lenstronomy.Cosmo package¶
Submodules¶
lenstronomy.Cosmo.background module¶
- class lenstronomy.Cosmo.background.Background(cosmo=None, interp=False, **kwargs_interp)[source]¶
Bases:
object
class to compute cosmological distances
- T_xy(z_observer, z_source)[source]¶
- Parameters
z_observer – observer
z_source – source
- Returns
transverse comoving distance in units of Mpc
- a_z(z)[source]¶
returns scale factor (a_0 = 1) for given redshift :param z: redshift :return: scale factor
- d_xy(z_observer, z_source)[source]¶
- Parameters
z_observer – observer redshift
z_source – source redshift
- Returns
angular diameter distance in units of Mpc
- ddt(z_lens, z_source)[source]¶
time-delay distance
- Parameters
z_lens – redshift of lens
z_source – redshift of source
- Returns
time-delay distance in units of proper Mpc
- property rho_crit¶
critical density :return: value in M_sol/Mpc^3
lenstronomy.Cosmo.cosmo_solver module¶
- class lenstronomy.Cosmo.cosmo_solver.InvertCosmo(z_d, z_s, H0_range=array([10., 11.01123596, 12.02247191, 13.03370787, 14.04494382, 15.05617978, 16.06741573, 17.07865169, 18.08988764, 19.1011236, 20.11235955, 21.12359551, 22.13483146, 23.14606742, 24.15730337, 25.16853933, 26.17977528, 27.19101124, 28.20224719, 29.21348315, 30.2247191, 31.23595506, 32.24719101, 33.25842697, 34.26966292, 35.28089888, 36.29213483, 37.30337079, 38.31460674, 39.3258427, 40.33707865, 41.34831461, 42.35955056, 43.37078652, 44.38202247, 45.39325843, 46.40449438, 47.41573034, 48.42696629, 49.43820225, 50.4494382, 51.46067416, 52.47191011, 53.48314607, 54.49438202, 55.50561798, 56.51685393, 57.52808989, 58.53932584, 59.5505618, 60.56179775, 61.57303371, 62.58426966, 63.59550562, 64.60674157, 65.61797753, 66.62921348, 67.64044944, 68.65168539, 69.66292135, 70.6741573, 71.68539326, 72.69662921, 73.70786517, 74.71910112, 75.73033708, 76.74157303, 77.75280899, 78.76404494, 79.7752809, 80.78651685, 81.79775281, 82.80898876, 83.82022472, 84.83146067, 85.84269663, 86.85393258, 87.86516854, 88.87640449, 89.88764045, 90.8988764, 91.91011236, 92.92134831, 93.93258427, 94.94382022, 95.95505618, 96.96629213, 97.97752809, 98.98876404, 100.]), omega_m_range=array([0.05, 0.06010638, 0.07021277, 0.08031915, 0.09042553, 0.10053191, 0.1106383, 0.12074468, 0.13085106, 0.14095745, 0.15106383, 0.16117021, 0.1712766, 0.18138298, 0.19148936, 0.20159574, 0.21170213, 0.22180851, 0.23191489, 0.24202128, 0.25212766, 0.26223404, 0.27234043, 0.28244681, 0.29255319, 0.30265957, 0.31276596, 0.32287234, 0.33297872, 0.34308511, 0.35319149, 0.36329787, 0.37340426, 0.38351064, 0.39361702, 0.4037234, 0.41382979, 0.42393617, 0.43404255, 0.44414894, 0.45425532, 0.4643617, 0.47446809, 0.48457447, 0.49468085, 0.50478723, 0.51489362, 0.525, 0.53510638, 0.54521277, 0.55531915, 0.56542553, 0.57553191, 0.5856383, 0.59574468, 0.60585106, 0.61595745, 0.62606383, 0.63617021, 0.6462766, 0.65638298, 0.66648936, 0.67659574, 0.68670213, 0.69680851, 0.70691489, 0.71702128, 0.72712766, 0.73723404, 0.74734043, 0.75744681, 0.76755319, 0.77765957, 0.78776596, 0.79787234, 0.80797872, 0.81808511, 0.82819149, 0.83829787, 0.84840426, 0.85851064, 0.86861702, 0.8787234, 0.88882979, 0.89893617, 0.90904255, 0.91914894, 0.92925532, 0.9393617, 0.94946809, 0.95957447, 0.96968085, 0.97978723, 0.98989362, 1.]))[source]¶
Bases:
object
class to do an interpolation and call the inverse of this interpolation to get H_0 and omega_m
- class lenstronomy.Cosmo.cosmo_solver.SolverFlatLCDM(z_d, z_s)[source]¶
Bases:
object
class to solve multidimensional non-linear equations to determine the cosmological parameters H0 and omega_m given the angular diameter distance relations
- lenstronomy.Cosmo.cosmo_solver.cosmo2angular_diameter_distances(H_0, omega_m, z_lens, z_source)[source]¶
- Parameters
H_0 – Hubble constant [km/s/Mpc]
omega_m – dimensionless matter density at z=0
z_lens – deflector redshift
z_source – source redshift
- Returns
angular diameter distances Dd and Ds/Dds
- lenstronomy.Cosmo.cosmo_solver.ddt2h0(ddt, z_lens, z_source, cosmo)[source]¶
converts time-delay distance to H0 for a given expansion history
- Parameters
ddt – time-delay distance in Mpc
z_lens – deflector redshift
z_source – source redshift
cosmo – astropy.cosmology class instance
- Returns
h0 value which matches the cosmology class effectively replacing the h0 value used in the creation of this class
lenstronomy.Cosmo.kde_likelihood module¶
- class lenstronomy.Cosmo.kde_likelihood.KDELikelihood(D_d_sample, D_delta_t_sample, kde_type='scipy_gaussian', bandwidth=1)[source]¶
Bases:
object
class that samples the cosmographic likelihood given a distribution of points in the 2-dimensional distribution of D_d and D_delta_t
- logLikelihood(D_d, D_delta_t)[source]¶
likelihood of the data (represented in the distribution of this class) given a model with predicted angular diameter distances.
- Parameters
D_d – model predicted angular diameter distance
D_delta_t – model predicted time-delay distance
- Returns
loglikelihood (log of KDE value)
lenstronomy.Cosmo.lcdm module¶
- class lenstronomy.Cosmo.lcdm.LCDM(z_lens, z_source, flat=True)[source]¶
Bases:
object
Flat LCDM cosmology background with free Hubble parameter and Omega_m at fixed lens redshift configuration
- D_d(H_0, Om0, Ode0=None)[source]¶
angular diameter to deflector :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
- D_ds(H_0, Om0, Ode0=None)[source]¶
angular diameter from deflector to source :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
lenstronomy.Cosmo.lens_cosmo module¶
- class lenstronomy.Cosmo.lens_cosmo.LensCosmo(z_lens, z_source, cosmo=None)[source]¶
Bases:
object
class to manage the physical units and distances present in a single plane lens with fixed input cosmology
- arcsec2phys_lens(arcsec)[source]¶
convert angular to physical quantities for lens plane :param arcsec: angular size at lens plane [arcsec] :return: physical size at lens plane [Mpc]
- arcsec2phys_source(arcsec)[source]¶
convert angular to physical quantities for source plane :param arcsec: angular size at source plane [arcsec] :return: physical size at source plane [Mpc]
- property dd¶
- Returns
angular diameter distance to the deflector [Mpc]
- property dds¶
- Returns
angular diameter distance from deflector to source [Mpc]
- property ddt¶
- Returns
time delay distance [Mpc]
- property ds¶
- Returns
angular diameter distance to the source [Mpc]
- property h¶
- kappa2proj_mass(kappa)[source]¶
convert convergence to projected mass M_sun/Mpc^2 :param kappa: lensing convergence :return: projected mass [M_sun/Mpc^2]
- mass_in_coin(theta_E)[source]¶
- Parameters
theta_E – Einstein radius [arcsec]
- Returns
mass in coin calculated in mean density of the universe
- mass_in_theta_E(theta_E)[source]¶
mass within Einstein radius (area * epsilon crit) [M_sun] :param theta_E: Einstein radius [arcsec] :return: mass within Einstein radius [M_sun]
- nfwParam_physical(M, c)[source]¶
returns the NFW parameters in physical units
- Parameters
M – physical mass in M_sun
c – concentration
- Returns
rho0 [Msun/Mpc^3], Rs [Mpc], r200 [Mpc]
- nfw_M_theta_r200(M)[source]¶
returns r200 radius in angular units of arc seconds on the sky
- Parameters
M – physical mass in M_sun
- Returns
angle (in arc seconds) of the r200 radius
- nfw_angle2physical(Rs_angle, alpha_Rs)[source]¶
converts the angular parameters into the physical ones for an NFW profile
- Parameters
alpha_Rs – observed bending angle at the scale radius in units of arcsec
Rs_angle – scale radius in units of arcsec
- Returns
rho0 [Msun/Mpc^3], Rs [Mpc], c, r200 [Mpc], M200 [Msun]
- nfw_physical2angle(M, c)[source]¶
converts the physical mass and concentration parameter of an NFW profile into the lensing quantities
- Parameters
M – mass enclosed 200 rho_crit in units of M_sun (physical units, meaning no little h)
c – NFW concentration parameter (r200/r_s)
- Returns
Rs_angle (angle at scale radius) (in units of arcsec), alpha_Rs (observed bending angle at the scale radius
- phys2arcsec_lens(phys)[source]¶
convert physical Mpc into arc seconds :param phys: physical distance [Mpc] :return: angular diameter [arcsec]
- property sigma_crit¶
returns the critical projected lensing mass density in units of M_sun/Mpc^2 :return: critical projected lensing mass density
- property sigma_crit_angle¶
returns the critical surface density in units of M_sun/arcsec^2 (in physical solar mass units) when provided a physical mass per physical Mpc^2 :return: critical projected mass density
- sis_sigma_v2theta_E(v_sigma)[source]¶
converts the velocity dispersion into an Einstein radius for a SIS profile :param v_sigma: velocity dispersion (km/s) :return: theta_E (arcsec)
- sis_theta_E2sigma_v(theta_E)[source]¶
converts the lensing Einstein radius into a physical velocity dispersion :param theta_E: Einstein radius (in arcsec) :return: velocity dispersion in units (km/s)
- time_delay2fermat_pot(dt)[source]¶
- Parameters
dt – time delay in units of days
- Returns
Fermat potential in units arcsec**2 for a given cosmology
- time_delay_units(fermat_pot, kappa_ext=0)[source]¶
- Parameters
fermat_pot – in units of arcsec^2 (e.g. Fermat potential)
kappa_ext – unit-less external shear not accounted for in the Fermat potential
- Returns
time delay in days
- uldm_angular2phys(kappa_0, theta_c)[source]¶
converts the anguar parameters entering the LensModel Uldm() (Ultra Light Dark Matter) class in physical masses, i.e. the total soliton mass and the mass of the particle :param kappa_0: central convergence of profile :param theta_c: core radius (in arcseconds) :return: m_eV_log10, M_sol_log10, the log10 of the masses, m in eV and M in M_sun
- uldm_mphys2angular(m_log10, M_log10)[source]¶
converts physical ULDM mass in the ones, in angular units, that enter the LensModel Uldm() class :param m_log10: exponent of ULDM mass in eV :param M_log10: exponent of soliton mass in M_sun :return: kappa_0, theta_c, the central convergence and core radius (in arcseconds)
lenstronomy.Cosmo.nfw_param module¶
- class lenstronomy.Cosmo.nfw_param.NFWParam(cosmo=None)[source]¶
Bases:
object
class which contains a halo model parameters dependent on cosmology for NFW profile All distances are given in physical units. Mass definitions are relative to 200 crit including redshift evolution. The redshift evolution is cosmology dependent (dark energy). The H0 dependence is propagated into the input and return units.
- M200(rs, rho0, c)[source]¶
M(R_200) calculation for NFW profile
- Parameters
rs (float) – scale radius
rho0 (float) – density normalization (characteristic density)
c (float [4,40]) – concentration
- Returns
M(R_200) density
- M_r200(r200, z)[source]¶
- Parameters
r200 – r200 in physical Mpc/h
z – redshift
- Returns
M200 in M_sun/h
- c_M_z(M, z)[source]¶
fitting function of http://moriond.in2p3.fr/J08/proceedings/duffy.pdf for the mass and redshift dependence of the concentration parameter
- Parameters
M (float or numpy array) – halo mass in M_sun/h
z (float >0) – redshift
- Returns
concentration parameter as float
- c_rho0(rho0, z)[source]¶
computes the concentration given density normalization rho_0 in h^2/Mpc^3 (physical) (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (physical) :param z: redshift :return: concentration parameter c
- nfw_Mz(M, z)[source]¶
returns all needed parameter (in physical units modulo h) to draw the profile of the main halo r200 in physical Mpc/h rho_s in h^2/Mpc^3 (physical) Rs in Mpc/h physical c unit less
- r200_M(M, z)[source]¶
computes the radius R_200 crit of a halo of mass M in physical distances M/h
- Parameters
M (float or numpy array) – halo mass in M_sun/h
z (float) – redshift
- Returns
radius R_200 in physical Mpc/h
- rho0_c(c, z)[source]¶
computes density normalization as a function of concentration parameter
- Parameters
c – concentration
z – redshift
- Returns
density normalization in h^2/Mpc^3 (physical)
- rhoc = 277536627000.0¶