
dchain tools.py

Hunter Ratliff Last updated: 29 July 2020

This document details the dchain tools.py Python 3 library of functions. Note that
this module is simply a collection of functions I have developed over time to speed up
my usage of PHITS and DCHAIN-PHITS; these functions are not officially supported
by the PHITS development team. They were developed to serve my own needs, and I
am just publicly sharing them because others may also find utility in them. I may more
professionally repackage and redistribute these functions in the future in a more standard
way. If I write any other notably useful functions related to DCHAIN in the future, I
will add them to this module.

While dchain tools.py contains a variety of functions, its primary intended usage is
with the process dchain simulation output() function which parses all of the relevant
DCHAIN output files for a simulation and returns a single Python dictionary object
(which can also be accessed in an attribute/class style thanks to the munch library)
containing all of the relevant output information in a much more accessible form.

1 Installation

The DCHAIN tools module is a single Python file called dchain tools.py and is just a
collection of functions. Place the dchain tools.py file in a desired location and add the
path to that folder to your PYTHONPATH system environmental variable if not already
included in it. Then, the functions can be accessed just like with any other Python library
by placing the following code at the top of any Python script:

1 from dchain_tools import *

And that’s it! There are a number of libraries which importing dchain tools will
also automatically import:

1 import numpy as np

2 import os

3 import sys

4 import matplotlib.pyplot as plt

5 import time

6 import re

7 import bisect

8 import unicodedata as ud

9 from munch import *

These libraries will likely be installed already in any Python environment, especially
if coming from a distribution including libraries such as Anaconda, unless it is brand new.

1



2 Available functions

Further documentation of all of these functions can be found at lindt8.github.io/DCHAIN-
Tools/ and within the dchain tools.py module itself, so this document will not seek to
rehash everything already written there. Instead, it serves to just highlight what func-
tions are available. How the main process dchain simulation output() function is
used is covered in the following section.

2.1 Nuclide/element formatting functions

• nuclide plain str to Dname - convert a plaintext string for a nuclide (written
in any of a large variety of sensible formats) to the format specifically used by
DCHAIN in its output. useful for searching for nuclides in output lists

• nuclide plain str ZZZAAAM - convert a plaintext string for a nuclide to an integer
ZZZAAAM nuclide identifying number (ZZZAAAM = Z·104 + A·10 + M)

• nuclide plain str to latex str - convert a plaintext string for a nuclide to a
LaTeX-formatted raw string useful for making plots and tables

• Dname to ZAM - converts a DCHAIN-formatted nuclide name to a ZZZAAAM

• ZAM to Dname - converts a ZZZAAAM to a DCHAIN-formatted nuclide name

• Dname to Latex - converts a DCHAIN-formatted nuclide name to LaTeX format

• Element Z to Sym - returns elemental symbol provided the atomic number Z

• Element Sym to Z - returns an atomic number Z provided the elemental symbol

• Element ZorSym to name - returns a string of the full name of an element provided
its atomic number Z or symbol

• Element ZorSym to mass - returns the average atomic mass of an element provided
its atomic number Z or symbol

2.2 Relating to DCHAIN data libraries

• rxn to dchain str - converts a reaction to the format used by the neutron reaction
cross section libraries in DCHAIN

• ZZZAAAM to dchain xs lib str - converts a ZZZAAAM number to the 7-character
nuclide string used by the neutron reaction cross section libraries

• ECCO1968 Ebins - returns the n highest energy bins of ECCO 1968-group structure

• retrieve rxn xs from lib - returns the cross section for a specified reaction from
a provided DCHAIN neutron reaction cross section library file

• calc one group nrxn xs dchain - provided a neutron flux, reaction, and library
file, determine the single-group neutron reaction cross section

2

https://lindt8.github.io/DCHAIN-Tools/
https://lindt8.github.io/DCHAIN-Tools/


2.3 DCHAIN output file parsing

• process dchain simulation output - the main master function for parsing all
output from DCHAIN, restructuring it, and placing it into a single dictionary object

• parse DCHAIN act file - parser for the *.act file from DCHAIN

• generate nuclide time profiles - processes output from parse DCHAIN act file

to turn raw nuclide output into a more usable / more easily referenced format

• parse DCHAIN act file legacy - legacy version of parse DCHAIN act file from
before statistical uncertainty propagation implementation

• generate nuclide time profiles legacy - legacy version from before statistical
uncertainty propagation implementation of generate nuclide time profiles

• parse DCS file from DCHAIN - parser for the *.dcs file from DCHAIN

• parse dtrk file - parser for the *.dtrk file from PHITS meant for DCHAIN

• parse dyld files - parser for the *.dyld files from PHITS meant for DCHAIN

• plot top10 nuclides - generates a nice visualization on the ranking of nuclides
across a desired axis (activity, decay heat, etc.) over time or over regions

3 Primary function usage

As mentioned earlier, process dchain simulation output() is the primary function in
this library; most of the other functions serve to just be called by this one (but still work
fine standalone). It returns one output, referred to just as dchain output, which will be
discussed in detail later. The five inputs (2 mandatory, 3 optional) are detailed below.

Inputs for process dchain simulation output()

simulation folder path text string of path to folder containing simulation output
(if not an empty string, it should end with / or \)

simulation basename common string of the DCHAIN simulations; output files
are named simulation basename.*. This string is also
what is entered in the file variable in the [T-Dchain] tally,
without any extension included.

dtrk filepath (optional) file path to *.dtrk file, only necessary if it has
a different basename and there are multiple *.dtrk files in
the simulation folder

dyld filepath (optional) file path to *.dyld file(s), only necessary if it has
a different basename and there are multiple *.dyld files in
the simulation folder

process DCS file (optional) Boolean variable specifying whether the DCS
file should be processed too. As this file can sometimes
be quite large, for performance reasons its processing is
disabled by default. (default=False)

3



The process dchain simulation output() function primarily serves to parse the
*.act main output file of DCHAIN but can also read the *.dcs file and will automatically
attempt to read the PHITS-generated *.dtrk and *.dyld files. (The PHITS-generated
files are mostly useful for diagnostic and secondary purposes.)

To make this usage more clear, a brief example will now be covered. In this ex-
ample, the initial PHITS simulation input file was located in a folder whose path is
C://path/to/simulation/folder/, and the [T-Dchain] tally had file = example.in

set as the name of the DCHAIN input file to be automatically generated. After com-
pleting the PHITS simulation (resulting in example.in, example.dyld, example.dtrk,
and dch link.dat being written), the DCHAIN input file was ran through DCHAIN
without moving or renaming any files (resulting in a number of files named example.*

being produced). After this, the below Python code is used to extract the results from
the output files.

1 from dchain_tools import *

2

3 folder_path = r'C:\path\to\simulation\folder \\'
4 simulation_name = 'example ' # note: no extension included

5

6 dchain_output = process_dchain_simulation_output(folder_path ,

simulation_name ,process_DCS_file=True)

7

8 # print list of all nuclides (formatted as plain text strings) found in

the first region across all times

9 print(dchain_output['nuclides ']['names '][0]) # dictionary -style access

10

11 # print the total activity and its absolute error in the first region

and first time step

12 print(dchain_output.nuclides.total.activity.value [0][0] , dchain_output.

nuclides.total.activity.error [0][0]) # attribute -style access

13

14 # find the activity of Na22 in the 2nd region at the 5th time step

15 ri = 1 # region index

16 ti = 4 # time index

17 # get desired nuclide name formatted in DCHAIN syntax

18 Na22_Dname = nuclide_plain_str_to_Dname('Na -22')
19 # determine index of desired nuclide among all nuclides in this region

20 Na22_index = dchain_output['nuclides ']['names '][ri]. index(Na22_Dname)
21 # now extract the activity value

22 A_Na22 = dchain_output.nuclides.activity.value[ri][ti ,Na22_index]

23 print('A(Na -22) in [Bq/cc] in region 2 at 5th output time: ',A_Na22)

The dchain output variable is a Python dictionary containing all of the relevant val-
ues outputted by DCHAIN. It has been “munchified” by the munch library too, meaning
it can be accessed both as a normal Python dictionary or in the attribute style associ-
ated with classes. Generally, all entries are either single values, lists of values, or lists of
NumPy arrays. For most outputs, this is of the form of a list containing elements for each
region where each element is either a single string/value or a NumPy array/list further
dividing results by time, nuclide species, etc. This dictionary is structured as outlined
below. While the parts relevant to the *.act file are always written, the sections relevant
to the other files are only written if the files are found / their parsing is requested (in the
case of the *.dcs file). A more convenient version of this information for general reference
or printing can be found in the accompanying dchain tools output structure.pdf file.

4



1

2 # Notation for output array dimensions

3 # R regions

4 # T time steps

5 # N max number of nuclides found in a single region

6 # E number of gamma energy bins

7 # le10 for top 10 lists , a number <= 10

8

9

10 dchain_output = {

11 'time':{ # ~ Time information

12 'from_start_sec ' # [T] list of times from start time [sec]

13 'from_EOB_sec ' # [T] list of times from end of final bombardment [sec]

14 'of_EOB_sec ' # scalar time marking end of final bombardment [sec]

15 }

16

17 'region ':{ # ~ Information which only varies with region

18 'numbers ' # [R] region numbers

19 'number ' # [R] region numbers

20 'irradiation_time_sec ' # [R] irradiation time per region

21 'volume ' # [R] volume in [cc] per region

22 'neutron_flux ' # [R] neutron flux in [n/cm^2/s] per region

23 'beam_power_MW ' # [R] beam power in [MW] per region

24 'beam_energy_GeV ' # [R] beam energy in [GeV] per region

25 'beam_current_mA ' # [R] beam current in [mA] per region

26 }

27

28 'nuclides ':{ # ~ Main nuclide results from *.act file

29 'names ' # [R][N] names of nuclides produced in each region

30 'TeX_names ' # [R][N] LaTeX -formatted names of nuclides produced

31 'ZZZAAAM ' # [R][N] ZZZAAAM values (=10000*Z+10*A+M) of nuclides

32 # (ground state m=0, metastable m=1,2,etc.)

33 'half_life ' # [R][N] half lives of nuclides produced [sec]

34 'inventory ':{'value ' # [R][T,N] atoms [#/cc]

35 'error '} # [R][T,N] atoms [#/cc]

36 'activity ':{'value ' # [R][T,N] activity [Bq/cc]

37 'error '} # [R][T,N] activity [Bq/cc]

38 'dose_rate ':{'value ' # [R][T,N] dose -rate [uSv/h*m^2]

39 'error '} # [R][T,N] dose -rate [uSv/h*m^2]

40 'decay_heat ':{
41 'total ':{'value ' # [R][T,N] total decay heat [W/cc]

42 'error '} # [R][T,N] total decay heat [W/cc]

43 'beta':{'value ' # [R][T,N] beta decay heat [W/cc]

44 'error '} # [R][T,N] beta decay heat [W/cc]

45 'gamma ':{'value ' # [R][T,N] gamma decay heat [W/cc]

46 'error '} # [R][T,N] gamma decay heat [W/cc]

47 'alpha ':{'value ' # [R][T,N] alpha decay heat [W/cc]

48 'error '} # [R][T,N] alpha decay heat [W/cc]

49 }

50 'column_headers ' # Length 7 list of the *.act columns ' descriptions

51 'total ':{ # ~ Total values summed over all nuclides

52 'activity ':{'value ' # [R][T] total activity [Bq/cc]

53 'error '} # [R][T] total activity [Bq/cc]

54 'decay_heat ':{'value ' # [R][T] total decay heat [W/cc]

55 'error '} # [R][T] total decay heat [W/cc]

56 'beta_heat ':{'value ' # [R][T] total beta decay heat [W/cc]

57 'error '} # [R][T] total beta decay heat [W/cc]

58 'gamma_heat ':{'value ' # [R][T] total gamma decay heat [W/cc]

59 'error '} # [R][T] total gamma decay heat [W/cc]

60 'alpha_heat ':{'value ' # [R][T] total alpha decay heat [W/cc]

61 'error '} # [R][T] total alpha decay heat [W/cc]

62 'activated_atoms ':{'value ' # [R][T] total activated atoms [#/cc]

63 'error '} # [R][T] total activated atoms [#/cc]

64 'gamma_dose_rate ':{'value ' # [R][T] total gamma dose rate [uSV/h*m^2]

65 'error '} # [R][T] total gamma dose rate [uSV/h*m^2]

66 }

67 }

68

69

70 'gamma ':{ # ~ Gamma spectra and totals

71 'spectra ':{
72 'group_number ' # [R][T,E] group number

5



73 'E_lower ' # [R][T,E] bin energy lower -bound [MeV]

74 'E_upper ' # [R][T,E] bin energy upper -bound [MeV]

75 'flux':{'value ' # [R][T,E] flux [#/s/cc]

76 'error '} # [R][T,E] flux [#/s/cc]

77 'energy_flux ':{'value ' # [R][T,E] energy flux [MeV/s/cc]

78 'error '} # [R][T,E] energy flux [MeV/s/cc]

79 }

80 'total_flux ':{'value ' # [R][T] total gamma flux [#/s/cc]

81 'error '} # [R][T] total gamma flux [#/s/cc]

82 'total_energy_flux ':{'value ' # [R][T] total gamma energy flux [MeV/s/cc]

83 'error '} # [R][T] total gamma energy flux [MeV/s/cc]

84 'annihilation_flux ':{'value ' # [R][T] annihilation gamma flux [#/s/cc]

85 'error '} # [R][T] annihilation gamma flux [#/s/cc]

86 'current_underflow ':{'value ' # [R][T] gamma current underflow [#/s]

87 'error '} # no error reported

88 'current_overflow ':{'value ' # [R][T] gamma current overflow [#/s]

89 'error '} # no error reported

90 }

91

92 'top10 ':{ # ~ Top 10 lists from *.act file

93 'activity ':{
94 'rank' # [R][T,le10] rank

95 'nuclide ' # [R][T,le10] nuclide name

96 'value ' # [R][T,le10] activity [Bq/cc]

97 'error ' # [R][T,le10] activity [Bq/cc]

98 'percent ' # [R][T,le10] percent of total activity

99 }

100 'decay_heat ':{
101 'rank' # [R][T,le10] rank

102 'nuclide ' # [R][T,le10] nuclide name

103 'value ' # [R][T,le10] decay heat [W/cc]

104 'error ' # [R][T,le10] decay heat [W/cc]

105 'percent ' # [R][T,le10] percent of total decay heat

106 }

107 'gamma_dose ':{
108 'rank': # [R][T,le10] rank

109 'nuclide ' # [R][T,le10] nuclide name

110 'value ' # [R][T,le10] dose -rate [uSv/h*m^2]

111 'error ' # [R][T,le10] dose -rate [uSv/h*m^2]

112 'percent ' # [R][T,le10] percent of total gamma dose rate

113 }

114 }

115 'number_of ':{ # ~ Maximum values of R, T, N, and E

116 'regions ' # R = total number of regions

117 'time_steps ' # T = total number of time steps

118 'max_nuclides_in_any_region ' # N = maximum unique nuclides found in any region

119 'gamma_energy_bins ' # E = number of gamma energy bins (default =42)

120 }

121 }

122

123 if process_dtrk_file: dchain_output.update ({

124 'neutron ':{ # ~ Neutron spectra and totals

125 'spectra ':{ # - Actual values used in DCHAIN

126 'E_lower ' # [R][E] bin energy lower -bound [MeV]

127 'E_upper ' # [R][E] bin energy upper -bound [MeV]

128 'flux':{'value ' # [R][E] neutron flux [#/s/cm^2]

129 'error '} # [R][E] neutron flux [#/s/cm^2]

130 }

131 'total_flux ':{'value ' # [R] total neutron flux [#/s/cm^2]

132 'error '} # [R] total neutron flux [#/s/cm^2]

133 'unit_spectra ':{ # - Flux per unit source particle (raw *.dtrk output)

134 'E_lower ' # [R][E] bin energy lower -bound [MeV]

135 'E_upper ' # [R][E] bin energy upper -bound [MeV]

136 'flux':{'value ' # [R][E] neutron flux [#/s/cm^2/s.p.]

137 'error '} # [R][E] neutron flux [#/s/cm^2/s.p.]

138 }}})

139

140 if process_dyld_files:

141 dchain_output.update ({

142 'yields ':{ # ~ Yield spectra

143 'all_names ' # [N] names of all nuclides produced

144 'names ' # [R][N] names of nuclides produced in each region

145 'TeX_names ' # [R][N] LaTeX -formatted names of nuclides produced

6



146 'ZZZAAAM ' # [R][N] ZZZAAAM values (=10000Z+10A+M) of nuclides

147 # (ground state m=0, metastable m=1,2,etc.)

148 'rate':{ # - Actual values used in DCHAIN (at 100% beam power)

149 'value ' # [R][E] nuclide yield rate [#/s/cm^3]

150 'error ' # [R][E] nuclide yield rate [#/s/cm^3]

151 }

152 'unit_rate ':{ # - Yields per unit source particle

153 'value ' # [R][E] nuclide yield rate [#/s.p.]

154 'error ' # [R][E] nuclide yield rate [#/s.p.]

155 }}})

156

157 if process_DCS_file: # add extra information

158 # Notation for output array dimensions

159 # R (n_reg) regions

160 # Td (ntsteps) time steps in DCS file (usually different from that of *.act file!)

161 # Nd (nnuc_max) max number of nuclides (this index differs from the *.act N index)

162 # C (chni_max) maximum index of relevant chains

163 # L (chln_max) maximum number of links per chain

164

165 dchain_output.update ({

166 'DCS':{
167 'time':{
168 'from_start_sec ' # [Td] list of times from start time [sec]

169 'from_EOB_sec ' # [Td] list of times from end of final bombardment [sec]

170 'of_EOB_sec ' # scalar time marking end of final bombardment [sec]

171 }

172

173 'number_of ':{ # ~ Maximum values of R, Td, Nd, C, and L

174 'regions ' # R = total number of regions

175 'time_steps ' # Td = total number of time steps

176 'max_nuclides ' # Nd = max number of end nuclides in any time step

177 'max_number_of_chains ' # C = highest index of a relevant chain found

178 'max_chain_length ' # L = max number of links (nuclides) in any chain

179 }

180

181 'end_nuclide ':{ # ~ Informtaion on nuclides at the end of each chain

182 'names ' # [R][Td,Nd] nuclide names

183 'inventory ':{
184 'N_previous ' # [R][Td,Nd ,C] inventory in previous time step [atoms/cc]

185 'N_now ' # [R][Td,Nd ,C] inventory in current time step [atoms/cc]

186 'dN' # [R][Td,Nd ,C] change in inventory of end nuclide from

187 # previous to current time step [atoms/cc]

188 }

189 'activity ':{
190 'A_previous ' # [R][Td,Nd ,C] activity in previous time step [Bq/cc]

191 'A_now ' # [R][Td,Nd ,C] activity in the current time step [Bq/cc]

192 'dA' # [R][Td,Nd ,C] change in activity of end nuclide from

193 # previous to current time step [Bq/cc]

194 }

195 }

196

197 'chains ':{ # ~ Chains , individual links , and their contributions

198 'indices_of_printed_chains ' # [R][Td,Nd] the chain indices which were printed

199 'length ' # [R][Td,Nd ,C] length of listed chain

200 'link_nuclides ' # [R][Td,Nd ,C,L] strings of the nuclides in each chain

201 'link_decay_modes ' # [R][Td,Nd ,C,L] strings of the decay modes each link

202 # undergoes to produce the next link

203 'link_dN ':{ # (only generated if values in file , 'None' otherwise)

204 'beam' # [R][Td,Nd ,C,L] beam contribution to dN from each link

205 'decay_nrxn ' # [R][Td,Nd ,C,L] decay + neutron rxn contribution to dN

206 'total ' # [R][Td,Nd ,C,L] total contribution to dN from each link

207 }

208 }

209

210 'relevant_nuclides ':{ # ~ A vs t profiles of nuclides over relevancy threshold

211 'names ' # [R] list of relevant nuclides per region

212 'times ' # [R][Td,Nd] time [s]

213 'inventory ' # [R][Td,Nd] inventory [atm/cc]

214 'activity ' # [R][Td,Nd] activity [Bq/cc]

215 }

216 }})

dchain tools output structure

7


	Installation
	Available functions
	Nuclide/element formatting functions
	Relating to DCHAIN data libraries
	DCHAIN output file parsing

	Primary function usage

