Stan Math Library  2.12.0
reverse mode automatic differentiation
binomial_logit_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_BINOMIAL_LOGIT_LOG_HPP
3 
24 #include <boost/random/binomial_distribution.hpp>
25 #include <boost/random/variate_generator.hpp>
26 
27 namespace stan {
28  namespace math {
29 
30  // BinomialLogit(n|N, alpha) [N >= 0; 0 <= n <= N]
31  // BinomialLogit(n|N, alpha) = Binomial(n|N, inv_logit(alpha))
32  template <bool propto,
33  typename T_n,
34  typename T_N,
35  typename T_prob>
36  typename return_type<T_prob>::type
37  binomial_logit_log(const T_n& n,
38  const T_N& N,
39  const T_prob& alpha) {
41  T_partials_return;
42 
43  static const char* function("binomial_logit_log");
44 
45  if (!(stan::length(n)
46  && stan::length(N)
47  && stan::length(alpha)))
48  return 0.0;
49 
50  T_partials_return logp = 0;
51  check_bounded(function, "Successes variable", n, 0, N);
52  check_nonnegative(function, "Population size parameter", N);
53  check_finite(function, "Probability parameter", alpha);
54  check_consistent_sizes(function,
55  "Successes variable", n,
56  "Population size parameter", N,
57  "Probability parameter", alpha);
58 
60  return 0.0;
61 
62  VectorView<const T_n> n_vec(n);
63  VectorView<const T_N> N_vec(N);
64  VectorView<const T_prob> alpha_vec(alpha);
65  size_t size = max_size(n, N, alpha);
66 
67  OperandsAndPartials<T_prob> operands_and_partials(alpha);
68 
70  for (size_t i = 0; i < size; ++i)
71  logp += binomial_coefficient_log(N_vec[i], n_vec[i]);
72  }
73 
75  log_inv_logit_alpha(length(alpha));
76  for (size_t i = 0; i < length(alpha); ++i)
77  log_inv_logit_alpha[i] = log_inv_logit(value_of(alpha_vec[i]));
78 
80  log_inv_logit_neg_alpha(length(alpha));
81  for (size_t i = 0; i < length(alpha); ++i)
82  log_inv_logit_neg_alpha[i] = log_inv_logit(-value_of(alpha_vec[i]));
83 
84  for (size_t i = 0; i < size; ++i)
85  logp += n_vec[i] * log_inv_logit_alpha[i]
86  + (N_vec[i] - n_vec[i]) * log_inv_logit_neg_alpha[i];
87 
88  if (length(alpha) == 1) {
89  T_partials_return temp1 = 0;
90  T_partials_return temp2 = 0;
91  for (size_t i = 0; i < size; ++i) {
92  temp1 += n_vec[i];
93  temp2 += N_vec[i] - n_vec[i];
94  }
96  operands_and_partials.d_x1[0]
97  += temp1 * inv_logit(-value_of(alpha_vec[0]))
98  - temp2 * inv_logit(value_of(alpha_vec[0]));
99  }
100  } else {
102  for (size_t i = 0; i < size; ++i)
103  operands_and_partials.d_x1[i]
104  += n_vec[i] * inv_logit(-value_of(alpha_vec[i]))
105  - (N_vec[i] - n_vec[i]) * inv_logit(value_of(alpha_vec[i]));
106  }
107  }
108 
109  return operands_and_partials.value(logp);
110  }
111 
112  template <typename T_n,
113  typename T_N,
114  typename T_prob>
115  inline
117  binomial_logit_log(const T_n& n,
118  const T_N& N,
119  const T_prob& alpha) {
120  return binomial_logit_log<false>(n, N, alpha);
121  }
122 
123  }
124 }
125 #endif
fvar< T > binomial_coefficient_log(const fvar< T > &x1, const fvar< T > &x2)
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
fvar< T > inv_logit(const fvar< T > &x)
Definition: inv_logit.hpp:14
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
bool check_bounded(const char *function, const char *name, const T_y &y, const T_low &low, const T_high &high)
Return true if the value is between the low and high values, inclusively.
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
This class builds partial derivatives with respect to a set of operands.
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
bool check_finite(const char *function, const char *name, const T_y &y)
Return true if y is finite.
VectorBuilder allocates type T1 values to be used as intermediate values.
int size(const std::vector< T > &x)
Return the size of the specified standard vector.
Definition: size.hpp:17
bool check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Return true if the dimension of x1 is consistent with x2.
bool check_nonnegative(const char *function, const char *name, const T_y &y)
Return true if y is non-negative.
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
fvar< T > log_inv_logit(const fvar< T > &x)
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
return_type< T_prob >::type binomial_logit_log(const T_n &n, const T_N &N, const T_prob &alpha)
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.