__author__ = 'sibirrer'
import numpy as np
from scipy.integrate import quad
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
from lenstronomy.Util import derivative_util as calc_util
__all__ = ['CoredDensity2']
[docs]class CoredDensity2(LensProfileBase):
"""
class for a uniform cored density dropping steep in the outskirts
credits for suggesting this profile goes to Kfir Blum
.. math::
\\rho(r) = 2/\\pi * \\Sigma_{\\rm crit} R_c^2 * (R_c^2 + r^2)^{-3/2}
This profile drops like an NFW profile as math:`\\rho(r)^{-3}`.
"""
model_name = 'CORED_DENSITY_2'
_s = 0.000001 # numerical limit for minimal radius
param_names = ['sigma0', 'r_core', 'center_x', 'center_y']
lower_limit_default = {'sigma0': -1, 'r_core': 0, 'center_x': -100, 'center_y': -100}
upper_limit_default = {'sigma0': 10, 'r_core': 100, 'center_x': 100, 'center_y': 100}
[docs] def function(self, x, y, sigma0, r_core, center_x=0, center_y=0):
"""
potential of cored density profile
:param x: x-coordinate in angular units
:param y: y-coordinate in angular units
:param sigma0: convergence in the core
:param r_core: core radius
:param center_x: center of the profile
:param center_y: center of the profile
:return: lensing potential at (x, y)
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
r = np.maximum(r, self._s)
if isinstance(r, int) or isinstance(r, float):
return self._num_integral_potential(r, sigma0, r_core)
else:
f_ = []
for i in range(len(r)):
f_.append(self._num_integral_potential(r[i], sigma0, r_core))
return np.array(f_)
def _num_integral_potential(self, r, sigma0, r_core):
"""
:param r:
:param r_core:
:return:
"""
def _integrand(x):
return self.alpha_r(x, sigma0=sigma0, r_core=r_core)
f_ = quad(_integrand, 0, r)[0]
return f_
[docs] def derivatives(self, x, y, sigma0, r_core, center_x=0, center_y=0):
"""
deflection angle of cored density profile
:param x: x-coordinate in angular units
:param y: y-coordinate in angular units
:param sigma0: convergence in the core
:param r_core: core radius
:param center_x: center of the profile
:param center_y: center of the profile
:return: alpha_x, alpha_y at (x, y)
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_**2 + y_**2)
r = np.maximum(r, self._s)
alpha_r = self.alpha_r(r, sigma0, r_core)
f_x = alpha_r * x_ / r
f_y = alpha_r * y_ / r
return f_x, f_y
[docs] def hessian(self, x, y, sigma0, r_core, center_x=0, center_y=0):
"""
:param x: x-coordinate in angular units
:param y: y-coordinate in angular units
:param sigma0: convergence in the core
:param r_core: core radius
:param center_x: center of the profile
:param center_y: center of the profile
:return: Hessian df/dxdx, df/dxdy, df/dydx, df/dydy at position (x, y)
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
r = np.maximum(r, self._s)
d_alpha_dr = self.d_alpha_dr(r, sigma0, r_core)
alpha = self.alpha_r(r, sigma0, r_core)
dr_dx = calc_util.d_r_dx(x_, y_)
dr_dy = calc_util.d_r_dy(x_, y_)
f_xx = d_alpha_dr * dr_dx * x_ / r + alpha * calc_util.d_x_diffr_dx(x_, y_)
f_yy = d_alpha_dr * dr_dy * y_ / r + alpha * calc_util.d_y_diffr_dy(x_, y_)
f_xy = d_alpha_dr * dr_dy * x_ / r + alpha * calc_util.d_x_diffr_dy(x_, y_)
return f_xx, f_xy, f_xy, f_yy
[docs] @staticmethod
def alpha_r(r, sigma0, r_core):
"""
radial deflection angle of the cored density profile
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: deflection angle
"""
return sigma0 * r_core ** 2 * np.log((r_core**2 + r**2) / r_core**2) / r # this is mass_2d / (r * pi)
[docs] @staticmethod
def d_alpha_dr(r, sigma0, r_core):
"""
radial derivatives of the radial deflection angle
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: dalpha/dr
"""
return sigma0 * r_core ** 2 * (-1./r**2 * np.log((r_core**2 + r**2) / r_core**2) + 1/r * r_core**2 /
(r**2 + r_core**2) * 2 * r/r_core**2)
[docs] @staticmethod
def kappa_r(r, sigma0, r_core):
"""
convergence of the cored density profile. This routine is also for testing
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: convergence at r
"""
return sigma0 * r_core ** 2 / (r_core ** 2 + r ** 2)
[docs] @staticmethod
def density(r, sigma0, r_core):
"""
rho(r) = 2/pi * Sigma_crit R_c**3 * (R_c**2 + r**2)**(-3/2)
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: density at radius r
"""
return 1./2 * sigma0 * r_core**2 * (r_core**2 + r**2) ** (-3./2)
[docs] def density_lens(self, r, sigma0, r_core):
"""
computes the density at 3d radius r given lens model parameterization.
The integral in the LOS projection of this quantity results in the convergence quantity.
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: density at radius r
"""
return self.density(r, sigma0, r_core)
[docs] def density_2d(self, x, y, sigma0, r_core, center_x=0, center_y=0):
"""
projected density at projected radius r
:param x: x-coordinate in angular units
:param y: y-coordinate in angular units
:param sigma0: convergence in the core
:param r_core: core radius
:param center_x: center of the profile
:param center_y: center of the profile
:return: projected density
"""
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
r = np.maximum(r, self._s)
return self.kappa_r(r, sigma0, r_core)
[docs] @staticmethod
def mass_2d(r, sigma0, r_core):
"""
mass enclosed in cylinder of radius r
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: mass enclosed in cylinder of radius r
"""
return sigma0 * r_core ** 2 * np.pi * np.log((r_core**2 + r**2) / r_core**2)
[docs] @staticmethod
def mass_3d(r, sigma0, r_core):
"""
mass enclosed 3d radius
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: mass enclosed 3d radius
"""
r_ = np.sqrt(r**2 + r_core**2)
return 2 * np.pi * sigma0 * r_core**2 * (r_ * np.log(r_ + r) - np.log(r_core) * r_ - r) / r_
[docs] def mass_3d_lens(self, r, sigma0, r_core):
"""
mass enclosed a 3d sphere or radius r given a lens parameterization with angular units
For this profile those are identical.
:param r: radius (angular scale)
:param sigma0: convergence in the core
:param r_core: core radius
:return: mass enclosed 3d radius
"""
return self.mass_3d(r, sigma0, r_core)