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ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning
the weights of large foundation models, and has become the go-to method for data-driven
customization of LLMs. Despite the promise of highly customized behaviors and capabilities,
switching between relevant LoRAs in a multiturn setting is highly inefficient, as the key-
value (KV) cache of the entire turn history must be recomputed with the LoRA weights
before generation can begin. To address this problem, we propose Activated LoRA (aLoRA),
which modifies the LoRA framework to only adapt weights for the tokens in the sequence
after the alLLoRA 1is invoked. This change crucially allows aLoRA to accept the base model’s
KV cache of the input string, meaning that alLoRA can be instantly activated whenever
needed in a chain without recomputing the cache. This enables building what we call
intrinsics, i.e. highly specialized models invoked to perform well-defined operations on
portions of an input chain or conversation that otherwise uses the base model by default.
We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy
with standard LoRA while achieving significant inference benefits. The codebase is at
https://github.com/IBM/activated-lora.

1 INTRODUCTION

The rapid adoption of large language models (LLMs) has catalyzed significant advancements in natural
language processing tasks, from text generation to knowledge extraction. However, adapting these models
to specific tasks or domains often demands fine-tuning their immense parameter space, a process that is
computationally expensive and difficult to scale. Low-Rank Adaptation (LoRA)Hu et al.|(2021]) has addressed
these challenges by introducing a parameter-efficient method for fine-tuning Houlsby et al|(2019), enabling
highly customized model behavior without the need to retrain or modify the entire model. By optimizing
a small subset of low-rank matrices, LoRA has emerged as a lightweight and effective alternative for task-
specific customization, particularly for large foundation models. Yet, while LoRA excels in static or single-task
scenarios, it presents inefficiencies when applied in multiturn interactions, where dynamic switching between
multiple LoRA configurations is required in agentic or reasoning pipelines.

This inefficiency arises from the necessity to recompute the representation of all tokens prior to generation
when switching between LoRA weights. In the case of the popular attention mechanism introduced by Vaswani
et al.|(2017), such a representation takes the form of the key-value (KV) cache of such prior tokens, but more
generally, it is a problem that reoccurs even in different architectures; for example, in a state-space model, the
state representation of the tokens prior to generation would need to be recomputed if the matrices A and B
are updated by a low rank correction. This recalculation introduces significant latency, GPU memory, and
computational overhead that all scale with the length of the context that must be prefilled. This limits LoRA’s
usability in scenarios where rapid transitions between specialized behaviors are essential.

If only a few specialized behaviors are needed, all needed tasks can in principle be trained into the LoRA
while retaining as much of the base model behavior as possible (here the LoRA would be used for all parts of
the pipeline), but this solution has major limitations. In particular, by modifying the weights of the model
for model calls that are best handled by the base model, performance degradation is likely on those tasks.
Additionally, multi-task LoRA training is significantly more difficult than training a LoRA for a single task,
and this approach is inherently non-modular, requiring complete retraining to incorporate new intrinsics
abilities.

Addressing this inability to reuse the base model representation of the tokens prior to generation, we introduce
Activated LoRA (aLoRA), a novel extension of the LoRA framework designed to dynamically adapt the
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model’s weights for tokens encountered after activation. By decoupling the adaptation process from the
need to recompute the input’s representation, alLoRA facilitates instantaneous switching between specialized
models—or “intrinsics”—while maintaining seamless interaction with the base model. This innovation not
only reduces computational costs but also unlocks new possibilities for deploying highly modular, task-specific
behaviors within complex workflows.

1.1 BACKGROUND

We will illustrate the concept behind activated LoRA in the context of the ubiquitous attention mechanism
introduced by |Vaswani et al.|(2017)).

The Attention Mechanism Recall that the attention mechanism in each attention layer in LLMs (see Figure
[T]for a typical architecture) generally takes the form

Attention(Q, K, V') = softma (QKT ) V. (1)
1 s 1N, - X )
Vdy
where d, is the dimension and ), K, V' are concatenated queries, keys, and values for the input tokens:
Q=XW° K=xwkK, v=xwVY 2

where W®, WX, and WV are weight matrices.
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Figure 1: A generic LLM architecture.

LLM inference and the KV cache LLMs generate tokens autoregressively one at a time. While we do
not write out the full equations here, note that generating this next token only requires computing the last
row of this attention matrix if the keys and values of all prior tokens are precomputed (e.g. from when they
were generated themselves or prefilled). This is because the last row of the attention matrix only uses the last
row of @, but the entire K and V matrices. These precomputed K and V' values are called the KV cache.
This observation creates significant speedups for LLM inference and is the key to all modern LLM inference
engines.

LoRA LoRA adapts the attention weights W<, W and WV by replacing them with W@ +A®Q, WE L AKX
and WY 4+ AV, where A9, AKX Ay are rank 7 matrices. This yields
Q=XW?+A9), K=xWEL+AF) v=xw"+A"). 3)

This lowers the number of parameters, making finetuning significantly more efficient|Hu et al.| (2021). If the
LoRA is active for the entire chain, then the KV cache-based inference applies and generation is efficient. If,
on the other hand, any part of the input was generated or prefilled by the base model or another LoRA, then
the KV cache for the input must be recomputed.

2 INTRINSICS AND LATE PROMPTS

Within the discipline of software engineering, intrinsics are generally useful functions that are built into a
programming language whose implementation can be optimized by a compiler. We define an LLM intrinsic to
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be a capability that can be invoked through a well defined API that is reasonably stable and independent across
model generations and families of how the intrinsic is implemented. Performance metrics such as accuracy,
latency and throughput may vary significantly across such implementations.

The concept of activated LoRA takes an opinionated view on how such differentiated performance could be
attained. As inspiration, we note that instructions in LLMs can appear in many places in a prompt; Figure
[2)illustrates an example of two such places: an “early prompting” case where the instruction precedes the
content, or a “late prompting” case where the content precedes the instruction. In the latter, the instruction
does not have to be revealed ahead of time, making the representation of the content potentially useful for
many tasks. We note that these paradigms can take on many shapes; for example, early prompting could just
as well be substituted by prefix tuning methods such as|Li and Liang|(2021) with the same overall outcome.

The reader may appreciate that a LoRA adapter, like the prefix tuning example above, shares some similarities
with the early prompting concept; the LLM’s internal representation of the content is fit-for-purpose, specific to
the LoRA adapter and not easily reusable. Late prompts, on the other hand, suffer from a potential disadvantage
compared to early prompts since there is no opportunity for the content to be represented with the specific
task in mind. Can we find a LoRA-like techology, that gives us the benefits of late prompts with none of the
potential accuracy disadvantages?

In the following section, we will address this shortcoming, presenting our Activated LoRA method, which
activates adapted weights only on tokens corresponding to the intrinsic instruction and generation.

early prompting instruction content answer

late prompting content instruction answer

Figure 2: Late vs. early prompting framework for intrinsics. The aLoRA adapter architecture is designed to
preserve the cache-reuse benefits of late prompting by adapting weights only on the red tokens, allowing it to
reuse the base model cache for the blue input tokens.

3 ACTIVATED LORA

Our Activated LoRA (aLoRA) framework addresses this shortcoming. Just as in LoRA, alLoRA adapts the
attention weights W@, WX and WV by replacing them with W + AQ, WK 4 AK and WV + AV, where
AR AK AV are rank 7 matrices. The difference lies in how these adapted weights are used. We assume that
the the default generation model for the chat is the base model, and that intrinsics only operate on these base
model generations. As a result, we can assume that the base model has precomputed a KV cache for the input
context (the blue region in Figure [2).

The aLoRA architecture is designed to directly reuse this base model KV cache. In the attention mechanism
(1), aLoRA only adapts the @), K, V' matrices for tokens occurring after the start of the invocation sequence.
Specifically, instead of (3) we have

Q _ XbeforeWQ K — XbeforeWK V= XbeforeWV (4)
Xafter(WQ + AQ) ’ Xafter(WK + AK) ’ Xafter(WV + AV) ’

where Xpefore and X, rier are the portions of X coming before and after the alLoRA model is invoked. Note
that if X, rore 1s associated with tokens generated or prefilled by the base model, then XbefomWK and
Xbpe foreWV are already in the KV cache and do not need to be recomputed. Similarly, any tokens that have
been prefilled or generated by the aLoRA model have keys and values processed by the adapted weights, so
Xafter(WHE + AR and X prer (WY 4+ AY) are also available (except for the current token being generated).
As a result, the aLoRA architecture can seemlessly reuse the existing base model KV cache as well as continue
to maintain its own KV cache as it generates.

Note that the late prompting framework for intrinsics is highly amenable to supervised finetuning of aLoRA
via data collators, and furthermore ensures that the tokens affected by the aLoRA are isolated to only the
answer. As a result, once the alLoRA is turned off and the base model resumes generation, the base model
can either resume from its own cache where the aLoRA began, or prefill the (usually short) answer from the
aLoRA if needed.
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3.1 INVOCATION

We found it useful to demarcate the activation of the alLoRA adapter via an invocation token sequence. While
the aLoRA will often be invoked programmatically by the runtime, this design in principle allows for the base
model (or other intrinsics) to call the aLoRA model themselves. In our current implementation, except for the
1-token experiments below, the alLoRA weights are activated at the start of the invocation sequence, since
it is typically inserted by the runtime and may not have a KV cache precomputed. Note that the invocation
sequence is optional in principle, i.e. it can be an empty string.

The invocation sequence has several additional benefits. The invocation sequence can be designed to

* Conform to the chat template (for instance by making the aLoRA response its own turn with a
specialized role)

* Provide a short prompt to aid the learning process (the name of the intrinsic may be enough)

* Give the adapter weights more tokens to process the input prior to generating the output, possibly
improving performance.

3.2 TRAINING AND HUGGINGFACE IMPLEMENTATION

Our implementation of alLoRA is at https://github.ibm.com/Kristjan-H-Greenewald/
activated-lora/tree/main. It seamlessly supports standard Huggingface training libraries |Wolf
et al.|(2019) as well as inference/generation methods (with or wit hout using available base model KV cache)
if needed (e.g. for testing or proofs of concept when the efficiencies of vVLLM |Zhu et al.|(2023) are not needed).
Later in this section, we will also show inference experiments using our modification of the more efficient
(SOTA) inference package vLLM to support aLoRA.

Training data is specified as a set of (possibly multiturn) inputs and single-turn completions, typically with
the base model’s chat template applied. An invocation token sequence for the alLoRA model is optionally
specified as described in the previous section. This invocation sequence is appended to the input sequence, and
the model is finetuned to produce the output given the input.

To train the alLoRA adapter, a base model is specified, and we permit low-rank adapters to be applied to any
(or all) query, key, and value blocks in the attention layers[] In training, the aLoRA is aware of which tokens
occur before the invocation sequence, and does not adapt the weights for those tokens (as in (@)).

Generation with aLoRA is inherently simple due to the structure (@). When generating with the cache, the
model simply uses the concatenation of the input base model KV cache with its own cache.

3.3 MODEL CAPACITY AND INCREASED RANK

In our experiments, we universally observed that aLoRA adapters required higher rank than LoRA adapters to
get good performance. We offer the following intuition for this. LoRA adapters are free to adapt the weights
for the keys and values for tokens prior to activation, so they are able to “compress” information needed
for generation into the low-rank signal captured by the adaptation. This signal can then be “picked up” by
the adapted query weights for generated tokens. On the other hand, alLoRA adapters are not able to do this
compression, only being able to access base model KVs with adapted query weights. Hence, if the query
adaptation is too low rank, it is not able span enough of the base model keys to capture all needed information.
Figure[3]illustrates this. In our experiments, rank of 32 seems to be sufficient in most cases, which is still vastly
smaller than the size of the base model. Whenever comparing to LoORA models, we chose a LoRA rank that
achieved top performance for LoRA, rather than attempting to match the ranks between LoRA and alLoRA.

Note that the above provides the key motivation for starting the adapted weights at the intrinsic instruction
tokens, rather than waiting to activate the weights only at generation time—this choice boosts model capacity.

3.4 COMPARISON TO LORA AT INFERENCE TIME

In Figure ] we illustrate how computation and memory differ in LoRAs versus aLoRA in a simple agent
pattern. A prompt (blue) is passed to a model which then prefills the corresponding KV cache, and then
generates an answer (green). The task is now to evaluate the answer; in this example, two different hypothetical

'We do not currently support adapting any other blocks.
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(a) LoRA is able to modify the (K)Vs of the context to send (new) messages forward to the generation queries
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(b) aLLoRA is not able to do this (for the context), it can only look back at it with queries (Q).

Figure 3: ALoRA model capacity losses due to not being able to modify the keys and values of input tokens
prior to the invocation sequence to send “messages” forward to the generation step. We will see empirically
that any performance losses can be eliminated by increasing the rank of the adapter.

evaluators are used. An example of such evaluations may be to determine if the answer is faithful to the content
provided, or how certain the model is of the answer, given the content. If these evaluators are implemented
using LoRAs (Figure[4), then to generate the evaluations, new KV cache computations need to be performed,
independently for each evaluator. In the case of aLoRAs (Figure ), the KV cache of the underlying model is
reused, resulting in significant savings.

To prove this point experimentally, we modified vLLM [Zhu et al.|(2023) to be able to do inference on activated
LoRAs, trained four regular and activated LoRAs, and created a synthetic benchmark where the prompt length
and the number of evaluators is varied. In Figure[5| we see the results of the experiment for the setting where
the answer is comprised of 256 tokens and each evaluation is given by 16 tokens. The plots depict the total
time processing the input prompts divided by the number of such prompts for IBM’s Granite 3.2 8 billion
parameter instruct model (Granite 3.2 8b Instruct).

Note that the performance of activated LoRA changes very little as one adds more evaluators (more aLoRA
adapted models in parallel), but the performance of regular LoRAs drops significantly as more adapters are
added. This trend is consistent across all prompt lengths, showing very significant savings when using activated
LoRA in this regime. We also emphasize that the use of aLoRA as an evaluator is for illustrative purposes;
aLLoRAs can also be used to generate steps in a reasoning process or a final answer in the case of more complex
agent applications.

4 TRAINING ADAPTERS

In this section, we trained aLoRA adapters for IBM’s Granite 3.2 8b Instruct model, and compared their
performance to performance achieved on trained LoRA models. As the LoRA models cannot re-use the base
model cache, deploying them is not efficient, but serves as an accuracy benchmark to ensure aLoRA does not
lose too much performance.

For alLoRA, all attention weights (keys, queries, values) were adapted in all layers, using rank 32 adapters.
For both LoRA and alLoRA, the learning rate and number of epochs were tuned to achieve the best validation
performance.

Note that since all the below models use the same base model (IBM’s Granite 3.2 8b Instruct), they can be
swapped in and out as needed in the same flow. The reader can envision the possibilities of what can be
built with these intrinsics, e.g. for RAG. See Danilevsky et al.|(2025) for an exploration of composing these
intrinsics (using LoRAs).
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prompt answer evaly evaly

prompt answer evaly eval

Figure 4: Computation and memory pattern of (a) LoRA vs. (b) aLoRA used as evaluators of an answer given
by a base model. Narrow rectangles denote tokens and wide rectangles denote the KV cache. Significant GPU
compute and memory savings can be realized because aLoRA can reuse the base model cache.
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Figure 5: Comparison of alLoRA and LoRA as one varies the number of adapters, for a simple agent pattern.
The experiment exemplifies that aLoRA scales much more efficiently than LoRA for this task.

Comparing LoRA and aLoRA To test the aLoRA framework, we consider several specific intrinsics tasks.
Most of these intrinsics tasks were proposed or discussed in[Danilevsky et al.| (2023) , see that paper for deeper
motivation for each intrinsic and extensive experimental results comparing standard LoRA implementations
to other baselines. In this work, we therefore focus entirely on the comparison between LoRA and alLoRA
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performance, aiming to show that aLoRA models do not see meaningful degradation vs. LoRA models, while
obtaining significant runtime benefits as discussed above.

See the appendices for additional details for the tasks and intrinsics.

4.1 UNCERTAINTY QUANTIFICATION

This intrinsic is designed to provide a Certainty score for model responses to user questions. The model will
respond with a number from 0 to 9, corresponding to 5%, 15%, 25%.,...95% confidence respectively. Training
data for these confidence scores are obtained by applying the UQ calibration method of [Shen et al.| (2024a)) to
a large, diverse set of benchmark question answering datasets (see appendix) and quantizing the predicted
confidences. Further details on the training process are in the appendix.

Certainty score interpretation The returned percentages are calibrated in the following sense: given a
set of answers assigned a certainty score of X%, approximately X% of these answers should be correct.
Here “approximately" can be quantified via the expected calibration error, or ECE. Essentially what happens
is teaching the adapter model what the base model knows and doesn’t know. This inherently requires
generalization to questions of wildly varying difficulty (some of which may be trick questions!) and to settings
not in training. Intuitively, it does this by extrapolating based on related questions it has been evaluated on in
training - this is an inherently inexact process and leads to some hedging.

Usage Note that the model is evaluating responses from its base model - in other words, it cannot be applied
to generations from other models. The aLoRA architecture is thus particularly well-suited to this use case. In
practice, the goal is to provide a highly efficient uncertainty score without having to resort to expensive larger
judge models.

Metrics The Uncertainty Quantification intrinsic returns an ordinal score, so we compute the mean absolute
error between the predicted integer and the target integer in the training data.

Performance Results Results are shown in Figure[6] Note that performance is largely unchanged using
aLoRA instead of standard LoRA.

LoRA aL.oRA
Uncertainty Quantification | 0.50 MAE | 0.49 MAE

Figure 6: Comparison between LoRA and alLoRA test error for the Uncertainty Quantification intrinsic. Note
that alLoRA does not lose meaningful performance.

4.2 ANSWERABILITY DETERMINATION

This intrinsic is designed to assess whether a user’s final query in a multi-turn conversation can be answered
given the retrieved documents. The model takes as input the full conversation history and a set of documents,
and classifies the query as answerable or unanswerable based solely on the information contained in the set
of input documents. This is useful in RAG settings. For instance, this intrinsic can help decide whether to
proceed with generation or abstain with an “I don’t know” response.

The input to the model is a list of conversational turns and a list of documents converted to a string
using apply_chat_template function. These turns can alternate between the user and assistant
roles. The last turn is from the user. The list of documents is a dictionary with text field, which con-
tains the text of the corresponding document. To prompt the aLoRA adapter to determine answerabil-
ity, a special answerability role is used to trigger this capability of the model. The role includes the
keyword "answerability": <|start_of_role|>answerability<|end_of_role|> When
prompted with the above input, the model generates the answerable or unanswerable output. See|Danilevsky
et al.|(2025)) for more details.

Training Details The alLoRA and LoRA adapters were fine-tuned using PEFT under the following regime:
rank = 32, learning rate = 5e-6, number of epochs = 25, with early stopping based on validation set, and 90/10
split between training and validation.
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Model Unans. | Unans. | Unans. Ans. Ans. | Ans. | Weighted
ode Precision | Recall F1 Precision | Recall | F1 F1

Granite 3.2-8b LoRA 84.2 68.0 75.2 73.1 872 | 795 77.4

Granite 3.2-8b aLoRA 83 81.1 82 81.4 83.3 82.4 82.2

Table 1: Comparison of classification performance across models on SQUADRUN Deyv set. Metrics are broken
down by class (Answerable vs. Unanswerable) and include precision, recall, and F1 score.

Model Unans. | Unans. | Unans. Ans. Ans. | Ans. | Weighted
ode Precision | Recall F1 Precision | Recall | F1 F1

Granite 3.2-8b LoRA 85.4 89.3 87.3 87.0 82.4 84.6 86.1

Granite 3.2-8b aLoRA 85.8 89.1 87.4 86.8 83 84.9 86.2

Table 2: Comparison of classification performance across models on MT-RAG Benchmark. Metrics are broken
down by class (Answerable vs. Unanswerable) and include precision, recall, and F1 score.

Evaluation: Answerability Classification Performance We evaluated alLoRA model against LoRA and
baselines on binary answerability classification using two separate benchmarks:

* Single-turn Setting (SQUADRun Benchmark Rajpurkar et al.|(2018)): In this setting, the user query
and the supporting documents are provided. Our model was evaluated against standard baselines to
measure its ability to determine whether a standalone question is answerable based on the document
set. Table[Ilshows the classification results.

e Multi-turn Setting (MT-RAG Benchmark Katsis et al.|(2025)): In this setting, the model is given the
full multi-turn conversation history along with the supporting documents. This benchmark evaluates
the model’s ability to assess answerability when the final user query can also depend on prior turns
for context. Table [2] shows the results.

Overall, the aLoRA model does not lose performance relative to the LoRA model, in fact, aLoRA achieves the
best classification performance on SQUADRun. See Danilevsky et al.|(2025)) for additional baselines.

4.3 QUERY REWRITE

This intrinsic is generally applicable for multi-turn conversational use cases, and its role is to perform rewrites
of user queries for better performance for the downstream tasks. It is especially useful in RAG settings, see the
metrics and evaluation results below. The query rewrite task is as follows: given a multi-turn conversation
between a user and an Al assistant, de-contextualize the last user utterance (query) by rewriting it (whenever
necessary) into an equivalent version that is standalone and can be understood by itself.

The rewrite is typically an expansion that in-lines, into the query, any implicit references that are made to
entities, concepts, or even parts of the conversation that occur in the previous turns (either by the user or the
Al assistant). Such expansion can include co-reference resolution (i.e., replacement of pronouns with the
actual entities), handling of ellipsis, which is the common linguistic phenomenon where parts of a sentence or
phrase are omitted by the user, but can be understood from the context (i.e., for whom, of what, with respect to
something discussed above, etc.). The rewritten query can be sent to downstream tasks (e.g., to a retriever in a
RAG setting) as a better replacement for the original user query, and without the need for (a potentially very
long) context.

The input to the model is a list of conversational turns converted to a string using apply_chat_template
function. These turns can alternate between the user and assistant roles, and the last turn is assumed to be from
the user. To prompt the aLoRA adapter to rewrite the last user turn, a special rewrite role is used to trigger the
rewrite capability of the model. The role includes the keyword "rewrite" followed by a short description of the
query rewrite task.

Note: Even though one main application for query rewrite is in RAG settings, this intrinsic can be used to
rewrite user questions for other conversational use cases (e.g., to access a database, or other APIs, or tools).
As such, the adapter does not need any RAG documents (that may be present in the context, in a RAG setting)
and uses only the dialog turns with what is being said between the user and assistant.
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Training Both the alLoRA and LoRA adapters were fine-tuned under the following regime: rank = 32,
number of epochs = 25, with early stopping based on validation set, and 90/10 split between training and
validation.

4.3.1 QUERY REWRITE: EVALUATION ON THE RETRIEVAL TASK

We evaluate Recall@k on the MT-RAG benchmark Katsis et al.[(2025), using either LORA or aLoRA models
to rewrite the query for the retriever. All retrieved passages are obtained using the Elser retriever with the same
settings as in the above paper. We evaluate on three different testsets: a) full MT-RAG dataset (842 data points
with last user turns); b) the non-standalone subset of MT-RAG dataset, which is a subset of 260 (out of 842)
last user turns that were annotated by humans as non-standalone (i.e., they are dependent on the prior context);
c) the standalone subset of MT-RAG dataset, which is the complementary subset, with all the last user turns
that were annotated by humans as standalone.

Retrieval recall evaluation (Recall@k) with different query rewrite strategies, evaluated on full, non-standalone
and standalone subsets of MT-RAG dataset are shown in Tables and [5|respectively.

Rewrite Strategy Recall@5 Recall@10 Recall@20

aLoRA 0.54 0.66 0.74
LoRA 0.56 0.68 0.76

Table 3: Query rewrite strategies on the retrieval task of full MT-RAG dataset

Rewrite Strategy Recall@5 Recall@10 Recall@20

aLoRA 0.42 0.54 0.64
LoRA 0.44 0.57 0.66

Table 4: Query rewrite strategies on the retrieval task of non-standalone subset of MT-RAG

Rewrite Strategy Recall@5 Recall@10 Recall@20

aLoRA 0.63 0.75 0.82
LoRA 0.63 0.75 0.83

Table 5: Query rewrite strategies on the retrieval task of standalone subset of MT-RAG

Note that throughout, performance numbers for alLoRA and LoRA are within a point or two. See CITERAG
for additional comparisons showing that these approaches outperform benchmarks and are very close to the
performance with gold rewrites.

4.3.2 QUERY REWRITE: EVALUATION ON ANSWER GENERATION

We evaluate answer generation quality, with top-k passages retrieved under the various query rewrite strategies
for the retriever. We choose here £ = 20, but similar trends take place for other values of k. We used
Granite-3.2-8b instruct as the answer generator, and RAGAS Faithfulness (RAGAS-F) and RAD-Bench score
as metrics for answer quality. We use the same three testsets as above.

The answer quality evaluation using RAGAS-F and RAD-Bench on full, non-standalone and standalone
subsets of MT-RAG dataset are shown in Tables[6} [7] and [§]respectively.

Rewrite Strategy RAGAS-F RAD-Bench

aLoRA 0.81 0.69
LoRA 0.81 0.70

Table 6: Impact of query rewrite strategies on answer generation on full MT-RAG dataset
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Rewrite Strategy RAGAS-F RAD-Bench

aLoRA 0.77 0.69
LoRA 0.79 0.69

Table 7: Impact of query rewrite strategies on answer generation on non-standalone subset of MT-RAG

Rewrite Strategy RAGAS-F RAD-Bench

aLoRA 0.83 0.70
LoRA 0.83 0.71

Table 8: Impact of query rewrite strategies on answer generation on standalone subset of MT-RAG

As with Recall, observe that LoRA and alLoRA performance is very close, indicating that moving to aLoRA
for inference reasons does not require giving up any performance.

4.4 JAILBREAK DETECTION

This intrinsic is designed for detecting jailbreak risk within user prompts. Prompts with jailbreak risk vary
across a wide range of attack styles - from direct instructions, to encoding-style, social-hacking based attacks
and even ones that exploit special token or context overload (Rawat et al.| |2024). In our experiments we
focused on training intrinsics for detecting social hacking style of adversarial prompts. The intrinsic is trained
to return a binary label - “Y” indicating jailbreak risk present and “N” indicating no risk, when invoked. We
evaluate jailbreak intrinsic across a mixture of samples with jailbreak risk (Shen et al.||2024b; Lin et al., [2023]
Wan et al.,|2024) and benign samples (Conover et al.,[2023)). As with the other intrinsics, we see very little
performance difference between LoRA and aLoRA.

Jailbreak Risk Detector Acc TPR FPR

aLoRA 0.925 0.863 0.013
LoRA 0.944 0.898 0.009

Table 9: Performance of jailbreak risk detectors across an aggregated mixture of prompts with jailbreak risk
and benign samples.

5 CONCLUSION

In this work, we presented Activated LoORA (aLoRA), a novel extension of the LoORA framework that enables
efficient and dynamic adaptation of large language models without requiring the recomputation of the key-value
(KV) cache. By modifying LoRA to adapt weights only for tokens generated after activation, aLoRA facilitates
seamless integration into multiturn settings, enabling the use of specialized "intrinsics" for well-defined
operations within a broader conversational or processing pipeline.

Our experiments demonstrate that aLoRA maintains competitive accuracy compared to standard LoRA while
significantly reducing inference costs. This capability was showcased through applications in uncertainty
quantification, answerability determination, hallucination detection, query rewrite, and jailbreak detection.
The flexibility and efficiency of aLoRA highlight its potential to streamline the deployment of modular,
task-specific models in complex workflows, paving the way for more adaptive and responsive LLM-driven
systems.

Next steps Future work will explore developing expanded use cases for aLoRA models in agentic and
test-time-scaling applications and move towards a release of code for vLLM integration.
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A ADDITIONAL DETAILS FOR INTRINSICS

A.1 UNCERTAINTY QUANTIFICATION

First, a probe-based model was trained to produce calibrated certainty scores, using a large diverse collection
of QA datasets detailed in the next section. Note that throughout, the Granite chat template was used. The
procedure for this was as follows:

1. A “meta-dataset" was created containing User inputs, Answer generations (from the Granite base
model), and correctness labels for those generations.

2. For each row in the meta-datset, the base model was prompted with input of the form (User inputs,
Answer generations, meta prompt), where the meta prompt was

Is the above answer correct?\n <A> Yes, \n<B> No, \nAnswer:

and one token was generated.

3. The hidden state from the last layer of the model was saved off for the generated token. This was then
combined with the correctness labels from step (1) to create a dataset of (hidden states, correctness
labels).

4. A 3 layer MLP was trained on the dataset of the previous step. This is known in the literature as a
probe.

5. The logits of the output of this MLP on held-out validation datasets were converted into probabilities,
and the ECE was computed.

6. Temperature scaling was applied here to minimize the ECE, resulting in test dataset ECE of 0.02.

The above follows the procedure of |Shen et al.| (2024al)) for freeform responses, and was applied to both the
multiple choice and freeform data for consistency.

Having a calibrated probe model, we then created a teacher dataset, where all datasets were processed by
the probe model and the computed probabilities were recorded and quantized in steps of 10% (05% to 95%).
This teacher dataset served as the training data for the aLoRA model, which was trained to use the invocation
sequence

<|start_of_role|>certainty<|end_of_role|>

and to generate the quantized percentage values.

B TRAINING DATASETS FOR INTRINSICS

B.1 QA DATASETS FOR UNCERTAINTY QUANTIFICATION INTRINSIC
The following datasets were used for calibration and/or finetuning.

* BigBench

* MRQA

* newsqa

* [trivia_qa

* |search_qga

* openbookqga

* web_questions
* |smiles-qa

e orca-math
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* ARC-Easy

* lcommonsense_qga
* |social_i_ga

* |super_glue

* figqa

e riddle sense

* [ag_news

* medmcqa

* |dream

* lcodah

* [piqa
B.2 TRAINING DATA FOR QUERY REWRITE INTRINSIC

The training data contains both: 1) standalone examples, which teach the adapter to refrain from rewriting user
questions that are already standalone, and 2) non-standalone examples containing a diversity of patterns that
are used to teach the adapter to expand the user turn so that it becomes standalone.

The training data uses the publicly available Cloud corpus of technical documentation pages from MT—RAGE]
Based on this corpus of documents, we constructed a dataset consisting of high-quality, human-created
conversations, where the last turn of the conversation comes into versions: non-standalone version, and
corresponding standalone version. The training dataset is proprietary and was obtained in combination with a
third-party company who contracted the human annotators.

B.3 TRAINING DATA FOR ANSWERABILITY DETERMINATION INTRINSIC

The training data uses the publicly available Government corpus from MT-RAG Katsis et al.|(2025) as the
source of documents. Based on this corpus, we constructed a dataset consisting of a mix of human-created and
synthetically generated multi-turn conversations. It includes two types of examples: (1) Answerable queries,
where the final user question can be answered based on the provided documents. These examples teach the
adapter to recognize when sufficient information is present to support an answer. (2) Unanswerable queries,
where the documents lack the necessary information to answer the final user query. We used Mixtral as an
automatic judge to validate the answerability labels and filter out noisy samples.

*https://github.com/IBM/mt-rag-benchmark
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