__author__ = 'sibirrer'
#this file contains a class to make a gaussian
import numpy as np
import scipy.special
import scipy.integrate as integrate
from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
__all__ = ['GaussianKappa']
[docs]class GaussianKappa(LensProfileBase):
"""
this class contains functions to evaluate a Gaussian function and calculates its derivative and hessian matrix
"""
param_names = ['amp', 'sigma', 'center_x', 'center_y']
lower_limit_default = {'amp': 0, 'sigma': 0, 'center_x': -100, 'center_y': -100}
upper_limit_default = {'amp': 100, 'sigma': 100, 'center_x': 100, 'center_y': 100}
def __init__(self):
self.gaussian = Gaussian()
self.ds = 0.00001
super(LensProfileBase, self).__init__()
[docs] def function(self, x, y, amp, sigma, center_x=0, center_y=0):
"""
returns Gaussian
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_**2 + y_**2)
sigma_x, sigma_y = sigma, sigma
c = 1. / (2 * sigma_x * sigma_y)
if isinstance(x_, int) or isinstance(x_, float):
num_int = self._num_integral(r, c)
else:
num_int = []
for i in range(len(x_)):
num_int.append(self._num_integral(r[i], c))
num_int = np.array(num_int)
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
amp2d = amp_density / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))
amp2d *= 2 * 1. / (2 * c)
return num_int * amp2d
@staticmethod
def _num_integral(r, c):
"""
numerical integral (1-e^{-c*x^2})/x dx [0..r]
:param r: radius
:param c: 1/2sigma^2
:return:
"""
out = integrate.quad(lambda x: (1-np.exp(-c*x**2))/x, 0, r)
return out[0]
[docs] def derivatives(self, x, y, amp, sigma, center_x=0, center_y=0):
"""
returns df/dx and df/dy of the function
"""
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_**2 + y_**2)
sigma_x, sigma_y = sigma, sigma
if isinstance(R, int) or isinstance(R, float):
R = max(R, self.ds)
else:
R[R <= self.ds] = self.ds
alpha = self.alpha_abs(R, amp, sigma)
return alpha / R * x_, alpha / R * y_
[docs] def hessian(self, x, y, amp, sigma, center_x=0, center_y=0):
"""
returns Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_**2 + y_**2)
sigma_x, sigma_y = sigma, sigma
if isinstance(r, int) or isinstance(r, float):
r = max(r, self.ds)
else:
r[r <= self.ds] = self.ds
d_alpha_dr = -self.d_alpha_dr(r, amp, sigma_x, sigma_y)
alpha = self.alpha_abs(r, amp, sigma)
f_xx = -(d_alpha_dr/r + alpha/r**2) * x_**2/r + alpha/r
f_yy = -(d_alpha_dr/r + alpha/r**2) * y_**2/r + alpha/r
f_xy = -(d_alpha_dr/r + alpha/r**2) * x_*y_/r
return f_xx, f_xy, f_xy, f_yy
[docs] def density(self, r, amp, sigma):
"""
:param r:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
return self.gaussian.function(r, 0, amp, sigma_x, sigma_y)
[docs] def density_2d(self, x, y, amp, sigma, center_x=0, center_y=0):
"""
:param x:
:param y:
:param amp:
:param sigma:
:param center_x:
:param center_y:
:return:
"""
sigma_x, sigma_y = sigma, sigma
amp2d = self._amp3d_to_2d(amp, sigma_x, sigma_y)
return self.gaussian.function(x, y, amp2d, sigma_x, sigma_y, center_x, center_y)
[docs] def mass_2d(self, R, amp, sigma):
"""
:param R:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
amp2d = amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))
c = 1./(2 * sigma_x * sigma_y)
return amp2d * 2 * np.pi * 1./(2*c) * (1. - np.exp(-c * R**2))
[docs] def mass_2d_lens(self, R, amp, sigma):
"""
:param R:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
return self.mass_2d(R, amp_density, sigma)
[docs] def alpha_abs(self, R, amp, sigma):
"""
absolute value of the deflection
:param R:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
alpha = self.mass_2d(R, amp_density, sigma) / np.pi / R
return alpha
[docs] def d_alpha_dr(self, R, amp, sigma_x, sigma_y):
"""
:param R:
:param amp:
:param sigma_x:
:param sigma_y:
:return:
"""
c = 1. / (2 * sigma_x * sigma_y)
A = self._amp2d_to_3d(amp, sigma_x, sigma_y) * np.sqrt(2/np.pi*sigma_x*sigma_y)
return 1./R**2 * (-1 + (1 + 2*c*R**2) * np.exp(-c*R**2)) * A
[docs] def mass_3d(self, R, amp, sigma):
"""
:param R:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
A = amp / (2 * np.pi * sigma_x * sigma_y)
c = 1. / (2 * sigma_x * sigma_y)
result = 1. / (2*c) * (-R * np.exp(-c*R**2) + scipy.special.erf(np.sqrt(c) * R) * np.sqrt(np.pi/(4 * c)))
return result*A * 4 * np.pi
[docs] def mass_3d_lens(self, R, amp, sigma):
"""
:param R:
:param amp:
:param sigma:
:return:
"""
sigma_x, sigma_y = sigma, sigma
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
return self.mass_3d(R, amp_density, sigma)
@staticmethod
def _amp3d_to_2d(amp, sigma_x, sigma_y):
"""
converts 3d density into 2d density parameter
:param amp:
:param sigma_x:
:param sigma_y:
:return:
"""
return amp * np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)
@staticmethod
def _amp2d_to_3d(amp, sigma_x, sigma_y):
"""
converts 3d density into 2d density parameter
:param amp:
:param sigma_x:
:param sigma_y:
:return:
"""
return amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))