Stan Math Library  2.15.0
reverse mode automatic differentiation
beta_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_BETA_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_BETA_LOG_HPP
3 
6 
7 namespace stan {
8  namespace math {
9 
30  template <bool propto,
31  typename T_y, typename T_scale_succ, typename T_scale_fail>
33  beta_log(const T_y& y,
34  const T_scale_succ& alpha, const T_scale_fail& beta) {
35  return beta_lpdf<propto, T_y, T_scale_succ, T_scale_fail>(y, alpha, beta);
36  }
37 
41  template <typename T_y, typename T_scale_succ, typename T_scale_fail>
43  beta_log(const T_y& y, const T_scale_succ& alpha,
44  const T_scale_fail& beta) {
45  return beta_lpdf<T_y, T_scale_succ, T_scale_fail>(y, alpha, beta);
46  }
47 
48  }
49 }
50 #endif
return_type< T_y, T_scale_succ, T_scale_fail >::type beta_log(const T_y &y, const T_scale_succ &alpha, const T_scale_fail &beta)
The log of the beta density for the specified scalar(s) given the specified sample size(s)...
Definition: beta_log.hpp:33
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27

     [ Stan Home Page ] © 2011–2016, Stan Development Team.