animcext.acetoc — [NCIUAE dOCumMentation from docstrings

This extension can import the modules you are documenting, and pull in documentation from docstrings in a semi-
automatic way.

Note

For Sphinx (actually, the Python interpreter that executes Sphinx) to find your module, it must be importable. That means that
the module or the package must be in one of the directories on sys.path - adapt your sys.path in the configuration file
accordingly.

Warning

autodoc imports the modules to be documented. If any modules have side effects on import, these will be executed by
autodoc when sphinx-buildis run.

If you document scripts (as opposed to library modules), make sure their main routine is protected by a if _ _name__ ==
' _main__"' condition.

For this to work, the docstrings must of course be written in correct reStructuredText. You can then use all of the usual
Sphinx markup in the docstrings, and it will end up correctly in the documentation. Together with hand-written
documentation, this technigue eases the pain of having to maintain two locations for documentation, while at the same
time avoiding auto-generated-looking pure APl documentation.

If you prefer NumPy or Google style docstrings over reStructuredText, you can also enable the napoleon extension.
napoleon is a preprocessor that converts your docstrings to correct reStructuredText before autodoc processes them.

Directives

autodoc provides several directives that are versions of the usual py:module, py:class and so forth. On parsing time,
they import the corresponding module and extract the docstring of the given objects, inserting them into the page
source under a suitable py:module, py:class etc. directive.

Note

Just as py:class respects the current py:module, autoclass will also do so. Likewise, automethod will respect the current
py:class.

.. automodule::
.. autoclass::
.. autoexception::

Document a module, class or exception. All three directives will by default only insert the docstring of the object
itself:

. autoclass:: Noodle

will produce source like this:

. class:: Noodle

Noodle's docstring. v: master



http://www.sphinx-doc.org/en/master/index.html
http://www.sphinx-doc.org/en/master/usage/installation.html
http://www.sphinx-doc.org/en/master/contents.html
http://www.sphinx-doc.org/en/master/develop.html
http://www.sphinx-doc.org/en/master/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon
http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:module
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:class
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:module
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:class
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:class
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:module
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:class

The “auto” directives can also contain content of their own, it will be inserted into the resulting non-auto directive
source after the docstring (but before any automatic member documentation).

Therefore, you can also mix automatic and non-automatic member documentation, like so:

. autoclass:: Noodle
:members: eat, slurp

. method:: boil(time=10)
Boil the noodle *time* minutes.
Options and advanced usage

¢ |f you want to automatically document members, there's a members option:

. automodule:: noodle
:members:

will document all module members (recursively), and

. autoclass:: Noodle
:members:

will document all non-private member functions and properties (that is, those whose name doesn't start with

2

For modules, __all__ will be respected when looking for members unless you give the ignore-module-all
flag option. Without ignore-module-all, the order of the members will also be the orderin __all__

You can also give an explicit list of members; only these will then be documented:

. autoclass:: Noodle
:members: eat, slurp

¢ |f you want to make the members option (or other options described below) the default, see
autodoc_default_options.

Tip

You can use a negated form, 'no-flag", as an option of autodoc directive, to disable it temporarily. For example:

. automodule:: foo
:no-undoc-members:

¢ Members without docstrings will be left out, unless you give the undoc-members flag option:

. automodule:: noodle
:members:
:undoc-members:

¢ “Private” members (that is, those named like _private or _ private) will be included if the private-members
flag option is given.

New in version 1.1.

* Python “special” members (that is, those named like __special_ ) will be included if the special-members
flag option is given:

. autoclass:: my.Class V- master
:members:
:private-members:
:special-members:




would document both “private” and “special” members of the class.
New in version 1.1.

Changed in version 1.2: The option can now take arguments, i.e. the special members to document.
For classes and exceptions, members inherited from base classes will be left out when documenting all
members, unless you give the inherited-members flag option, in addition to members:

. autoclass:: Noodle
:members:
:inherited-members:

This can be combined with undoc-members to document a/l available members of the class or module.

Note: this will lead to markup errors if the inherited members come from a module whose docstrings are not
reST formatted.

New in version 0.3.

It's possible to override the signature for explicitly documented callable objects (functions, methods, classes)
with the regular syntax that will override the signature gained from introspection:

. autoclass:: Noodle(type)

. automethod:: eat(persona)

This is useful if the signature from the method is hidden by a decorator.

New in version 0.4.

The automodule, autoclass and autoexception directives also support a flag option called show-inheritance.
When given, a list of base classes will be inserted just below the class signature (when used with automodule,
this will be inserted for every class that is documented in the module).

New in version 0.4.

All autodoc directives support the noindex flag option that has the same effect as for standard py:function
etc. directives: no index entries are generated for the documented object (and all autodocumented
members).

New in version 0.4.

automodule also recognizes the synopsis, platform and deprecated options that the standard py:module
directive supports.

New in version 0.5.

automodule and autoclass also has an member-order option that can be used to override the global value of
autodoc_member_order for one directive.

New in version 0.6.

The directives supporting member documentation also have a exclude-members option that can be used to
exclude single member names from documentation, if all members are to be documented.

New in version 0.6.

In an automodule directive with the members option set, only module members whose __module__ attribute is
equal to the module name as given to automodule will be documented. This is to prevent documentation of
imported classes or functions. Set the imported-members option if you want to prevent this behavior and
document all available members. Note that attributes from imported modules will not be documented,

because attribute documentation is discovered by parsing the source file of the current module
v: master

New in version 1.2.



http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:function
http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-py:module

¢ Add a list of modules in the autodoc_mock_imports to prevent import errors to halt the building process
when some external dependencies are not importable at build time.

New in version 1.3.

autofunction::
autodecorator::
autodata::
automethod: :
autoattribute::

These work exactly like autoclass etc., but do not offer the options used for automatic member documentation.

autodata and autoattribute support the annotation option. The option controls how the value of variable is
shown. If specified without arguments, only the name of the variable will be printed, and its value is not shown:

. autodata:: CD_DRIVE
:annotation:

If the option specified with arguments, it is printed after the name as a value of the variable:

. autodata:: CD_DRIVE
:annotation: = your CD device name

By default, without annotation option, Sphinx tries to obtain the value of the variable and print it after the name.

For module data members and class attributes, documentation can either be put into a comment with special
formatting (using a #: to start the comment instead of just #), or in a docstring after the definition. Comments need
to be either on a line of their own before the definition, or immediately after the assignment on the same line. The
latter form is restricted to one line only.

This means that in the following class definition, all attributes can be autodocumented:

class Foo:
"""Docstring for class Foo."""

#: Doc comment for class attribute Foo.bar.
#: It can have multiple lines.
bar = 1

flox = 1.5 #: Doc comment for Foo.flox. One line only.

baz = 2
"""Docstring for class attribute Foo.baz."""

def __init__ (self):
#: Doc comment for instance attribute qux.
self.qux = 3

self.spam = 4
"""Docstring for instance attribute spam."""

Changed in version 0.6: autodata and autoattribute can now extract docstrings.

Changed in version 1.1: Comment docs are now allowed on the same line after an assignment.

Changed in version 1.2: autodata and autoattribute have an annotation option.

Changed in version 2.0: autodecorator added.

Note

If you document decorated functions or methods, keep in mind that autodoc retrieves its docstrings by import & v: master
module and inspecting the __doc__ attribute of the given function or method. That means that if a decorator \ cpiaces wie
decorated function with another, it must copy the original __doc__ to the new function.

From Python 2.5, functools.wraps() can be used to create well-behaved decorating functions.




Configuration

There are also config values that you can set:

autoclass_content

This value selects what content will be inserted into the main body of an autoclass directive. The possible values

are:

"class"
Only the class’ docstring is inserted. This is the default. You can still document __init__ as a separate method
using automethod or the members option to autoclass.

"both"
Both the class’ and the __init__ method’'s docstring are concatenated and inserted.

"init"

Only the __init__ method's docstring is inserted.
New in version 0.3.

If the class has no __init__ method orif the __init__ method’s docstring is empty, but the class has a __new__
method’s docstring, it is used instead.

New in version 1.4.

autodoc_member_order

This value selects if automatically documented members are sorted alphabetical (value 'alphabetical’), by
member type (value 'groupwise') or by source order (value 'bysource'). The default is alphabetical.

Note that for source order, the module must be a Python module with the source code available.
New in version 0.6.
Changed in version 1.0: Support for 'bysource"'.

autodoc_default_flags

This value is a list of autodoc directive flags that should be automatically applied to all autodoc directives. The
supported flags are 'members’, 'undoc-members’, 'private-members’, 'special-members’, 'inherited-members’,
'show-inheritance', 'ignore-module-all' and 'exclude-members".

New in version 1.0.

Deprecated since version 1.8: Integrated into autodoc_default options.

autodoc_default_options

The default options for autodoc directives. They are applied to all autodoc directives automatically. It must be a
dictionary which maps option names to the values. For example:

autodoc_default_options = {

'members': 'varl, var2',
'‘member-order': ‘'bysource’,
‘special-members': ' __init_ ',

‘undoc-members': True,
'exclude-members': '__weakref__

Setting None or True to the value is equivalent to giving only the option name to the directives.

. ' I . o . A . v: master
The supported options are 'members', ‘member-order', 'undoc-members', 'private-members', 'speci
'inherited-members’, 'show-inheritance’, 'ignore-module-all', 'imported-members' and 'exclude-members".




New in version 1.8.
Changed in version 2.0: Accepts True as a value.

Changed in version 2.1: Added 'imported-members'.

autodoc_docstring_signature

Functions imported from C modules cannot be introspected, and therefore the signature for such functions cannot
be automatically determined. However, it is an often-used convention to put the signature into the first line of the
function’s docstring.

If this boolean value is set to True (which is the default), autodoc will look at the first line of the docstring for
functions and methods, and if it looks like a signature, use the line as the signature and remove it from the
docstring content.

New in version 1.1.

autodoc_mock_imports

This value contains a list of modules to be mocked up. This is useful when some external dependencies are not
met at build time and break the building process. You may only specify the root package of the dependencies
themselves and omit the sub-modules:

autodoc_mock_imports = ["django"]

Will mock all imports under the django package.
New in version 1.3.

Changed in version 1.6: This config value only requires to declare the top-level modules that should be mocked.

autodoc_typehints
This value controls how to represents typehints. The setting takes the following values:

* ‘'signature' - Show typehints as its signature (default)
* ‘'none' - Do not show typehints

autodoc_warningiserror

This value controls the behavior of sphinx-build -W during importing modules. If False is given, autodoc forcedly
suppresses the error if the imported module emits warnings. By default, True.

autodoc_inherit_docstrings

This value controls the docstrings inheritance. If set to True the docstring for classes or methods, if not explicitly
set, is inherited form parents.

The default is True.

New in version 1.7.

suppress_warnings

autodoc supports to suppress warning messages via suppress_warnings. It allows following warnings types in
addition:

* autodoc
* autodoc.import_object

Docstring preprocessing
autodoc provides the following additional events: v: master

autodoc-process-docstring(app, what, name, obj, options, lines)



http://www.sphinx-doc.org/en/master/man/sphinx-build.html#id6
http://www.sphinx-doc.org/en/master/usage/configuration.html#confval-suppress_warnings

New in version 0.4.

Emitted when autodoc has read and processed a docstring. /ines is a list of strings - the lines of the processed
docstring - that the event handler can modify in place to change what Sphinx puts into the output.

Parameters: * app - the Sphinx application object

* what - the type of the object which the docstring belongs to (one of "module”, "class",
"exception", "function"”, "method", "attribute")

* name - the fully qualified name of the object

* obj - the object itself

* options - the options given to the directive: an object with attributes inherited_members,
undoc_members, show_inheritance and noindex that are true if the flag option of same name was
given to the auto directive

¢ lines - the lines of the docstring, see above

autodoc-process-signature(app, what, name, obj, options, signature, return_annotation)
New in version 0.5.

Emitted when autodoc has formatted a signature for an object. The event handler can return a new tuple
(signature, return_annotation) to change what Sphinx puts into the output.

Parameters: * app - the Sphinx application object

¢ what - the type of the object which the docstring belongs to (one of "module”, "class",
"exception", "function"”, "method", "attribute")

* name - the fully qualified name of the object

¢ obj - the object itself

* options - the options given to the directive: an object with attributes inherited_members,
undoc_members, show_inheritance and noindex that are true if the flag option of same name was
given to the auto directive

* signature - function signature, as a string of the form " (parameter_1, parameter_2)", or None if
introspection didn't succeed and signature wasn't specified in the directive.

* return_annotation - function return annotation as a string of the form " -> annotation", or
None if there is no return annotation

The sphinx.ext.autodoc module provides factory functions for commonly needed docstring processing in event
autodoc-process-docstring:

sphinx.ext.autodoc.cut_lines(pre: int, post: int = 0, what: str = None) — Callable [source]
Return a listener that removes the first pre and last post lines of every docstring. If what is a sequence of strings,
only docstrings of a type in what will be processed.

Use like this (e.g. in the setup() function of conf.py):

from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

This can (and should) be used in place of automodule_skip_1lines.

sphinx.ext.autodoc.between(marker: str, what: Sequence[str] = None, keepempty: bool = False, exclude: bool =
False) — Callable [source]
Return a listener that either keeps, or if exclude is True excludes, lines between lines that match the marker regular

expression. If no line matches, the resulting docstring would be empty, so no change will be made unless
keepempty is true.

If whatis a sequence of strings, only docstrings of a type in what will be processed.
v: master

Skipping members



http://www.sphinx-doc.org/en/master/_modules/sphinx/ext/autodoc.html#cut_lines
http://www.sphinx-doc.org/en/master/_modules/sphinx/ext/autodoc.html#between

autodoc allows the user to define a custom method for determining whether a member should be included in the
documentation by using the following event:

autodoc-skip-member(app, what, name, obj, skip, options)

New in version 0.5.

Emitted when autodoc has to decide whether a member should be included in the documentation. The member is
excluded if a handler returns True. It is included if the handler returns False.

If more than one enabled extension handles the autodoc-skip-member event, autodoc will use the first non-None
value returned by a handler. Handlers should return None to fall back to the skipping behavior of autodoc and
other enabled extensions.

Parameters: *

app - the Sphinx application object

what - the type of the object which the docstring belongs to (one of "module"”, "class",
"exception", "function"”, "method", "attribute")

name - the fully qualified name of the object

obj - the object itself

skip - a boolean indicating if autodoc will skip this member if the user handler does not override
the decision

options - the options given to the directive: an object with attributes inherited_members,
undoc_members, show_inheritance and noindex that are true if the flag option of same name was
given to the auto directive

v: master




