Source code for lenstronomy.Data.imaging_data

import numpy as np

from lenstronomy.Data.pixel_grid import PixelGrid
from lenstronomy.Data.image_noise import ImageNoise

__all__ = ['ImageData']


[docs]class ImageData(PixelGrid, ImageNoise): """ class to handle the data, coordinate system and masking, including convolution with various numerical precisions The Data() class is initialized with keyword arguments: - 'image_data': 2d numpy array of the image data - 'transform_pix2angle' 2x2 transformation matrix (linear) to transform a pixel shift into a coordinate shift (x, y) -> (ra, dec) - 'ra_at_xy_0' RA coordinate of pixel (0,0) - 'dec_at_xy_0' DEC coordinate of pixel (0,0) optional keywords for shifts in the coordinate system: - 'ra_shift': shifts the coordinate system with respect to 'ra_at_xy_0' - 'dec_shift': shifts the coordinate system with respect to 'dec_at_xy_0' optional keywords for noise properties: - 'background_rms': rms value of the background noise - 'exp_time': float, exposure time to compute the Poisson noise contribution - 'exposure_map': 2d numpy array, effective exposure time for each pixel. If set, will replace 'exp_time' - 'noise_map': Gaussian noise (1-sigma) for each individual pixel. If this keyword is set, the other noise properties will be ignored. Notes: ------ the likelihood for the data given model P(data|model) is defined in the function below. Please make sure that your definitions and units of 'exposure_map', 'background_rms' and 'image_data' are in accordance with the likelihood function. In particular, make sure that the Poisson noise contribution is defined in the count rate. """ def __init__(self, image_data, exposure_time=None, background_rms=None, noise_map=None, gradient_boost_factor=None, ra_at_xy_0=0, dec_at_xy_0=0, transform_pix2angle=None, ra_shift=0, dec_shift=0): """ :param image_data: 2d numpy array of the image data :param exposure_time: int or array of size the data; exposure time (common for all pixels or individually for each individual pixel) :param background_rms: root-mean-square value of Gaussian background noise in units counts per second :param noise_map: int or array of size the data; joint noise sqrt(variance) of each individual pixel. :param gradient_boost_factor: None or float, variance terms added in quadrature scaling with gradient^2 * gradient_boost_factor :param transform_pix2angle: 2x2 matrix, mapping of pixel to coordinate :param ra_at_xy_0: ra coordinate at pixel (0,0) :param dec_at_xy_0: dec coordinate at pixel (0,0) :param ra_shift: RA shift of pixel grid :param dec_shift: DEC shift of pixel grid """ nx, ny = np.shape(image_data) if transform_pix2angle is None: transform_pix2angle = np.array([[1, 0], [0, 1]]) PixelGrid.__init__(self, nx, ny, transform_pix2angle, ra_at_xy_0 + ra_shift, dec_at_xy_0 + dec_shift) ImageNoise.__init__(self, image_data, exposure_time=exposure_time, background_rms=background_rms, noise_map=noise_map, gradient_boost_factor=gradient_boost_factor, verbose=False)
[docs] def update_data(self, image_data): """ update the data as well as the error matrix estimated from it when done so using the data :param image_data: 2d numpy array of same size as nx, ny :return: None """ nx, ny = np.shape(image_data) if not self._nx == nx and not self._ny == ny: raise ValueError("shape of new data %s %s must equal old data %s %s!" % (nx, ny, self._nx, self._ny)) self._data = image_data if hasattr(self, '_C_D') and self._noise_map is None: del self._C_D
@property def data(self): """ :return: 2d numpy array of data """ return self._data
[docs] def log_likelihood(self, model, mask, additional_error_map=0): """ computes the likelihood of the data given the model p(data|model) The Gaussian errors are estimated with the covariance matrix, based on the model image. The errors include the background rms value and the exposure time to compute the Poisson noise level (in Gaussian approximation). :param model: the model (same dimensions and units as data) :param mask: bool (1, 0) values per pixel. If =0, the pixel is ignored in the likelihood :param additional_error_map: additional error term (in same units as covariance matrix). This can e.g. come from model errors in the PSF estimation. :return: the natural logarithm of the likelihood p(data|model) """ C_D = self.C_D_model(model) X2 = (model - self._data) ** 2 / (C_D + np.abs(additional_error_map)) * mask X2 = np.array(X2) logL = - np.sum(X2) / 2 return logL