Stan Math Library  2.15.0
reverse mode automatic differentiation
skew_normal_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_SKEW_NORMAL_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_SKEW_NORMAL_LOG_HPP
3 
6 
7 namespace stan {
8  namespace math {
9 
13  template <bool propto,
14  typename T_y, typename T_loc, typename T_scale, typename T_shape>
16  skew_normal_log(const T_y& y, const T_loc& mu, const T_scale& sigma,
17  const T_shape& alpha) {
18  return skew_normal_lpdf<propto, T_y, T_loc,
19  T_scale, T_shape>(y, mu, sigma, alpha);
20  }
21 
25  template <typename T_y, typename T_loc, typename T_scale, typename T_shape>
26  inline
28  skew_normal_log(const T_y& y, const T_loc& mu,
29  const T_scale& sigma,
30  const T_shape& alpha) {
31  return skew_normal_lpdf<T_y, T_loc,
32  T_scale, T_shape>(y, mu, sigma, alpha);
33  }
34 
35  }
36 }
37 #endif
return_type< T_y, T_loc, T_scale, T_shape >::type skew_normal_log(const T_y &y, const T_loc &mu, const T_scale &sigma, const T_shape &alpha)
return_type< T_y, T_loc, T_scale, T_shape >::type skew_normal_lpdf(const T_y &y, const T_loc &mu, const T_scale &sigma, const T_shape &alpha)
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27

     [ Stan Home Page ] © 2011–2016, Stan Development Team.