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The Core Cosmology Library (CCL) provides routines to compute basic cosmo-
logical observables with validated numerical accuracy. These routines have been
validated to an accuracy level, documented here, against the results of the Code
Comparison Project. In the current version, predictions are provided for distances
and background quantities, angular auto- and cross-spectra of cosmic shear and
clustering, and the halo mass function. Fiducial specifications for the expected
LSST galaxy distributions and clustering bias are also included, together with the
capability of computing redshift distributions for a user-defined photometric red-
shift model. CCL is written in C, with a Python interface. In this note, we explain the
functionality of the publicly released (CCL v0.2) library.
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1. Introduction

In preparation for constraining cosmology with the Large Synoptic Survey Tele-
scope (LSST), it is necessary to be able to produce rigorous theoretical predic-
tions for the cosmological quantities that will be measured. The Core Cosmology
Library1 (CCL) aims to provide, in one library, a way of making predictions that are
validated to a well-documented numerical accuracy, for the purpose of constraining
cosmology with LSST. By constructing a cosmology library specifically with LSST
in mind, it is possible to ensure that it is flexible, adaptable, and validated for all
cases of interest, as well as user-friendly and appropriate for the needs of all work-
ing groups.

The Core Cosmology Library is written in C and incorporates the CLASS code (Blas
et al. 2011) to provide predictions for the matter power spectrum.2 A Python wrap-
per is also provided for ease of use.

This note describes how to install CCL (Section 2), how CCL is documented (Section
2.7), its functionality (Section 3), the relevant unit tests (Section 4), directions for
finding a CCL example (Section 5), the Python wrapper (Section 6), future plans
(Section 7), means to contact the developers (Section 8), instructions on how to cite
CCL (and CLASS, Section 9), and the license under which CCL is released (Section
10).

2. Installation

2.1. Dependencies

• GNU Scientific Library GSL,3 GSL-2.1 or higher.

• The SWIG4 Python wrapper generator is not needed to run CCL, but must be
installed if you intend to modify CCL in any way.

• FFTW35 is required for computation of correlation functions.

• FFTlog6 is provided within CCL, with minor modifications.

• The C library associated to the CLASS code. The installation of this library is
described below.

1 https://github.com/LSSTDESC/CCL
2 Future versions of the library will incorporate other power-spectrum libraries and methods.
3 https://www.gnu.org/software/gsl/
4 http://www.swig.org/
5 http://www.fftw.org
6 http://casa.colorado.edu/~ajsh/FFTLog/ and https://github.com/slosar/FFTLog

https://github.com/LSSTDESC/CCL
https://www.gnu.org/software/gsl/
http://www.swig.org/
http://www.fftw.org
http://casa.colorado.edu/~ajsh/FFTLog/
https://github.com/slosar/FFTLog
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2.2. Installing CLASS

CCL uses CLASS as one of the possible ways of computing the matter power spec-
trum. In order to communicate with CLASS, CCL must be linked to its library. Before
installing CCL proper you must therefore install this library first. Since this process
is not necessarily straightforward, we provide a python script class install.py

that automatically downloads and install the latest tagged stable version of CLASS.
You should run this script (i.e. $ python class install.py) before carrying out the
next steps. By default, the script assumes that your main C compiler is gcc. If that’s
not the case, pass the name of your C compiler to the script via the command-
line argument --c comp (e.g. $ python class install.py --c comp=icc). Type
python class install.py -h for further details.

This procedure has one final caveat: if you already have a working installation of
CCL, class install.py may fail the first time you run it. This can be fixed by either
simply running class install.py a second time, or by starting from scratch (i.e.
downloading or cloning CCL).

Note that, if you want to use your own version of CLASS, you should follow the steps
described in Section 2.5 below.

2.3. Installation Procedure

CCL can be installed through an autotools-generated configuration file. UNIX
users should be familiar with the process: navigate to the directory containing the
library and type

$ ./configure

$ make

$ make install

(You may need to pre-append sudo to the last command, depending on your default
privileges.) Users without admin privileges can install the library in a user-defined
directory (e.g. /home/desc fan/) by running

$ ./configure --prefix=/home/desc_fan

$ make

$ make install
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This will create two directories (if not present already): /home/desc fan/include

and /home/desc fan/lib where the header and shared library files will be placed
after running make install. CCL has been successfully installed on several differ-
ent Linux and Mac OS X systems.7

After installing the C library, you can make sure that it works correctly by typing
make check, which will run the unit tests described in Section 4. Assuming that the
tests pass, you can then move on to installing the Python wrapper, as described in
Section 6 (or see Section 2.4 below).

After pulling a new version of CCL from the git repository, you can recompile the
library by running:

$ make clean; make uninstall

$ make; make install

CCL library can be called from C++ code without any additional requirements or
modifications. To make sure that there are no problems you can run

$ make check-cpp

$ ./tests/ccl_sample_run

2.4. Alternative installation and pip

It is possible to install both the C library and the Python wrapper together in one
step, by running

$ python setup.py install --prefix=/home/desc_fan

This will automatically perform the previous steps to install the C library, and will
also install the Python library in /home/desc fan/lib/python2.7/site-packages.
You might need to add this path to the $PYTHONPATH environment variable to be
able to use it. In the near future, the package will be made available through pip.

Once installed you can check the installation status by typing

7 We know of one case with Mac OS where libtools had the “lock” function set to “yes” and this
caused the installation to stall. However, this is very rare. If this happens, after the configure step,
edit libtool to set the “lock” to “no”.
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$ python setup.py test

This will run the embedded unit tests. Using this last method to install the Python
library allows you to uninstall it simply by running

$ python setup.py uninstall

2.5. Compiling against an external version of CLASS

The default installation procedure for CCL implies automatically downloading and
installing a tagged version of CLASS. Optionally, you can also link CCL against an
external version of CLASS. This section is useful if you want to use a modified ver-
sion of CLASS, or a different or more up-to-date version of the standard CLASS. For
example, we have successfully compiled and run CCL with hiCLASS (Zumalacar-
regui et al. 2016).

To compile CCL with an external version of CLASS, you must first prepare the external
copy so that it can be linked as a shared library. By default, the CLASS build tools
create a static library. After compiling CLASS in the usual way (by running make),
look for a static library file called libclass.a that should have been placed in the
root source directory. Then, run the following command from that directory (Linux
only):

$ gcc -shared -o libclass.so -Wl,--whole-archive libclass.a \

-Wl,--no-whole-archive -lgomp

This should create a new shared library, libclass.so, in the same directory. (N.B.
The -lgomp flag has to appear at the end of the command; otherwise the linker can
fail.) If you are running Mac OS X, use the following command instead:

$ gcc -fpic -shared -o libclass.dylib -Wl,-all_load libclass.a \

-Wl,-noall_load

Next, change to the root CCL directory and run make clean if you have previously
run the compilation process. Then, set the CLASSDIR environment variable to point
to the directory containing libclass.so:

export CLASSDIR=/path/to/external/class
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Then, run ./configure and compile and install CCL as usual. The CCL build tools
should take care of linking to the external version of CLASS.

Once compilation has finished, run make check to make sure everything is working
correctly. Remember to add the external CLASS library directory to your system
library path, using either export LD LIBRARY PATH=/path/to/external/class

(Linux) or export DYLD FALLBACK LIBRARY PATH=/path/to/external/class

(Mac). The system must be able to find both the CCL and CLASS libraries; it is not
enough to only add CCL to the library path.

2.6. Creating a Docker Image

CCL supports the use of Docker, for the deployment of applications inside software
containers. The Dockerfile included with CCL makes it possible to quickly create
an image file that can be used to run virtual machines that require no additional
dependencies beyond the Docker software. The Docker website8 details the instal-
lation and start-up process for most common operating systems.

With Docker installed and the Docker Daemon running, creating an image is rela-
tively straightforward:

docker build -t ccl .

This will begin the process of creating the image file for CCL locally. This Dock-
erfile contains all of the C libraries needed by CCL, as well as the Python wrap-
per. It currently uses python:2.7 as a base image, and supports both ipython
and Jupyter notebook. The virtualization process should have minimum impact on
performance.

The resulting Docker image has two main functions. The first is a command that
will open a Jupyter notebook, tied to a port on your local machine. This can be
accessed by running:

docker run -p 8888:8888 ccl

8 https://www.docker.com

https://www.docker.com
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Table 1. Physical constants in CCL.

GNewt kb σSB h c eV M� pc

NIST -3.0e-05 -1.4e-06 -5.9e-06 1.6e-07 0.0e+00 8.4e-08 – –

PDG 2013 -6.0e-05 -1.1e-06 -4.8e-06 9.2e-08 0.0e+00 4.9e-08 -2.0e-04 1.1e-09

GSL -1.9e-04 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -4.5e-11

CLASS 0.0e+00 0.0e+00 – 0.0e+00 0.0e+00 0.0e+00 – -6.7e-11

The Jupyter notebook can then be accessed through a browser at the address
localhost:8888. The second possibility is to run a bash terminal, by issuing the
command:

docker run -it ccl bash

This will allow for full access to the virtual machine via a terminal, so you can install
additional dependencies etc.

2.7. Documentation

CCL has basic doxygen9 documentation for its C routines. This can be found in
the directory doc/html within the CCL repository by opening the index.html file
in your browser. The python routines are documented in situ; you can view the
documentation for a function by calling help(function name) from within python.

3. Functionality

3.1. Physical constants

We have performed a comparison of the physical constants used in CCL and in-
cluded dependencies and external sources. See Table 1 for percent differences of
the constants between these sources.

3.2. Supported cosmological models

9 http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/
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Ultimately, CCL plans to incorporate theoretical predictions for all cosmological mod-
els of interest to LSST. Currently, the following families of models are supported:

• Flat ΛCDM

• wCDM and the CPL model (w0 + wa, Chevallier & Polarski 2001 and Linder
2003)

• Non-zero curvature (K)

• All of the above, plus an arbitrary, user-defined modified growth function (see
description in Section 3.6)

• A single massive neutrino species or multiple equal-mass massive neutri-
nos, in combination with any of the above (except the user-defined modified
growth function).

Not all features of CCL are available for all models. For a guide to which predictions
are available for each model, see Table 2. Note that if users install their own version
of CLASS, CCL can then make predictions for a more extended set of cosmologies.
Users should take care to understand the validity of the CCL assumptions for their
own models.

In its default configuration, CCL adopts the nonlinear matter power spectrum from
CLASS through the Halofit implementation and the Tinker mass function for cluster
number counts.

3.3. Creating a cosmology

To use CCL, the first step is to create a ccl cosmology structure, containing all of
the information required to compute cosmological observables. A ccl cosmology

structure can be generated using the information from a ccl parameters object
and a ccl configuration object.

ccl parameters objects contain information about the cosmological parameters of
a given model, and are initialized using one of the following routines (the full syntax
for each function can be found in the header file ccl core.h):

• ccl parameters create(double Omega c, double Omega b, double

Omega k, double N nu rel, double N nu mass, double mnu, double

w0, double wa, double h, double norm pk, double n s,int
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Table 2. Cosmologies implemented in CCL.

Observable/Model flat ΛCDM ΛCDM+K ΛCDM + mν wCDM w0 + wa MG

Distances X X X X X X
Growth X X X X X X

Pm(k, z) X X X X X X
Halo Mass Function X X X X X X
Cl, number counts X X X X X X
Cl, weak lensing only X X X X X X

nz mgrowth,double *zarr mgrowth,double *dfarr mgrowth, int

*status): general ccl parameters constructor supporting all the mod-
els described above.

• ccl parameters create flat lcdm(...): particular constructor for flat
ΛCDM cosmologies.

• ccl parameters create flat wcdm(...): constant w cosmologies.

• ccl parameters create flat wacdm(...): w0 + wa.

• ccl parameters create lcdm(...): curved ΛCDM cosmologies.

The argument norm pk can be used to specify the power spectrum normalization
in terms of either σ8 or As. The ccl parameters create functions assume σ8 nor-
malization if norm pk > 1.0e− 5 and As normalization otherwise.

To include massive neutrinos, the suffix ‘ nu’ may be appended to the last four
ccl parameters create functions above. Using these functions without the nu

suffix will set the number of massive neutrinos to 0 and the effective number of
massless neutrinos to 3.046. In the case of non-zero massive neutrinos, it may be
desirable to set N nu rel such that Neff = 3.046 in the early universe. In agreement
with CLASS, when using the default value of TNCDM as described in section 3.4
below, N nu rel can be set to 2.0328, 1.0196, and 0.00641 for 1, 2 and 3 massive
neutrinos respectively to achieve this.

ccl configuration objects contain information about the prescriptions to be used
to compute transfer functions, power spectra, mass functions, etc. A default
ccl configuration object is made available as default config, which specifies
that CLASS will be used to compute transfer functions, HaloFit will be used to cal-
culate the matter power spectrum, there will be no impact of baryons included and
the Tinker 2010 prescription will be used to compute the halo mass function.
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After initializing instances of ccl parameters and ccl configuration, use the
function ccl cosmology create(ccl parameters, ccl configuration) to return a
pointer to a ccl cosmology structure. You will need to pass this pointer around to
every CCL function.

An example of using CCL is provided in Section 5. The README file has additional
extensive documentation for the example run, as well as installation.

3.4. Distances

The routines described in this subsection are implemented in ccl background.c.

The Hubble parameter is calculated as

H(a)
H0

= a−3/2
(
ΩM,0 +ΩΛ,0a−3(w0+wa) exp[3wa(a− 1)] +ΩK,0a

+ (Ωg,0 +Ων,rel)a−1 +Ων,m(a)a3
) 1

2
. (1)

The radial comoving distance is calculated via a numerical integral,

χ(a) = c
∫ 1

a

da′

a′2H(a′)
. (2)

The transverse comoving distance is computed in terms of the radial comoving
distance as:

r(χ) =


k−1/2 sin(k1/2χ) k > 0

χ k = 0

|k|−1/2 sinh(|k|1/2χ) k < 0

(3)

The usual angular diameter distance is dA = a r(a), and the luminosity distance is
dL = r(a)/a.

CCL can also compute the distance modulus, defined as,

µ = 5 log10(dL/pc)− 5 (4)

and a(χ), the inverse of χ(a).

3.5. Density parameter functions
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The routines described in this subsection are implemented in ccl background.c.

The density parameter functions ΩX(a) can be calculated for six components:

• matter density parameter ΩM(a) = ΩM,0H2
0/(a3H2(a)),

• dark energy density parameter ΩΛ(a) = ΩΛ,0H2
0/H2(a),

• radiation density parameter Ωg(a) = Ωg,0H2
0/(a4H2(a)),

• curvature density parameter ΩK(a) = ΩK,0H2
0/(a2H2(a)),

• massless neutrino density parameter Ων,rel(a) = Ων,rel,0H2
0/(a4H2(a)),

• massive neutrino density parameter Ων,m(a),

all using the Hubble parameter defined in equation 1.

For massive neutrinos, Ων,m(a) is calculated by calling a set of functions contained
in ccl neutrinos.c. First, we assume that the mass of one neutrino is equal
to mtot

ν /Nν
m (recalling that we assume a single massive neutrino or equal-mass

neutrinos). We then compute a quantity called the effective temperature:

Teff
ν = TCMBTNCDM. (5)

Here, TNCDM is used to explicitly set the value of mν/Ω0
ν. Note that despite its

name, TNCDM is a dimensionless temperature rescaling rather than an actual tem-
perature, following the nomenclature used by CLASS. We choose a default value of
TNCDM = 0.71611, which corresponds to mν/Ω0

ν = 93.14 eV, to agree with the
default value set by CLASS. We define

µ =
mtot
ν a

Nν
mTeff

ν

(6)

in units such that µ is dimensionless. We then conduct the phase-space integral
required to get the neutrino density, and multiply by appropriate factors to obtain
Ων,m(a):

Ων,m(a) = Nν
m

8π2(πkb)
3kb

15(chP)3
8πG
3h2c2

(
Teff
ν

a

)4(
7
8

∫ xmax

0
dx x2

√
x2 +µ2

exp(x) + 1

)
(7)

where hP is Planck’s constant and h is H0/100 with H0 in units of km / s / Mpc. xmax

is set to 1000. The final bracketed term which includes the phase-space integral
can be simplified in the limit where µ is very large or very small: for small µ, it is
set to 7

8 , and for large µ, it becomes 5ζ(3)
18π4 µ ∼ 0.2776µ.
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3.6. Growth function

The routines described in this subsection are implemented in ccl background.c.
To compute the growth function, D(a), the growth factor of matter perturbations,
CCL solves the following differential equation:

d
da

(
a3H(a)

dD
da

)
=

3
2
ΩM(a)aH(a)D, (8)

using a Runge-Kutta Cash-Karp algorithm.

In doing this, CCL simultaneously computes the growth rate f (a), defined as:

f (a) =
d ln D
d ln a

. (9)

CCL provides different functions that return the growth normalized to D(a = 1) = 1
and to D(a� 1)→ a.

Note that the above is strictly valid for a Universe containing only dust-like matter
components. A scale-independent growth rate is, for example, ill-defined in the
presence of massive neutrinos.

Currently CCL allows for an alternative ‘modified gravity’ cosmological model de-
fined by a regular background (w0 + wa)CDM (with arbitrary K) as well as a
user-defined ∆ f (a), such that the true growth rate in this model is given by
f (a) = f0(a) + ∆ f (a), where f0(a) is the growth rate in the background model.
Note that this model is only consistently implemented with regards to the compu-
tation of the linear growth factor and growth rates (which will also scale the linear
power spectrum). All other CCL functions (including the non-linear power spectrum)
will ignore these modifications. This model, and the interpretation of the predictions
given by CCL, should therefore be used with care.

3.7. Matter power spectrum

There are several options for obtaining the matter power spectrum in CCL. The
routines described in this subsection are implemented in ccl power.c.

3.7.1. BBKS
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CCL implements the analytical BBKS approximation to the transfer function
(Bardeen et al. 1986), given by

T(q ≡ k/ΓhMpc−1) =
ln[1 + 2.34q]

2.34q
[1+ 3.89q+(16.2q)2 +(5.47q)3 +(6.71q)4]−0.25

(10)
where Γ = Ωmh. The power spectrum is related to the transfer function by ∆(k) ∝
T2(k)k3+n and ∆2(k) ∝ k3P(k). The normalization of the power spectrum is defined
at z = 0 by setting σ8 to its value today. The BBKS power spectrum option is
primarily used as a precisely-defined input for testing the numerical accuracy of
CCL routines (as described in Sect. 4), and it is not recommended for other uses.

3.7.2. Eisenstein and Hu

CCL also provides an approximation to the matter power spectrum as implemented
by Eisenstein & Hu (1998) (E&H; we refer the reader to this paper for a detailed
discussion of the fitting formulae).10

The Eisenstein & Hu and BBKS approximations are not very accurate (generally
only to within a few percent), and so should not be used to derive precise cosmo-
logical constraints. They are, however, computationally faster, and therefore useful
for code testing and comparison.

3.7.3. CLASS

The fiducial configuration calls the CLASS software (Blas et al. 2011) within CCL

to obtain either linear or nonlinear matter power spectra at given redshifts. On
initializing the cosmology object, we construct a bi-dimensional spline in k and the
scale-factor which is then evaluated by the relevant routines to obtain the matter
power spectrum at the desired wavenumber and redshift. The relevant routines
can be found within ccl power.c. CLASS currently computes the non-linear power
spectrum using the HaloFit prescription of Takahashi et al. (2012).

As discussed in Section 2.5, the user can compile CCL with an external version of
CLASS as well.

10 Note that the implementation in CCL modifies Eq. 5 of Eisenstein & Hu (1998) using a−1 = 1+ z
instead of the approximation a−1 ∼ z. The difference in the resulting power spectra is negligible,
but larger than 1 part in 104 for k < 10 h Mpc−1.
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3.7.4. Impact of baryons

CCL incorporates the impact of baryons on the total matter power spectrum via
the “baryonic correction model” (BCM) of Schneider & Teyssier (2015). This is
implemented through a flag in the configuration object, which currently accepts the
following options: ccl nobaryons or ccl bcm. When ccl bcm is set, the nonlinear
matter power spectrum (whichever the method that provides it) is multiplied by a
correction factor F(k, z) which models the impact of baryons.

The main consequences of baryonic processes are: to suppress the power spec-
trum at intermediate scales (k ∼ a few h/Mpc) due to the ejection of gas by Active
Galactic Nuclei feedaback, and to enhance it at smaller scales due to enhanced
cooling. Three effective parameters govern the contribution of baryonic processes
to modifying the total matter power spectrum:

• log10[Mc/(M�/h)]: the mass of the clusters responsible for feedback, which
regulates the amount of suppression of the matter power spectrum at inter-
mediate scales;

• ηb: a dimensionless parameter which determines the scale at which suppres-
sion peaks;

• and ks [h/Mpc]: the wavenumber that determines the scale of the stellar
profile.

If the BCM parameters are not specified and the user sets CCL to compute the
power spectrym with baryonic feedback included, CCL will assume the default pa-
rameters of Schneider & Teyssier (2015). The user may pass these explicitly if
desired.

Other baryonic impact models might be incorporated in the future as they become
available.

3.7.5. Spline parameters & the INI file

All spline and grid parameters relevant for computing quantities such as distances,
growth functions, power spectra, and halo mass functions are defined in the
ccl params.ini file in the include folder of the repository. This file allows the
user to configure the following constants:
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• A SPLINE NLOG: number of points in the logarithmic part of the scale factor
spline. The default is A SPLINE NLOG= 250.

• A SPLINE NA: number of points in the linear part of the scale factor spline. The
default is A SPLINE NA= 250.

• A SPLINE MINLOG: minimum value for the scale factor spline. The default is
A SPLINE MINLOG= 0.0001. This only applies to background quantities.

• A SPLINE MIN: maximum value for the logarithmic part and minimum value for
the linear part of the scale factor spline. The default is A SPLINE MIN= 0.01.
This only applies to background quantities.

• A SPLINE MAX: maximum value for the scale factor spline. The default is
A SPLINE MAX= 1.

• LOGM SPLINE DELTA: spacing of the mass function spline (logarithm). The
default is LOGM SPLINE DELTA= 0.025.

• LOGM SPLINE NM: number of points in the mass function spline (logarithm).
The default is LOGM SPLINE NA= 440.

• LOGM SPLINE MIN: minimum value for the mass function spline (logarithm).
The default is LOGM SPLINE MIN= 6.

• LOGM SPLINE MAX: maximum value for the mass function spline (logarithm).
The default is LOGM SPLINE MAX= 17.

• A SPLINE NA PK: number of bins for the scale factor in the case of two-
dimensional splines (where the second variable is the wavenumber). The
default is A SPLINE NA PK= 50.

• A SPLINE MIN PK: minimum value for the scale factor spline. The default is
A SPLINE MIN PK= 0.1. This only applies for the 2D power spectrum splines.

• K MAX SPLINE: The maximum value of wavenumber considered in the spline.
This is explained in more detail in the coming subsections. The default is
K MAX SPLINE= 50/Mpc.

• K MAX: The maximum value of wavenumber when integrating over k. The
default is K MAX= 1000/Mpc.

• K MIN DEFAULT: The minimum value of wavenumber when integrating over k.
The default is K MIN DEFAULT= 5× 10−5/Mpc.

• N K: Number of bins per decade for the wavenumber. The default is N K= 167.
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Note that a copy of ccl params.ini is installed along with the library, so changing
the version of this file inside the source directory will not have any effect unless you
reinstall.

For the matter power spectrum, the spline is performed in two variables: the
logarithmically-spaced wavenumber and the linearly-spaced scale factor. Splin-
ing the CLASS output leads to some precision loss (compared to direct outputs from
CLASS). We quantify this, along with the impact of extrapolation, in the following
subsection.

3.7.6. Extrapolation for the nonlinear power spectrum

The computation of the power spectrum from CLASS can be significantly sped up
by extrapolating in the range k > K MAX SPLINE and k < K MIN. In this section,
we describe the implementation of the extrapolation and the accuracy attained.
These tests are performed in a flat ΛCDM cosmology with Ωc = 0.25, Ωb = 0.05,
As = 2.1× 10−9, h = 0.7 and ns = 0.96.

We first describe the extrapolation at high wavenumbers. The introduction of the
parameter K MAX SPLINE allows us to spline the matter power spectrum within the
cosmo structure up to that value of k (in units of 1/Mpc). A separate K MAX param-
eter sets the limit for evaluation of the matter power spectrum. The range between
K MAX SPLINE< k <K MAX is evaluated by performing a second order Taylor expan-
sion in ln k within the static routine ccl power extrapol highk.

First, we compute the first and second derivative of the ln P(k, z) at k0 = K MAX−
2∆ ln k by computing the numerical derivatives by finite differences using GSL. The
fiducial choice for ∆ ln k is 10−2. We then apply a second order Taylor expansion to
extrapolate the matter power spectrum to k >K MAX SPLINE. The Taylor expansion
gives

ln P(k, z) ' ln P(k0, z)+
d ln P
d ln k

(ln k0, z)(ln k− ln k0)+
1
2

d2 ln P
d ln k2 (ln k0, z)(ln k− ln k0)

2.
(11)

The accuracy of this approximation is shown in Figure 1 for redshifts z = 0 and
z = 3. We compare the nonlinear matter power spectrum at z = 0 computed with
the previously described approximation, to the matter power spectrum obtained by
directly evaluating CLASS at the desired k value. In figure 1, we vary ∆ ln k and
K MAX SPLINE at a time to determine the impact of the choice of parameters. We
find that for typical values of ∆ ln k = 10−2 and K MAX SPLINE= 50/Mpc, ln P has
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Figure 1. The relative error compared to direct CLASS outputs, Pf id, produced by splin-
ing the nonlinear matter power spectrum up to K MAX SPLINE and extrapolating beyond this
value with a second order Taylor expansion the natural logarithm of the matter power spec-
trum. The left panel shows the results at z = 0. The right panel shows the results at z = 3.
The standard CCL parameters adopted are those corresponding to the black dashed curve.
The solid curve shows the accuracy when using K MAX SPLINE= 500/Mpc. The magenta
curve shows the impact of using the higher resolution ∆ ln k = 10−4 in Eq. 11. For compar-
ison, the impact of baryonic physics on the matter power spectrum is ∼ 10% at k = 1/Mpc
(Schneider & Teyssier 2015).

converged to an accuracy that surpasses the expected impact of baryonic effects
on the matter power spectrum at k > 10/Mpc. (For an estimate of the impact of
baryons on the total matter power spectrum, see Schneider & Teyssier 2015.) The
lower K MAX SPLINE is, the faster CCL will run. The optimum choice of K MAX SPLINE

is left to the user for their particular application.

We also extrapolate the power spectrum at small wavenumbers within the static
routine ccl power extrapol lowk. In this case, the power spectrum below K MIN is
obtained by a power-law extrapolation with index ns:

log P(k < K MIN, z) = log P(K MIN, z) + ns(log k− log K MIN) (12)

The value adopted for K MIN depends on the choice of power spectrum method.
For CLASS and the nonlinear power spectrum, we adopt K MIN that coincides with
the smallest wavenumber output by CLASS, K MIN= 7 × 10−6/Mpc.11 Note that
this parameter is different from K MIN DEFAULT, which sets the minimum k for inte-
grations and which is set by default to K MIN DEFAULT= 5× 10−5/Mpc. Hence, in
practice, no extrapolation is occurring in this case, unless the user specifically asks
for an output power spectra below K MIN DEFAULT for their own purposes.

11 For BBKS, the power spectrum is computed analytically at all k, there is no extrapolation.
For the Eisenstein & Hu implementation, the splines of the power spectrum span K MIN DEFAULT<
k <K MAX SPLINE, so there is only extrapolation at high k.
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Figure 2. Same as Fig. 1 but for the linear matter power spectrum at z = 0 (left) and z = 3
(right).

3.7.7. Extrapolation for the linear power spectrum

With the implementation described in the previous section, the power spectrum
splines are initialized up to K MAX SPLINE. This is also true for the linear matter
power spectrum, which is used within CCL in particular to obtain σ8 (see Eq. 39).
We have tested here how the procedure described in the previous section affects
the convergence of the linear matter power spectrum. We compare the fiducial CCL
output to the case where we set K MAX SPLINE= 5× 103/Mpc. The result is shown
in Figure 2. Although there is a significant difference (& 10%) between the linear
power spectra at large k, we have confirmed that the difference in σ8 is negligible.
Nevertheless, for other applications that use the linear power spectrum, the user
might need to increase the value of K MAX SPLINE.

As in the previous section, the power spectrum at small wavenumber is extrapo-
lated using a power-law. This extrapolation is performed below a fiducial value of
K MIN DEFAULT= 5× 10−5.

We have found that changing N A to 200, or changing the sampling of the wavenum-
ber to 5000 points, does not change the results presented in Figures 1 and 2 in this
section.

3.7.8. Wishlist for the future

We plan to implement the following power spectrum methods in the future:

• CAMB,
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• Cosmic emulators,

• Halo model/HOD.

3.7.9. Normalization of the power spectrum

There are two alternative schemes for normalization of the matter power spectrum.
The first one is to specify the value of As, the amplitude of the primordial power
spectrum, which is passed directly to CLASS. This option is available in the case of
the linear/nonlinear matter power spectrum implementation. For these, as well as
for BBKS and E&H transfer functions, there is the additional option to set the nor-
malization of the matter power spectrum by specifyingσ8, the RMS density contrast
averaged over spheres of radius 8h−1Mpc. The computation of σ8 is described in
Section 3.10.

In practice, there is only one argument that encodes the normalization. This is
the argument norm pk, which can be passed the power spectrum normalization
parameterized by σ8 or As. As noted above, ccl parameters create switches to
σ8 normalization if norm pk > 10−5, and to As normalization otherwise.

In the python implementation, CCL allows for either σ8 or A s to be passed as
parameters.

3.8. Angular power spectra

In this section we will distinguish between observables (quantities observed on the
sky, such as number counts in a redshift bin, shear or CMB temperature fluctu-
ations) and contributions to the total observed fluctuations of these observables
(such as the biased matter density term in number counts, redshift-space distor-
tions, magnification, ISW, etc.). The routines described in this subsection are im-
plemented in ccl cls.c.

3.8.1. Exact expressions

The angular power spectrum between two observables a and b can be written as:

Cab
` = 4π

∫ ∞
0

dk
k
PΦ(k)∆a

`(k)∆
b
`(k), (13)
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where PΦ(k) is the dimensionless power spectrum of the primordial curvature
perturbations, and ∆a and ∆b are, using the terminology of CLASS, the transfer
functions corresponding to these observables. Each transfer function will receive
contributions from different terms. Currently CCL supports two observables (also
labelled “tracers”), number counts and galaxy shape distortions, with the following
contributions:

Number counts. —The transfer function for number counts can be decomposed
into three terms: ∆NC = ∆D + ∆RSD + ∆M, where

• ∆D is the standard density term proportional to the matter density:

∆D
` (k) =

∫
dz pz(z) b(z) Tδ(k, z) j`(kχ(z)), (14)

where Tδ is the matter transfer function. Note that CCL currently does not
support non-linear or scale-dependent bias. Here, pz(z) is the normalized
distribution of sources in redshift (selection function). Thus CCL understands
each individual redshift bin as a separate “observable”.

• ∆RSD is the linear contribution from redshift-space distortions:

∆RSD
` (k) =

∫
dz pz(z)

(1 + z)pz(z)
H(z)

Tθ(k, z) j′′` (kχ(z)), (15)

where Tθ(k, z) is the transfer function of θ, the divergence of the comoving
velocity field. Tθ(k, z) depends on the growth, which CCL does not compute
for massive neutrino cosmologies. C` is instead computed assuming a linear-
theory relation between the matter overdensity and peculiar velocity fields.
While this should not be problematic for wide photometric redshift bins, users
should exercise care when interpreting results for narrow window functions.

• ∆M is the contribution from magnification lensing:

∆M
` (k) = −`(`+ 1)

∫ dz
H(z)

WM(z)Tφ+ψ(k, z) j`(kχ(z)), (16)

where Tφ+ψ is the transfer function for the Newtonian-gauge scalar metric
perturbations, and WM is the magnification window function:

WM(z) ≡
∫ ∞

z
dz′pz(z′)

2− 5s(z′)
2

r(χ(z′)− χ(z))
r(χ(z′))

. (17)

Here s(z) is the magnification bias, given as the logarithmic derivative of the
number of sources with magnitude limit, and r(χ) is the angular comoving
distance (see Eq. 3).
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Note that CCL currently does not compute relativistic corrections to number
counts Challinor & Lewis (2011); Bonvin & Durrer (2011). Although these
should be included in the future, their contribution to the total fluctuation is
largely subdominant (see Alonso et al. (2015) and the two references above),
and therefore it is safe to work without them in most cases.

Galaxy shape distortions. —The transfer function for shape distortions is currently
decomposed into two terms: ∆SH = ∆WL + ∆IA, where

• ∆L is the standard lensing contribution:

∆L
` (k) = −

1
2

√
(`+ 2)!
(`− 2)!

∫ dz
H(z)

WL(z)Tφ+ψ(k, z) j`(kχ(z)), (18)

where WL is the lensing kernel, given by

WL(z) ≡
∫ ∞

z
dz′pz(z′)

r(χ(z′)− χ(z))
r(χ(z′))

. (19)

• ∆IA is the transfer function for intrinsic galaxy alignments. CCL currently sup-
ports the so-called “non-linear alignment model”, according to which the
galaxy inertia tensor is proportional the local tidal tensor Hirata & Seljak
(2004); Hirata et al. (2007).

∆IA
` (k) =

√
(`+ 2)!
(`− 2)!

∫
dz pz(z) bIA(z) fred(z) Tδ(k, z)

j`(kχ(z))
(kχ(z))2 . (20)

It is worth noting that the equations above should be modified for non-flat cosmolo-
gies by replacing the spherical Bessel functions j` with their hyperspherical coun-
terparts Kamionkowski & Spergel (1994). Since the library currently only uses the
Limber approximation (documented below), this is not currently an issue. It will be
revisited in future versions of CCL.

CMB lensing. —The transfer function lensing convergence from a source at redshift
zS is given by:

∆C
` (k) = −

`(`+ 1)
2

∫ χS

0
dχ

r(χS)− r(χ)
r(χ)r(χS)

Tφ+ψ(k, χ) j`(kχ), (21)

where χS ≡ χ(zS).
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3.8.2. The Limber approximation

As shown above, computing each transfer function involves a radial projection (i.e.
an integral over redshift or χ), and thus computing full power spectrum consists
of a triple integral for each `. This can be computationally intensive, but can be
significantly simplified in certain regimes by using the Limber approximation, given
by:

j`(x) '
√

π

2`+ 1
δ

(
`+

1
2
− x
)

. (22)

Thus for each k and ` we can define a radial distance χ` ≡ (` + 1/2)/k, with
corresponding redshift z`. This approximation works best for wide radial kernels
and high multipoles.

Substituting this in the expressions above, the simplified versions become:

Cab
` =

2
2`+ 1

∫ ∞
0

dk Pδ (k, z`) ∆̃a
`(k)∆̃

b
`(k). (23)

where

∆̃D
` (k) = pz(z`) b(z`) H(z`) (24)

∆̃RSD
` (k) =

1 + 8`
(2`+ 1)2 pz(z`) f (z`) H(z`)− (25)

4
2`+ 3

√
2`+ 1
2`+ 3

pz(z`+1) f (z`+1) H(z`+1) (26)

∆̃M
` (k) = 3ΩM,0H2

0
`(`+ 1)

k2
(1 + z`)

r(χ`)
WM(z`) (27)

∆̃L
` (k) =

3
2
ΩM,0H2

0

√
(`+ 2)!
(`− 2)

1
k2

1 + z`
r(χ`)

WL(z`) (28)

∆̃IA
` (k) =

√
(`+ 2)!
(`− 2)!

pz(z`) bIA(z`) fred(z`)H(z`)
(`+ 1/2)2 (29)

∆̃C
` (k) =

3
2
ΩM,0H2

0 `(`+ 1)
1 + z`

k2
r(χS)− r(χ`)

r(χ`)r(χS)
Θ(χ`; 0, χS). (30)

Here (Θ(x; xi, x f )) is a top-hat function (1 for x ∈ [xi, x f ] and 0 otherwise).

3.9. Correlation functions
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The following expressions relating the angular power spectra and correlation func-
tions are valid in the flat-sky approximation12. In all cases, fK(χ) is comoving
angular diameter distance, which differs from the radial comoving distance χ only
in the case of cosmologies with non-zero curvature.

Galaxy-galaxy. The angular correlation function between two number-count trac-
ers (labeled a and b here) is given by

ξab(θ) =
∫

d`
`

2π
Cab
` J0(`θ), (31)

where Cab is the angular power spectrum between both tracers.

Lensing-lensing. The lensing correlation functions are 13

ξab
+ (θ)=

∫ ∞
0

d`
`

2π
J0(`θ)Cab

` , (32)

ξab
− (θ)=

∫ ∞
0

d`
`

2π
J4(`θ)Cab

` , (33)

where the angular lensing convergence power spectrum Cab
` is given above (see

Equations 18 and 23).

Galaxy-lensing. The correlation between a number count tracer a and a shear
tracer b is given by

ξab(θ) =
∫

d`
`

2π
Cab
` J2(`θ), (34)

Note that, in the above, “Galaxy” and “Lensing” can be replaced by any spin-0 and
spin-2 fields on the sphere respectively (e.g. the CMB lensing convergence would
play the same role as the galaxy overdensity field in all the formulas above).

For numerical integration of the correlation functions, we make use of the public
code FFTlog14(Hamilton 2000; Talman 2009). In brief, FFTlog works on functions
periodic in log space, by writing the Hankel Transform as a convolution between
Bessel functions and the function of interest (in this case C`). A version of this code
is included in CCL with minor modifications.

3.10. Halo mass & halo bias functions

12 See the weak lensing review by Bartelmann & Schneider (2001), page 44 and Joachimi &
Bridle (2010).

13 from Schneider 2002 and Bartelmann & Schneider section 6.4.1
14 http://casa.colorado.edu/~ajsh/FFTLog/

http://casa.colorado.edu/~ajsh/FFTLog/
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The routines described in this subsection are implemented in ccl massfunc.c.

The halo mass function is implemented using several different definitions from the
literature: Tinker et al. (2008), Tinker et al. (2010), Angulo et al. (2012), and Wat-
son et al. (2013). All four models are tuned to simulation data and tested against
observational results. In addition, each of these fits has been implemented using
the common halo definition of ∆ = 200, where a halo is defined with:

ρ̄(r∆) = ∆× ρm, (35)

where a halo with size r∆ has an average density ρ̄ equal to the overdensity pa-
rameter ∆ times the mean background density of the universe, ρm. Note that
another common definition utilizes the critical density of the universe, ρc; currently
CCL requires that an external conversion by the end user between values of ∆ with
respect to the critical density to values of ∆ as defined with respect to the mean
density. In the future we plan to allow for self-consistent handling of critical density
based definitions, though it is not implemented as of this build.

In addition to the usage of the most common definition, we have implemented an
extension for two of the models. The Tinker 2010 model allows for a value of ∆ to be
given between the values of 200 and 3200 and interpolates the fitting parameters
within this range in a space of log ∆ using splines. We also have implemented
interpolation in the same range of Tinker 2008 ∆ values. For both Tinker 2008
and Tinker 2010 models we have utilized spline interpolation through GSL routines
in order to guarantee a match to specified fitting parameters at exact values of ∆.
This fitting has slight deviation from the fit as expressed in Tinker 2010.

With the exception of the Tinker 2010 model, we attempt to keep a common form
to the multiplicity function whenever possible for ease of extension:

f (σ) = A
[(σ

b

)−a
+ 1
]
e−c/σ2

, (36)

where A, a, b, and c are fitting parameters that have additional redshift scaling and
σ is the RMS variance of the density field smoothed on some scale M at some
scale factor a. This basic form is modified for the Angulo et al. (2012) formulation.
The resulting form is

f (σ) = A
[( b
σ
+ 1
)−a]

e−c/σ2
, (37)

where the only change is in the formulation of the second term. Note that the
fitting parameters in the Angulo et al. (2012) formulation do not contain any redshift
dependence and the use of it is primarily for testing and benchmark purposes.

Each call to the halo mass function requires an assumed model (defined
within the ccl configuration structure contained in ccl cosmology), in addi-
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tion to a value of the halo mass and scale factor for which to evaluate the
halo mass function. The currently implemented models can be called with the
tags config.mass function method = ccl tinker, ccl tinker10, ccl angulo, or
ccl watson. It returns the number density of halos in logarithmic mass bins, in the
form dn/d log10 M, where n is the number density of halos of a given mass and M
is the input halo mass.

The halo mass M is related to σ by first computing the radius R that would enclose
a mass M in a homogeneous Universe at z = 0:

M =
H2

0
2G

R3 → M
M�

= 1.162× 1012ΩMh2
(

R
1 Mpc

)3

. (38)

The rms density contrast in spheres of radius R can then be computed as

σ2
R =

1
2π2

∫
dk k2 Pk W̃2

R(k) (39)

where Pk is the matter power spectrum and W̃(kR) is the Fourier transform of a
spherical top hat window function,

W̃R(k) =
3

(kR)3 [sin(kR)− kR cos(kR)] (40)

This function is directly implemented in CCL as well as a specific σ8 function.

The Tinker et al. (2010) model parameterizes both the halo mass function and the
halo bias in terms of the peak height, ν = δc/σ(M), where δc is the critical density
for collapse and is chosen to be 1.686 for this particular parameterization. We can
then parameterize the halo function and halo bias as

b(ν) = 1− A
νa

νa + δc
a + Bνb + Cνc, f (ν) = α[1 + (βν)−2φ]ν2ηe(−γν2/2). (41)

The currently implemented model in CCL allows for an arbitrary overdensity ∆ to
be chosen, using the fitting functions provided in Tinker et al. (2010). Other halo
model definitions are not included in the halo bias calculation, though this remains
an area of active work to improve upon.

3.11. Photo-z implementation

The functionality described in this section is implemented in ccl lsst specs.c.

LSST galaxy redshifts will be obtained using photometry. A model is therefore
required for the probability of measuring a photometric redshift zph for an object
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with hypothetical spectroscopic redshift zs. CCL allows the user to flexibly provide
their own photometric redshift model.

To take advantage of this functionality, the user writes a function which accepts
as input a photometric redshift, a spectroscopic redshift, and a void pointer to a
structure containing any further parameters of the photo-z model. This function
will return the probability of measuring the input photometric redshift given the
input spectroscopic redshift. Explicitly, it should take the form:

user pz probability(double z ph, double z s, void * user par){...}

This function is responsible for extracting the photo-z model parameters from the
void pointer user par itself.

This model can be used when computing dN
dz

i
in photometric redshift bin i, as given

by equation 44 below. An example of how the user can construct the required
functions and structure can be found in ccl sample run.c. An example that uses
a built-in Gaussian photo-z model is also provided.

3.12. LSST Specifications

CCL includes LSST specifications for the expected galaxy distributions of the full
galaxy clustering sample and the lensing source galaxy sample. These enable the
user to easily make forecasts for LSST. The functionality described in this section
is implemented in ccl lsst specs.c.

The functional forms of the expected dN
dz for clustering galaxies and lensing source

galaxies are provided. Here, dN
dz is the number density of galaxies as a function of

true redshift.

In the case of lensing source galaxies, these forms are given in Chang et al. (2013),
wherein three different cases are considered: fiducial, optimistic, and conserva-
tive. All three are included in CCL, and are indicated via a label of DNDZ WL OPT,
DNDZ WL FID, and DNDZ WL CONS as appropriate. The functional form of dN

dz for lens-
ing source galaxies is given as:

dN
dz
∝ zαexp

(
− z

z0

β
)

. (42)

The parameters, in the fiducial case, are given as α = 1.24, β = 1.01, and z0 =

0.51. In the optimistic case, this becomes α = 1.23, β = 1.05, and z0 = 0.59. The
conservative case is given by α = 1.28, β = 0.97, and z0 = 0.41.
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For the case of the clustering galaxy sample, the functional form is given by (LSST
Science Collaboration 2009):

dN
dz
∝ 1

2z0

(
z
z0

)2

exp
(
− z

z0

)
(43)

with z0 = 0.3.

In order to be incorporated into forecasts or predictions, the above expressions for
dN
dz must be normalized, and the value of dN

dz must be provided in a given photo-
metric redshift bin. Support is provided for the user to input a flexible photometric
redshift model, as described in Section 3.11. This takes the form of a function
which returns the probability p(z, z′) of measuring a particular photometric redshift
z, given a spectroscopic redshift z′ and other relevant parameters. Also provided
are functions to return σz at a given redshift for both lensing sources and cluster-
ing galaxies, for the case in which the user-defined function is a Gaussian photo-z
model.

With this, dNi

dz of lensing or clustering galaxies in a particular photometric redshift
bin i is given by:

dNi

dz
=

dN
dz
∫ zi+1

zi
dz′p(z, z′)∫ zmax

zmin
dz dN

dz
∫ zi+1

zi
dz′p(z, z′)

(44)

where zi and zi+1 are the photo-z edges of the bin in question.

Finally, the expected (linear, scale-independent) bias of galaxies in the clustering
sample is also provided. It is given by (LSST Science Collaboration 2009):

b(z) =
0.95
D(z)

(45)

where D(z) in the linear growth rate of structure normalized to unity at z=0.

4. Tests and validation

Our goal is for outputs of CCL to be validated against the results of a code-
comparison project run within LSST-DESC down to a 10−4 or pre-established ac-
curacy level if possible. In some cases, this level of accuracy is not necessary, as
other systematics which have not been considered in this version of CCL yet are
expected to have a larger fractional impact. In the cases where this applies, we
make it clear below.

A code comparison project was carried out among members of TJP where the
following outputs of cosmological forecast codes were compared and validated:
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1. growth factor at z = 0, 1, 2, 3, 4, 5,

2. comoving radial distance [Mpc/h] at the same redshifts, as well as the corre-
sponding distance moduli,

3. linear matter power spectrum, P(k), from BBKS (Bardeen et al. 1986) in units
of (Mpc/h)3 at z = 0, 2 in the range 10−3 ≤ k ≤ 10h/Mpc with 10 bins per
decade,

4. Eisenstein & Hu matter power spectrum in units of (Mpc/h)3 at z = 0 in the
range 10−3 ≤ k ≤ 10h/Mpc with 10 bins per decade, and

5. the mass variance at z = 0, σ(M, z = 0) for M =

{106, 108, 1010, 1012, 1014, 1016}M�/h.

These predictions were produced and compared for different cosmologies, which
are listed in the table below. The results agree to better than 0.1% relative accuracy
for comoving distance and growth factor among all submissions, and for P(k) and
σ(M) among codes which use the same BBKS conventions.

Cosmological models for code comparison project

Model Ωm Ωb ΩΛ h0 σ8 ns w0 wa

flat LCDM 0.3 0.05 0.7 0.7 0.8 0.96 -1 0

w0 LCDM 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0

wa LCDM 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0.1

open wa LCDM 0.3 0.05 0.65 0.7 0.8 0.96 -0.9 0.1

closed wa LCDM 0.3 0.05 0.75 0.7 0.8 0.96 -0.9 0.1

We noticed that there are 2 typos for the BBKS transfer function in “Modern Cos-
mology” (Dodelson 2004) compared to the original BBKS paper. The quadratic
term should be (16.1q)2 and the cubic term should be (5.46q)3. The BBKS equa-
tion is correct in Peacock (1999). Using the wrong equation can give differences in
the results above the 10−4 level.

From the comparison, we were also able to identify some typical issues which
affect convergence at the desired level:

• For achieving 10−4 precision in σ(M) and the normalisation of the power
spectrum, one should check that the integral of σ8 and σ(M) has con-



32

verged for the chosen values of {kmin, kmax}. After checking convergence,
we achieved the desired precision.

• Also note that for σ(M), it is important to set the desired precision level cor-
rectly for the numerical integrator. The integral usually yields σ2(M), and not
σ(M). Hence, one has to set the desired precision taking the exponent into
account.

• The value of the gravitational constant, G, enters into the critical density. We
found that failure to define G with sufficient precision would result in lack of
convergence at the 10−4 level between the different submissions. Impor-
tantly, note that CAMB barely has 10−4 precision in G (and similarly, there
might be other constants within CAMB/CLASS for which one should check
the precision level). For CCL, we are using the value from the Particle Physics
Handbook.

• Including/excluding radiation in the computation of the comoving distances
and the growth function can easily make a difference of 10−4 at the redshifts
required in this comparison.

In a second stage, we used the BBKS linear matter power spectrum from the pre-
vious step to compare two-point statistics for two redshift bins, resulting in three
tomography combinations, (1− 1),(1− 2),(2− 2). We computed the following quan-
tities:

• projected galaxy clustering tomography power spectra: density term only (no
magnification, RSD, etc.) with non-evolving linear bias b(z) = 1, in the range
10 < ` < 10000, using 5 bins per decade,

• angular convergence tomography power spectra: leading order convergence
term only (no magnification), in the same range and with the same resolution
as the case above,

• angular galaxy clustering tomography correlation function, in the range
0.01 deg < θ < 5 deg, using 5 bins per decade, and

• angular shear tomography correlation functions (ξ+,ξ−), similarly to above.

We adopted the following analytic redshift distributions: a Gaussian with σ = 0.15,
centered at z1 = 1; and another Gaussian with the same dispersion but centered at
z2 = 1.5. We repeated the exercise for two redshift distribution histograms shown
in Figure 3.
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Figure 3. Binned redshift distributions used for code comparison project.

In this second step, only 2 codes have been compared so far. More outputs are
needed to guarantee convergence. Preliminarily, from these outputs, we have con-
cluded that:

• The cross-correlation between bins is particularly sensitive to the number of
points where the kernels have been sampled.

• The accuracy of the correlation function is sensitive to `max. We had to use
up to `max = 3× 104 for convergence (and we could not achieve 0.01% con-
vergence).

• The large scales of the correlation function are sensitive to `min. The use of
the flat-sky approximation is also relevant on these scales.

• For sufficiently high precision, the correlation functions are sensitive to how
the power spectrum is sampled and interpolated.

For C` computations, we required the relative difference between CCL and the
benchmarks to be < 10−3. We performed the test both for analytic redshift dis-
tributions and histograms.

To obtain realistic targets for the convergence of correlation function computations
for LSST analyses, we calculate the expected statistical uncertainty of the clus-
tering and lensing correlation functions of the LSST gold sample (c.f. Sect. 3.12),
assuming an effective source galaxy density of neff = 26gal/sq arcmin for galaxy
shape distortions, and galaxy density of ngold = 45gal/sq arcmin for number
counts. Specifically, we calculate the Gaussian covariance of angular correlation
functions following the formalism of Joachimi et al. (2008), and note that leaving out
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the non-Gaussian covariance terms makes this convergence criterion more con-
servative. We split the galaxy samples into 10 tomography bins, defined to contain
equal numbers of galaxies. The accuracy test then proceeds as follows. We com-
pared the difference between CCL calculated lensing and clustering correlations
and the benchmarks for the analytic redshift distributions and for auto-correlations
of redshift bins only. To pass the benchmark test, we required that this difference
be smaller than half of the value of the errorbar derived from the covariance for
each correlation function computed. Specifically, we take the value of the covari-
ance in the bins centered at z = 1 and z = 1.5 to compare to the benchmarks.

Additionally, independent codes were utilized to test the accuracy of halo mass
function predictions. For the halo mass function, we compare the value of σ ,
log(σ−1), and the value of the halo mass function in the form used in Tinker et al.
(2008),

log[(M2/ρ̄m)dn/dM]. (46)

We note that while we maintain the 10−4 for our evaluations of σ , the accuracy
degrades to a value of 5× 10−3 for the halo mass function evaluation, primarily at
the high halo mass and high redshift domains. We find that this increased error
is acceptable, as the level of precision is significantly better than the accuracy of
current halo mass function models.

Finally, we note that formal tests for predictions in cosmologies with neutrinos are
not yet included. The support for neutrino cosmologies in the current release is
therefore not yet formally validated, although outputs have been informally com-
pared against other codes where available. Formal validation of this functionality
is ongoing.

CCL has a suite of test routines which, upon compilation, compare its outputs to the
benchmarks from code comparison. These are run with make check.

5. Examples for C implementation

Examples of how to run CCL are provided in the tests sub-directory of the library.
The first resource for a new user should be the ccl sample run.c file. This starts
by setting up the CCL default configuration. Then, it creates the “cosmo” struc-
ture, which contains distances and power spectra splines, for example. There are
example calls for routines that output comoving radial distances, the scale factor,
the growth factor and σ8. Toy models are created for the redshift distributions of
galaxies in the clustering and lensing samples, and for the bias of the clustering
sample (b(z) = 1 + z). These are used for constructing the “tracer” structures via
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CCL Cltracer, which can then be called to obtain the angular power spectra for
clustering, cosmic shear and galaxy lensing.

6. Python wrapper

A Python wrapper for CCL is provided through a module called pyccl. The whole
CCL interface can be accessed through regular Python functions and classes, with
all of the computation happening in the background through the C code. The func-
tions all support numpy arrays as inputs and outputs, with any loops being per-
formed in the C code for speed.

6.1. Python installation

Before you can build the Python wrapper, you must have compiled and installed
the C version of CCL, as pyccl will be dynamically linked to it. The Python wrap-
per’s build tools currently assume that your C compiler is gcc, and that you have
a working Python 2.x or 3.x installation with numpy and distutils with swig (the
latter is not necessary for using CCL, only for development). If you have installed
CCL in your default library path, you can build and install the pyccl module by going
to the root CCL directory and choosing one of the following options:

• To build and install the wrapper for the current user only, run
$ python setup.py install --user

• To build and install the wrapper for all users, run
$ sudo python setup.py install

• To build the wrapper in-place in the source directory (for testing), run
$ python setup.py build ext --inplace

If you choose either of the first two options, the pyccl module will be installed
into a sensible location in your PYTHONPATH, and so should be automatically picked
up by your Python interpreter. You can then simply import the module using
import pyccl. If you use the last option, however, you must either start your in-
terpreter from the root CCL directory, or manually add the root CCL directory to your
PYTHONPATH.

These options assume that the C library (libccl) has been installed somewhere
in the default library path. If this isn’t the case, you will need to tell the Python
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build tools where to find the library. This can be achieved by running the following
command first, before any of the commands above:

python setup.py build ext --library-dirs=/path/to/lib/

--rpath=/path/to/lib/

Here, /path/to/lib/ should point to the directory where you installed the C library.
For example, if you ran ./configure --prefix=/my/path/ before you compiled
the C library, the correct path would be /my/path/lib/. The command above will
build the Python wrapper in-place; you can then run one of the install commands,
as listed above, to actually install the wrapper. Note that the rpath switch makes
sure that the CCL C library can be found at runtime, even if it is not in the default
library path. If you use this option, there should therefore be no need to modify the
library path yourself.

On some systems, building or installing the Python wrapper fails with a message
similar to:

fatal error: ‘gsl/gsl interp2d.h’ file not found.

This happens when the build tools fail to find the directory containing the GSL
header files, e.g. when they have been installed in a non-standard directory.
To work around this problem, use the --include-dirs option when running the
setup.py build ext step above, i.e. if the GSL header files are in the directory
/path/to/include/, you would run

python setup.py build ext --library-dirs=/path/to/install/lib/

--rpath=/path/to/install/lib/ --include-dirs=/path/to/include/

and then run one of the setup.py install commands listed above. (Note: As
an alternative to the --include-dirs option, you can use -I/path/to/include

instead.)

You can quickly check whether pyccl has been installed correctly by running
python -c "import pyccl" and checking that no errors are returned. For a more
in-depth test to make sure everything is working, change to the tests/ sub-
directory and run python run tests.py. These tests will take a few minutes. No-
tice that these are not the same tests that are run via make check. In the case of
the python tests, the library will only check for finite outputs of the routines called
from pyccl. There is no benchmark comparison in this case.
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6.2. Python example

The Python module has essentially the same functions as the C library, just pre-
sented in a more standard Python-like way. You can inspect the available func-
tions and their arguments by using the built-in Python help() function, as with any
Python module.

Below is a simple example Python script that creates a new Cosmology object, and
then uses it to calculate the C`’s for a simple lensing cross-correlation. It should
take a few seconds on a typical laptop.

import pyccl as ccl

import numpy as np

# Create new Cosmology object with a given set of parameters. This keeps track

# of previously-computed cosmological functions

cosmo = ccl.Cosmology(Omega_c=0.27, Omega_b=0.045, h=0.67, A_s=2e-9, n_s=0.96)

# Define a simple binned galaxy number density curve as a function of redshift

z_n = np.linspace(0., 1., 200)

n = np.ones(z_n.shape)

# Create objects to represent tracers of the weak lensing signal with this

# number density (with has_intrinsic_alignment=False)

lens1 = ccl.ClTracerLensing(cosmo, False, n=(z_n, n))

lens2 = ccl.ClTracerLensing(cosmo, False, n=(z_n, n))

# Calculate the angular cross-spectrum of the two tracers as a function of ell

ell = np.arange(2, 10)

cls = ccl.angular_cl(cosmo, lens1, lens2, ell)

print cls

Further examples are collected in several Jupyter notebooks available in the
tests/ directory. These are:

Photo-z example.ipynb,

Power spectrum example.ipynb,

Distance Calculations Example.ipynb,
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HMFexample.ipynb,

Lensing angular power spectrum.ipynb,

Correlation.ipynb,

MCMC Likelihood Analysis.ipynb

Note that the likelihood analysis in the last notebook is not intended to be realistic,
but it gives an operational example of how CCL can be integrated into such an anal-
ysis. In particular, the notebook only considers cosmic shear over one wide redshift
bin and the covariance matrix adopted solely includes a contribution from cosmic
variance. The “data vector” is simply a simulated using CCL theoretical predictions.
For speed, theoretical predictions use the BBKS power spectrum plementation.

6.3. Technical notes on how the Python wrapper is implemented

The Python wrapper is built using the swig tool, which automatically scans the CCL

C headers and builds a matching interface in Python. The default autogenerated
swig interface can be accessed through the pyccl.lib module if necessary. A
more user-friendly wrapper has been written on top of this to provide more structure
to the module, allow numpy vectorization, and provide more natural Python objects
to use (instead of opaque swig-generated objects).

The key parts of the wrapper are as follows:

setup.py —This instructs swig and other build tools on how to find the right source
files and set compile-time variables correctly. Most of this information is provided
by header files and SWIG interface files that are included through the pyccl/ccl.i

interface file.

Note that certain compiler flags, like -fopenmp, are also set in setup.py. If you are
not using gcc, you may need to modify these flags (see the extra compile args

argument of the setup() function).

Interface (.i) files —These are kept in the pyccl/ directory, and tell swig which
functions to extract from the C headers. There are also commands in these files to
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generate basic function argument documentation, and remove the ccl prefix from
function names.

The interface files also contain code that tells swig how to convert C array argu-
ments to numpy arrays. For certain functions, this code may also contain a simple
loop to effectively vectorize the function.

The main interface file is pyccl/ccl.i, which imports all of the other interface files.
Most of the CCL source files (e.g. core.c) have their own interface file too. For other
files, mostly containing support/utility functions, swig only needs the C header (.h)
file to be specified in the main ccl.i file, however. (The C source file must also be
added to the list in setup.py for it to be compiled successfully.)

Python module files —The structure of the Python module, as seen by the user,
is organized through the pyccl/ init .py file, which imports only the parts of
the swig wrapper that are useful to the user. The complete autogenerated swig

interface can be accessed through the pyccl.lib sub-module if necessary.

Individual sub-modules from CCL are wrapped in their own Python scripts (e.g.
power.py), which typically provide a nicer “Pythonic” interface to the underlying
CCL functions and objects. This includes automatically choosing whether to use
the vectorized C function or not, as well as some conversions from Python ob-
jects to the autogenerated swig objects. Most of the core Python objects, like
Parameters and Cosmology, are defined in core.py. These objects also do some
basic memory management, like calling the corresponding ccl free * C function
when the Python object is destroyed.

Auto-generated wrapper files —The swig command is triggered when you run
setup.py, and automatically generates a number of C and Python wrapper files
in the pyccl/ directory. These typically have names like ccl *.c and ccl *.py,
and should not be edited directly, as swig will overwrite them when it next runs.

pyccl/pyutils.py —This file contains several generic helper functions for passing
numpy arrays in and out of Python functions in a convenient way, and for performing
error checking and some type conversions.

The build process will also create a pyccl/ccllib.py file, which is the raw autogen-
erated Python interface, and ccllib.so, which is a C library containing all of the
C functions and their Python bindings. A build/ directory and pyccl.egg-info/
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directory will also be created in the same directory as setup.py when you compile
pyccl. These (plus the pyccl/ ccllib.so file) should be removed if you want to do
a clean recompilation. Running python setup.py clean --all will remove some,
but not all, of the generated files.

7. Future functionality to be included

In the future, we hope that CCL will include other functionalities. Functionalities
which are currently under development:

• a link to angpow (Campagne et al. 2017) for going beyond the Limber approx-
imation,

• a link to FAST-PT (McEwen et al. 2016) for efficient implementation of nonlin-
ear perturbation theory,

• support for cosmologies with multiple unequal-mass neutrinos,

• and more power spectrum methods (see 3.7.8).

8. Feedback

If you would like to contribute to CCL or contact the developers, please do so through
the CCL github repository located at https://github.com/LSSTDESC/CCL.

9. Citing CCL

If you use CCL in your work, please provide a link to the repository and cite it as
LSST DESC (in preparation). For free use of the CLASS library, the CLASS devel-
opers require that the CLASS paper be cited: CLASS II: Approximation schemes,
D. Blas, J. Lesgourgues, T. Tram, arXiv:1104.2933, JCAP 1107 (2011) 034. The
CLASS repository can be found in http://class-code.net.

10. License

Copyright c©2017, the LSSTDESC CCL contributors are listed in the documenta-
tion (“research note”) provided with this software. The repository can be found at
https://github.com/LSSTDESC/CCL. All rights reserved.

https://github.com/LSSTDESC/CCL
http://class-code.net
https://github.com/LSSTDESC/CCL
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Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• Neither the name of CCL (https://github.com/LSSTDESC/CCL) nor the
names of its contributors may be used to endorse or promote products de-
rived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LI-
ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

We would like to thank the organisers of the the DESC collaboration meetings at:
Oxford (July 2016), SLAC (March 2016), and ANL (2015), and the LSST-DESC
Hack Week organisers (CMU, November 2016), where this work was partly devel-
oped. We would also like to acknowledge the contribution of the participants of
the TJP Code Comparison Project, some of whom are among the CCL contribu-
tors, for providing the benchmarks for testing CCL. Finally, we are grateful for the
feedback received from other working groups of DESC, including Strong Lensing,
Supernovae and Photometric Redshifts.
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Renée Hlozek: Contributed initial code for error handling structures, reviewed
other code edits.
Mustapha Ishak: Contributed to planning of code capabilities and structure;
reviewed code; identified and fixed bugs.
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