10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

POSTED ON MARCH 29, 2017 TO Al RESEARCH, DATA INFRASTRUCTURE, ML APPLICATIONS

Faiss: A library for efficient similarity search

L

ad

= \F‘g";}
= ALEA
BT\ M ‘ _ " M /‘Nut,

|
Y} ARV
---u—‘."“-l . /\ ‘

’J‘
LY 1 -\ y
SN X a8 ﬁ‘. ,“§\ 5?'-' Q> 7 / ~ F
Ig& i:.,f&_ | /;:: =E!.£12'/’ /. 1‘5,, "
\. ER .#J’ "':/":- Itt(‘ / yirly
A ~U ' '\. ‘——"4" \‘»h—-'/ r ' - /‘// f‘n
R, ¢ S ’.*;r NS B / \H ‘9*‘;
) y / ~ ST NP . ‘..1{‘_ " l;lb
' V0 P .":w. A
-.:I- : :.. / : ! .‘. A : ‘ 4 l‘\\\‘;
:~,-- | /) ANKN 'u,‘t‘
')-'—_ \\] ""r.,

By Hervé Jegou, Matthijs Douze, Jeff Johnson @ @ @

This month, we released Facebook Al Similarity Search (Faiss), a library that allows us to
quickly search for multimedia documents that are similar to each other — a challenge where
traditional query search engines fall short. We've built nearest-neighbor search
implementations for billion-scale data sets that are some 8.5x faster than the previous
reported state-of-the-art, along with the fastest k-selection algorithm on the GPU known in
the literature. This lets us break some records, including the first k-nearest-neighbor graph
constructed on 1 billion high-dimensional vectors.

About similarity search

Traditional databases are made up of structured tables containing symbolic information. For
example, an image collection would be represented as a table with one row per indexed photo.
Each row contains information such as an image identifier and descriptive text. Rows can be
linked to entries from other tables as well, such as an image with people in it being linked to a
table of names.

Al tools, like text embedding (word2vec) or convolutional neural net (CNN) descriptors trained
with deep learning, generate high-dimensional vectors. These representations are much more
powerful and flexible than a fixed symbolic representation, as we’ll explain in this post. Yet
traditional databases that can be queried with SQL are not adapted to these new
representations. First, the huge inflow of new multimedia items creates billions of vectors.
Second, and more importantly, finding similar entries means finding similar high-dimensional
vectors, which is inefficient if not impossible with standard query languages.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 112

https://engineering.fb.com/category/ai-research/
https://engineering.fb.com/category/data-infrastructure/
https://engineering.fb.com/category/ml-applications/
https://engineering.fb.com/author/herve-jegou/
https://engineering.fb.com/author/matthijs-douze/
https://engineering.fb.com/author/jeff-johnson/

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

How can a vector representation be used?

Let’s say you have an image of a building — for example, the city hall of some midsize city
whose name you forgot — and you'd like to find all other images of this building in the image
collection. A key/value query that is typically used in SQL doesn’t help, because you've
forgotten the name of the city.

This is where similarity search kicks in. The vector representation for images is designed to
produce similar vectors for similar images, where similar vectors are defined as those that are
nearby in Euclidean space.

Another application for vector representation is classification. Imagine you need a classifier
that determines which images in a collection represent a daisy. Training the classifier is a well-
known process: The algorithm takes as input images of daisies and images of non-daisies
(cars, sheep, roses, cornflowers). If the classifier is linear, it outputs a classification vector
whose property is that its dot product with the image vector reflects how likely it is that the
image contains a daisy. Then the dot product can be computed with all entries in the
collection and the images with the highest values are returned. This type of query is a
“maximum inner-product” search.

So, for similarity search and classification, we need the following operations:

e Given a query vector, return the list of database objects that are nearest to this vector in
terms of Euclidean distance.

e Given a query vector, return the list of database objects that have the highest dot
product with this vector.

An added challenge is that we want to do these operations on a large scale, on billions of
vectors.

Software packages

The software tools currently available aren't sufficient for the database search operations
described above. Traditional SQL database systems are impractical because they're
optimized for hash-based searches or 1D interval searches. The similarity search functions
that are available in packages like OpenCV are severely limited in terms of scalability, as are
other similarity search libraries considering “small” data sets (for example, only 1 million
vectors). Other packages are research artifacts produced for a published paper to
demonstrate performance in specific settings.

Build index for a collection:

Y1.Y2, s Yn € Rd

_}H H H Indexing

1on

Media
escript
=
m
2

5

Result: - argmin,_, [l — :l®

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 2/12

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

With Faiss, we introduce a library that addresses the limitations mentioned above. Among its
advantages:

e Faiss provides several similarity search methods that span a wide spectrum of usage
trade-offs.

e Faiss is optimized for memory usage and speed.

e Faiss offers a state-of-the-art GPU implementation for the most relevant indexing
methods.

Evaluating similarity search

Once the vectors are extracted by learning machinery (from images, videos, text documents,
and elsewhere), they're ready to feed into the similarity search library.

We have a reference brute-force algorithm that computes all the similarities — exactly and
exhaustively — and returns the list of most similar elements. This provides the “gold standard”
reference result list. Note that implementing the brute-force algorithm efficiently is not
obvious, and it often feeds into the performance of other components.

Similarity search can be made orders of magnitude faster if we're willing to trade some
accuracy; that is, deviate a bit from the reference result. For example, it may not matter much if
the first and second results of an image similarity search are swapped, since they’re probably
both correct results for a given query. Accelerating the search involves some pre-processing
of the data set, an operation that we call indexing.

This bring us to the three metrics of interest:

e Speed. How long does it take to find the 10 (or some other number) most similar vectors to
the query? Hopefully less time than the brute-force algorithm needs; otherwise, what’s
the point of indexing?

¢ Memory usage. How much RAM does the method require? More or less than the original
vectors? Faiss supports searching only from RAM, as disk databases are orders of
magnitude slower. Yes, even with SSDs.

e Accuracy. How well does the returned list of results match the brute-force search
results? Accuracy can be evaluated by counting the number of queries for which the true
nearest neighbor is returned first in the result list (a measure called 1-recall@1), or by
measuring the average fraction of 10 nearest neighbors that are returned in the 10 first
results (the “10-intersection” measure).

We usually evaluate the trade-off between speed and accuracy for a fixed memory usage.
Faiss focuses on methods that compress the original vectors, because they’re the only ones
that scale to data sets of billions of vectors: 32 bytes per vector takes up a lot of memory when
1 billion vectors must be indexed.

Many indexing libraries exist for around 1 million vectors, which we call small scale. For
example, nmslib contains very efficient algorithms for this. It’s faster than Faiss but requires
significantly more storage.

Evaluation on 1 billion vectors

Because the engineering world doesn’t have a well-established benchmark for data sets of
this size, we compare against research results.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 3/12

https://github.com/searchivarius/nmslib

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta
Precision is evaluated on DeeplB, a collection of 1 billion images. Each image has been
processed by a convolutional neural net (CNN), and one of the activation maps of the CNN is
kept as an image descriptor. These vectors can be compared with Euclidean distances to
quantify how similar the images are.

Deepi1B comes with a small collection of query images, and the ground-truth similarity search
results are provided from a brute-force algorithm on these images. Therefore, if we run a
search algorithm we can evaluate the 1-recall@1 of the result.

Choosing the index

For the sake of evaluation, we limit the memory usage to 30 GB of RAM. This memory
constraint guides our choice of an indexing method and parameters. In Faiss, indexing
methods are represented as a string; in this case, OPQ20_80,IMI12x14,PQ20.

The string indicates a pre-processing step (OPQ20_80) to apply to the vectors, a selection
mechanism (IMI2x14) indicating how the database should be partitioned, and an encoding
component (PQ20) indicating that vectors are encoded with a product quantizer (PQ) that
generates 20-byte codes. Therefore the memory usage, including overheads, is below 30 GB
of RAM.

We know this sounds a bit technical, and that’s why the Faiss documentation provides
guidelines on how to choose the index best adapted to your needs.

Once the index type is chosen, indexing can begin. The algorithm processes the 1 billion
vectors and puts them into an index. The index can be stored on disk or used immediately, and
searches and additions/removals to the index can be interleaved.

Searching in the index

When the index is ready, a set of search-time parameters can be set to adjust the method. For
the sake of evaluation, we perform searches in a single thread. Here, we need to optimize the
trade-off between accuracy and search time, since memory usage is fixed. This means, for
example, being able to set parameters that give a 1-recall@1 of 40 percent in the least possible
search time.

Fortunately, Faiss comes with an automatic tuning mechanism that scans the space of
parameters and collects the ones that provide the best operating points; that is, the best
possible search time given some accuracy, and vice versa. On DeepilB, the operating points
can be visualized as a plot:

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 4/12

https://github.com/arbabenko/GNOIMI

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

]00 - I | I | 1 I I I
) 10 | .
‘E & m
2z
o
E
¥]
E
=
0.1 | | | | | | | I |
0 5 10 15 20 25 30 35 40 45 50

l-recall@1 (%)

On this plot, we can read that getting a 1-recall@1 of 40 percent has a query time of less than 2
ms per vector, or that with a time budget of 0.5 ms we can reach 30 percent. A 2 ms query time
translates to 500 queries per second (QPS) on a single core.

This result can be compared against results from the most advanced research results in the
field: “Efficient Indexing_of Billion-Scale Datasets of Deep Descriptors” by Babenko and
Lempitsky, CVPR 2016, the paper that introduced the Deep1B data set. They need 20 ms to
obtain a 1-recall@1 of 45 percent.

Billion-scale data sets with GPUs

A lot of effort went into the GPU implementation, yielding astonishing single-machine
performance with native multi-GPU support. The GPU implementations are also drop-in
replacements for their CPU equivalents, and you don't need to know the CUDA API in order to
exploit the GPUs. GPU Faiss supports all Nvidia GPUs introduced after 2012 (Kepler, compute
capability 3.5+).

We like to use the roofline model as a guide, which states that one should strive to saturate
the memory bandwidth or the floating-point units. Faiss GPU is typically 5-10x faster on a
single GPU than the corresponding Faiss CPU implementations. New Pascal-class hardware,
like the P100, pushes this to 20x+.

Some impressive numbers:

e With approximate indexing, a brute-force k-nearest-neighbor graph (k = 10) on 128D CNN
descriptors of 95 million images of the YECC100M data set with 10-intersection of 0.8 can
be constructed in 35 minutes on four Maxwell Titan X GPUs, including index construction
time.

e Billion-vector k-nearest-neighbor graphs are now easily within reach. One can make @
brute-force k-NN graph (k = 10) of the Deep1B data set with 10-intersection of 0.65 in
under 12 hours on four Maxwell Titan X GPUs, or 0.8 in under 12 hours on eight Pascal
P100-PCle GPUs. Lower-quality graphs can be produced in under 5 hours on the Titan X
configuration.

e Other components achieve impressive performance. For instance, building the above
DeepiB index requires k-means clustering 671 million 120-dim vectors to 262,144 centroids,

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 5/12

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Babenko_Efficient_Indexing_of_CVPR_2016_paper.pdf
https://arxiv.org/abs/1702.08734
https://en.wikipedia.org/wiki/Roofline_model
http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta
which for 25 E-M iterations takes 139 minutes on the four Titan X GPUs (12.6 tflop/s of
compute), or 43.8 minutes on eight P100 GPUs (40 tflop/s of compute). Note that the
training set of the clustering does not need to fit in GPU memory, as the data is streamed
to the GPU as needed without impact on the performance.

Under the hood

The Facebook Al Research team started developing Faiss in 2015, based on research results
and a substantial engineering effort. For this library, we chose to focus on properly optimized
versions of a few fundamental techniques. In particular, on the CPU side we make heavy use
of:

e Multi-threading to exploit multiple cores and perform parallel searches on multiple
GPUs.

e BLAS libraries for efficient exact distance computations via matrix/matrix multiplication.
An efficient brute-force implementation cannot be optimal without using BLAS.
BLAS/LAPACK is the only mandatory software dependency of Faiss.

e Machine SIMD vectorization and popcount are used to speed up distance computations
for isolated vectors.

On the GPU side

For previous GPU implementations of similarity search, k-selection (finding the k-minimum or
maximum elements) has been a performance problem, as typical CPU algorithms (heap
selection, for example) are not GPU friendly. For Faiss GPU, we designed the fastest small k-
selection algorithm (k <= 1024) known in the literature. All intermediate state is kept entirely in
registers, contributing to its high speed. It is able to k-select input data in a single pass,
operating at up to 55 percent of peak possible performance, as given by peak GPU memory
bandwidth. Because its state is retained solely in the register file, it is fusible with other
kernels, lending itself to blazing-fast exact and approximate search algorithms.

Much attention was paid to efficient tiling strategies and implementation of kernels used for
approximate search. Multi-GPU support is provided by either sharding or replicating data; one
is not limited to the memory available on a single GPU. Half-precision floating-point support
(float16) is provided as well, with full float16 compute on supporting GPUs and intermediate
float16 storage provided on earlier architectures. We found that encoding vectors as float16
yields speedup with almost no loss of accuracy.

In short, constant overhead factors matter in the implementation. Faiss did much of the painful
work of paying attention to engineering details.
Try it out

Faiss is implemented in C++ and has bindings in Python. To get started, get Faiss from GitHub,
compile it, and import the Faiss module into Python. Faiss is fully integrated with numpy, and all
functions take numpy arrays (in float32).

The index object

Faiss (both C++ and Python) provides instances of Index. Each Index subclass implements an
indexing structure, to which vectors can be added and searched. For example, IndexFlatL2 is a
brute-force index that searches with L2 distances.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 6/12

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

import faiss # make faiss available

index = faiss.IndexFlatL2(d) # build the index, d=size of vectors

here we assume xb contains a n-by-d numpy matrix of type float32
index.add(xb) # add vectors to the index
print index.ntotal

This will display the number of indexed vectors. Adding to an IndexFlat just means copying
them to the internal storage of the index, since there is no processing applied to the vectors.

To perform a search:

xq is a n2-by-d matrix with query vectors

k =4 # we want 4 similar vectors
D, I = index.search(xq, k) # actual search

print I

| is an integer matrix. The output is something like this:

[[@ 393 363 78]
[1 555 277 364]

[2 304 101 13]]

For the first vector of xq, the index of the most similar vectors in xb is 0 (0-based), the second
most similar is #393, the third is #363, and so on. For the second vector of xq, the list of similar
vectors is #1, #555, etc. In this case, the first three vectors of xq seem to be the same as the
first three of xb.

Matrix D is the matrix of squared distances. It has the same shape as | and indicates for each
result vector at the query’s squared Euclidean distance.

Faiss implements a dozen index types that are often compositions of other indices. The
optional GPU version has exactly the same interface, and there are bridges to translate
between CPU and GPU indices. The Python interface is mostly generated from the C++ to
expose the C++ indices, so it’s easy to translate Python validation code to integrated C++.

Further reading

e For a gentle introduction to the main Faiss features, see the tutorial.

e The documentation gives many examples for different use cases.

e The distribution also contains many examples for both CPU and GPU, with evaluation
scripts. See in particular the benchs/ subdirectory, which contains scripts that reproduce

the research results.
e Billion-scale similarity search with GPUs, Jeff Johnson, Matthijs Douze, Hervé Jégou, ArXiv
2017

TAGS: C++ OPENSOURCE PERFORMANCE PHOTOS

39 people like this. Sign Up to see what your friends like.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 7112

https://github.com/facebookresearch/faiss/wiki/Getting-started-tutorial
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/tree/master/benchs
https://arxiv.org/abs/1702.08734
https://engineering.fb.com/tag/cpp/
https://engineering.fb.com/tag/opensource/
https://engineering.fb.com/tag/performance/
https://engineering.fb.com/tag/photos/
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fengineering.fb.com%2F2017%2F03%2F29%2Fdata-infrastructure%2Ffaiss-a-library-for-efficient-similarity-search%2F&display=popup&ref=plugin&src=like&kid_directed_site=0
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fengineering.fb.com%2F2017%2F03%2F29%2Fdata-infrastructure%2Ffaiss-a-library-for-efficient-similarity-search%2F&display=popup&ref=plugin&src=like&kid_directed_site=0
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fengineering.fb.com%2F2017%2F03%2F29%2Fdata-infrastructure%2Ffaiss-a-library-for-efficient-similarity-search%2F&display=popup&ref=plugin&src=like&kid_directed_site=0
https://www.facebook.com/ad_campaign/landing.php?campaign_id=137675572948107&partner_id=engineering.fb.com&placement=like_plugin&extra_1=https%3A%2F%2Fengineering.fb.com%2F&extra_2=US

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

[r— <« Prev

ARIA Grid: Supporting_nonvisual layout and keyboard traversal

FACEBOOK'S LOGICAL GRID

Next » a
Building_virtual reality experiences on the web with React VR

Read More in Al Research

View All »

& Marche Central

i Population Density per
OCT 3,2024

How open source Al can improve population estimates, sustainable energy, and the delivery of climate
change interventions

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 8/12

https://engineering.fb.com/2017/03/28/web/aria-grid-supporting-nonvisual-layout-and-keyboard-traversal/
https://engineering.fb.com/2017/04/18/web/building-virtual-reality-experiences-on-the-web-with-react-vr/
https://engineering.fb.com/category/ai-research/
https://engineering.fb.com/2024/10/03/ml-applications/open-source-ai-population-maps-meta/

G SCALE

HOW PYTORCH POWERS
TRAINING & INFERENCE

WANCHAD LIANG, KIMISH PATEL, & EVAN SMOTHERS
META

How PyTorch powers Al training.and inference

G SCALE.

HARDWARE
& CO-DESIGN

JOEL COBURN, JUNQIANG LAN, & JACK MONTGOMERY
META

Inside the hardware and co-design of MTIA

https://engineering.fb.com/2024/08/23/ml-applications/pytorch-ai-training-inference/
https://engineering.fb.com/2024/08/22/ml-applications/meta-mtia-hardware-co-design/

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

G SCALE.

BRINGING
LLAMA 3 TO LIFE

JOE SPISAK, DELIA DAVID,
KAUSHIK VEERARAGHAVAN, & YE { CHARLOTTE) Ql
META

AUG 21,2024

Bringing_Llama 3 to life

[3f SCALE

KEYNOTE

APARNA RAMANI
META

AUG 20, 2024

Aparna Ramani discusses the future of Al infrastructure

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

https://engineering.fb.com/2024/08/21/production-engineering/bringing-llama-3-to-life/
https://engineering.fb.com/2024/08/20/data-infrastructure/aparna-ramani-future-of-ai-infrastructure-meta/

10/26/24, 12:11 PM Faiss: A library for efficient similarity search - Engineering at Meta

AUG 14, 2024

How Meta animates Al-generated images at scale

Related Posts

Related Positions

SINGAPORE

Research Scientist Intern — Eye Tracking Applications Research (PhD)
REDMOND, US

Research Scientist Manager - Input & Interaction
NEW YORK, US

Research Scientist, Systems ML - Frameworks / Compilers / Kernels (PhD),
BELLEVUE, US

Research Scientist, Systems ML - Frameworks / Compilers / Kernels (PhD),
MENLO PARK, US

< See All Jobs >

Available Positions Technology at Meta Open Source

Meta believes in building community
Research Scientist, Machine Learning m through open source technology. Explore
(PhD) (Singapore) our latest projects in Artificial Intelligence,
SINGAPORE Engineering at Meta - X

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ 11/12

https://engineering.fb.com/2024/08/14/production-engineering/how-meta-animates-ai-generated-images-at-scale/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/
https://www.metacareers.com/
https://www.metacareers.com/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/
https://www.metacareers.com/jobs/1701923063917583/

10/26/24, 12:11 PM

Research Scientist Intern — Eye Tracking

Applications Research (PhD).
REDMOND, US

Research Scientist Manager - Input &
Interaction

NEW YORK, US

Research Scientist, Systems ML -
Frameworks / Compilers / Kernels (PhD)
BELLEVUE, US

Research Scientist, Systems ML -
Frameworks / Compilers / Kernels (PhD)
MENLO PARK, US

See All Jobs

N Meta

Faiss: A library for efficient similarity search - Engineering at Meta

Follow

30

Al at Meta
Read

3

Meta Quest Blog
Read

10

Meta for Developers

Read

10

Meta Bug Bounty

Learn more

RSS

Subscribe

Data Infrastructure, Development Tools,

Front End, Languages, Platforms, Security,

Virtual Reality, and more.

o
l'l
ANDROID

s

BACKEND

-

HARDWARE

Learn More

Engineering at Meta is a technical news resource for engineers interested in how we solve large-scale technical challenges

at Meta.

Home

Company Info

Careers

© 2024 Meta
TermsPrivacyCookiesHelp

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

12/12

https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1082944846756452/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/1236791857745706/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/jobs/851519430109143/
https://www.metacareers.com/
https://www.metacareers.com/
https://www.metacareers.com/
https://ai.meta.com/blog/
https://ai.meta.com/blog/
https://ai.meta.com/blog/
https://www.meta.com/blog/quest/
https://www.meta.com/blog/quest/
https://www.meta.com/blog/quest/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://bugbounty.meta.com/
https://bugbounty.meta.com/
https://bugbounty.meta.com/
https://code.facebook.com/posts/rss/
https://code.facebook.com/posts/rss/
https://code.facebook.com/posts/rss/
https://about.facebook.com/
https://about.facebook.com/
https://engineering.fb.com/
https://about.meta.com/
https://www.metacareers.com/?ref=engineering.fb.com
https://www.facebook.com/policies
https://www.facebook.com/privacy/policy
https://engineering.fb.com/privacy
https://www.facebook.com/help

