackets has the empty-marker inserted as the first
element. Note that the empty marker is a compiler-only
keyword (python empty string) and it cannot be typed di-
rectly.17 This results in a (literal) balanced binary tree in
the final PS code, and so for a parent bracket of N sub-
expressions will result in a tree of containing O

�

log2 (N)
�

pyramids.
c. Expansion of binary operators A similar type of ex-
pansion can be applied to a bracket where the first member
is not a child bracket but a keyword. This is done only for all
binary operator keywords (+, * as well as -, /, ˆ, = and <=>)
in a left-associative (LA) fashion, such that:
..(+.1.2.3.4).//.This
..(out.(+.(+.(+.1.2).3).4).newline).//.Becomes.this

Addition and multiplication are commutative over the set
of most possible inputs, and hence the exact order of opera-
tions does not usually matter (string multiplication over-
loads concatenation and that’s not commutative). For a
non-commutative operation, e.g. subtraction, the expan-
sion order does matter. Hence, if the keyword is placed at
the end of the bracket, a right-associative (RA) expansion is
performed:
..(-.1.2.3.4).//.This
..(-.(-.(-.1.2).3).4).//.Does.indeed.expand.into.this
..(1.2.3.4.-).//.But.this
..(-.1.(-.2.(-.4.3))).//.Expands.to.this.instead

Note that the order of the last two elements is purposefully
reversed, such that the RA expansion is symmetrical with
respect to the LA one. For the sake of compatibility with
non-expanded brackets, the following two are also allowed
for all binary operators.
..(-.1.2).//.eval.to.-1
..(1.2.-).//.eval.to.+1.since.arguments.reversed

Finally, the out keyword normally does not allow for output
of more than 2 variables. In psll the out keyword can have
any number of inputs, and it gets implicitly expanded to a
chain of output statements:
..(out.a.b.c.d.e).//.This
..(out.a.b).(out.c.d).(out.e).//.Becomes.this

Note that this is different to the left-associative expansion
of the binary keywords above. There is no right-associative
expansion of the out keyword.
d. String literals Single characters can be created in
the Pyramid Scheme memory with the chr keyword (Ruby
.to_i.chr). It is also possible to construct longer strings

since Ruby’s “+” sign overloads string concatenation. The
string hello is therefore:
..(+.(chr.72).(chr.101).(chr.108).(chr.108).(chr.111))

Where the numbers are the decimal ascii codes for the re-
spective letters, and a LA + operator expansion has been
assumed. psll introduces string literals, such that "hello"
expands into the above code.18 The simplest "Hello, Sailor!"
program in psll is (out."Hello,.Sailor!").
e. Array literals Arrays are created in Pyramid Scheme
when an empty node has two subtrees. The subtrees get
evaluated and concatenated into a length-2 array.19 Re-
peated evaluation through nested trees doesn’t produce
longer but nested arrays. Ruby’s + operator overloads array
concatenation and allows one to create longer arrays.
..(set.a.(1.2)).//.Length-2.array
..//.This.results.in.nested.arrays
..(set.a.(3.(1.2)))
..(set.a.((1.2).3))
..//.Add.arrays.to.make.longer.ones
..(set.a.(+.(1.2).(3.4)))

This approach is, however, not fully general, as it does not
allow for creation of odd-length arrays, nor an empty array.
These can be made since Ruby’s-overloads array difference
(filtering):
..(set.a.(-.(0.1).(1.1))).//.Length-1.arrays
..(set.a.(-.(1.1).(1.1))).//.Empty.array

An array of any length can be made this way. psll array
literals are denoted with square braces. Due to the order of
literal expansion, they can contain string literals, as well as
numbers and floats and variable references.
..(set.a.7)
..(set.b.[1."hello"."sailor".3.1415.2.b.3."[".")"])

Note that no escape characters are needed for the brace
characters in strings. The context manager is a particularly
tricky part of the parser. To reduce it’s complexity, brack-
ets are not allowed inside of arrays. If they were, one could
create nested environments (array in bracket in array in
bracket etc.) which would have to be recursively parsed.
The current version of the context parser (context_split)
is non-recursive and linear in the size of the input.
Only one additional array keyword is currently imple-
mented:
..(set.a.(range.1.5)).//.This
..//.Expands.to.this
..(set.a
......(+.(1.2).//.Array.[1,2]
..........(+.(3.4).//.Array.[3,4]
..............(-.(5.1).(1.1)).//.Array.[5]
..........)
......)
..)

Note that psll is insensitive to indentation, and it has been
used here purely to aid readability.
Keyword range can also create ranges with different step
size, but cannot create ranges for variables, since the ex-
pansion is happening at compile time:

..(range.0.10.3).//.[0,3,6,9]

..(set.a.10).(range.0.a.3).//.Fails

f. Definitions Compile-time definitions and their ex-
pansion are, so far, the only semi-local macro. Any
(def.name....) construct gets replaced by a stub tree – ()
and corresponding definition is stored on a stack. Any
string gets matched against names in the stack, top down,
and is replaced by the first match (or not at all). Upon leav-
ing the bracket (the scope of the def), the stack is popped
a number of times equal to the number of stub trees in
the scope which is being left.20 This is, in fact, the use of
final_fun in Listing 3. All the defs are stored on the stack
fully expanded, such that they can be used in other defs
downscope. Since defs are parsed and their replacements
are made on a single tree traversal, the order of the defini-
tions matter and they cannot be used before they get de-
fined, even within a scope.
..(set.a.0).(set.b.0)
..(def.incr.(set.a.(+.a.1))).//.Increment.a
..(incr).//.a.=.1,.b.=.0
..(.//.Open.new.scope
....//.Redefine.incr.to.increment.b
....(def.incr.(set.b.(+.b.1)))
....(incr).//.a.=.1,.b.=.1
..)
..//.Back.to.the.definition.from.before.the.scope
..(incr).a.=.2,.b.=.1

g. Optimisation Since one of the goals of psll is to al-
low one to write compact Pyramid Scheme programs (for
the purposes of Code Golfing, Section I), it implements a
few optimisation algorithms. The AST of the psll program
is first passed through a processing stack of tree traversals
implementing macros for all of the above features. This
pre-processed AST is then passed to the optimisation stage.
Greedy optimisation, for example, considers all the possi-
ble pairs of branches, as well as single branches of the root
level LST and attempts to insert an additional empty tree
around each such pair/singleton.21 It immediately accepts
the first candidate with a smaller number of characters in
the compiled LST and repeats the entre process. It halts if
the attempt of inserting the empty pyramid at any of the
candidates does not produce a smaller LST.
Currently this is one of the only two, rather similar optimisa-
tion algorithms, the other differing slightly in the number of
candidates it considers, as well as taking the min of each iter-
ation, as opposed to greedily accepting the first better can-
didate. Both of these methods can result in large reduction
in the codebase of elaborate Pyramid Schemes;22 however
they can only add pyramids and never remove or combine
them. Empty pyramids cannot be removed arbitrarily since
this could disrupt the evaluation order and break implicit
parent-child relationships between parts of the LST. To per-
form this type of optimisation, the algorithm will have to
understand, at least partially, the context within which it
is operating – something which existing algorithms do not
take into account. Another interesting direction for the op-
timisation would be to optimise different features of the

LST, for example its width, height, or some arbitrary pack-
ing density heuristic.
Note that, regardless of the algorithm and the target of the
optimisation, it is crucial that the final step of the compila-
tion – conversion from psll AST to the Pyramid Scheme
LST (i.e. the Pyramid Scheme source code) needs to be
performant, as it will likely be happening thousands of
times for any optimisation algorithm. Luckily this pro-
cess has been made rather robust, and is filled with read-
ily cacheable intermediate results (subtrees don’t change
much).23

h. Sharp edges Despite authors best efforts, the intro-
duction of syntactic sugar into psll introduces some edge
cases which one ought to watch out for. Some, which are
considered bugs, have been mentioned already but there
are some which are indispensable, since they interact with
other features of the language. The underscore keyword (_)
is one such example – it is rarely, if ever, used yet it carries
with it syntactic meaning. This could lead to confusion.
The other sharp edge is due to the fact that psll re-used ", [
and] symbols for its own purposes of string and array liter-
als respectively. These are also Pyramid Scheme keywords
and therefore, when typed in psll they have to be escaped
with a backslash.

IV. SAMPLE PROGRAMS

Having introduced the psll language, let us see what can
be done with it.
a. Linear congruential generator A simple (crypto-
graphically insecure!) pseudorandom number sequence
can be generated with a linear congruential generator
(LCG). A very simple LCG starts with a seed value, a prime
multiplier, and a modulo base. The value of the generator
changes from one iteration to the next according to the for-
mula:

Vn+1 = mod
�

p Vn , d
�

where Vn is the value of the LCG at iteration n , p is the prime
and d is the modulo base. To get the output to be in the
range 0-1, one only has to divide Vn by d .
Since PS does not implement the modulo function, we have
to write it ourselves. In this case we use a very simple im-
plementation which repeatedly subtracts d from p Vn until
the result is smaller than d . A small prime factor has been
chosen to minimise the runtime.

1 (set.value.312312).//.seed.the.lcg.value
2 (set.div.(^.2.16)).//.16-bit.divisor./.modulo.base
3 (set.prime.7).//.Prime.factor
4

5 //.Uniformly.distributed.random.number.between.0-1
6 //.mod(prime*value.+.current,.2^16)
7 (def.roll.(
8(set.value.(+.(*.value.prime).1))
9(loop.//.mod(value,div).by.repeated.subtraction

10(<=>.(<=>.value.div).-1)
11(set.value.(-.value.div))
12)
13(set.rand.(/.value.div))
14))
15

16 //.Print.100.such.numbers
17 (set.i.0)
18 (do.(<=>.i.100).(
19(roll).(out.rand."\n")
20 (set.i.(+.i.1))
21))

Listing 4. Simple linear congruential pseudo-random number
generator. Try it online!

When compiled and run, it steps the LCG 100 times and
prints the resulting uniformly distributed random numbers.
Here are the first 7:
..0.3585357666015625
..0.5097656250000000
..0.5683746337890625
..0.9786376953125000
..0.8504791259765625
..0.9533691406250000
..0.6735992431640625

b. Bubble sort As the final flourish, here is an imple-
mentation of bubble sort in psll. Bubble sort goes through
a list, compares each pair of elements and, if appropriate,
swaps them to appear in ascending order. At the end of the
scan, the algorithm runs again if any swaps ocurred or halts
if none did. Bubble sort is far from an efficient sort, but
it is straightforward to implement, and therefore has been
chosen here.

1 (set.n.(arg.999)).//.Make.nil.value
2

3 //.Array.to.be.sorted
4 (set.a.[3.1.4.1.5.9.2.6.5.3.5])
5

6 //.Get.array.length
7 //.This.will.be:.(len.a.N)
8 (set.N.0).//.Pointer.into.the.array
9 //.Increment.pointer.until.goes.off.the.end

10 (loop.(!.(=.(arg.a.N).n)).(set.N.(+.N.1)))
11

12 //.Append.element.of.a.in.position.q.to.b
13 (def.append.(set.b.(+.b.(-.((arg.a.q).n).(n.n)))))
14 //.Usage:.(set.q....).(append)
15

16 //.Bubble.sort.the.array
17 (do.again.(
18(set.again.0)
19(set.p.0).//.Position.pointer
20(loop.(!.(!.(<=>.p.(-.N.1)))).(.//.For.all.pairs
21(set.this.(arg.a.p))
22(set.next.(arg.a.(+.p.1)))
23//.This.and.next.need.swapping
24(set.swap.(!.(<=>.(<=>.this.next).-1)))
25(?.swap.(
26(set.again.1).//.Will.need.to.go.again
27(set.b.[]).//.Start.b.as.an.empty.array

28//.Add.prefix.of.a
29(set.l.0)
30(loop.(=.(<=>.l.p).-1).(
31(set.q.l).(append)
32(set.l.(+.l.1))
33))
34//.Add.two.elements,.swapped
35(set.q.(+.p.1)).(append)
36(set.q.(+.p.0)).(append)
37//.Add.suffix.of.a
38(set.l.(+.p.2))
39(loop.(=.(<=>.l.N).-1).(
40(set.q.l).(append)
41(set.l.(+.l.1))
42))
43(set.a.b)
44))
45(set.p.(+.p.1)).//.Increment.position.pointer
46))
47(out.(*.a.",")."\n").//.Print.a
48))
49 (out."done")

Listing 5. Bubbble sort of an array in psll. For demonstration
purposes the array has been hardcoded.

When compiled and run, it produces the following output:
..3,4,1,5,9,2,6,5,3,5,1
..4,3,5,9,2,6,5,3,5,1,1
..4,5,9,3,6,5,3,5,2,1,1
..5,9,4,6,5,3,5,3,2,1,1
..9,5,6,5,4,5,3,3,2,1,1
..9,6,5,5,5,4,3,3,2,1,1
..9,6,5,5,5,4,3,3,2,1,1
..done

The compiled LST can be seen in Listing 6 (in the appendix).

V. CONCLUSIONS AND OUTLOOK

“Program in Pyramid Scheme! Teach your friends! Have
them teach their friends! Then have those friends teach their
friends! ...”

This is by no means a done project, so long as it is a platform
for learning and having fun. The future direction of psll
poses some genuinely interesting computational problems,
such as efficient optimisation algorithms and performing
context-aware transformations on the AST. The language
does not currently allow one to leverage the full power of
EVSTs of Pyramid Scheme, but instead uses the LST approx-
imation. The goal is, indeed, to add this to the the lan-
guage. This will, however, be a major milestone since the
EV structure of the resulting syntax tree will require restruc-
turing of the internals of the compiler. At least initially, EV
branching will be available only at the level of intermediate-
representation optimisers. However, since one of the pur-
poses of psll is an esoteric flavour of code-golf, one might
want to manually adjust the code structure, similarly to how
the underscore keyword is used at the moment. Additional
keywords, as well as their supporting architecture, will need

https://tio.run/%23%23jVbbbsIwDH3PV/h5qDJl0vay7UuiSIhWAgkGgoG0r@@aOBc7l7JI0Do9SU5Pjp1efq/b02Hobrv9eBqnCagZ@hkWxmYUXRE0QGegY2Foc6D8DXgYhbfxRycQeBjC3J9wprPNJJTHUb97Yn94sFPhWicYAQOVyLCzHOkfI8cZ6dkBvvYbxjKtO5w9FB/b433Uc@8MBS3eNtDy5JS/AX8NixQiJZXkooH9x@eXhlKsDExwIRnXrEBbvFcuygQlHtm9dtJhv17rXMGWCECC23FGiMNfXkrRuo9DhHlEJCS2/UqwMpWIK20EN1oejebRu84E9xKugs@Hw0O7iQxzvXx9w3r8YmSQDfkJL9fDaQyUcjXsgthzye3Q/s3tDinNpcPzneTxTpTWiQNy/Uy@TWVLyuFVV11cNyluv4f5f7e/LuBRmC4kUZuPsOlCYi35FJy3m0MaRnXjVZPUYuZWsj0WQbUoIn@Fmioo1KANaughpaPdsb01MIpIi8wuaGAWi0RqlLwcTxK6rFJP4A5I5bncE6xuUEgZ9RS5VOS6/xQ2aNR76ZHCPUqaom0eJZmZtneULCcr3baO4gxNMa19cjyfLxGbTkdXo9rppkLi@GMxq0LNw3EGv0D2uJ1jpRgI82HayjTxuVCZIM83FB4tZ2CR1zzIEwt8ONux693HRJiwC0Oybwh2dpF4fsbFci3ZJN2XijbLu3pvtTyx7Kv31kaxY6vsnabpDw

to be introduced to be able to explicitly specify EV cross-
branching structure.
There are a few major parts of psll which need to be fin-
ished before that. Notably there are a few core bugs which
any additional functionality would make only harder to
track. These are detailed in README in the main psll repos-
itory and range from relatively harmless (def inserts an ex-
tra empty pyramid) to major (() unduly pops the definition
stack). There are also some minor support keywords which
are yet to be added. These are, for example, len – a con-
cise form of line 10 in Listing 5 and nil – a concise form of
(set.nil.(arg.999)) in the preamble.24 This is not to men-
tion typical and necessary software project irks like ensur-
ing the project has appropriate test coverage (currently at
69%) and fighting code bloat (currently at approx 530 core
lines + bash support).
Interestingly, psll caters to a new flavour of code-golfing.
Large PS programs are not feasible to be written by hand,
not to even mention the number of rewrites and code ob-
fuscation which usually happens when golfing. Hence, all
the golfing happens at the level of writing compiler and op-
timisation algorithms therein, rather than the code itself.22

Finally, very programmer shares a certain latent interest in
the underlying structure of the languages they use every day.
We would encourage them to scratch that itch. There are
plenty of resources to start, but we are inclined to mirror
the advice of Casey Muratori:25 “Look at all of the resources
on these topics in in the following way: rather than read-
ing what someone tells you about how to build a compiler
(...) start programming one without knowing what you’re do-
ing (...) and see what you can learn. When you cannot make
forward progress (...) [look for] solution to that particular
problem you’re having. (...) Now you have some context to
evaluate what people tell you (...) whereas if you read about
stuff without ever actually having encountered a problem yet,
then you’re just gonna have no idea [whether its valuable].”
If one really wants a starting point though, David Beazley’s
ply and sly projects,26–28 are a good place to do so. Tey are a
python implementation of common parsing tools lex (Lex-
ical Analyzer Generator) and yacc (Yet Another Compiler-
Compiler).29 Also, Jonathan Blow is streaming, and upload-
ing recordings of their work on a programming language
called jai which is currently under development.30

VERSION NOTES

At the time of writing, the commit SHA of the main Pyramid
Scheme GitHub repo is:1

fd183d296f08e0cba8bf55da907697eaf412f6a7

and the psll repo:31

96bcbdd006b150c9f9482d43fb752440a8e88112

The psll repository also has all the latex and make files for
this very paper. Short of fixing typos, the text will not be
modified after the submission.

psll has been written in python >3.6. The only non-core
library it depends on is more-itertools version, at least,
8.5.0. This dependency was thought to be appropriate since
this work led to a pull request to more-itertools, added in
version 8.5.0.32

Pyramid Scheme is written in pure Ruby. At the time of wit-
ting it works in Ruby version 3.0.0p0 (2020-12-25 revision
95aff21468)

ACKNOWLEDGEMENTS

I would like to thank Dr Hugh Lindley and Blaine Rogers for
proof-reading and helpful comments on the manuscript,
Samuel Hutton for helpful discussions, as well as Jonathan
Blow and David Beazley, for sparking a long-lasting interest
in programming languages.
Last but not least, I would also like to cordially thank you
dear reader. You have made it! Thank you for reading!

REFERENCES

1Conor O’Brien. Pyramid Scheme. GitHub repository, https://github
.com/ConorOBrien-Foxx/Pyramid-Scheme, 2017.

2Pyramid scheme. Esolang wiki, https://esolangs.org/wiki/Pyrami
d_Scheme.

3Blaine Rodgers. High-Octane Rumble Simulation Engine. GitHub repo,
https://github.com/PaperclipBadger/high-octane-rumble-simu
lation-engine, 2017.

4Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2007.

5Bryan Cantrill. Zebras All the Way Down. Uptime 2017, https://youtu.
be/fE2KDzZaxvE.

6Casey Muratori. The Thirty Million Line Problem. https://youtu.be
/kZRE7HIO3vk, 2018.

7Try It Online! https://tio.run.
8Code Golf Stackexchange. https://codegolf.stackexchange.com.
9Hence, for example, the bottom pyramid in the first stack in Listing 1

contains the (semi)keyword line, as opposed to two words: l and ine.
10Note that the base of the pyramid is a dash (0x2d), not an underscore.
11Patrick J. Keeling and Jeffrey D. Palmer. Horizontal gene transfer in

eukaryotic evolution. Nature Reviews Genetics, 2008.
12Zachary Weinersmith. Ewok Village of Life. SMBC, https://www.smbc
-comics.com/comic/2012-04-08.

13The term “0-height” can be ambiguous since the pyramid itself has
height of 2 characters. In this work the pyramid’s height, however, is
the number of lines of the text in its body.

14Conor O’Brien. Pyramid Scheme Negation. Code Golf question,
https://codegolf.stackexchange.com/questions/147513/pyramid-
scheme-negation.

15Words line, (as well as stdin, readline) are referenced to as
semikeywords since they have a keyword meaning only when they’re
an input of the # command.

16Shriram Krishnamurthi. On the Expressive Power of Programming Lan-
guages. PWLConf, https://youtu.be/43XaZEn2aLc, 2019.

17For completeness’ sake this will likely be implemented by reusing the
underscore keyword, such that, for example, ((out 1) (out 2)) could
be then explicitly expanded in psll as (_ (_ out 1) (_ out 2)).

18Note that this is a very left-child heavy tree. To balance it, the above
string could also be made by recursively concatenating its binary split.
This will be implemented in the future.

19The key is the unwrap function – body of each empty pyramid and in the
PS compiler. It returns the array element if passed only one input, but
the entire array if two (t.size == 1 ? t[0] : t).

https://github.com/ConorOBrien-Foxx/Pyramid-Scheme/commit/fd183d296f08e0cba8bf55da907697eaf412f6a7
https://github.com/MarcinKonowalczyk/psll-lang/commit/96bcbdd006b150c9f9482d43fb752440a8e88112
https://github.com/ConorOBrien-Foxx/Pyramid-Scheme
https://github.com/ConorOBrien-Foxx/Pyramid-Scheme
https://esolangs.org/wiki/Pyramid_Scheme
https://esolangs.org/wiki/Pyramid_Scheme
https://github.com/PaperclipBadger/high-octane-rumble-simulation-engine
https://github.com/PaperclipBadger/high-octane-rumble-simulation-engine
https://youtu.be/fE2KDzZaxvE
https://youtu.be/fE2KDzZaxvE
https://youtu.be/kZRE7HIO3vk
https://youtu.be/kZRE7HIO3vk
https://tio.run
https://codegolf.stackexchange.com
https://www.smbc-comics.com/comic/2012-04-08
https://www.smbc-comics.com/comic/2012-04-08
https://codegolf.stackexchange.com/questions/147513/pyramid-scheme-negation
https://codegolf.stackexchange.com/questions/147513/pyramid-scheme-negation
https://youtu.be/43XaZEn2aLc

20This way of keeping track of definitions does, currently, lead to a bug
where a stub tree in psll source code causes a compilation fail since it
unduly pops the definition stack. This issued will be addressed, possibly
with a different way of keeping track of defs in the scope. This is not,
however, a trivial change as it requires the tree traversal function to retain
state about each scope through each recursive call.

21This can be done at any parent-child connection in the ast since the re-
sulting empty pyramid will evaluate its child and pass it to the parent in
the same manner as is they had a direct connection. Scoping for defini-
tions does not matter since the optimisation is performed after on the
fully-expanded AST – after all the macros have been applied.

22Marcin Konowalczyk. “Pyramid Scheme Negation” in Pyramid Scheme.
Code Golf answer, https://codegolf.stackexchange.com/a/208938/
68200.

23This is, in fact, the reason why the AST is represented as an immutable
data structure. Mutable data structures cannot be cached.

24(set nil (arg 999)) is just a way of generating nil value in memory
and assigning it to a variable called nil. Ideally a more robust solution

will be found.
25Jonathan Blow and Casey Muratori. Q&A: Making Programming Lan-

guage Parsers. https://youtu.be/lcF-HzlFYKE, Starting at minute
8.00, 2020.

26David Beazley. Reinventing the Parser Generator. Pycon 2018, https:
//youtu.be/zJ9z6Ge-vXs.

27David Beazley. SLY (Sly Lex-Yacc). GitHub repository, https://github
.com/dabeaz/sly.

28David Beazley. PLY (Python Lex-Yacc). GitHub repository, https://gi
thub.com/dabeaz/ply.

29John Levine, Doug Brown, and Tony Mason. lex & yacc. O’Reilly Media,
Inc., 2nd edition, 1992.

30Jonathan Blow and Casey Muratori. Making Programming Language
Parsers. https://youtu.be/MnctEW1oL-E, 2020.

31Marcin Konowalczyk. psll-lang. GitHub repository, https://github.c
om/MarcinKonowalczyk/psll-lang, 2020.

32Erik Rose and Bo Bayles. more-itertools. GitHub repo: https://gith
ub.com/more-itertools/more-itertools.

33The Lex & Yacc Page. http://dinosaur.compilertools.net.

APPENDIX

1^............^.......^.^...............^...............................^
2/.\..........^-....../l\-..............^-............................../.\
3 .../set\........^-....../oop\............./.\............................./out\
4 ..^-----^......^-......^-----^.........../...\...........................^-----
5 ./n\.../.\....^-....../!\.../.\........./.do..\........................./.\
6 .---../arg\..^-......^---../set\.......^-------^......................./...\
7^-----.^-....../=\...^-----^...../.\...../.\...................../..+..\
8/.\....^-......^---^./N\.../+\.../...\.../...\...................^-------^
9 .../999\..^-....../.\./n\---..^---^./again\./.....\................./.\...../.\

10 ...-----./.\...../arg\---..../N\./1\-------/.......\.............../.+.\.../chr\
11/...\...^-----^......---.---....../.........\.............^-----^..-----^
12/.....\./a\.../N\................./...........\.........../.\.../.\...../.\
13/.......\---...---................/.............\........./...\./chr\.../101\
14^---------^......................./...............\......./..+..\-----^..-----
15/.\......./.\...................../.................\.....^-------^.../.\
16 .../set\...../set\...................^-------------------^.../.\...../.\./110\
17 ..^-----^...^-----^................./.\................./.\./chr\.../chr\-----
18 ./a\.../.\./N\.../0\.............../...\.............../...\-----^..-----^
19 .---../...\---...---............../.....\............./.....\.../.\...../.\
20/.....\...................../.......\.........../.......\./100\.../111\
21/...+...\...................^---------^........./.........\-----...-----
22 ...^---------^................./.\......./.\......./...........\
23 ../.\......./.\.............../set\...../set\...../.............\
24 .^---^...../...\.............^-----^...^-----^...^---------------^
25 /3\./1\.../..+..\.........../.\.../0\./p\.../0\./.\............./.\
26 ---.---..^-------^........./...\..---.---...---/...\.........../out\
27/.\...../.\......./again\............./.....\.........^-----^
28^---^.../...\......-------............/.......\......./*\.../.\
29/4\./1\./.....\......................./.........\.....^---^./chr\
30---.---/...+...\...................../...loop....\.../a\./.\-----^
31^---------^...................^-------------^..---/chr\.../.\
32/.\......./.\................./!\.........../.\....-----^./10.\
33^---^...../...\...............^---........../...\......./.\-----
34/5\./9\.../..+..\............./!\.........../.....\...../44.\
35---.---..^-------^...........^---........../.......\....-----
36/.\...../.\........./.\...........^---------^
37^---^.../...\......./<=>\........./.\......./.\
38/2\./6\./.....\.....^-----^......./...\...../set\
39---.---/...+...\.../p\.../-\...../.....\...^-----^
40^---------^..---..^---^.../.......\./p\.../+\
41/.\......./.\...../N\./1\./.........\---..^---^
42^---^...../...\....---.---/...........\.../p\./1\
43/5\./3\.../..-..\........./.............\..---.---
44---.---..^-------^......./...............\
45/.\...../.\...../.................\
46^---^...^---^.../...................\

https://codegolf.stackexchange.com/a/208938/68200
https://codegolf.stackexchange.com/a/208938/68200
https://youtu.be/lcF-HzlFYKE
https://youtu.be/zJ9z6Ge-vXs
https://youtu.be/zJ9z6Ge-vXs
https://github.com/dabeaz/sly
https://github.com/dabeaz/sly
https://github.com/dabeaz/ply
https://github.com/dabeaz/ply
https://youtu.be/MnctEW1oL-E
https://github.com/MarcinKonowalczyk/psll-lang
https://github.com/MarcinKonowalczyk/psll-lang
https://github.com/more-itertools/more-itertools
https://github.com/more-itertools/more-itertools
http://dinosaur.compilertools.net

47/5\./0\./0\./0\./.....................\
48---.---.---.---/.......................\
49/.........................\
50/...........................\
51/.............................\
52/...............................\
53^---------------------------------^
54/.\.............................../.\
55/...\............................./...\
56/.....\.........................../.....\
57/.......\........................./.......\
58/.........\......................./.........\
59/...........\...................../...........\
60/.............\...................^-------------^
61^---------------^................./.\.........../.\
62/.\............./.\.............../set\........./.?.\
63/...\.........../...\.............^-----^.......^-----^
64/.set.\........./.set.\.........../s\.../!\...../s\.../.\
65^-------^.......^-------^........./wap\.^---..../wap\./...\
66/t\...../.\...../n\...../.\........-----/.\......-----/.....\
67/his\.../arg\.../ext\.../arg\.........../...\........./.......\
68-----..^-----^..-----..^-----^........./.<=>.\......./.........\
69/a\.../p\......./a\.../+\.......^-------^...../...........\
70---...---.......---..^---^...../.\...../.\.../.............\
71 ../p\./1\.../<=>\.../-1.\./...............\
72 ..---.---..^-----^..-----/.................\
73 ../t\.../n\...../...................\
74 .../his\./ext\.../.....................\
75 ...-----.-----../.......................\
76 .../.........................\
77 ../...........................\
78 .../.............................\
79 ../...............................\
80 .../.................................\
81 ../...................................\
82 .../.....................................\
83 ../.......................................\
84 .../...\
85 ..^---^
86 .../.\.../.\
87 ../...\......................................./...\
88 .../.....\...................................../.....\
89 ../.......\.................................../.......\
90 .../.........\.................................^---------^
91 ../...........\.............................../.\......./.\
92 .../.............\............................./...\...../set\
93 ../...............\.........................../.....\...^-----^
94 .../.................\........................./.......\./a\.../b\
95 ../...................\......................./.........\---...---
96 .../.....................\...................../...........\
97 ../.......................\.................../.............\
98 .../.........................\.................^---------------^
99 ../...........................\.............../.\............./.\

100 .../.............................\............./set\.........../...\
101 ../...............................\...........^-----^........./.....\
102/.................................\........./l\.../+\......./.......\
103/...................................\........---..^---^...../.........\
104/.....................................\.........../p\./2\.../...loop....\
105/.......................................\..........---.---..^-------------^
106/...\................./.\.........../.\
107/...\.............../...\........./...\
108^---^............./..=..\......./.....\
109/.\.../.\...........^-------^...../.......\
110/...\.../...\........./.\...../.\.../.........\
111/.....\......................................./.....\......./<=>\.../-1.\.^-----------^
112/.......\...................................../.......\.....^-----^..-----/.\........./.\
113/.........\.................................../.........\.../l\.../N\...../...\......./set\
114/...........\................................./...........\..---...---..../.....\.....^-----^
115/.............\.............................../.............\............./.......\.../l\.../+\
116/...............\............................./...............\...........^---------^..---..^---^

117/.................\.........................../.................\........./.\.......^-....../l\./1\
118/...................\.........................^-------------------^......./set\...../.\......---.---
119/.....................\......................./.\................./.\.....^-----^.../set\
120^-----------------------^...................../...\.............../...\.../q\.../l\.^-----^
121/.\...................../.\.................../.....\............./.....\..---...---/b\.../+\
122/...\.................../...\................./.......\.........../.......\..........---..^---^
123/.....\................./.....\.............../.........\........./.........\............./b\./.\
124/.......\.............../.......\.............^-----------^.......^-----------^............---/...\
125^---------^.............^---------^.........../.\.........^-....../.\.........^-............../..-..\
126/.\......./.\.........../.\......./.\........./set\......./.\...../set\......./.\.............^-------^
127/set\...../set\........./set\...../...\.......^-----^...../set\...^-----^...../set\.........../.\...../.\
128^-----^...^-----^.......^-----^.../.....\...../q\.../+\...^-----^./q\.../+\...^-----^.........^---^...^---^
129/.\.../1\./b\.../.\...../l\.../0\./.......\....---..^---^./b\.../+\---..^---^./b\.../+\......./.\./n\./n\./n\
130/...\..---.---../...\....---...---/.........\......./p\./1\---..^---^.../p\./0\---..^---^...../arg\---.---.---
131/again\........./..-..\.........../...loop....\......---.---..../b\./.\..---.---..../b\./.\...^-----^
132-------........^-------^.........^-------------^................---/...\............---/...\./a\.../q\
133/.\...../.\......./.\.........../.\................./..-..\............./..-..\---...---
134^---^...^---^...../...\........./...\...............^-------^...........^-------^
135/0\./0\./0\./0\.../..=..\......./.....\............./.\...../.\........./.\...../.\
136---.---.---.---..^-------^...../.......\...........^---^...^---^.......^---^...^---^
137/.\...../.\.../.........\........./.\./n\./n\./n\...../.\./n\./n\./n\
138/<=>\.../-1.\.^-----------^......./arg\---.---.---..../arg\---.---.---
139^-----^..-----/.\........./.\.....^-----^.............^-----^
140/l\.../p\...../...\......./set\.../a\.../q\.........../a\.../q\
141---...---..../.....\.....^-----^..---...---...........---...---
142 .../.......\.../l\.../+\
143 ..^---------^..---..^---^
144 .../.\.......^-....../l\./1\
145 ../set\...../.\......---.---
146 ...^-----^.../set\
147 ../q\.../l\.^-----^
148 ..---...---/b\.../+\
149 ...---..^---^
150 .../b\./.\
151 ...---/...\
152 .../..-..\
153 ..^-------^
154 .../.\...../.\
155 ..^---^...^---^
156 .../.\./n\./n\./n\
157 ../arg\---.---.---
158 ...^-----^
159 ../a\.../q\
160 ..---...---

Listing 6. Bubble sort in Pyramid Scheme. Compiled with –full-names and -co (considerate optimisation) flags. The single letter l has
been used instead of more verbose nil to reduce the width of the LST. Try it online!

https://tio.run/%23%23tVpdbhw3DH7XKZTXLhbaSdwCBuL2Bj4BIWCcGLEBJ944Ltqe3p0fjUakSEqaWS@QrEeroSjqI/VR4vm/l/7749fjry8P99/v397s@PE2@fj4jZppN@bjzfi/s5A0Hedv9wRH0vmoCxvEjOLcr/tXyKQ9P5@B9talPf89iDGjiPHjsTzUGORZVeL8hrHuB6yjR/U@AFHJ2a/PmsBpsoPA4a/@5RtgzbAR5pGxtpZqbpKuq1o3QOa6qChZb5B1WKSROfpJiLudZnqAxGSS6aLi07JeX18n0xyFD6acJhsk99/6x8G4bvodOIulMJlnGhtHI07C7KSi6yAM7sLrkIk7zMp/eXgJ1kumgvAxyg2yrXVRAjCT9UExb2zafVCoh6Aat3ycSGchn3XSP0w3KsZLtAiTkybjhMen7tQh2JQwxgkNeEFzJzFBgRorNIV7FhJQcGCgln48wbvruhOggOCFOTsBftF04/cSD/plmYJrnIDzT66NImb2fGVpOddY2zKoSJ6EUMS2Ddg4zRjpuiUYTCttdeN7ZnXnadoEHBrcONwgDzE6tjioEH8wIeDwa8Ohg6LLG/dpijGrB@SOOxjQneNf2aqBiWHFs9aDNPCEQAZ0gzNMdFxaQjzVAORxsPLRa2KnoJoGHfcb4AB1NdtGg18eR8MmkETjMHsNebOYp4EcRCfoJ2PjeVUEOU9Dxzjy4u4WTAGiya8fciwEDx/dConScLgwAS6KLBNcRbnfh2lf83jMdVqt7q6uUo0USHL6RDlEGxmU1GbJohhuSTyd@eebP4FfCfq@@ziY5A8MQxzwV8FTrKACGPwFhz4CMaQXppADLyE8KOCeA60yAlmkFr1NfWylA15Sg4FaMr/UFUdVXMcpMoHsUwDZkTILJCXIZoSIEMsohlFTBfJt69/2SVT37Mva65MRTsk/tpf8/jJ/xvq1s9dZVKMEp/xWJ8Kpv1bJcIXfa4RwFJBu2xWKQLmHqZkOlHuYKqtAuYepsy6Ue5jKZarY1U3tgpfTA1WWlO2Ie7upx1ApNVDBwHA@kazOv/@lxR2GrEvM1Za2pPH1YWwUwfHzqBwk1CE8iQrSaM5w2n/6YWdZSMT8pLiBeyUh/kfGJUJ@D@hJxot7eJwnMR@4WHf/72v6zFtWd41AjnHynyeWzg68hcln1D2uXxlH8nzgj4Vq3YVmloiP0I3VbdqS4gTOMUcKrM0dOwtNG722gxKru027hgy9FXD2UpJnBEbc7dr4WSAG@O0lFe/JN96VirwvS3lnArND/N4BXEWfXSO4ql57hnCV/XaM4ap7bh@kzGKb@OxWltvGd7ey4EY@vJUlt/LlrSy6mU9vZdl15ydtgIZqzGxCRJmlc8Bhz2Wa/RSq0OO3mVG6xtAhFMjcXTOn4oJNGUeR9Zndo@3O16rDKpRhZC4wDDeQ3xFpVRZTThHNRQbKToDJvVlbvC2yGzELbQ65FUxn7fuEM6LWqFvFeqyUKF3wnI235JQ/fVwyhXjJYS43GhovO5htgH4DM9pzorJhPOHqtdURWmgZPTYahrixJPmvOUOEpuAG4mFMtVu0ELbcjvzBQd3ZJDRFB3oZNB8r@HrQtlA52pseOkA1dFt4He0dQt0tZKYvUqQWkpf1RsdFzE2auQzj03u73BAH9dzVNgztintZdnNnLsEF9d4rrpJ6OuFarpkYyuUymCqkR6sKeWxhiXJtDeYOCqp9VdDVYlqsW/u5IEpDs1y/BJXxzGXeNBB/GcVO4b5QFcscv7uL6JVL7qQNNMer4Lp3wMdFp@zOebtn1tlLa7/UyhglWa5od6hORm5LND8yo0rVInx7ytOdBbEt2@nJsFLFHC6KAoazLz24NmazN4w6eWld4tjJ6gb/O6TDcW2p9Hhxb3IjTwURd6gU7mktwEpwlVadLp7ItSXSx9uA8M/kPhm5MyqusPiCH1Je3wGuBDlP1QQ0yViqWvMATKu7aEVGXhllUSFrcEy@jYmHpA4sv97zejBmCtjWtnAa8lO7/YRKb7KKSWJb8TyE1oiwaYMQXnyFf0Y5J1xNImQLBVsoHpmld0L9jRPoDzaC5oPl5CTLDVCPxMNKXqcMJacE0XGwTxX8rJQSCokAexRSx5vp8cZZ4PzWrn6TvlX0JQIKjd7n98Xora1npZVEvnTiXcXJC9ytkl7zUlqZso6j5tPuOv5aWHmVilZJ8buuoiSCWK3AjqsjhbY143H3Zdx2K2yJyYwSzcGWytgSRXln2HKX1RL3JGd4e/sf

