
1

StrikePy v1.0
User manual

Developed by David Rey Rostro (davidreyrostro@gmail.com)

Supervised by Alejandro F. Villaverde (afvillaverde@uvigo.gal)

Universidade de Vigo

April 21, 2022

Contents
1 Introduction ... 2

1.1 Theoretical foundations ... 2

1.2 Version and publication history ... 2

2 License .. 2

3 Availability .. 3

4 Software contents .. 3

5 Requirements and installation ... 4

5.1 Requirements ... 4

5.2 Download and install using GitHub ... 4

5.3 Download and install using pip ... 4

6 Quick start: using StrikePy in one minute ... 4

6.1 Using GitHub ... 5

6.2 Using pip .. 7

7 Usage ... 8

7.1 Input: entering a model .. 8

7.1.1 Example: defining the MAPK model ... 8

7.2 Analysing a model: known vs unknown inputs ... 10

7.2.1 Example: two-compartment model with known input 10

7.2.2 Example: two-compartment model with unknown input 10

7.3 Options ... 10

7.4 Output .. 11

8 Contributors ... 12

mailto:davidreyrostro@gmail.com
mailto:afvillaverde@uvigo.gal

2

1 Introduction
StrikePy v1.0 is a Python implementation of the FISPO algorithm from the MATLAB

toolbox STRIKE-GOLDD. It analyses the structural local identifiability and

observability of nonlinear dynamic models, which may have multiple time-varying and

possibly unknown inputs. Its main aim is to provide a free alternative to MATLAB, not

to outperform the MATLAB version or other tools implemented in symbolic

computation oriented languages.

1.1 Theoretical foundations
StrikePy implements the core functionalities of the FISPO algorithm included in

STRIKE-GOLDD. It adopts a differential geometry approach, recasting the structural

local identifiability problem as an observability problem. Essentially, the observability

of the model variables (states, parameters, and unknown inputs) is determined by

calculating the rank of a generalized observability-identifiability matrix, which is built

using Lie derivatives. When the matrix does not have full rank, there are some

unobservable variables. If these variables are parameters, they are called (structurally)

unidentifiable. StrikePy determines the subset of identifiable parameters, observable

states, and observable (also called reconstructible) inputs, thus performing a “Full Input-

State-Parameter Observability” analysis (FISPO). This approach is directly applicable

to many models of small and medium size; larger systems can be analysed using

additional features of the method. One of them is to build observability-identifiability

matrices with a reduced number of Lie derivatives. In some cases, these additional

procedures allow to determine the identifiability of every parameter in the model

(complete case analysis); when such result cannot be achieved, at least partial results –

i.e. identifiability of a subset of parameters – can be obtained.

1.2 Version and publication history
The current version of StrikePy is v1.0 (released in April 2022).

2 License
StrikePy is licensed under the GNU General Public License version 3 (GPLv3), a free,

copyleft license for software.

3

3 Availability
StrikePy can be downloaded from GitHub and from PyPI:

• https://github.com/afvillaverde/StrikePy

• https://pypi.org/project/StrikePy/

4 Software contents
StrikePy consists of the following files:

Root folder (/StrikePy/):

• options.py is the only file that the user must edit. It specifies the problem to

solve and the options for solving it.

• strike_goldd.py is the main file. It contains most of the code of the algorithm.

• RunModels.py is a file that executes StrikePy, by calling strike_goldd.py. It

contains a brief usage explanation and some examples.

Functions folder (/StrikePy/functions/):

• elim_and_recalc.py determines identifiability of individual parameters one by

one, by successive elimination of its column in the identifiability matrix and

recalculation of its rank.

• rationalize.py rationalises expressions. It avoids errors when models are stated

with equations that include some numerical values (equations that are not fully

symbolic)

• __pyache__ is a directory containing bytecode cache files that are automatically

generated by python, i.e. compiled python, or .pyc, files.

Models folder (/StrikePy/models/):

This folder stores the models to be analysed by the toolbox. A number of predefined

models are included.

Custom options folder (/StrikePy/custom_options/):

This folder can be used to store custom options files for specific models.

https://github.com/afvillaverde/StrikePy
https://pypi.org/project/StrikePy/

4

Results folder (/StrikePy/results/):

This folder stores a summary of the results of the models analysed by the toolbox, as

well as their observability / identifiability matrix.

Documentation folder (/StrikePy/doc/):

This folder stores the present manual.

.idea folder (/StrikePy/.idea/):

This folder contains different files auto-generated by the IDE when the project was

created. It allows the IDE to recognise all StrikePy files as a single project.

5 Requirements and installation

5.1 Requirements
• A Python 3.9 installation.

• The numpy, sympy, and symbtools libraries.

5.2 Download and install using GitHub
1. Download StrikePy from: https://github.com/afvillaverde/StrikePy

2. Unzip it.

3. Install the the required libraries by typing in the python command prompt:

pip install numpy sympy symbtools

5.3 Download and install using pip
StrikePy v1.0 is included in the PyPI repository. To install it, type:

pip install strikepy

(The command above also installs the the numpy, sympy, and symbtools libraries.)

https://github.com/afvillaverde/StrikePy

5

6 Quick start: using StrikePy in one minute

6.1 Using GitHub
To start using StrikePy, simply follow these steps:

1. Complete the installation instructions in section 5.2.

2. Define the problem by creating a new .py file and include it in the models folder.

3. Edit the options.py file to adapt it to your model, OR create a new options file

with extension .py and include it in the custom_options folder.

** QUICK DEMO EXAMPLE: If you skip steps 2 and 3, StrikePy will analyse

a predefined model with default options.

4. Run the code included in RunModels.py, using a Python environment of your

choice (for example, in the execution shown in Fig. 1 below we have used the

JupyterLab tool included in Anaconda).

Done! Results will be reported in the screen, and they will also be saved in a file

created in the ‘results’ folder, named ‘id_results_MODELNAME_DATE.txt’. A

screenshot of the execution in JupyterLab is shown in Figs. 1 and 2. Fig.1 shows

the results of the ‘strike_goldd()’ command, which analyses the ‘C2M’ model

specified in the default options file, ‘options.py’. Fig. 2 shows the outcome of

the ‘strike_goldd(‘options_HIV’)’ command, which analyses the HIV model

defined in the ‘options_HIV.py’ file.

6

Figure 1: Screenshot of the results of analysing the ‘C2M’ model.

7

Figure 2: Screenshot of the results of analysing the ‘HIV’ model.

6.2 Using pip
To start using StrikePy, simply follow these steps:

1. Complete the installation instructions in section 5.3.

2. Locate the 'StrikePy' folder (the directory where it was installed by pip can be

found with ‘pip show strikepy’), and define the problem by creating a new .py

file and include it in the models folder.

3. Edit the options.py file to adapt it to your model, OR create a new options file

with the ending .py and include it in the custom_options folder.

** If you skip steps 2 and 3, StrikePy will analyse a predefined model with

default options.

4. Run the code included in RunModels.py (see Step 4 in Using GitHub, as well as

the corresponding results).

8

7 Usage

7.1 Input: entering a model
StrikePy reads models stored as .py files. The model states, outputs, inputs, parameters,

and dynamic equations must be defined as vectors of symbolic variables; the names of

these vectors must follow the specific convention shown in Table 1. Important: x, p, u,

w, f, h are reserved names, which must be used for the variables and/or functions listed

in Table 1 and cannot be used to name any other variables. However, it is possible to

use variants of them, e.g. 𝑥𝑥1 , 𝑥𝑥2, 𝑝𝑝23, 𝑥𝑥𝑥𝑥, ….

 Name Reserved for: Common mathematical notation:

 x state vector 𝑥𝑥(t)

 p unknown parameter vector θ

 u known input vector 𝑢𝑢(t)

 w unknown input vector 𝑤𝑤(t)

 f dynamic equations ˙ 𝑥̇𝑥(t) = f(𝑥𝑥(t), 𝑢𝑢(t), 𝑤𝑤(t), θ)

 h output function 𝑦𝑦 = ℎ(𝑥𝑥(t), 𝑢𝑢(t), 𝑤𝑤(t), θ)

Table 1: reserved variable and function names. The names in the table are reserved

for certain variables and functions. They must not be used for naming arbitrary model

quantities. However, it is possible to use variants of them, e.g. 𝑥𝑥1 , 𝑥𝑥2, 𝑝𝑝23, 𝑥𝑥𝑥𝑥, ….

7.1.1 Example: defining the MAPK model
Here we illustrate how to define a model using the MAPK example included in the

models folder. The file read by StrikePy is MAPK.py, which stores the model variables

and it is where the definition of the model can be modified. In the following lines we

discuss the different parts of the file, illustrating the process of defining a suitable

model.

First, the sympy library must be imported; in this case it is imported as sym:

import sympy as sym

Then, all the parameters, states, and any other entities (such as inputs or known

constants) appearing in the model must be defined as symbolic variables:

9

k1, k2, k3, k4, k5, k6 = sym.symbols('k1 k2 k3 k4 k5 k6')
ps1, ps2, ps3 = sym.symbols('ps1 ps2 ps3')
s1t, s2t, s3t = sym.symbols('s1t s2t s3t')
KK1, KK2 = sym.symbols('n1 n2')
alpha = sym.Symbol('alpha')
n1, n2 = sym.symbols('n1 n2')

Next we define the state variables, by creating a column vector named 𝑥𝑥:

x = [[ps1], [ps2], [ps3]]

Similarly, we define the vector of output variables, which must be named h. In this case

they coincide with the state variables:

h = [[ps1], [ps2], [ps3]]

Similarly, we define the known input vector, 𝑢𝑢, and the unknown input vector, 𝑤𝑤. If

there are no inputs, enter blank vectors or or do not declare them:

u = []
w = []

The vector of unknown parameters must be called 𝑝𝑝:

p = [[k1], [k2], [k3], [k4], [k5], [k6], [s1t], [s2t], [s3t], [KK1],
[KK2], [n1], [n2], [alpha]]

The dynamic equations 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 must also be entered as a column vector, called 𝑓𝑓. It

must have the same length as the state vector 𝑥𝑥:

f = [[k1*(s1t-ps1)*(KK1**n1)/(KK1**n1+ps3**n1)-k2*ps1], [k3*(s2t-
ps2)*ps1*(1+(alpha*ps3**n2)/(KK2**n2+ps3**n2))-k4*ps2], [k5*(s3t-
ps3)*ps2-k6*ps3]]

Finally, include this line so that the main function picks up all the variables defined in

the model correctly:

variables_locales = locals().copy()

10

7.2 Analysing a model: known vs unknown inputs
The use of StrikePy for analysing a model was already illustrated in section 6. This

section provides a few more details, basically about the use of models with known and

unknown inputs.

7.2.1 Example: two-compartment model with known input
Section 6 showed how to analyse the default example, which is a two-compartment

model with a known input, using default settings. By default, in the options.py file the

option nnzDerU is set to nnzDerU = 1. This means that the model is analysed with

exactly one non-zero derivative of the known input. If we set nnzDerU = 0, all input

derivatives are set to zero. Running the two-compartment model example with this

setting yields that the model is unidentifiable. Hence, this model requires a ramp or a

higher-order polynomial input to be structurally identifiable and observable. Note that

for models with several inputs it is necessary to specify a vector, e.g. nnzDerU = [0, 1]

for two inputs (or any other numbers, e.g. nnzDerU = [2, 2]).

7.2.2 Example: two-compartment model with unknown input
Let us now consider the two-compartment model with unknown input, and with the

parameter 𝑏𝑏 considered as known. This is already implemented in the model file

C2M_unknown_input_known_b provided with the library. The analysis of this model

yields that all its parameters are structurally unidentifiable and its unmeasured state and

input are unobservable. This is obtained for any choice of nnzDerW (0, 1, 2, ...). We

now consider a version of this model in which both 𝑏𝑏 and 𝑘𝑘1𝑒𝑒 are considered known.

This is implemented in the file C2M_unknown_input_known_b_k1e. In this case, the

analysis yields that the model is fully observable (FISPO). This is obtained for any

choice of nnzDerW (0, 1, 2, 3, ...). It should be noted that in both cases there are two

unknown inputs, so it is necessary to specify in the options file a nnzDerW vector with

two elements, e.g. nnzDerW = [1, 2] or nnzDerW = [0, 0].

7.3 Options
The model to analyse, as well as the options for performing the analysis, are entered in

the options.py file. All options have default values that can be modified by the user. In

the options.py file the options are classified in four groups, as follows:

11

(1) NAME OF THE MODEL TO BE STUDIED: The first block consists of solely

one option, the name of the model to analyse. By default it is set to one of the

models provided with the toolbox, the two-compartment linear model with one

input:

modelname = 'C2M'

The user may select other models provided with the toolbox – included in folder

/models – or define a new model as explained in Section 7.1.

(2) FISPO ANALYSIS OPTIONS: The second block consists of the following

options:

checkObserver, maxLietime, nnzDerU and nnzDerW.

Their meaning is explained in the comments of the options.py file. Note that all

the above options are in general scalar values. The exceptions are nnzDerU and

nnzDerW, which, for models with several inputs, must be row vectors with the

same number of elements as inputs, e.g., for two inputs:

nnzDerW = [0, 1]

(3) KNOWN/IDENTIFIABLE PARAMETERS: The last block is used for entering

parameters that have already been classified as identifiable. This reduces the

computational complexity of the calculations and may thus enable a deeper

analysis, which can lead to more complete results. For example, if StrikePy has

already determined that two parameters 𝑝𝑝1 and 𝑝𝑝2 are identifiable, we may

enter:

p1, p2 = sym.symbols('p1 p2')
prev_ident_pars = [p1, p2]

This option can also be used to assume that some parameters are known, despite

being entered as unknown in the model definition. This is useful to test what

happens when fixing some parameters, without having to modify the model file.

7.4 Output
StrikePy reports the main results of the identifiability analysis on screen. Additionally,

it creates several .txt in the results folder:

12

• A file named id_results_MODELNAME_DATE.txt, with a summary of the

results of the identifiability analysis.

• One or several files with the generalized observability-identifiability matrices

calculated with a given number of Lie derivatives. They are stored in separate

files so that they can be reused in case a particular run is aborted due to

excessive computation time. These files are named with this structure:

obs_ident_matrix_MODEL_NUMBER_OF_Lie_deriv.txt.

8 Contributors
StrikePy has been developed by David Rey Rostro (Universidade de Vigo,

davidreyrostro@gmail.com) as part of his B. Eng. thesis. The work was supervised by

Alejandro F. Villaverde (Universidade de Vigo, afvillaverde@uvigo.gal), who

developed the toolbox STRIKE-GOLDD on which StrikePy is based.

mailto:davidreyrostro@gmail.com
mailto:afvillaverde@uvigo.gal

	1 Introduction
	1.1 Theoretical foundations
	1.2 Version and publication history

	2 License
	3 Availability
	4 Software contents
	5 Requirements and installation
	5.1 Requirements
	5.2 Download and install using GitHub
	5.3 Download and install using pip

	6 Quick start: using StrikePy in one minute
	6.1 Using GitHub
	6.2 Using pip

	7 Usage
	7.1 Input: entering a model
	7.1.1 Example: defining the MAPK model

	7.2 Analysing a model: known vs unknown inputs
	7.2.1 Example: two-compartment model with known input
	7.2.2 Example: two-compartment model with unknown input

	7.3 Options
	7.4 Output

	8 Contributors

