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Abstract This paper proposes an innovative extension of Principal Component
Analysis (PCA) that transcends the traditional assumption of data lying in Euclidean
space, enabling its application to data on Riemannian manifolds. The primary chal-
lenge addressed is the lack of vector space operations on such manifolds. Fletcher et
al., in their work Principal Geodesic Analysis for the Study of Nonlinear Statistics
of Shape, proposed Principal Geodesic Analysis (PGA) as a geometric approach to
analyze data on Riemannian manifolds, particularly effective for structured datasets
like medical images, where the manifold’s intrinsic structure is apparent. However,
PGA’s applicability is limitedwhen dealingwith general datasets that lack an implicit
local distance notion. In this work, we introduce a generalized framework, termed
Riemannian Principal Component Analysis (R-PCA), to extend PGA for any data
endowedwith a local distance structure. Specifically, we adapt the PCAmethodology
to Riemannian manifolds by equipping data tables with local metrics, enabling the
incorporation of manifold geometry. This framework provides a unified approach
for dimensionality reduction and statistical analysis directly on manifolds, opening
new possibilities for datasets with region-specific or part-specific distance notions,
ensuring respect for their intrinsic geometric properties.
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1 Introduction

Each point in a data table can be imagined as a star or planet in the universe,
especially when dealing with big data issues. In the universe, due to the infinitely
different sizes of constellations, there are vastly different perceptions of distances
between celestial bodies. For example, two constellations or galaxies that appear
to be the same size from a distance (from Earth, for example) could be infinitely
different, and one could even fit inside the other in a very small portion or empty
space within it. For this reason, especially in problems involving Big Data, thinking
that the data is in Euclidean space is just as wrong as thinking that the earth is flat.
Similarly, in data, there are local notions of distance corresponding to different

regions of the data, and this should be considered when calculating indices or
statistical models, as Principal Component Analysis. To address this, we propose
considering that the data exists within a Riemannian manifold, where these local
notions of distance can be effectively taken into account.
In [2] Fletcher et al., the authors had proposed the Principal Geodesic Analysis on

Riemannian manifolds through the use of geometry. This concept works particularly
well when analyzing data derived from images, such as medical images, where the
intrinsic Riemannian manifold structure is evident. However, this idea is not readily
applicable to general data where there are no implicit notions of local distance. The
Riemannian Principal Component Analysis that we propose go beyond of what was
mentioned in the previous paragraph. The core concept is to impart a Riemannian
manifold structure to any given set of data. This approach enables the assignment
of local notions of distance to the data, thereby enhancing our ability to capture the
internal structure of the data. This, in turn, leads to a significant improvement in the
results of various statistical analyses as well as their interpretability.
The diagram in Figure 1 illustrates the transformation of data analysis methodolo-

gies from a Euclidean framework to a Riemannian geometric framework. It begins
with a data table residing in Euclidean space, where classical techniques such as
statistics, machine learning, and artificial intelligence are traditionally applied, rely-
ing on global distance metrics and vector space operations. By applying a specific
method or algorithm, the data is endowed with local metrics that capture intrinsic
geometric properties, enabling a transition to a Riemannian space. In this Rieman-
nian space, data analysis leverages curvature, local distances, and local structures,
transforming classical methodologies into Riemannian Statistics, Riemannian Ma-
chine Learning, and Riemannian AI. This paradigm shift allows for more accurate
and meaningful analyses of data that naturally resides on curved manifolds, such as
shapes or other structured datasets, by respecting their underlying geometric nature.
In this work, we propose to transform the Euclidean space into a Riemannian

manifold using the UMAP (Uniform Manifold Approximation and Projection) algo-
rithm, see McInnes et al. [5]. As described in the paper UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction, the transformation is based
on the construction of local metrics derived from a graph representation of the data.
Specifically, UMAP methodology, detailed in Section 3.1 Graph Construction of
the referenced paper, 𝑘-nearest neighbor graph where local distances between data
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Fig. 1 Transforming an Euclidean into a Riemannian Space.

points are computed and normalized. These distances are then used to define lo-
cal Riemannian metrics, effectively approximating a Riemannian structure for the
data manifold. By leveraging the graph local connectivity properties and its edge
weights, UMAP provides an efficient and scalable way to construct Riemannian
metrics, enabling the analysis of complex datasets in their intrinsic geometric space.
This transformation allows for the application of Riemannian statistics and machine
learning methods, capturing both the local and global structures of the data.
UMAP is a novel technique for manifold learning and dimension reduction. Uti-

lizing simplicial complexes, Čech complexes, and the Nerve theorem, UMAP gains
additional benefits from this Riemannian metric-based approach. It generates a local
metric space associated with each point, allowing for meaningful distance measure-
ments. Consequently, the algorithm can assignweights to edges in a graph (simplicial
complex), signifying the local metric-based separation between the original points.
So the idea that we proposed in this paper is to use the local notions of distance
that the UMAP algorithm generates in any data table to provide it with local dis-
tance. In this way, the data table can be conceptualized as a Riemannian manifold,
incorporating these local distance.
UMAP, as a successor to 𝑡-SNE method, inherits a controversy associated with

the 𝑡-SNEmethod. The challenge with 𝑡-SNE lies in its inability to preserve distances
and density effectively. It only partially maintains the concept of nearest-neighbors.
Though the distinction may seem subtle, it has implications for any clustering algo-
rithm based on density or distance. This issue is somewhat controversial, and should
be approached with caution. A comprehensive discussion on this topic can be found
at https://umap-learn.readthedocs.io/en/latest/clustering.html.
Despite these concerns, there are still valid reasons to utilize UMAP as a pre-

processing step for clustering. As highlighted in the discussion, when applied to
real high-dimensional datasets such as MNIST data [1] or cell RNA-seq data [3],
and with appropriate parameterization, both 𝑡-SNE and UMAP yield significantly
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better clustering results than other algorithms. Regardless, for Riemannian Principal
Component Analysis, the crucial aspect is that UMAP maintains the concept of
nearest-neighbors in the low-dimensional representation of the dataset. This is very
important as it provides the data table with local distance notions, enhancing the
utility of the UMAP algorithm in this context.

2 Providing to a classical data table with a Riemannian manifold
structure

UMAP method was designed to improve the main limitations of the 𝑡-SNE method.
𝑡-SNE means 𝑡-distributed Stochastic Neighbor Embedding and it was proposed by
Laurens van der Maaten, see all the detail of this method in [4]. UMAP algorithm
is competitive with 𝑡-SNE for visualization quality and it improves 𝑡-SNE limita-
tions. UMAP (Uniform Manifold Aproximation and Projection) is an algorithm for
dimension reduction based on algebraic topology, topological data analysis and Rie-
mannian geometry. It was proposed by the Mathematician Leland McInnes in [5].
UMAP works in a similar way to 𝑡-SNE, it finds distances in a space with many
variables and then tries to reproduce these distances in a low-dimensional space. But
UMAP does it very differently because more than distances it tries to reproduce the
topology, not necessarily the geometry. UMAP assumes that data is distributed along
a Riemannian manifold. A manifold is a uniform 𝑛-dimensional geometric shape in
which, for each point of this manifold, there is a neighborhood around that point that
looks like a flat two-dimensional plane. Riemannian manifolds admit local notions
of distances, area and angles. To explain the UMAP method we need to define the
notion of 𝑘-simplex and simplicial complexes.
Let {𝑥0, . . . , 𝑥𝑘 } be points in R𝑛. We will assume that these points satisfy the

condition that the set of vectors in R𝑛 represented by the differences with respect to
𝑥0, that is {𝑥1 − 𝑥0, 𝑥2 − 𝑥0, . . . , 𝑥𝑘 − 𝑥0} are linearly independent.
Definition 1 The 𝑘-simplex generated by the points {𝑥0, . . . , 𝑥𝑘 } is the set of all
points 𝑧 =

∑𝑘
𝑖=0 𝑎𝑖𝑥𝑖 , where

∑𝑘
𝑖=0 𝑎𝑖 = 1. For a given 𝑧, we refer to 𝑎𝑖 as the 𝑖-th

barycentric coordinate.

Simplicial complexes are generalizations of graphs. A simplicial complex 𝑆 in
R𝑛 is a set of simplices such that every face of a simplex in 𝑆 is also a simplex in
𝑆. The intersection of two simplices in 𝑆 is a face of each of them. Given data set
presented as a finite metric space, we need to produce a simplicial complex such that
the algebraic invariants of the simplicial complex reflect the shape of the data. To do
that, we need to make the connection between clustering and components precise,
via single-linkage clustering, which works as follows.

1. Choose a parameter 𝜖 .
2. Assign two points 𝑥 and 𝑦 to the same group if they are connected by a path of
points (for some 𝑘) 𝑥 = 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑘−1, 𝑥𝑘 = 𝑦 such that each point 𝑥𝑖 is at a
distance 𝜖 from 𝑥𝑖+1. See the Figure 2.
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Fig. 2 As 𝜖 increases, more andmore simplices are added to the simplicial complex and topological
features emerge. In panels 𝐶 and 𝐷, a circle can be detected.

The Nerve Theorem and its corollary are the fundamental theoretical basis that
allows us to go from topological spaces to simplicial complexes and then to data. The
Čech complex allows us to demonstrate that there exists a homeomorphism between
the union of balls (determined by the parameter 𝜖) and the nerve and therefore we
will have a bijection between the data and the simplicial complexes.

Definition 2 The nerve 𝑁 (U) of a cover U = {𝑈𝑖} of topological space 𝑋 is the
simplicial complex with vertices corresponding to the sets {𝑈𝑖} and a 𝑘-simplex
[ 𝑗0, 𝑗1, . . . , 𝑗𝑘 ] when the intersection𝑈 𝑗0 ∩𝑈 𝑗1 ∩𝑈 𝑗2 ∩ · · · ∩𝑈 𝑗𝑘 ≠ ∅.

Definition 3 Let 𝑋 ⊂ R𝑛 be a finite subspace and fix 𝜖 > 0. The Čech complex
𝐶𝜖 (𝑋, 𝜕𝑋 ) is the simplicial complex with vertices the points of 𝑋 , and a 𝑘-simplex
[𝑣0, 𝑣1, . . . , 𝑣𝑘 ] when a set of points {𝑣0, 𝑣1, . . . , 𝑣𝑘 } ⊂ 𝑋 satisfies

⋂
𝑖 𝐵𝜖 (𝑣𝑖) ≠ ∅.

Theorem 1 (Nerve Theorem) Let 𝑋 be a topological space. Let U = {𝑈𝑖} be an
open cover of 𝑋 such that all non-empty finite intersections 𝑈 𝑗1 ∩ 𝑈 𝑗2 ∩ · · · ∩ 𝑈 𝑗𝑘

are contractible (homotopy equivalent to a point). Then the nerve (the geometric
realization) 𝑁 (U) is homotopy equivalent to 𝑋 .

Corollary 1 Let 𝑋 ⊂ R𝑛 be a finite subspace and fix 𝜖 > 0. There exists a home-
omorphism:

⋃
𝑥∈𝑋 𝐵𝜖 (𝑥) � |𝐶𝜖 (𝑋, 𝜕𝑋 ) | between the union of balls and the nerve

𝑁 (U) (the geometric realization) of the Čech complex.

The above guarantees that there exists a homeomorphism between the union of
balls and the nerve, so, there is relation one-to-one (bijection) between data and Čech
complex, as it is illustrated in the Figure 3.
To apply these ideas, UMAP choose a radius from each point, connecting points

when those radii overlap, then we can create a simplicial complex using 0, 1, and 2
simplexes as points, lines, and triangles. Choosing this radius is critical, too small
choice will lead to small, isolated clusters, while too large choice will connect
everything together. UMAP overcomes this challenge by choosing a radius locally,
based on the local distance to each point to the 𝑘-th nearest neighbor. To do that,
Riemannian Geometry is used.

Definition 4 Fixed 𝑥, a Riemannian metric is defined by a scalar products 〈·, ·〉𝑥
on each tangent space 𝑇𝑥M at points 𝑥 of the manifold. For each 𝑥, each such scalar
product is a positive definite bilinear map 〈·, ·〉𝑥 : 𝑇𝑥M × 𝑇𝑥M → R. The inner
product gives a norm ‖ · ‖𝑥 : 𝑇𝑥M → R by ‖𝑣‖2 = 〈𝑣, 𝑣〉𝑥
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Fig. 3 Relation one-to-one between data and Čech complex.

The choice of 𝑘 determines how locally we wish to estimate the Riemannian
metric. A small choice of 𝑘 means we want a very local interpretation, while,
choosing a large 𝑘 means our estimates will be based on larger regions. This is
very important, because it means that the UMAP algorithm provides the data table
with local distance notions. To the graph construction, UMAP algorithm begins by
constructing a weighted 𝑘-nearest neighbor graph from the dataset 𝑋 = {𝑥1, . . . , 𝑥𝑛},
where a distance metric 𝑑 defines the distances between points. The process can be
described as follows:

1. The dataset 𝑋 consists of points in a high-dimensional space, and a distance
metric 𝑑 (e.g., Euclidean distance) is used to compute the similarity between
points.

2. The algorithm identifies the 𝑘-nearest neighbors using the distance metric 𝑑.
This step produces a directed graph where each point has outgoing edges to its
𝑘-nearest neighbors.

3. The local parameters, 𝜌𝑖 and 𝜎𝑖 , are defined as follows:

• 𝜌𝑖: Local Connectivity. For each 𝑥𝑖 , 𝜌𝑖 is the minimum distance to its nearest
neighbor that is greater than zero:

𝜌𝑖 = min{𝑑 (𝑥𝑖 , 𝑥𝑖 𝑗 ) | 1 ≤ 𝑗 ≤ 𝑘, 𝑑 (𝑥𝑖 , 𝑥𝑖 𝑗 ) > 0}.

This ensures that 𝑥𝑖 connects to at least one other point with an edge of weight
1.

• 𝜎𝑖: Local Scaling. 𝜎𝑖 normalizes the distances of all neighbors, ensuring
consistency in the local metric. It is computed by solving:

𝑘∑︁
𝑗=1
exp

(
−
max(0, 𝑑 (𝑥𝑖 , 𝑥𝑖 𝑗 ) − 𝜌𝑖)

𝜎𝑖

)
= log2 (𝑘).
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4. To constructing the weighted directed graph we use 𝜌𝑖 and 𝜎𝑖 , and the weight of
each directed edge (𝑥𝑖 , 𝑥𝑖 𝑗 ) is computed as:

𝑤((𝑥𝑖 , 𝑥𝑖 𝑗 )) = exp
(
−
max(0, 𝑑 (𝑥𝑖 , 𝑥𝑖 𝑗 ) − 𝜌𝑖)

𝜎𝑖

)
.

5. To symmetrized the graph we convert the directed graph into an undirected graph,
the adjacency matrix 𝐴 is symmetrized using:

𝐵 = 𝐴 + 𝐴> − 𝐴 ◦ 𝐴>,

where 𝐴 is the adjacency matrix, ◦ denotes the Hadamard product, and > repre-
sents the transpose matrix. The resulting symmetric graph represents the unified
global manifold structure of the dataset.

6. The symmetrized graph 𝐺 forms a fuzzy simplicial set that captures both the
local and global topological structure of the data. Also, this symmetrized graph
𝐺 allows us to define a local similarity as 𝑆UMAP (𝑥𝑖 , 𝑥 𝑗 ) = 𝐵𝑖 𝑗 . In the UMAP
algorithm, the values in the distance graph represent the normalized weights of
the connections between points in the 𝑘-nearest neighbor (𝑘-NN) graph. These
values range from 0 to 1, as UMAP normalizes these relationships to compute
probabilistic affinities (similarities). A value of 0 indicates no connection between
the points in the graph, while a value greater than 0 signifies a connection, with
the value representing the strength of the connection. A value close to 1 indicates
a strong connection.

To generalize Principal Component Analysis it will be important to understand
howUMAP connects points from different neighborhoods because this will have im-
plications on how to project individuals belonging to different Riemannian subman-
ifolds. In UMAP, connections between points that belong to different neighborhoods
(i.e., points that the 𝑘-nearest neighbors (𝑘-NN) algorithm did not place in the same
neighborhood) are handled during the graph symmetrization step explained above
in 5. If two points 𝑥𝑖 and 𝑥 𝑗 may belong to different neighborhoods, for example,
𝑥𝑖 may not consider 𝑥 𝑗 one of its 𝑘-nearest neighbors, and vice versa, then it may
be no direct edge between 𝑥𝑖 and 𝑥 𝑗 in the initial directed graph. To address this,
UMAP symmetrizes the directed graph by combining local neighborhood informa-
tion fromboth points. The symmetrization step combines forward and backward edge
weights, creating an undirected edge between points in different neighborhoods. The
edge weights are symmetrized as:

𝑤𝑖 𝑗 = 𝑤→𝑖 𝑗 + 𝑤←𝑖 𝑗 − 𝑤→𝑖 𝑗 · 𝑤←𝑖 𝑗 , (1)

where 𝑤→
𝑖 𝑗
and 𝑤←

𝑖 𝑗
are the forward and backward affinities between 𝑥𝑖 and 𝑥 𝑗 ,

computed from their respective local neighborhoods. This ensures points in separate
neighborhoods can still be connected if their neighborhoods overlap or have similar
affinities, capturing both local and global structures of the data. Also, this ensures
that redundant weights from overlapping neighborhoods are not double-counted.
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3 Riemannian Principal Component Analysis for any type of data

In the paper [2], they aim to generalize Principal Component Analysis (PCA) to
Principal Geodesic Analysis (PGA) a generalization of principal component analysis
to manifolds using geodesic distances and geodesic submanifolds.
Let be 𝑥1, . . . , 𝑥𝑛 ∈ R𝑝 with zero mean. Principal component analysis find an

orthonormal basis {𝑣1, . . . , 𝑣𝑝} of R𝑝 , which satisfies the recursive relationship:

𝑣1 = arg max
‖𝑣 ‖=1

𝑛∑︁
𝑖=1
(𝑣 · 𝑥𝑖)2, (2)

𝑣𝑠 = arg max
‖𝑣 ‖=1

𝑛∑︁
𝑖=1

𝑠−1∑︁
𝑗=1
(𝑣 𝑗 · 𝑥𝑖)2 + (𝑣 · 𝑥𝑖)2, 𝑠 = 2, . . . , 𝑝. (3)

Then, the subspace 𝑉𝑠 = span({𝑣1, . . . , 𝑣𝑠}) is the 𝑠-dimensional subspace that
maximizes the variance of the data projected onto that subspace. As is well known,
the basis {𝑣𝑠} is computed as the set of ordered eigenvectors of the sample covariance
matrix of the data.
The lower-dimensional subspaces in PCA are linear subspaces, in [2] for general

manifolds 𝐻, they extend the concept of a linear subspace to a geodesic submanifold.
A geodesic is a curve that is locally the shortest path between points. In this way, a
geodesic is the generalization of a straight line. Thus, it is natural to use a geodesic
curve as the one-dimensional subspace, the analog of the first principal direction in
PCA.
Let𝑀 be a manifold, the projection of a point 𝑥 ∈ 𝑀 onto a geodesic submanifold

𝐻 of 𝑀 is defined as the point on 𝐻 that is nearest to 𝑥 in geodesic distance. So, the
projection operator 𝜋𝐻 : 𝑀 → 𝐻 is:

𝜋𝐻 (𝑥) = arg min
𝑦∈𝐻

𝑑 (𝑥, 𝑦)2. (4)

Since projection is defined by a minimization, there is no guarantee that the pro-
jection of a point exists or that it is unique. However, by restricting to a small enough
neighborhood about the mean, the projection is unique for any geodesic submanifold
at the mean and the projection onto a geodesic submanifold can be approximated
linearly in the tangent space of 𝑀 , that is, in 4 to ensure that 𝜋𝐻 (𝑥) is actually within
𝐻, an approximation of the projection is used, then they find a sequence of nested
geodesic submanifolds that maximize the projected variance of the data. Finally,
given a dataset 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑀 , they compute the intrinsic mean 𝜇, which min-
imizes the sum of squared Riemannian distances, 𝜇 = argmin𝑥∈𝑀

∑𝑛
𝑖=1 𝑑 (𝑥, 𝑥𝑖)2.

Each data point is mapped to the tangent space using 𝑢𝑖 = 𝑥𝑖 − 𝜇. The covariance
matrix, 𝑆 = 1

𝑛

∑𝑛
𝑖=1 𝑢𝑖𝑢

𝑇
𝑖
, is constructed, and eigendecomposition yields principal

directions 𝑣𝑘 and variances are 𝜆𝑘 , see [2] for the details.
To generalize these ideas to any data table, we define a Local Manifold Approxi-

mation, let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a dataset embedded in a high-dimensional space
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R𝑝 . For each data point 𝑥𝑖 , UMAP defines a local neighborhood 𝑁𝑖 consisting of its
𝑘-nearest neighbors under a metric 𝑑. The 𝑘-nearest neighbors of 𝑥𝑖 are defined as
the set N(𝑥𝑖) such that:

N(𝑥𝑖) =
{
𝑥 𝑗 ∈ 𝑋 \ {𝑥𝑖}

�� 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) ≤ 𝑑 (𝑥𝑖 , 𝑥𝑘 ), ∀𝑥𝑘 ∉ N(𝑥𝑖)
}
,

where:

• 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) is the distance between 𝑥𝑖 and 𝑥 𝑗 .
• 𝑘 is the number of neighbors (a hyperparameter).

Thus,N(𝑥𝑖) is the set of the 𝑘 closest points to 𝑥𝑖 in R𝑝 . The Patch P𝑖 is defined
as a fuzzy simplicial set that approximates the local geometry of the manifold around
𝑥𝑖 . Formally:

P𝑖 =
{
(𝑥𝑖 , 𝑥 𝑗 , 𝑤𝑖 𝑗 )

�� 𝑥 𝑗 ∈ 𝑁𝑖 , 𝑤𝑖 𝑗 > 0
}
,

where:

• 𝑥𝑖 is the anchor point.
• 𝑥 𝑗 ∈ N𝑖 are the 𝑘-nearest neighbors of 𝑥𝑖 .
• 𝑤𝑖 𝑗 is the weight (or affinity) associated with the edge between 𝑥𝑖 and 𝑥 𝑗 , defined
in the previews section.

The individual patches P𝑖 for all 𝑥𝑖 ∈ 𝑋 can be combined to form the global fuzzy
simplicial set o graph 𝐺, representing the entire manifold:

𝐺 =

𝑛⋃
𝑖=1
P𝑖 .

Because the data resides on a Riemannian manifold, with local distances it is
necessity to define something akin to a Riemannian correlation, requiring a Rie-
mannian mean, and, more broadly, necessitating the development of Riemannian
Statistics. By leveraging the one-to-one relationship given by the Nerve Theorem in
1 and its corollaries, we define the vector subtraction the Riemannian correlation on
manifold as follows.

Definition 5 Let 𝑥𝛼 and 𝑥𝛽 rows of 𝑋 , we define the subtraction induced by the
UMAP algorithm as 𝑥𝛼 	 𝑥𝛽 = 𝜌𝛼𝛽 (𝑥𝛼 − 𝑥𝛽), where 𝜌𝛼𝛽 = 1 − 𝑆UMAP (𝑥𝛼, 𝑥𝛽).
Then, local distances generated by the UMAP algorithm can be defined as:

𝑑UMAP (𝑥𝛼, 𝑥𝛽) = ‖𝑥𝛼 	 𝑥𝛽 ‖ =
√︃
〈𝑥𝛼 	 𝑥𝛽 , 𝑥𝛼 	 𝑥𝛽〉,

where 〈·, ·〉 is an inner product on the vector spaceR𝑝 .We also define the the addition
induced by the UMAP algorithm as 𝑥𝛼 = 𝑥𝛽 ⊕ 𝑥𝛾 if 𝑥𝛾 = 𝑥𝛼 	 𝑥𝛽 .

In the subsequent definition, we generalize Fréchet mean:

Definition 6 Let 𝑋 ∈ 𝑀𝑛×𝑝 the data table.We denote by 𝑥1, . . . , 𝑥𝑛 ∈ R𝑝 the rows of
𝑋 and by 𝑦1, . . . , 𝑦𝑝 ∈ R𝑛 the columns of 𝑋 . Each vector 𝑥𝑖 can be also considered
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a point in the Riemannian manifold 𝑀 induced by the simplicial complex. The
Riemannian mean is the minimizer of the sum-of-squared distances to the data:

𝑔 = arg min
𝑥∈𝑀

𝑛∑︁
𝑖=1

𝑑UMAP (𝑥, 𝑥𝑖)2 .

Definition 7 We defined the variance-covariance matrix 𝑆 ∈ 𝑀𝑝×𝑝 of 𝑋 as 𝑆 =

1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 	 𝑔) (𝑥𝑖 	 𝑔)𝑡 , where (𝑥𝑖 	 𝑔) = 𝜌𝑖𝜆


𝑥𝑖1 − 𝑔1

...

𝑥𝑖 𝑝 − 𝑔𝑝

 , note that 𝑔 must be equal
to 𝑥𝜆 for some 𝜆. Then, we can define Riemannian correlation between 𝑦𝑖 and 𝑦 𝑗

columns of 𝑋 , that are in R𝑛, as follows 𝑅(𝑦𝑖 , 𝑦 𝑗 ) =
𝑆𝑖 𝑗√
𝑆𝑖𝑖𝑆 𝑗 𝑗

.

We can say that each patch P𝑖 induces a Riemannian Submanifold 𝐻𝑖 with the
local metric 𝑑UMAP generated by the UMAP algorithm, defined in previous paragraphs.
We are now ready to define Riemannian Principal Component Analysis (R-PCA)
for any data 𝑥1, . . . , 𝑥𝑛 ∈ R𝑝 . Our goal, analogous to PCA, is to find a sequence of
subspaces 𝑆𝑖 de R𝑝 that maximize the projected variance of the data, but, which also
takes into account the local distances of each of the submanifods 𝐻𝑖 that we have in
the data. We find a sequence of subspaces, not a a sequence submanifolds, because
our total space is finite, then requiring the projections to be in there would greatly
degrade the result, something that even happens in the PGA proposed in [2].
Taking into account that 𝐺 =

⋃𝑛
𝑖=1 P𝑖 and the following properties of patches: 1)

P𝑖 is aweighted graph over the local neighborhoodN𝑖 , where theweights𝑤𝑖 𝑗 ∈ [0, 1]
define the strength of the connection between 𝑥𝑖 and 𝑥 𝑗 , 2) P𝑖 represents the local
structure of the manifold around 𝑥𝑖 , capturing relationships with its neighbors, 3) the
weight 𝑤𝑖 𝑗 can be interpreted as a probability or affinity that 𝑥𝑖 and 𝑥 𝑗 are connected
within the underlying manifold, the Riemannian Principal Component Analysis (R-
PCA) that respects the local metrics of the submanifolds 𝐻𝑖 , can be defined by the
Algorithm 1.
In practice, in algorithm 1 it is recommended to use at least 𝑘 =

⌊
𝑛
𝑐

⌋
(the whole

part) where 𝑐 is the number of clusters that the data table is suspected to have, or the
number of clusters that you want to study, that is, 𝑘 is at least the average number of
individuals that each cluster has.

4 Applications with simulated and real data

4.1 Description of the simulated data in Data10D.csv

The Data10D.csvfile contains data structuredwith 2900 rows and 10 variables, such
that the first two columns determine five clusters within the dataset. These clusters
are explicitly identified in the cluster column. Additionally, the file includes eight
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Algorithm 1 Riemannian Principal Component Analysis (R-PCA)
1: Input: 𝑥1, . . . , 𝑥𝑛 ∈ R𝑝 and the number 𝑘 of nearest neighbors in UMAP algorithm.
2: Output: Principal directions 𝑣𝑠 ∈ 𝑆𝑖 , variances 𝜆𝑠 ∈ R.
3: Generate symmetric UMAP graph 𝐺.
4: Compute the matrix of UMAP similarities 𝑆UMAP (𝑥𝑖 , 𝑥 𝑗 ) with 𝑖, 𝑗 = 1, . . . , 𝑛.
5: Compute the matrix 𝑃 = 𝜌𝑖 𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛, as in definition 5.
6: Compute the Riemannian distance matrix 𝐷, using definition 5.
7: Compute the Riemannian mean 𝑔 using 𝐷, as in definition 6.
8: Compute the Riemannian variance-covariance matrix 𝑆 ∈ 𝑀𝑝×𝑝 as

𝑆 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑖 	 𝑔) (𝑥𝑖 	 𝑔) 𝑡 .

9: Compute the Riemannian correlation matrix 𝑅 ∈ 𝑀𝑝×𝑝 where 𝑅𝑖 𝑗 =
𝑆𝑖 𝑗√
𝑆𝑖𝑖𝑆 𝑗 𝑗

.

10: Extract eigenvectors and eigenvalues of 𝑅: {𝑣𝑠 , 𝜆𝑠 }.
11: Compute the Riemannian Principal Components.
12: For the correlation circle, the Riemannian correlations between the original variables and the
principal components are calculated.

extra columns that were generated following a specific process to ensure they do not
alter the cluster assignments.
The purpose of this process was to extend the original dataset by adding new

variables that provide additional information without modifying the existing classi-
fications. Eight additional columns, named var1 to var8, were created with values
generated independently using a standard normal distribution 𝑁 (0, 1). This means
that each new variable has a mean of 0 and a standard deviation of 1. These variables
were generated randomly and independently of the first two columns and the clusters
defined in the cluster column.
The process of generating these new variables began by determining the total

number of rows in the original dataset. For each row, eight random values were
generated using NumPy’s np.random.normal(0,1,n) function, where 𝑛 is the
number of rows in the dataset. Each generated value was stored in one of the
new columns, ensuring that all values followed the same distribution and were
uncorrelated with one another or with the original variables.
The final result is a file that preserves the structure and cluster assignments of

the original data while being enriched with eight new independent variables. The
preservation of the cluster column ensures that the groupings defined by the first
two columns remain intact, while the new variables provide additional information
that can enhance analysis.
The data in the file Data10D.csv corresponds to the 2D plot in Figure 4, where

the first two columns (x and y) define the positions of the points and generate
the clustering structure observed in the graph. These columns are responsible for
the distinct shapes of the clusters, such as Cluster 1 and Cluster 2 are concentric,
where Cluster 2 is nested within Cluster 1, forming a circle-within-a-circle structure.
Cluster 3 and Cluster 4 exhibit a similar nested structure but are located to the
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right of the first group, with Cluster 3 inside Cluster 4. Cluster 5 is located at the
bottom of the graph, forming a distinct parabolic shape that is separated from the
others. The cluster column in the file assigns each point to one of the five clusters,
which is reflected in the graph through color coding: each cluster is represented by
a unique color (e.g., blue for Cluster 1, orange for Cluster 2). While the additional
eight variables (var1 to var8) in the file were generated independently following a
normal distribution 𝑁 (0, 1), they are not used in the 2D plot and do not influence the
visualization. The plot accurately represents the clustering structure defined by the
first two columns and the cluster column in the file, validating the data generation
process and demonstrating the clear separability and arrangement of the clusters in
the dataset.

Fig. 4 Plotting the data using only the first two variables.

The images 5, 7, 6 and 8 represent visualizations of the Principal Component
Analysis (PCA) and the Riemannian Principal Component Analysis (R-PCA) applied
to the dataset Data10D.csv. The plots 5 and 7 correspond to the principal plane and
the correlation circle of the PCA, respectively. Similarly, figures 6 and 8 represent
the principal plane and the correlation circle of the R-PCA. Here we are computing
R-PCA with 𝑘 =

⌊ 2900
5

⌋
= 580.

The principal plane of the R-PCA in Figure 6 preserves the structure of the original
five clusters in Data10D.csv more effectively than the standard PCA. The nested
circular clusters (Clusters 1, 2, 3, and 4) and the parabolic cluster (Cluster 5) are
clearly separated and retain their geometric shapes. In contrast, the principal plane of
the PCA in Figure 5 shows more diffuse clusters, with less distinct shapes. Especially
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Cluster 5 (orange) which is a circle inside Cluster 1 (blue), is better captured in the
R-PCA than the PCA showing the orange points mostly enclosed in the blue points.
Similarly it happens between clusters 3 and 4 in green and red respectively.

Fig. 5 PCA Plane of
Data10D.csv.

Fig. 6 R-PCA Plane of
Data10D.csv.

The correlation circle of the R-PCA in Figure 8 provides a better interpretation of
the relationships among the original variables, particularly highlighting the correla-
tions for x and y. These variables are more prominently and accurately represented
in the R-PCA correlation circle. In contrast, the PCA correlation circle in Figure 7
captures some variable relationships but is less effective at emphasizing these critical
correlations.
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Fig. 7 PCA Correlations
Circle of Data10D.csv.

Fig. 8 R-PCA Correlations
Circle of Data10D.csv.

The R-PCA achieves an explained variance (inertia) of 43.38%, which is sig-
nificantly higher than the 25.58% explained by the PCA. This indicates that the
R-PCA captures a larger proportion of the variability in the dataset, making it a more
effective tool for dimensionality reduction in this context.

4.2 Application to the real data set Olivetti Faces

TheOlivetti Faces dataset is a widely used benchmark in the fields of pattern recogni-
tion, principal component analysis (PCA), and dimensionality reduction. Collected
by the AT&T Laboratories in Cambridge, the dataset contains 400 grayscale im-
ages of 40 different individuals, with 10 distinct images per person that vary in facial
expression, detail, and lighting conditions. Each image has a resolution of 64×64 pix-
els, resulting in 4096 features per observationwhen flattened into a one-dimensional
vector. This dataset is commonly used to evaluate unsupervised learning algorithms
such as PCA, 𝑡-SNE, and UMAP, as well as in facial recognition tasks. Its availability
and well-structured nature make it a key tool for exploring multivariate statistical
techniques on high-dimensional visual data. The Olivetti Faces is shown in Figure
9, we can see [10] for more details.
When comparing the results of classical PCA, in Figure 10, with the Rieman-

nian PCA, in Figure 11, differences arise in both variance explanation and cluster
structure. First, the explained inertia in the first principal plane is higher in the R-
PCA (39.59%) than in the classical PCA (39.22%), indicating that the Riemannian
projection captures more information from the original data structure.
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Fig. 9 Olivetti Faces data set.

Moreover, the 40 clusters appear more clearly and homogeneously separated in
the R-PCA projection, suggesting that this method is more effective in preserving
inter-individual differences in the lower-dimensional space. In contrast, the classical
PCA shows a higher degree of overlap between groups, making them harder to
distinguish visually.
These results emphasize the benefit of extending linear techniques such as PCA to

the context of Riemannian geometry, particularly for tasks like facial image analysis,
where the underlying data space may be inherently non-Euclidean.

Fig. 10 Classic PCA in Olivetti Faces data set.
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Fig. 11 R-PCA in Olivetti Faces data set.

5 Conclusions and Future Work

In conclusion, the R-PCA outperforms the standard PCA in preserving the geometric
structure of the clusters, such as the nested circles and the parabolic cluster, in
the principal plane. It also provides a more meaningful interpretation of variable
correlations in the correlation circle. The higher explained variance of the R-PCA
further demonstrates its superiority in capturing the underlying structure of the data.
In this paper, we successfully extend the ideas proposed by Pennec et al. in [7],

broadening the scope to compute Riemannian statistical indices and Riemannian
data analysis models to any data table. Unlike previous approaches, our methodol-
ogy is not restricted to data with an intrinsic Riemannian manifold structure. This
advancement opens up a newfield of research,where diversemethods like regression,
𝑘-means, and more, can be generalized for broader applicability.
The Riemannian STATS Package, available on GitHub [9], is a Python package

developed to extend classical multivariate statistical methods to the Riemannian
framework. It enables the transformation of a Euclidean data table into its Rieman-
nian counterpart by applying UMAP algorithm. This tool is particularly valuable for
analyzing datasets where the linear assumptions of traditional methods do not hold,
allowing for more accurate representation and interpretation of the underlying data
structure. Detailed information and examples about this package can be found on the
website https://riemannianstats.web.app/index.html.
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Currently, we are also working on a version of this package implemented in the R
programming language, which will offer similar functionality and integration with
the R ecosystem for statistical computing and data analysis.
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