__author__ = 'sibirrer'
#this file contains a class to make a gaussian
import numpy as np
from lenstronomy.LensModel.Profiles.sersic import Sersic
import lenstronomy.Util.param_util as param_util
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
__all__ = ['SersicEllipse']
[docs]class SersicEllipse(LensProfileBase):
"""
this class contains functions to evaluate a Sersic mass profile: https://arxiv.org/pdf/astro-ph/0311559.pdf
"""
param_names = ['k_eff', 'R_sersic', 'n_sersic', 'e1', 'e2', 'center_x', 'center_y']
lower_limit_default = {'k_eff': 0, 'R_sersic': 0, 'n_sersic': 0.5, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100}
upper_limit_default = {'k_eff': 10, 'R_sersic': 100, 'n_sersic': 8, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100}
def __init__(self):
self.sersic = Sersic()
self._diff = 0.000001
super(SersicEllipse, self).__init__()
[docs] def function(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0):
"""
returns Gaussian
"""
# phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_, y_ = param_util.transform_e1e2_square_average(x, y, e1, e2, center_x, center_y)
# x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y)
f_ = self.sersic.function(x_, y_, n_sersic, R_sersic, k_eff)
return f_
[docs] def derivatives(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0):
"""
returns df/dx and df/dy of the function
"""
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
e = param_util.q2e(q)
# e = abs(1. - q)
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
x_, y_ = param_util.transform_e1e2_square_average(x, y, e1, e2, center_x, center_y)
# x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y)
f_x_prim, f_y_prim = self.sersic.derivatives(x_, y_, n_sersic, R_sersic, k_eff)
f_x_prim *= np.sqrt(1 - e)
f_y_prim *= np.sqrt(1 + e)
f_x = cos_phi*f_x_prim-sin_phi*f_y_prim
f_y = sin_phi*f_x_prim+cos_phi*f_y_prim
return f_x, f_y
[docs] def hessian(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0):
"""
returns Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2
"""
alpha_ra, alpha_dec = self.derivatives(x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x, center_y)
diff = self._diff
alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, n_sersic, R_sersic, k_eff, e1, e2, center_x, center_y)
alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, n_sersic, R_sersic, k_eff, e1, e2, center_x, center_y)
f_xx = (alpha_ra_dx - alpha_ra)/diff
f_xy = (alpha_ra_dy - alpha_ra)/diff
f_yx = (alpha_dec_dx - alpha_dec)/diff
f_yy = (alpha_dec_dy - alpha_dec)/diff
return f_xx, f_xy, f_yx, f_yy