
SPAMS Documentation
Release 1

jp

Jan 15, 2019





CONTENTS

1 sort 3

2 calcAAt 5

3 calcXAt 7

4 calcXY 9

5 calcXYt 11

6 calcXtY 13

7 bayer 15

8 conjGrad 17

9 invSym 19

10 normalize 21

11 sparseProject 23

12 lasso 25

13 lassoMask 27

14 lassoWeighted 29

15 omp 31

16 ompMask 33

17 cd 35

18 somp 37

19 l1L2BCD 39

20 fistaFlat 41

21 fistaTree 45

22 fistaGraph 47

i



23 proximalFlat 49

24 proximalTree 51

25 proximalGraph 53

26 trainDL 55

27 structTrainDL 59

28 trainDL_Memory 63

29 nmf 65

30 nnsc 67

31 archetypalAnalysis 69

32 decompSimplex 71

33 simpleGroupTree 73

34 readGroupStruct 75

35 groupStructOfString 77

36 graphOfGroupStruct 79

37 treeOfGroupStruct 81

38 Indices and tables 83

Index 85

ii



SPAMS Documentation, Release 1

Contents:

sort(X[, mode]) sort the elements of X using quicksort
calcAAt(A)

Compute efficiently AAt = A*A’, when A
is sparse and has a lot more columns than
rows.

calcXAt(X, A)
Compute efficiently XAt = X*A’, when A
is sparse and has a lot more columns than
rows.

calcXY(X, Y) Compute Z=XY using the BLAS library used by
SPAMS.

calcXYt(X, Y) Compute Z=XY’ using the BLAS library used by
SPAMS.

calcXtY(X, Y) Compute Z=X’Y using the BLAS library used by
SPAMS.

bayer(X, offset)
bayer applies a Bayer pattern to an image
X.

conjGrad(A, b[, x0, tol, itermax])
Conjugate gradient algorithm, sometimes
faster than the equivalent python function
solve.

invSym(A) returns the inverse of a symmetric matrix A
normalize(A) rescale the columns of X so that they have unit l2-norm.
sparseProject(U[, thrs, mode, lambda1, . . . ]) sparseProject solves various optimization problems, in-

cluding projections on a few convex sets.
lasso(X[, D, Q, q, return_reg_path, L, . . . ])

lasso is an efficient implementation of the
homotopy-LARS algorithm for solving the
Lasso.

lassoMask(X, D, B[, L, lambda1, lambda2, . . . ])
lasso is a variant of lasso that handles bi-
nary masks.

lassoWeighted(X, D, W[, L, lambda1, mode, . . . ])
lassoWeighted is an efficient implementa-
tion of the LARS algorithm for solving the
weighted Lasso.

omp(X, D[, L, eps, lambda1, . . . ])
omp is an efficient implementation of the
Orthogonal Matching Pursuit algorithm.

ompMask(X, D, B[, L, eps, lambda1, . . . ]) ompMask is a variant of omp that allow using a binary
mask B

Continued on next page
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Table 1 – continued from previous page
cd(X, D, A0[, lambda1, mode, itermax, tol, . . . ]) cd addresses l1-decomposition problem with a coordi-

nate descent type of approach.
somp(X, D, list_groups[, L, eps, numThreads])

somp is an efficient implementation of a Si-
multaneous Orthogonal Matching Pursuit
algorithm.

l1L2BCD(X, D, alpha0, list_groups[, . . . ]) l1L2BCD is a solver for a Simultaneous signal decom-
position formulation based on block coordinate descent.

fistaFlat(Y, X, W0[, return_optim_info, . . . ]) fistaFlat solves sparse regularized problems.
fistaTree(Y, X, W0, tree[, . . . ]) fistaTree solves sparse regularized problems.
fistaGraph(Y, X, W0, graph[, . . . ]) fistaGraph solves sparse regularized problems.
proximalFlat(U[, return_val_loss, . . . ])

proximalFlat computes proximal operators.

proximalTree(U, tree[, return_val_loss, . . . ])
proximalTree computes a proximal opera-
tor.

proximalGraph(U, graph[, return_val_loss, . . . ])
proximalGraph computes a proximal oper-
ator.

trainDL(X[, return_model, model, D, . . . ]) trainDL is an efficient implementation of the dictionary
learning technique presented in

structTrainDL(X[, return_model, model, D, . . . ]) structTrainDL is an efficient implementation of the dic-
tionary learning technique presented in

trainDL_Memory(X[, D, numThreads, . . . ]) trainDL_Memory is an efficient but memory consuming
variant of the dictionary learning technique presented in

nmf(X[, return_lasso, model, numThreads, . . . ]) trainDL is an efficient implementation of the non-
negative matrix factorization technique presented in

nnsc(X[, return_lasso, model, lambda1, . . . ]) trainDL is an efficient implementation of the non-
negative sparse coding technique presented in

archetypalAnalysis(X[, p, Z0, returnAB, . . . ]) documentation to appear soon
decompSimplex(X, Z[, computeXtX, numThreads]) documentation to appear soon
simpleGroupTree(degrees) makes a structure representing a tree given the degree of

each level.
readGroupStruct(file) reads a text file describing “simply” the structure of

groups of variables needed by proximalGraph, proxi-
malTree, fistaGraph, fistaTree and structTrainDL and
builds the corresponding group structure.

groupStructOfString(s) decode a multi-line string describing “simply” the struc-
ture of groups of variables needed by proximalGraph,
proximalTree, fistaGraph, fistaTree and structTrainDL
and builds the corresponding group structure.

graphOfGroupStruct(gstruct) converts a group structure into the graph structure used
by proximalGraph, fistaGraph or structTrainDL

treeOfGroupStruct(gstruct) converts a group structure into the tree structure used by
proximalTree, fistaTree or structTrainDL
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CHAPTER

ONE

SORT

spams.sort(X, mode=True)

sort the elements of X using quicksort

Args: X: double vector of size n mode: false for decreasing order (true by default)

Returns: Y: double vector of size n

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)
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4 Chapter 1. sort



CHAPTER

TWO

CALCAAT

spams.calcAAt(A)

Compute efficiently AAt = A*A’, when A is sparse

and has a lot more columns than rows. In some cases, it is up to 20 times faster than the equivalent
python expression AAt=A*A’;

Args: A: double sparse m x n matrix

Returns: AAt: double m x m matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

5
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CHAPTER

THREE

CALCXAT

spams.calcXAt(X, A)

Compute efficiently XAt = X*A’, when A is sparse and has a

lot more columns than rows. In some cases, it is up to 20 times faster than the equivalent python
expression;

Args: X: double m x n matrix A: double sparse p x n matrix

Returns: XAt: double m x p matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

7
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8 Chapter 3. calcXAt



CHAPTER

FOUR

CALCXY

spams.calcXY(X, Y)

Compute Z=XY using the BLAS library used by SPAMS.

Args: X: double m x n matrix Y: double n x p matrix

Returns: Z: double m x p matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

9
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10 Chapter 4. calcXY



CHAPTER

FIVE

CALCXYT

spams.calcXYt(X, Y)

Compute Z=XY’ using the BLAS library used by SPAMS.

Args: X: double m x n matrix Y: double p x n matrix

Returns: Z: double m x p matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

11
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12 Chapter 5. calcXYt



CHAPTER

SIX

CALCXTY

spams.calcXtY(X, Y)

Compute Z=X’Y using the BLAS library used by SPAMS.

Args: X: double n x m matrix Y: double n x p matrix

Returns: Z: double m x p matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

13
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14 Chapter 6. calcXtY



CHAPTER

SEVEN

BAYER

spams.bayer(X, offset)

bayer applies a Bayer pattern to an image X. There are four possible offsets.

Args: X: double m x n matrix offset: scalar, 0,1,2 or 3

Returns: Y: double m x m matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)
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CHAPTER

EIGHT

CONJGRAD

spams.conjGrad(A, b, x0=None, tol=1e-10, itermax=None)

Conjugate gradient algorithm, sometimes faster than the

equivalent python function solve. In order to solve Ax=b;

Args: A: double square n x n matrix. HAS TO BE POSITIVE DEFINITE b: double vector of length n. x0:
double vector of length n. (optional) initial guess. tol: (optional) tolerance. itermax: (optional) maximum
number of iterations.

Returns: x: double vector of length n.

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

17
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18 Chapter 8. conjGrad



CHAPTER

NINE

INVSYM

spams.invSym(A)

returns the inverse of a symmetric matrix A

Args: A: double n x n matrix

Returns: B: double n x n matrix

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

19
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20 Chapter 9. invSym



CHAPTER

TEN

NORMALIZE

spams.normalize(A)

rescale the columns of X so that they have unit l2-norm.

Args: X: double m x n matrix

Returns: Y: double m x n matrix

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

21
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22 Chapter 10. normalize



CHAPTER

ELEVEN

SPARSEPROJECT

spams.sparseProject(U, thrs=1.0, mode=1, lambda1=0.0, lambda2=0.0, lambda3=0.0, pos=0,
numThreads=-1)

sparseProject solves various optimization problems, including projections on a few convex sets.

It aims at addressing the following problems for all columns u of U in parallel

1. when mode=1 (projection on the l1-ball) min_v ||u-v||_2^2 s.t. ||v||_1 <= thrs

2. when mode=2 min_v ||u-v||_2^2 s.t. ||v||_2^2 + lamuda1||v||_1 <= thrs

3. when mode=3 min_v ||u-v||_2^2 s.t ||v||_1 + 0.5lamuda1||v||_2^2 <= thrs

4. when mode=4 min_v 0.5||u-v||_2^2 + lamuda1||v||_1 s.t ||v||_2^2 <= thrs

5. when mode=5

min_v 0.5||u-v||_2^2 + lamuda1||v||_1 +lamuda2 FL(v) + . . . 0.5lamuda_3
||v||_2^2

where FL denotes a “fused lasso” regularization term.

6. when mode=6 min_v ||u-v||_2^2 s.t lamuda1||v||_1 +lamuda2 FL(v) + . . .

0.5lamuda3||v||_2^2 <= thrs

When pos=true and mode <= 4, it solves the previous problems with positivity
constraints

Args:

U: double m x n matrix (input signals) m is the signal size n is the number of signals to project

Kwargs: thrs: (parameter) lambda1: (parameter) lambda2: (parameter) lambda3: (parameter) mode: (see
above) pos: (optional, false by default) numThreads: (optional, number of threads for exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns: V: double m x n matrix (output matrix)

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting

23
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CHAPTER

TWELVE

LASSO

spams.lasso(X, D=None, Q=None, q=None, return_reg_path=False, L=-1, lambda1=None,
lambda2=0.0, mode=2, pos=False, ols=False, numThreads=-1, max_length_path=-1,
verbose=False, cholesky=False)

lasso is an efficient implementation of the homotopy-LARS algorithm for solving the Lasso.

If the function is called this way spams.lasso(X,D = D, Q = None,. . . ), it aims at addressing the
following problems for all columns x of X, it computes one column alpha of A that solves

1. when mode=0

min_{alpha} ||x-Dalpha||_2^2 s.t. ||alpha||_1 <= lambda1

2. when mode=1

min_{alpha} ||alpha||_1 s.t. ||x-Dalpha||_2^2 <= lambda1

3. when mode=2

min_{alpha} 0.5||x-Dalpha||_2^2 + lambda1||alpha||_1 +0.5 lambda2||alpha||_2^2

If the function is called this way spams.lasso(X,D = None, Q = Q, q = q,. . . ), it solves the above
optimisation problem, when Q=D’D and q=D’x.

Possibly, when pos=true, it solves the previous problems with positivity constraints on the vectors
alpha

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary

Q: p x p double matrix (Q = D’D) q: p x n double matrix (q = D’X) verbose: verbose mode return_reg_path:

if true the function will return a tuple of matrices.

Kwargs: lambda1: (parameter) lambda2: (optional parameter for solving the Elastic-Net)

for mode=0 and mode=1, it adds a ridge on the Gram Matrix

L: (optional), maximum number of steps of the homotopy algorithm (can be used as a stopping crite-
rion)

pos: (optional, adds non-negativity constraints on the coefficients, false by default)

mode: (see above, by default: 2) numThreads: (optional, number of threads for exploiting

25



SPAMS Documentation, Release 1

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

cholesky: (optional, default false), choose between Cholesky implementation or one based on the ma-
trix inversion Lemma

ols: (optional, default false), perform an orthogonal projection before returning the solution.

max_length_path: (optional) maximum length of the path, by default 4*p

Returns: A: double sparse p x n matrix (output coefficients) path: optional, returns the regularisation path for
the first signal

A = spams.lasso(X,return_reg_path = False,. . . ) (A,path) = spams.lasso(X,return_reg_path =
True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

Examples:

import numpy as np
m = 5;n = 10;nD = 5
np.random.seed(0)
X = np.asfortranarray(np.random.normal(size=(m,n)))
X = np.asfortranarray(X / np.tile(np.sqrt((X*X).sum(axis=0)),(X.shape[0],1)))
D = np.asfortranarray(np.random.normal(size=(100,200)))
D = np.asfortranarray(D / np.tile(np.sqrt((D*D).sum(axis=0)),(D.shape[0],1)))
alpha = spams.lasso(X,D = D,return_reg_path = FALSE,lambda1 = 0.15)

26 Chapter 12. lasso



CHAPTER

THIRTEEN

LASSOMASK

spams.lassoMask(X, D, B, L=-1, lambda1=None, lambda2=0.0, mode=2, pos=False, numThreads=-1,
verbose=False)

lasso is a variant of lasso that handles binary masks. It aims at addressing the following problems for
all columns x of X, and beta of B, it computes one column alpha of A that solves

1. when mode=0

min_{alpha} ||diag(beta)(x-Dalpha)||_2^2 s.t. ||alpha||_1 <= lambda1

2. when mode=1

min_{alpha} ||alpha||_1 s.t. ||diag(beta)(x-Dalpha)||_2^2 <=
lambda1*||beta||_0/m

3. when mode=2

min_{alpha} 0.5||diag(beta)(x-Dalpha)||_2^2 +
lambda1*(||beta||_0/m)*||alpha||_1 + (lambda2/2)||alpha||_2^2

Possibly, when pos=true, it solves the previous problems with positivity constraints on the vectors
alpha

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary

B: boolean m x n matrix (mask) p is the number of elements in the dictionary

verbose: verbose mode

Kwargs: lambda1: (parameter) L: (optional, maximum number of elements of each

decomposition)

pos: (optional, adds positivity constraints on the coefficients, false by default)

mode: (see above, by default: 2) lambda2: (optional parameter for solving the Elastic-Net)

for mode=0 and mode=1, it adds a ridge on the Gram Matrix

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

27
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Returns: A: double sparse p x n matrix (output coefficients)

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

28 Chapter 13. lassoMask



CHAPTER

FOURTEEN

LASSOWEIGHTED

spams.lassoWeighted(X, D, W, L=-1, lambda1=None, mode=2, pos=False, numThreads=-1, ver-
bose=False)

lassoWeighted is an efficient implementation of the LARS algorithm for solving the weighted Lasso.
It is optimized for solving a large number of small or medium-sized decomposition problem (and not
for a single large one).

It first computes the Gram matrix D’D and then perform a Cholesky-based OMP of the input signals
in parallel. For all columns x of X, and w of W, it computes one column alpha of A which is the
solution of

1. when mode=0

min_{alpha} ||x-Dalpha||_2^2 s.t. ||diag(w)alpha||_1 <= lambda1

2. when mode=1

min_{alpha} ||diag(w)alpha||_1 s.t. ||x-Dalpha||_2^2 <= lambda1

3. when mode=2

min_{alpha} 0.5||x-Dalpha||_2^2 + lambda1||diag(w)alpha||_1

Possibly, when pos=true, it solves the previous problems with positivity constraints on the vectors
alpha

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary

W: double p x n matrix (weights) verbose: verbose mode

Kwargs: lambda1: (parameter) L: (optional, maximum number of elements of each

decomposition)

pos: (optional, adds positivity constraints on the coefficients, false by default)

mode: (see above, by default: 2) numThreads: (optional, number of threads for exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns: A: double sparse p x n matrix (output coefficients)

29
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Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

30 Chapter 14. lassoWeighted



CHAPTER

FIFTEEN

OMP

spams.omp(X, D, L=None, eps=None, lambda1=None, return_reg_path=False, numThreads=-1)

omp is an efficient implementation of the Orthogonal Matching Pursuit algorithm. It is optimized for
solving a large number of small or medium-sized decomposition problem (and not for a single large
one).

It first computes the Gram matrix D’D and then perform a Cholesky-based OMP of the input signals
in parallel. X=[x^1,. . . ,x^n] is a matrix of signals, and it returns a matrix A=[alpha^1,. . . ,alpha^n] of
coefficients.

it addresses for all columns x of X, min_{alpha} ||alpha||_0 s.t ||x-Dalpha||_2^2 <= eps or
min_{alpha} ||x-Dalpha||_2^2 s.t. ||alpha||_0 <= L or min_{alpha} 0.5||x-Dalpha||_2^2 +
lambda1||alpha||_0

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary All the columns of D
should have unit-norm !

return_reg_path: if true the function will return a tuple of matrices.

Kwargs:

L: (optional, maximum number of elements in each decomposition, min(m,p) by default)

eps: (optional, threshold on the squared l2-norm of the residual, 0 by default

lambda1: (optional, penalty parameter, 0 by default numThreads: (optional, number of threads for exploit-
ing

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns:

A: double sparse p x n matrix (output coefficients) path (optional): double dense p x L matrix (regu-
larization path of the first signal) A = spams.omp(X,D,L,eps,return_reg_path = False,. . . ) (A,path) =
spams.omp(X,D,L,eps,return_reg_path = True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

• Passing an int32 vector of length n to L provides a different parameter L for each input signal x_i

31
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• Passing a double vector of length n to eps and or lambda1 provides a different parameter eps (or
lambda1) for each input signal x_i

32 Chapter 15. omp



CHAPTER

SIXTEEN

OMPMASK

spams.ompMask(X, D, B, L=None, eps=None, lambda1=None, return_reg_path=False, numThreads=-1)

ompMask is a variant of omp that allow using a binary mask B

for all columns x of X, and columns beta of B, it computes a column alpha of A by addressing
min_{alpha} ||alpha||_0 s.t ||diag(beta)*(x-Dalpha)||_2^2

<= eps*||beta||_0/m

or min_{alpha} ||diag(beta)*(x-Dalpha)||_2^2 s.t. ||alpha||_0 <= L or min_{alpha}
0.5||diag(beta)*(x-Dalpha)||_2^2 + lambda1||alpha||_0

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary All the columns of D
should have unit-norm !

B: boolean m x n matrix (mask) p is the number of elements in the dictionary

return_reg_path: if true the function will return a tuple of matrices.

Kwargs:

L: (optional, maximum number of elements in each decomposition, min(m,p) by default)

eps: (optional, threshold on the squared l2-norm of the residual, 0 by default

lambda1: (optional, penalty parameter, 0 by default numThreads: (optional, number of threads for exploit-
ing

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns:

A: double sparse p x n matrix (output coefficients) path (optional): double dense p x L matrix (reg-
ularization path of the first signal) A = spams.ompMask(X,D,B,L,eps,return_reg_path = False,. . . )
(A,path) = spams.ompMask(X,D,B,L,eps,return_reg_path = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

• Passing an int32 vector of length n to L provides a different parameter L for each input signal x_i

33
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• Passing a double vector of length n to eps and or lambda1 provides a different parameter eps (or
lambda1) for each input signal x_i

34 Chapter 16. ompMask



CHAPTER

SEVENTEEN

CD

spams.cd(X, D, A0, lambda1=None, mode=2, itermax=100, tol=0.001, numThreads=-1)

cd addresses l1-decomposition problem with a coordinate descent type of approach.

It is optimized for solving a large number of small or medium-sized decomposition problem (and
not for a single large one). It first computes the Gram matrix D’D. This method is particularly well
adapted when there is low correlation between the dictionary elements and when one can benefit from
a warm restart. It aims at addressing the two following problems for all columns x of X, it computes
a column alpha of A such that

2. when mode=1

min_{alpha} ||alpha||_1 s.t. ||x-Dalpha||_2^2 <= lambda1 For this constraint setting,
the method solves a sequence of penalized problems (corresponding to mode=2)
and looks for the corresponding Lagrange multplier with a simple but efficient
heuristic.

3. when mode=2

min_{alpha} 0.5||x-Dalpha||_2^2 + lambda1||alpha||_1

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

D: double m x p matrix (dictionary) p is the number of elements in the dictionary All the columns of D
should have unit-norm !

A0: double sparse p x n matrix (initial guess)

Kwargs: lambda1: (parameter) mode: (optional, see above, by default 2) itermax: (maximum number of
iterations) tol: (tolerance parameter) numThreads: (optional, number of threads for exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns: A: double sparse p x n matrix (output coefficients)

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)

35
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36 Chapter 17. cd



CHAPTER

EIGHTEEN

SOMP

spams.somp(X, D, list_groups, L=None, eps=0.0, numThreads=-1)

somp is an efficient implementation of a Simultaneous Orthogonal Matching Pursuit algorithm. It is
optimized for solving a large number of small or medium-sized decomposition problem (and not for
a single large one).

It first computes the Gram matrix D’D and then perform a Cholesky-based OMP of the input signals
in parallel. It aims at addressing the following NP-hard problem

X is a matrix structured in groups of signals, which we denote by X=[X_1,. . . ,X_n]

for all matrices X_i of X, min_{A_i} ||A_i||_{0,infty} s.t ||X_i-D A_i||_2^2 <= eps*n_i where n_i
is the number of columns of X_i

or

min_{A_i} ||X_i-D A_i||_2^2 s.t. ||A_i||_{0,infty} <= L

Args:

X: double m x N matrix (input signals) m is the signal size N is the total number of signals

D: double m x p matrix (dictionary) p is the number of elements in the dictionary All the columns of D
should have unit-norm !

list_groups: int32 vector containing the indices (starting at 0) of the first elements of each groups.

Kwargs: L: (maximum number of elements in each decomposition) eps: (threshold on the squared l2-norm of
the residual numThreads: (optional, number of threads for exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns: alpha: double sparse p x N matrix (output coefficients)

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)
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CHAPTER

NINETEEN

L1L2BCD

spams.l1L2BCD(X, D, alpha0, list_groups, lambda1=None, mode=2, itermax=100, tol=0.001,
numThreads=-1)

l1L2BCD is a solver for a Simultaneous signal decomposition formulation based on block coordinate
descent.

X is a matrix structured in groups of signals, which we denote by X=[X_1,. . . ,X_n]

if mode=2, it solves for all matrices X_i of X, min_{A_i} 0.5||X_i-D A_i||_2^2 +
lambda1/sqrt(n_i)||A_i||_{1,2} where n_i is the number of columns of X_i

if mode=1, it solves min_{A_i} ||A_i||_{1,2} s.t. ||X_i-D A_i||_2^2 <= n_i lambda1

Args:

X: double m x N matrix (input signals) m is the signal size N is the total number of signals

D: double m x p matrix (dictionary) p is the number of elements in the dictionary

alpha0: double dense p x N matrix (initial solution) list_groups: int32 vector containing the indices (start-
ing at 0)

of the first elements of each groups.

Kwargs: lambda1: (regularization parameter) mode: (see above, by default 2) itermax: (maximum number of
iterations, by default 100) tol: (tolerance parameter, by default 0.001) numThreads: (optional, number of
threads for exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

Returns: alpha: double sparse p x N matrix (output coefficients)

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)
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CHAPTER

TWENTY

FISTAFLAT

spams.fistaFlat(Y, X, W0, return_optim_info=False, numThreads=-1, max_it=1000, L0=1.0,
fixed_step=False, gamma=1.5, lambda1=1.0, delta=1.0, lambda2=0.0, lambda3=0.0,
a=1.0, b=0.0, c=1.0, tol=1e-06, it0=100, max_iter_backtracking=1000, com-
pute_gram=False, lin_admm=False, admm=False, intercept=False, resetflow=False,
regul=”, loss=”, verbose=False, pos=False, clever=False, log=False, ista=False,
subgrad=False, logName=”, is_inner_weights=False, inner_weights=None,
size_group=1, groups=None, sqrt_step=True, transpose=False, linesearch_mode=0)

fistaFlat solves sparse regularized problems.

X is a design matrix of size m x p X=[x^1,. . . ,x^n]’, where the x_i’s are the rows of X
Y=[y^1,. . . ,y^n] is a matrix of size m x n It implements the algorithms FISTA, ISTA and
subgradient descent.

• if loss=’square’ and regul is a regularization function for vectors, the entries of Y are
real-valued, W = [w^1,. . . ,w^n] is a matrix of size p x n For all column y of Y, it
computes a column w of W such that

w = argmin 0.5||y- X w||_2^2 + lambda1 psi(w)

• if loss=’square’ and regul is a regularization function for matrices the entries of Y are
real-valued, W is a matrix of size p x n. It computes the matrix W such that

W = argmin 0.5||Y- X W||_F^2 + lambda1 psi(W)

• loss=’square-missing’ same as loss=’square’, but handles missing data represented by
NaN (not a number) in the matrix Y

• if loss=’logistic’ and regul is a regularization function for vectors, the entries of Y are
either -1 or +1, W = [w^1,. . . ,w^n] is a matrix of size p x n For all column y of Y, it
computes a column w of W such that

w = argmin (1/m)sum_{j=1}^m log(1+e^(-y_j x^j’ w)) + lambda1 psi(w),

where x^j is the j-th row of X.

• if loss=’logistic’ and regul is a regularization function for matrices the entries of Y are
either -1 or +1, W is a matrix of size p x n

W = argmin sum_{i=1}^n(1/m)sum_{j=1}^m log(1+e^(-y^i_j x^j’ w^i)) +
lambda1 psi(W)

• if loss=’multi-logistic’ and regul is a regularization function for vectors, the entries of
Y are in {0,1,. . . ,N} where N is the total number of classes W = [W^1,. . . ,W^n] is a
matrix of size p x Nn, each submatrix W^i is of size p x N for all submatrix WW of W,
and column y of Y, it computes

41



SPAMS Documentation, Release 1

WW = argmin (1/m)sum_{j=1}^m log(sum_{j=1}^r e^(x^j’(ww^j-ww^{y_j})))
+ lambda1 sum_{j=1}^N psi(ww^j),

where ww^j is the j-th column of WW.

• if loss=’multi-logistic’ and regul is a regularization function for matrices, the entries of
Y are in {0,1,. . . ,N} where N is the total number of classes W is a matrix of size p x N,
it computes

W = argmin (1/m)sum_{j=1}^m log(sum_{j=1}^r e^(x^j’(w^j-w^{y_j}))) +
lambda1 psi(W)

where ww^j is the j-th column of WW.

• loss=’cur’ useful to perform sparse CUR matrix decompositions, W = argmin
0.5||Y-X*W*X||_F^2 + lambda1 psi(W)

The function psi are those used by proximalFlat (see documentation)

This function can also handle intercepts (last row of W is not regularized), and/or non-
negativity constraints on W, and sparse matrices for X

Args: Y: double dense m x n matrix X: double dense or sparse m x p matrix W0: double dense p x n matrix or
p x Nn matrix (for multi-logistic loss)

initial guess

return_optim_info: if true the function will return a tuple of matrices.

Kwargs: loss: (choice of loss, see above) regul: (choice of regularization, see function proximalFlat) lambda1:
(regularization parameter) lambda2: (optional, regularization parameter, 0 by default) lambda3: (optional,
regularization parameter, 0 by default) verbose: (optional, verbosity level, false by default) pos: (optional,
adds positivity constraints on the

coefficients, false by default)

transpose: (optional, transpose the matrix in the regularization function) size_group: (optional, for regu-
larization functions assuming a group

structure)

groups: (int32, optional, for regularization functions assuming a group structure, see proximalFlat)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

max_it: (optional, maximum number of iterations, 100 by default) it0: (optional, frequency for computing
duality gap, every 10 iterations by default) tol: (optional, tolerance for stopping criteration, which is a
relative duality gap

if it is available, or a relative change of parameters).

gamma: (optional, multiplier for increasing the parameter L in fista, 1.5 by default) L0: (optional, initial
parameter L in fista, 0.1 by default, should be small enough) fixed_step: (deactive the line search for L
in fista and use L0 instead) linesearch_mode: (line-search scheme when ista=true: 0: default, monotonic
backtracking scheme 1: monotonic backtracking scheme, with restart at each iteration 2: Barzilai-Borwein
step sizes (similar to SparSA by Wright et al.) 3: non-monotonic backtracking compute_gram: (optional,
pre-compute X^TX, false by default). intercept: (optional, do not regularize last row of W, false by
default). ista: (optional, use ista instead of fista, false by default). subgrad: (optional, if not ista, use
subradient descent instead of fista, false by default). a: b: (optional, if subgrad, the gradient step is a/(t+b)
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also similar options as proximalFlat

the function also implements the ADMM algorithm via an option admm=true. It is not docu-
mented and you need to look at the source code to use it.

delta: undocumented; modify at your own risks! c: undocumented; modify at your own risks!
max_iter_backtracking: undocumented; modify at your own risks! lin_admm: undocumented; modify
at your own risks! admm: undocumented; modify at your own risks! resetflow: undocumented; modify
at your own risks! clever: undocumented; modify at your own risks! log: undocumented; modify at your
own risks! logName: undocumented; modify at your own risks! is_inner_weights: undocumented; modify
at your own risks! inner_weights: undocumented; modify at your own risks! sqrt_step: undocumented;
modify at your own risks!

Returns: W: double dense p x n matrix or p x Nn matrix (for multi-logistic loss) optim: optional, double dense
4 x n matrix.

first row: values of the objective functions. third row: values of the relative duality gap (if
available) fourth row: number of iterations

optim_info: vector of size 4, containing information of the optimization. W =
spams.fistaFlat(Y,X,W0,return_optim_info = False,. . . ) (W,optim_info) =
spams.fistaFlat(Y,X,W0,return_optim_info = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”
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CHAPTER

TWENTYONE

FISTATREE

spams.fistaTree(Y, X, W0, tree, return_optim_info=False, numThreads=-1, max_it=1000, L0=1.0,
fixed_step=False, gamma=1.5, lambda1=1.0, delta=1.0, lambda2=0.0, lambda3=0.0,
a=1.0, b=0.0, c=1.0, tol=1e-06, it0=100, max_iter_backtracking=1000, com-
pute_gram=False, lin_admm=False, admm=False, intercept=False, resetflow=False,
regul=”, loss=”, verbose=False, pos=False, clever=False, log=False, ista=False,
subgrad=False, logName=”, is_inner_weights=False, inner_weights=None,
size_group=1, sqrt_step=True, transpose=False, linesearch_mode=0)

fistaTree solves sparse regularized problems.

X is a design matrix of size m x p X=[x^1,. . . ,x^n]’, where the x_i’s are the rows of X
Y=[y^1,. . . ,y^n] is a matrix of size m x n It implements the algorithms FISTA, ISTA and
subgradient descent for solving

min_W loss(W) + lambda1 psi(W)

The function psi are those used by proximalTree (see documentation) for the loss functions,
see the documentation of fistaFlat

This function can also handle intercepts (last row of W is not regularized), and/or non-
negativity constraints on W and sparse matrices X

Args: Y: double dense m x n matrix X: double dense or sparse m x p matrix W0: double dense p x n matrix or
p x Nn matrix (for multi-logistic loss)

initial guess

tree: named list (see documentation of proximalTree) return_optim_info:

if true the function will return a tuple of matrices.

Kwargs: loss: (choice of loss, see above) regul: (choice of regularization, see function proximalFlat) lambda1:
(regularization parameter) lambda2: (optional, regularization parameter, 0 by default) lambda3: (optional,
regularization parameter, 0 by default) verbose: (optional, verbosity level, false by default) pos: (optional,
adds positivity constraints on the

coefficients, false by default)

transpose: (optional, transpose the matrix in the regularization function) size_group: (optional, for regu-
larization functions assuming a group

structure)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).
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max_it: (optional, maximum number of iterations, 100 by default) it0: (optional, frequency for computing
duality gap, every 10 iterations by default) tol: (optional, tolerance for stopping criteration, which is a
relative duality gap

if it is available, or a relative change of parameters).

gamma: (optional, multiplier for increasing the parameter L in fista, 1.5 by default) L0: (optional, initial
parameter L in fista, 0.1 by default, should be small enough) fixed_step: (deactive the line search for L
in fista and use L0 instead) compute_gram: (optional, pre-compute X^TX, false by default). intercept:
(optional, do not regularize last row of W, false by default). ista: (optional, use ista instead of fista, false
by default). subgrad: (optional, if not ista, use subradient descent instead of fista, false by default). a: b:
(optional, if subgrad, the gradient step is a/(t+b)

also similar options as proximalTree

the function also implements the ADMM algorithm via an option admm=true. It is not docu-
mented and you need to look at the source code to use it.

delta: undocumented; modify at your own risks! c: undocumented; modify at your own risks!
max_iter_backtracking: undocumented; modify at your own risks! lin_admm: undocumented; modify
at your own risks! admm: undocumented; modify at your own risks! resetflow: undocumented; modify
at your own risks! clever: undocumented; modify at your own risks! log: undocumented; modify at your
own risks! logName: undocumented; modify at your own risks! is_inner_weights: undocumented; modify
at your own risks! inner_weights: undocumented; modify at your own risks! sqrt_step: undocumented;
modify at your own risks!

Returns: W: double dense p x n matrix or p x Nn matrix (for multi-logistic loss) optim: optional, double dense
4 x n matrix.

first row: values of the objective functions. third row: values of the relative duality gap (if
available) fourth row: number of iterations

optim_info: vector of size 4, containing information of the optimization. W =
spams.fistaTree(Y,X,W0,tree,return_optim_info = False,. . . ) (W,optim_info) =
spams.fistaTree(Y,X,W0,tree,return_optim_info = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”
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FISTAGRAPH

spams.fistaGraph(Y, X, W0, graph, return_optim_info=False, numThreads=-1, max_it=1000,
L0=1.0, fixed_step=False, gamma=1.5, lambda1=1.0, delta=1.0,
lambda2=0.0, lambda3=0.0, a=1.0, b=0.0, c=1.0, tol=1e-06, it0=100,
max_iter_backtracking=1000, compute_gram=False, lin_admm=False,
admm=False, intercept=False, resetflow=False, regul=”, loss=”, verbose=False,
pos=False, clever=False, log=False, ista=False, subgrad=False, logName=”,
is_inner_weights=False, inner_weights=None, size_group=1, sqrt_step=True,
transpose=False, linesearch_mode=0)

fistaGraph solves sparse regularized problems.

X is a design matrix of size m x p X=[x^1,. . . ,x^n]’, where the x_i’s are the rows of X
Y=[y^1,. . . ,y^n] is a matrix of size m x n It implements the algorithms FISTA, ISTA and
subgradient descent.

It implements the algorithms FISTA, ISTA and subgradient descent for solving

min_W loss(W) + lambda1 psi(W)

The function psi are those used by proximalGraph (see documentation) for the loss func-
tions, see the documentation of fistaFlat

This function can also handle intercepts (last row of W is not regularized), and/or non-
negativity constraints on W.

Args: Y: double dense m x n matrix X: double dense or sparse m x p matrix W0: double dense p x n matrix or
p x Nn matrix (for multi-logistic loss)

initial guess

graph: struct (see documentation of proximalGraph) return_optim_info:

if true the function will return a tuple of matrices.

Kwargs: loss: (choice of loss, see above) regul: (choice of regularization, see function proximalFlat) lambda1:
(regularization parameter) lambda2: (optional, regularization parameter, 0 by default) lambda3: (optional,
regularization parameter, 0 by default) verbose: (optional, verbosity level, false by default) pos: (optional,
adds positivity constraints on the

coefficients, false by default)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

max_it: (optional, maximum number of iterations, 100 by default) it0: (optional, frequency for computing
duality gap, every 10 iterations by default) tol: (optional, tolerance for stopping criteration, which is a
relative duality gap
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if it is available, or a relative change of parameters).

gamma: (optional, multiplier for increasing the parameter L in fista, 1.5 by default) L0: (optional, initial
parameter L in fista, 0.1 by default, should be small enough) fixed_step: (deactive the line search for L
in fista and use L0 instead) compute_gram: (optional, pre-compute X^TX, false by default). intercept:
(optional, do not regularize last row of W, false by default). ista: (optional, use ista instead of fista, false
by default). subgrad: (optional, if not ista, use subradient descent instead of fista, false by default). a: b:
(optional, if subgrad, the gradient step is a/(t+b)

also similar options as proximalTree

the function also implements the ADMM algorithm via an option admm=true. It is not docu-
mented and you need to look at the source code to use it.

delta: undocumented; modify at your own risks! c: undocumented; modify at your own risks!
max_iter_backtracking: undocumented; modify at your own risks! lin_admm: undocumented; modify
at your own risks! admm: undocumented; modify at your own risks! resetflow: undocumented; modify at
your own risks! clever: undocumented; modify at your own risks! log: undocumented; modify at your own
risks! logName: undocumented; modify at your own risks! is_inner_weights: undocumented; modify at
your own risks! inner_weights: undocumented; modify at your own risks! sqrt_step: undocumented; mod-
ify at your own risks! size_group: undocumented; modify at your own risks! transpose: undocumented;
modify at your own risks!

Returns: W: double dense p x n matrix or p x Nn matrix (for multi-logistic loss) optim: optional, double dense
4 x n matrix.

first row: values of the objective functions. third row: values of the relative duality gap (if
available) fourth row: number of iterations

optim_info: vector of size 4, containing information of the optimization. W =
spams.fistaGraph(Y,X,W0,graph,return_optim_info = False,. . . ) (W,optim_info) =
spams.fistaGraph(Y,X,W0,graph,return_optim_info = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”
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TWENTYTHREE

PROXIMALFLAT

spams.proximalFlat(U, return_val_loss=False, numThreads=-1, lambda1=1.0, lambda2=0.0,
lambda3=0.0, intercept=False, resetflow=False, regul=”, verbose=False,
pos=False, clever=True, size_group=1, groups=None, transpose=False)

proximalFlat computes proximal operators. Depending on the value of regul, it computes

Given an input matrix U=[u^1,ldots,u^n], it computes a matrix V=[v^1,ldots,v^n] such that if one
chooses a regularization functions on vectors, it computes for each column u of U, a column v of V
solving if regul=’l0’

argmin 0.5||u-v||_2^2 + lambda1||v||_0

if regul=’l1’ argmin 0.5||u-v||_2^2 + lambda1||v||_1

if regul=’l2’ argmin 0.5||u-v||_2^2 + 0.5lambda1||v||_2^2

if regul=’elastic-net’ argmin 0.5||u-v||_2^2 + lambda1||v||_1 + lambda1_2||v||_2^2

if regul=’fused-lasso’

argmin 0.5||u-v||_2^2 + lambda1 FL(v) + . . . . . . lambda1_2||v||_1 + lambda1_3||v||_2^2

if regul=’linf’ argmin 0.5||u-v||_2^2 + lambda1||v||_inf

if regul=’l1-constraint’ argmin 0.5||u-v||_2^2 s.t. ||v||_1 <= lambda1

if regul=’l2-not-squared’ argmin 0.5||u-v||_2^2 + lambda1||v||_2

if regul=’group-lasso-l2’ argmin 0.5||u-v||_2^2 + lambda1 sum_g ||v_g||_2 where the groups are
either defined by groups or by size_group,

if regul=’group-lasso-linf’ argmin 0.5||u-v||_2^2 + lambda1 sum_g ||v_g||_inf

if regul=’sparse-group-lasso-l2’ argmin 0.5||u-v||_2^2 + lambda1 sum_g ||v_g||_2 + lambda1_2
||v||_1 where the groups are either defined by groups or by size_group,

if regul=’sparse-group-lasso-linf’ argmin 0.5||u-v||_2^2 + lambda1 sum_g ||v_g||_inf + lambda1_2
||v||_1

if regul=’trace-norm-vec’

argmin 0.5||u-v||_2^2 + lambda1 ||mat(v)||_*

where mat(v) has size_group rows

if one chooses a regularization function on matrices if regul=’l1l2’, V=

argmin 0.5||U-V||_F^2 + lambda1||V||_{1/2}

if regul=’l1linf’, V= argmin 0.5||U-V||_F^2 + lambda1||V||_{1/inf}
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if regul=’l1l2+l1’, V= argmin 0.5||U-V||_F^2 + lambda1||V||_{1/2} + lambda1_2||V||_{1/1}

if regul=’l1linf+l1’, V= argmin 0.5||U-V||_F^2 + lambda1||V||_{1/inf} + lambda1_2||V||_{1/1}

if regul=’l1linf+row-column’, V= argmin 0.5||U-V||_F^2 + lambda1||V||_{1/inf} +
lambda1_2||V’||_{1/inf}

if regul=’trace-norm’, V= argmin 0.5||U-V||_F^2 + lambda1||V||_*

if regul=’rank’, V= argmin 0.5||U-V||_F^2 + lambda1 rank(V)

if regul=’none’, V= argmin 0.5||U-V||_F^2

for all these regularizations, it is possible to enforce non-negativity constraints with the option pos,
and to prevent the last row of U to be regularized, with the option intercept

Args:

U: double m x n matrix (input signals) m is the signal size

return_val_loss: if true the function will return a tuple of matrices.

Kwargs: lambda1: (regularization parameter) regul: (choice of regularization, see above) lambda2: (optional,
regularization parameter) lambda3: (optional, regularization parameter) verbose: (optional, verbosity
level, false by default) intercept: (optional, last row of U is not regularized,

false by default)

transpose: (optional, transpose the matrix in the regularization function) size_group: (optional, for regu-
larization functions assuming a group

structure). It is a scalar. When groups is not specified, it assumes that the groups are the sets of
consecutive elements of size size_group

groups: (int32, optional, for regularization functions assuming a group structure. It is an int32 vector
of size m containing the group indices of the variables (first group is 1).

pos: (optional, adds positivity constraints on the coefficients, false by default)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

resetflow: undocumented; modify at your own risks! clever: undocumented; modify at your own risks!

Returns: V: double m x n matrix (output coefficients) val_regularizer: double 1 x n vector (value of the regu-
larization

term at the optimum).

val_loss: vector of size U.shape[1] alpha = spams.proximalFlat(U,return_val_loss = False,. . . ) (al-
pha,val_loss) = spams.proximalFlat(U,return_val_loss = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”
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spams.proximalTree(U, tree, return_val_loss=False, numThreads=-1, lambda1=1.0, lambda2=0.0,
lambda3=0.0, intercept=False, resetflow=False, regul=”, verbose=False,
pos=False, clever=True, size_group=1, transpose=False)

proximalTree computes a proximal operator. Depending on the value of regul, it computes

Given an input matrix U=[u^1,ldots,u^n], and a tree-structured set of groups T, it returns a matrix
V=[v^1,ldots,v^n]:

when the regularization function is for vectors, for every column u of U, it compute a column v of V
solving if regul=’tree-l0’

argmin 0.5||u-v||_2^2 + lambda1 sum_{g in T} delta^g(v)

if regul=’tree-l2’

for all i, v^i = argmin 0.5||u-v||_2^2 + lambda1sum_{g in T} eta_g||v_g||_2

if regul=’tree-linf’

for all i, v^i = argmin 0.5||u-v||_2^2 + lambda1sum_{g in T} eta_g||v_g||_inf

when the regularization function is for matrices: if regul=’multi-task-tree’

V=argmin 0.5||U-V||_F^2 + lambda1 sum_{i=1}^nsum_{g in T} eta_g||v^i_g||_inf + . . .
lambda1_2 sum_{g in T} eta_g max_{j in g}||V_j||_{inf}

it can also be used with any non-tree-structured regularization addressed by proximalFlat

for all these regularizations, it is possible to enforce non-negativity constraints with the option pos,
and to prevent the last row of U to be regularized, with the option intercept

Args:

U: double m x n matrix (input signals) m is the signal size

tree: named list with four fields, eta_g, groups, own_variables and N_own_variables.

The tree structure requires a particular organization of groups and variables * Let us denote by N = |T|,
the number of groups. the groups should be ordered T={g1,g2,ldots,gN} such that if gi is included in
gj, then j <= i. g1 should be the group at the root of the tree and contains every variable. * Every group
is a set of contiguous indices for instance gi={3,4,5} or gi={4,5,6,7} or gi={4}, but not {3,5}; * We
define root(gi) as the indices of the variables that are in gi, but not in its descendants. For instance for
T={ g1={1,2,3,4},g2={2,3},g3={4} }, then, root(g1)={1}, root(g2)={2,3}, root(g3)={4}, We assume
that for all i, root(gi) is a set of contigous variables * We assume that the smallest of root(gi) is also
the smallest index of gi.
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For instance, T={ g1={1,2,3,4},g2={2,3},g3={4} }, is a valid set of groups. but we can not have T={
g1={1,2,3,4},g2={1,2},g3={3} }, since root(g1)={4} and 4 is not the smallest element in g1.

We do not lose generality with these assumptions since they can be fullfilled for any tree-structured
set of groups after a permutation of variables and a correct ordering of the groups. see more examples
in test_ProximalTree.m of valid tree-structured sets of groups.

The first fields sets the weights for every group tree[‘eta_g’] double N vector

The next field sets inclusion relations between groups (but not between groups and variables):
tree[‘groups’] sparse (double or boolean) N x N matrix the (i,j) entry is non-zero if and only if i
is different than j and gi is included in gj. the first column corresponds to the group at the root of the
tree.

The next field define the smallest index of each group gi, which is also the smallest index of root(gi)
tree[‘own_variables’] int32 N vector

The next field define for each group gi, the size of root(gi) tree[‘N_own_variables’] int32 N vector

examples are given in test_ProximalTree.m

return_val_loss: if true the function will return a tuple of matrices.

Kwargs: lambda1: (regularization parameter) regul: (choice of regularization, see above) lambda2: (optional,
regularization parameter) lambda3: (optional, regularization parameter) verbose: (optional, verbosity
level, false by default) intercept: (optional, last row of U is not regularized,

false by default)

pos: (optional, adds positivity constraints on the coefficients, false by default)

transpose: (optional, transpose the matrix in the regularization function) size_group: (optional, for regu-
larization functions assuming a group

structure). It is a scalar. When groups is not specified, it assumes that the groups are the sets of
consecutive elements of size size_group

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

resetflow: undocumented; modify at your own risks! clever: undocumented; modify at your own risks!

Returns: V: double m x n matrix (output coefficients) val_regularizer: double 1 x n vector (value of the regu-
larization

term at the optimum).

val_loss: vector of size U.shape[1] alpha = spams.proximalTree(U,tree,return_val_loss = False,. . . ) (al-
pha,val_loss) = spams.proximalTree(U,tree,return_val_loss = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”
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spams.proximalGraph(U, graph, return_val_loss=False, numThreads=-1, lambda1=1.0, lambda2=0.0,
lambda3=0.0, intercept=False, resetflow=False, regul=”, verbose=False,
pos=False, clever=True, eval=None, size_group=1, transpose=False)

proximalGraph computes a proximal operator. Depending on the value of regul, it computes

Given an input matrix U=[u^1,ldots,u^n], and a set of groups G, it computes a matrix
V=[v^1,ldots,v^n] such that

if regul=’graph’ for every column u of U, it computes a column v of V solving

argmin 0.5||u-v||_2^2 + lambda1sum_{g in G} eta_g||v_g||_inf

if regul=’graph+ridge’ for every column u of U, it computes a column v of V solving

argmin 0.5||u-v||_2^2 + lambda1sum_{g in G} eta_g||v_g||_inf + lambda1_2||v||_2^2

if regul=’multi-task-graph’

V=argmin 0.5||U-V||_F^2 + lambda1 sum_{i=1}^nsum_{g in G} eta_g||v^i_g||_inf + . . .
lambda1_2 sum_{g in G} eta_g max_{j in g}||V_j||_{inf}

it can also be used with any regularization addressed by proximalFlat

for all these regularizations, it is possible to enforce non-negativity constraints with the option pos,
and to prevent the last row of U to be regularized, with the option intercept

Args:

U: double p x n matrix (input signals) m is the signal size

graph: struct with three fields, eta_g, groups, and groups_var

The first fields sets the weights for every group graph.eta_g double N vector

The next field sets inclusion relations between groups (but not between groups and variables):
graph.groups sparse (double or boolean) N x N matrix the (i,j) entry is non-zero if and only if i is
different than j and gi is included in gj.

The next field sets inclusion relations between groups and variables graph.groups_var sparse (double
or boolean) p x N matrix the (i,j) entry is non-zero if and only if the variable i is included in gj, but
not in any children of gj.

examples are given in test_ProximalGraph.m

return_val_loss: if true the function will return a tuple of matrices.
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Kwargs: lambda1: (regularization parameter) regul: (choice of regularization, see above) lambda2: (optional,
regularization parameter) lambda3: (optional, regularization parameter) verbose: (optional, verbosity
level, false by default) intercept: (optional, last row of U is not regularized,

false by default)

pos: (optional, adds positivity constraints on the coefficients, false by default)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

resetflow: undocumented; modify at your own risks! clever: undocumented; modify at your own risks!
size_group: undocumented; modify at your own risks! transpose: undocumented; modify at your own
risks!

Returns: V: double p x n matrix (output coefficients) val_regularizer: double 1 x n vector (value of the regu-
larization

term at the optimum).

val_loss: vector of size U.shape[1] alpha = spams.proximalGraph(U,graph,return_val_loss = False,. . . )
(alpha,val_loss) = spams.proximalGraph(U,graph,return_val_loss = True,. . . )

Authors: Julien MAIRAL, 2010 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note:

Valid values for the regularization parameter (regul) are: “l0”, “l1”, “l2”, “linf”, “l2-not-squared”,
“elastic-net”, “fused-lasso”, “group-lasso-l2”, “group-lasso-linf”, “sparse-group-lasso-l2”, “sparse-
group-lasso-linf”, “l1l2”, “l1linf”, “l1l2+l1”, “l1linf+l1”, “tree-l0”, “tree-l2”, “tree-linf”, “graph”,
“graph-ridge”, “graph-l2”, “multi-task-tree”, “multi-task-graph”, “l1linf-row-column”, “trace-norm”,
“trace-norm-vec”, “rank”, “rank-vec”, “none”

54 Chapter 25. proximalGraph



CHAPTER

TWENTYSIX

TRAINDL

spams.trainDL(X, return_model=False, model=None, D=None, numThreads=-1, batchsize=-1, K=-
1, lambda1=None, lambda2=1e-09, iter=-1, t0=1e-05, mode=2, posAlpha=False,
posD=False, expand=False, modeD=0, whiten=False, clean=True, verbose=True,
gamma1=0.0, gamma2=0.0, rho=1.0, iter_updateD=None, stochastic_deprecated=False,
modeParam=0, batch=False, log_deprecated=False, logName=”)

trainDL is an efficient implementation of the dictionary learning technique presented in

“Online Learning for Matrix Factorization and Sparse Coding” by Julien Mairal, Francis Bach, Jean
Ponce and Guillermo Sapiro arXiv:0908.0050

“Online Dictionary Learning for Sparse Coding” by Julien Mairal, Francis Bach, Jean Ponce and
Guillermo Sapiro ICML 2009.

Note that if you use mode=1 or 2, if the training set has a reasonable size and you have enough
memory on your computer, you should use trainDL_Memory instead.

It addresses the dictionary learning problems

1. if mode=0

min_{D in C} (1/n) sum_{i=1}^n (1/2)||x_i-Dalpha_i||_2^2 s.t. . . .

||alpha_i||_1 <= lambda1

2. if mode=1

min_{D in C} (1/n) sum_{i=1}^n ||alpha_i||_1 s.t. . . .

||x_i-Dalpha_i||_2^2 <= lambda1

3. if mode=2

min_{D in C} (1/n) sum_{i=1}^n (1/2)||x_i-Dalpha_i||_2^2 + . . .

lambda1||alpha_i||_1 + lambda1_2||alpha_i||_2^2

4. if mode=3, the sparse coding is done with OMP

min_{D in C} (1/n) sum_{i=1}^n (1/2)||x_i-Dalpha_i||_2^2 s.t. . . .

||alpha_i||_0 <= lambda1

5. if mode=4, the sparse coding is done with OMP

min_{D in C} (1/n) sum_{i=1}^n ||alpha_i||_0 s.t. . . .
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||x_i-Dalpha_i||_2^2 <= lambda1

6. if mode=5, the sparse coding is done with OMP

min_{D in C} (1/n) sum_{i=1}^n 0.5||x_i-Dalpha_i||_2^2 +lambda1||alpha_i||_0

C is a convex set verifying

1. if modeD=0 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 <= 1 }

2. if modeD=1 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 <= 1 }

3. if modeD=2 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 + gamma2 FL(d_j) <= 1 }

4. if modeD=3 C={ D in Real^{m x p} s.t. forall j, (1-gamma1)||d_j||_2^2 + . . .

gamma1||d_j||_1 <= 1 }

Potentially, n can be very large with this algorithm.

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

return_model: if true the function will return the model as a named list (‘A’ = A, ‘B’ = B, ‘iter’ = n)

model: None or model (as A,B,iter) to use as initialisation

Kwargs:

D: (optional) double m x p matrix (dictionary) p is the number of elements in the dictionary When D
is not provided, the dictionary is initialized with random elements from the training set.

K: (size of the dictionary, optional is D is provided) lambda1: (parameter) lambda2: (optional, by default
0) iter: (number of iterations). If a negative number is

provided it will perform the computation during the corresponding number of seconds. For in-
stance iter=-5 learns the dictionary during 5 seconds.

mode: (optional, see above, by default 2) posAlpha: (optional, adds positivity constraints on the

coefficients, false by default, not compatible with mode =3,4)

modeD: (optional, see above, by default 0) posD: (optional, adds positivity constraints on the

dictionary, false by default, not compatible with modeD=2)

gamma1: (optional parameter for modeD >= 1) gamma2: (optional parameter for modeD = 2) batchsize:
(optional, size of the minibatch, by default

512.

iter_updateD: (optional, number of BCD iterations for the dictionary update step, by default 1)

modeParam: (optimization mode). 1) if modeParam=0, the optimization uses the parameter free strat-
egy of the ICML paper 2) if modeParam=1, the optimization uses the parameters rho as in
arXiv:0908.0050 3) if modeParam=2, the optimization uses exponential decay weights with updates
of the form A_{t} <- rho A_{t-1} + alpha_t alpha_t^T

rho: (optional) tuning parameter (see paper arXiv:0908.0050) t0: (optional) tuning parameter (see paper
arXiv:0908.0050) clean: (optional, true by default. prunes
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automatically the dictionary from unused elements).

verbose: (optional, true by default, increase verbosity) numThreads: (optional, number of threads for
exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

expand: undocumented; modify at your own risks! whiten: undocumented; modify at your own risks!
stochastic_deprecated: undocumented; modify at your own risks! batch: undocumented; modify at your
own risks! log_deprecated: undocumented; modify at your own risks! logName: undocumented; modify
at your own risks!

Returns: D: double m x p matrix (dictionary) model: the model as A B iter

D = spams.trainDL(X,return_model = False,. . . ) (D,model) = spams.trainDL(X,return_model =
True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting
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spams.structTrainDL(X, return_model=False, model=None, D=None, graph=None, tree=None,
numThreads=-1, tol=1e-06, fixed_step=True, ista=False, batchsize=-1,
K=-1, lambda1=None, lambda2=1e-09, lambda3=0.0, iter=-1, t0=1e-05,
regul=’none’, posAlpha=False, posD=False, expand=False, modeD=0,
whiten=False, clean=True, verbose=True, gamma1=0.0, gamma2=0.0, rho=1.0,
iter_updateD=None, stochastic_deprecated=False, modeParam=0, batch=False,
log_deprecated=False, logName=”)

structTrainDL is an efficient implementation of the dictionary learning technique presented in

“Online Learning for Matrix Factorization and Sparse Coding” by Julien Mairal, Francis Bach, Jean
Ponce and Guillermo Sapiro arXiv:0908.0050

“Online Dictionary Learning for Sparse Coding” by Julien Mairal, Francis Bach, Jean Ponce and
Guillermo Sapiro ICML 2009.

It addresses the dictionary learning problems min_{D in C} (1/n) sum_{i=1}^n 0.5||x_i-
Dalpha_i||_2^2 + lambda1 psi(alpha) where the regularization function psi depends on regul
(see proximalFlat for the description of psi,

and regul below for allowed values of regul)

C is a convex set verifying

1. if modeD=0 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 <= 1 }

2. if modeD=1 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 <= 1 }

3. if modeD=2 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 + gamma2 FL(d_j) <= 1 }

4. if modeD=3 C={ D in Real^{m x p} s.t. forall j, (1-gamma1)||d_j||_2^2 + . . .

gamma1||d_j||_1 <= 1 }

Potentially, n can be very large with this algorithm.

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

return_model: if true the function will return the model as a named list (‘A’ = A, ‘B’ = B, ‘iter’ = n)

model: None or model (as A,B,iter) to use as initialisation

Kwargs:
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D: (optional) double m x p matrix (dictionary) p is the number of elements in the dictionary When D
is not provided, the dictionary is initialized with random elements from the training set.

K: (size of the dictionary, optional is D is provided) lambda1: (parameter) lambda2: (optional, by default
0) lambda3: (optional, regularization parameter, 0 by default) iter: (number of iterations). If a negative
number is

provided it will perform the computation during the corresponding number of seconds. For in-
stance iter=-5 learns the dictionary during 5 seconds.

regul: choice of regularization [one of] ‘l0’ ‘l1’ ‘l2’ ‘linf’ ‘none’ ‘elastic-net’ ‘fused-lasso’ ‘graph’
‘graph-ridge’ ‘graph-l2’ ‘tree-l0’ ‘tree-l2’ ‘tree-linf’

tree: struct (see documentation of proximalTree); needed for regul of graph kind.

graph: struct (see documentation of proximalGraph); needed for regul of tree kind.

posAlpha: (optional, adds positivity constraints on the coefficients, false by default.

modeD: (optional, see above, by default 0) posD: (optional, adds positivity constraints on the

dictionary, false by default, not compatible with modeD=2)

gamma1: (optional parameter for modeD >= 1) gamma2: (optional parameter for modeD = 2) batchsize:
(optional, size of the minibatch, by default

512.

iter_updateD: (optional, number of BCD iterations for the dictionary update step, by default 1)

modeParam: (optimization mode). 1) if modeParam=0, the optimization uses the parameter free strat-
egy of the ICML paper 2) if modeParam=1, the optimization uses the parameters rho as in
arXiv:0908.0050 3) if modeParam=2, the optimization uses exponential decay weights with updates
of the form A_{t} <- rho A_{t-1} + alpha_t alpha_t^T

ista: (optional, use ista instead of fista, false by default). tol: (optional, tolerance for stopping criteration,
which is a relative duality gap fixed_step: (deactive the line search for L in fista and use K instead)
rho: (optional) tuning parameter (see paper arXiv:0908.0050) t0: (optional) tuning parameter (see paper
arXiv:0908.0050) clean: (optional, true by default. prunes

automatically the dictionary from unused elements).

verbose: (optional, true by default, increase verbosity) numThreads: (optional, number of threads for
exploiting

multi-core / multi-cpus. By default, it takes the value -1, which automatically selects all the
available CPUs/cores).

expand: undocumented; modify at your own risks! whiten: undocumented; modify at your own risks!
stochastic_deprecated: undocumented; modify at your own risks! batch: undocumented; modify at your
own risks! log_deprecated: undocumented; modify at your own risks! logName: undocumented; modify
at your own risks!

Returns: D: double m x p matrix (dictionary) model: the model as A B iter

D = spams.structTrainDL(X,return_model = False,. . . ) (D,model) =
spams.structTrainDL(X,return_model = True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:
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• single precision setting
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spams.trainDL_Memory(X, D=None, numThreads=-1, batchsize=-1, K=-1, lambda1=None, iter=-1,
t0=1e-05, mode=2, posD=False, expand=False, modeD=0, whiten=False,
clean=True, gamma1=0.0, gamma2=0.0, rho=1.0, iter_updateD=1, stochas-
tic_deprecated=False, modeParam=0, batch=False, log_deprecated=False,
logName=”)

trainDL_Memory is an efficient but memory consuming variant of the dictionary learning technique
presented in

“Online Learning for Matrix Factorization and Sparse Coding” by Julien Mairal, Francis Bach, Jean
Ponce and Guillermo Sapiro arXiv:0908.0050

“Online Dictionary Learning for Sparse Coding” by Julien Mairal, Francis Bach, Jean Ponce and
Guillermo Sapiro ICML 2009.

Contrary to the approaches above, the algorithm here does require to store all the coefficients
from all the training signals. For this reason this variant can not be used with large training sets,
but is more efficient than the regular online approach for training sets of reasonable size.

It addresses the dictionary learning problems

1. if mode=1

min_{D in C} (1/n) sum_{i=1}^n ||alpha_i||_1 s.t. . . .

||x_i-Dalpha_i||_2^2 <= lambda1

2. if mode=2

min_{D in C} (1/n) sum_{i=1}^n (1/2)||x_i-Dalpha_i||_2^2 + . . . lambda1||alpha_i||_1

C is a convex set verifying

1. if modeD=0 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 <= 1 }

1. if modeD=1 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 <= 1 }

1. if modeD=2 C={ D in Real^{m x p} s.t. forall j, ||d_j||_2^2 + . . .

gamma1||d_j||_1 + gamma2 FL(d_j) <= 1 }

Potentially, n can be very large with this algorithm.

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose
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Kwargs:

D: (optional) double m x p matrix (dictionary) p is the number of elements in the dictionary When D
is not provided, the dictionary is initialized with random elements from the training set.

K: (size of the dictionary, optional is D is provided) lambda1: (parameter) iter: (number of iterations). If
a negative number is

provided it will perform the computation during the corresponding number of seconds. For in-
stance iter=-5 learns the dictionary during 5 seconds.

mode: (optional, see above, by default 2) modeD: (optional, see above, by default 0) posD: (optional, adds
positivity constraints on the

dictionary, false by default, not compatible with modeD=2)

gamma1: (optional parameter for modeD >= 1) gamma2: (optional parameter for modeD = 2) batchsize:
(optional, size of the minibatch, by default

512.

iter_updateD: (optional, number of BCD iterations for the dictionary update step, by default 1)

modeParam: (optimization mode). 1) if modeParam=0, the optimization uses the parameter free strat-
egy of the ICML paper 2) if modeParam=1, the optimization uses the parameters rho as in
arXiv:0908.0050 3) if modeParam=2, the optimization uses exponential decay weights with updates
of the form A_{t} <- rho A_{t-1} + alpha_t alpha_t^T

rho: (optional) tuning parameter (see paper arXiv:0908.0050) t0: (optional) tuning parameter (see paper
arXiv:0908.0050) clean: (optional, true by default. prunes

automatically the dictionary from unused elements).

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

expand: undocumented; modify at your own risks! whiten: undocumented; modify at your own risks!
stochastic_deprecated: undocumented; modify at your own risks! batch: undocumented; modify at your
own risks! log_deprecated: undocumented; modify at your own risks! logName: undocumented; modify
at your own risks!

Returns: D: double m x p matrix (dictionary) model: the model as A B iter

D = spams.trainDL_Memory(X,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)

Note: this function admits a few experimental usages, which have not been extensively tested:

• single precision setting (even though the output alpha is double precision)
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CHAPTER

TWENTYNINE

NMF

spams.nmf(X, return_lasso=False, model=None, numThreads=-1, batchsize=-1, K=-1, iter=-1, t0=1e-05,
clean=True, rho=1.0, modeParam=0, batch=False)

trainDL is an efficient implementation of the non-negative matrix factorization technique presented
in

“Online Learning for Matrix Factorization and Sparse Coding” by Julien Mairal, Francis Bach, Jean
Ponce and Guillermo Sapiro arXiv:0908.0050

“Online Dictionary Learning for Sparse Coding” by Julien Mairal, Francis Bach, Jean Ponce and
Guillermo Sapiro ICML 2009.

Potentially, n can be very large with this algorithm.

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

return_lasso: if true the function will return a tuple of matrices.

Kwargs: K: (number of required factors) iter: (number of iterations). If a negative number

is provided it will perform the computation during the corresponding number of seconds. For
instance iter=-5 learns the dictionary during 5 seconds.

batchsize: (optional, size of the minibatch, by default

512.

modeParam: (optimization mode). 1) if modeParam=0, the optimization uses the parameter free strat-
egy of the ICML paper 2) if modeParam=1, the optimization uses the parameters rho as in
arXiv:0908.0050 3) if modeParam=2, the optimization uses exponential decay weights with updates
of the form A_{t} <- rho A_{t-1} + alpha_t alpha_t^T

rho: (optional) tuning parameter (see paper arXiv:0908.0050)

t0: (optional) tuning parameter (see paper arXiv:0908.0050)

clean: (optional, true by default. prunes automatically the dictionary from unused elements).

batch: (optional, false by default, use batch learning instead of online learning)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

model: struct (optional) learned model for “retraining” the data.

Returns: U: double m x p matrix V: double p x n matrix (optional) model: struct (optional) learned model to
be used for
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“retraining” the data. U = spams.nmf(X,return_lasso = False,. . . ) (U,V) =
spams.nmf(X,return_lasso = True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)
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CHAPTER

THIRTY

NNSC

spams.nnsc(X, return_lasso=False, model=None, lambda1=None, numThreads=-1, batchsize=-1, K=-1,
iter=-1, t0=1e-05, clean=True, rho=1.0, modeParam=0, batch=False)

trainDL is an efficient implementation of the non-negative sparse coding technique presented in

“Online Learning for Matrix Factorization and Sparse Coding” by Julien Mairal, Francis Bach, Jean
Ponce and Guillermo Sapiro arXiv:0908.0050

“Online Dictionary Learning for Sparse Coding” by Julien Mairal, Francis Bach, Jean Ponce and
Guillermo Sapiro ICML 2009.

Potentially, n can be very large with this algorithm.

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

return_lasso: if true the function will return a tuple of matrices.

Kwargs: K: (number of required factors) lambda1: (parameter) iter: (number of iterations). If a negative
number

is provided it will perform the computation during the corresponding number of seconds. For
instance iter=-5 learns the dictionary during 5 seconds.

batchsize: (optional, size of the minibatch, by default

512.

modeParam: (optimization mode). 1) if modeParam=0, the optimization uses the parameter free strat-
egy of the ICML paper 2) if modeParam=1, the optimization uses the parameters rho as in
arXiv:0908.0050 3) if modeParam=2, the optimization uses exponential decay weights with updates
of the form A_{t} <- rho A_{t-1} + alpha_t alpha_t^T

rho: (optional) tuning parameter (see paper arXiv:0908.0050)

t0: (optional) tuning parameter (see paper arXiv:0908.0050)

clean: (optional, true by default. prunes automatically the dictionary from unused elements).

batch: (optional, false by default, use batch learning instead of online learning)

numThreads: (optional, number of threads for exploiting multi-core / multi-cpus. By default, it takes
the value -1, which automatically selects all the available CPUs/cores).

model: struct (optional) learned model for “retraining” the data.

Returns: U: double m x p matrix V: double p x n matrix (optional) model: struct (optional) learned model to
be used for
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“retraining” the data. U = spams.nnsc(X,return_lasso = False,. . . ) (U,V) =
spams.nnsc(X,return_lasso = True,. . . )

Authors: Julien MAIRAL, 2009 (spams, matlab interface and documentation) Jean-Paul CHIEZE 2011-2012
(python interface)
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CHAPTER

THIRTYONE

ARCHETYPALANALYSIS

spams.archetypalAnalysis(X, p=10, Z0=None, returnAB=False, robust=False, epsilon=0.001,
computeXtX=False, stepsFISTA=3, stepsAS=50, randominit=False,
numThreads=-1)

documentation to appear soon

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

Returns: Z: double %

Authors: Yuansi Chen and Julien MAIRAL, 2014 (spams, matlab interface and documentation) Jean-Paul
CHIEZE 2011-2012 (python interface)
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CHAPTER

THIRTYTWO

DECOMPSIMPLEX

spams.decompSimplex(X, Z, computeXtX=False, numThreads=-1)

documentation to appear soon

Args:

X: double m x n matrix (input signals) m is the signal size n is the number of signals to decompose

Returns: Z: double %

Authors: Yuansi Chen and Julien MAIRAL, 2014 (spams, matlab interface and documentation) Jean-Paul
CHIEZE 2011-2012 (python interface)
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CHAPTER

THIRTYTHREE

SIMPLEGROUPTREE

spams.simpleGroupTree(degrees)

makes a structure representing a tree given the

degree of each level.

Args: degrees: int vector; degrees(i) is the number of children of each node at level i

Returns:

group_struct: list, one element for each node an element is itsel a 4 elements list : nodeid (int >=
0), weight (double), array of vars attached to the node (here equal to [nodeid]), array of children
(nodeid’s)

Authors: Jean-Paul CHIEZE, 2012
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CHAPTER

THIRTYFOUR

READGROUPSTRUCT

spams.readGroupStruct(file)

reads a text file describing “simply” the structure of groups

of variables needed by proximalGraph, proximalTree, fistaGraph, fistaTree and structTrainDL and
builds the corresponding group structure.

weight is a float variables-list : a space separated list of integers, maybe empty,

but ‘[‘ and ‘] must be present. Numbers in the range (0 - Nv-1)

children-list [a space separated list of node-id’s] If the list is empty, ‘->’ may be omitted.

The data must obey some rules []

• A group contains the variables of the corresponding node and of the whole subtree.

• Variables attached to a node are those that are not int the subtree.

• If the data destination is a Graph, there may be several independant trees, and
a varibale may appear in several trees.

If the destination is a Tree, there must be only one tree, the root node must have id ==
0 and each variable must appear only once.

Args: file: the file name

Returns:

groups: list, one element for each node an element is itsel a 4 elements list: nodeid (int >= 0), weight
(double), array of vars of the node, array of children (nodeid’s)

Authors: Jean-Paul CHIEZE, 2012
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CHAPTER

THIRTYFIVE

GROUPSTRUCTOFSTRING

spams.groupStructOfString(s)

decode a multi-line string describing “simply” the structure of groups

of variables needed by proximalGraph, proximalTree, fistaGraph, fistaTree and structTrainDL and
builds the corresponding group structure.

Each line describes a group of variables as a node of a tree. It has up to 4 fields separated
by spaces:

node-id node-weight [variables-list] -> children-list

Let’s define Ng = number of groups, and Nv = number of variables. node-id must be in
the range (0 - Ng-1), and there must be Ng nodes weight is a float variables-list : a space
separated list of integers, maybe empty,

but ‘[‘ and ‘] must be present. Numbers in the range (0 - Nv-1)

children-list [a space separated list of node-id’s] If the list is empty, ‘->’ may be omitted.

The data must obey some rules []

• A group contains the variables of the corresponding node and of the whole subtree.

• Variables attached to a node are those that are not int the subtree.

• If the data destination is a Graph, there may be several independant trees, and a
varibale may appear in several trees.

If the destination is a Tree, there must be only one tree, the root node must have id == 0 and
each variable must appear only once.

Args: s: the multi-lines string

Returns:

groups: list, one element for each node an element is itsel a 4 elements list: nodeid (int >= 0), weight
(double), array of vars of the node, array of children (nodeid’s)

Authors: Jean-Paul CHIEZE, 2012
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CHAPTER

THIRTYSIX

GRAPHOFGROUPSTRUCT

spams.graphOfGroupStruct(gstruct)

converts a group structure into the graph structure

used by proximalGraph, fistaGraph or structTrainDL

Args:

gstruct: the structure of groups as a list, one element per node an element is itself a 4 elements list:
nodeid (>= 0), weight (double), array of vars associated to the node, array of children (nodeis’s)

Returns: graph: struct (see documentation of proximalGraph)

Authors: Jean-Paul CHIEZE, 2012
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CHAPTER

THIRTYSEVEN

TREEOFGROUPSTRUCT

spams.treeOfGroupStruct(gstruct)

converts a group structure into the tree structure

used by proximalTree, fistaTree or structTrainDL

Args:

gstruct: the structure of groups as a list, one element per node an element is itself a 4 lements list:
nodeid (>= 0), weight (double), array of vars associated to the node, array of children (nodeis’s)

Returns:

permutations: permutation vector that must be applied to the result of the programm using the tree.
Empty if no permutation is needed.

tree: named list (see documentation of proximalTree) nbvars: number of variables in the tree

(permutations,tree,nbvars) = spams.treeOfGroupStruct(gstruct)

Authors: Jean-Paul CHIEZE, 2012
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CHAPTER

THIRTYEIGHT

INDICES AND TABLES

• genindex

• modindex

• search
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INDEX
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B
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F
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I
invSym() (in module spams), 19

L
l1L2BCD() (in module spams), 39
lasso() (in module spams), 25
lassoMask() (in module spams), 27
lassoWeighted() (in module spams), 29

N
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nnsc() (in module spams), 67
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O
omp() (in module spams), 31
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P
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proximalGraph() (in module spams), 53
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R
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S
simpleGroupTree() (in module spams), 73
somp() (in module spams), 37
sort() (in module spams), 3
sparseProject() (in module spams), 23
structTrainDL() (in module spams), 59

T
trainDL() (in module spams), 55
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