Stan Math Library  2.15.0
reverse mode automatic differentiation
binomial_logit_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LOG_HPP
3 
6 
7 namespace stan {
8  namespace math {
9 
13  template <bool propto,
14  typename T_n,
15  typename T_N,
16  typename T_prob>
18  binomial_logit_log(const T_n& n,
19  const T_N& N,
20  const T_prob& alpha) {
21  return binomial_logit_lpmf<propto, T_n, T_N, T_prob>(n, N, alpha);
22  }
23 
27  template <typename T_n,
28  typename T_N,
29  typename T_prob>
30  inline
32  binomial_logit_log(const T_n& n,
33  const T_N& N,
34  const T_prob& alpha) {
35  return binomial_logit_lpmf<T_n, T_N, T_prob>(n, N, alpha);
36  }
37 
38  }
39 }
40 #endif
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
return_type< T_prob >::type binomial_logit_log(const T_n &n, const T_N &N, const T_prob &alpha)

     [ Stan Home Page ] © 2011–2016, Stan Development Team.