Figure 13: Images per second reached when distributing the
training of a ResNet-101 TensorFlow model (from the official
TF benchmark). All experiments were run on p3.16xlI instances
connected by 25Gbps Ethernet, and workers allocated 4 GPUs
per node as done in Horovod [53]. We note some measurement
deviations from previously reported, likely due to hardware
differences and recent TensorFlow performance improvements.
We used OpenMPI 3.0, TF 1.8, and NCCL2 for all runs.

5.2.1 Distributed Training

We implement data-parallel synchronous SGD leverag-
ing the Ray actor abstraction to represent model replicas.
Model weights are synchronized via allreduce (5.1) or pa-
rameter server, both implemented on top of the Ray APL

In Figure [I3] we evaluate the performance of the
Ray (synchronous) parameter-server SGD implementa-
tion against state-of-the-art implementations [S3[], us-
ing the same TensorFlow model and synthetic data gen-
erator for each experiment. We compare only against
TensorFlow-based systems to accurately measure the over-
head imposed by Ray, rather than differences between the
deep learning frameworks themselves. In each iteration,
model replica actors compute gradients in parallel, send
the gradients to a sharded parameter server, then read the
summed gradients from the parameter server for the next
iteration.

Figure [13]shows that Ray matches the performance of
Horovod and is within 10% of distributed TensorFlow
(in distributed._replicated mode). This is due to
the ability to express the same application-level optimiza-
tions found in these specialized systems in Ray’s general-
purpose API. A key optimization is the pipelining of gra-
dient computation, transfer, and summation within a sin-
gle iteration. To overlap GPU computation with network
transfer, we use a custom TensorFlow operator to write
tensors directly to Ray’s object store.

5.2.2 Serving

Model serving is an important component of end-to-end
applications. Ray focuses primarily on the embedded
serving of models to simulators running within the same
dynamic task graph (e.g., within an RL application on
Ray). In contrast, systems like Clipper [19] focus on
serving predictions to external clients.

In this setting, low latency is critical for achieving high
utilization. To show this, in Table [3 we compare the

System Small Input
Clipper | 4400 =+ 15 states/sec
Ray 6200 =+ 21 states/sec

Larger Input
290 + 1.3 states/sec
6900 =+ 150 states/sec

Table 3: Throughput comparisons for Clipper [19], a dedicated
serving system, and Ray for two embedded serving workloads.
We use a residual network and a small fully connected network,
taking 10ms and Sms to evaluate, respectively. The server is
queried by clients that each send states of size 4KB and 100KB
respectively in batches of 64.

server throughput achieved using a Ray actor to serve
a policy versus using the open source Clipper system
over REST. Here, both client and server processes are co-
located on the same machine (a p3.8xlarge instance). This
is often the case for RL applications but not for the general
web serving workloads addressed by systems like Clipper.
Due to its low-overhead serialization and shared memory
abstractions, Ray achieves an order of magnitude higher
throughput for a small fully connected policy model that
takes in a large input and is also faster on a more expensive
residual network policy model, similar to one used in
AlphaGo Zero, that takes smaller input.

5.2.3 Simulation

Simulators used in RL produce results with variable
lengths (“timesteps”) that, due to the tight loop with train-
ing, must be used as soon as they are available. The task
heterogeneity and timeliness requirements make simu-
lations hard to support efficiently in BSP-style systems.
To demonstrate, we compare (1) an MPI implementation
that submits 3n parallel simulation runs on n cores in 3
rounds, with a global barrier between roundsﬁ, to (2) a
Ray program that issues the same 3n tasks while concur-
rently gathering simulation results back to the driver. Ta-
ble[d]shows that both systems scale well, yet Ray achieves
up to 1.8 throughput. This motivates a programming
model that can dynamically spawn and collect the results
of fine-grained simulation tasks.

System, programming model | 1 CPU | 16 CPUs | 256 CPUs
MPI, bulk synchronous 22.6K 208K 2.16M
Ray, asynchronous tasks 22.3K 290K 4.03M

Table 4: Timesteps per second for the Pendulum-v0 simulator
in OpenAl Gym [13]. Ray allows for better utilization when
running heterogeneous simulations at scale.

§Note that experts can use MPI’s asynchronous primitives to get
around barriers—at the expense of increased program complexity —we
nonetheless chose such an implementation to simulate BSP.

