Module Guide for Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

January 18, 2025

1 Revision History

Date Version Notes

January 17th, 0.1 Initial draft
2025

2 Reference Material

This section records information for easy reference.

2.1 Abbreviations and Acronyms

symbol description

AC Anticipated Change

DAG Directed Acyclic Graph

M Module

MG Module Guide

OS Operating System

R Requirement

SC Scientific Computing

SRS Software Requirements Specification

Software Engineering Explanation of program name

ucC Unlikely Change

VS Visual Studio

API Application Programing Interface
IDE Integrated Development Environment
AST Abstract Syntax Tree

CSV Comma-Separated Values

i

Contents

1 Revision History i
2 Reference Material ii
2.1 Abbreviations and Acronyms ii

3 Introduction 1
4 Anticipated and Unlikely Changes 2
4.1 Anticipated Changes 2
4.2 Unlikely Changes 3

5 Module Hierarchy 3
6 Connection Between Requirements and Design 4
7 Module Decomposition 5
7.1 Hardware Hiding Modules, 6
7.2 Behaviour-Hiding Module 0oL 6
7.2.1 Smell Module (M1) 6

7.2.2 Base Refactorer Module (M2) 6

7.2.3 MakeStaticRefactorer Module (M3) 6

7.2.4 UseListAccumulationRefactorer Module (M4) 6

7.2.5 UseAGeneratorRefactorer Module (M5) 7

7.2.6 CacheRepeatedCallsRefactorer Module (M6) 7

7.2.7 Long Element Chain Module (M7) 7

7.2.8 Long Parameter List Module (M8) 7

7.2.9 Long Message Chain Refactorer (M9) 8

7.2.10 Long Lambda Function Refactorer (M10) 8

7.2.11 Plugin Initiator Module (M11) 9

7.2.12 Backend Communicator (M12) 9

7.2.13 Smell Detector (M13)o 9

7.2.14 File Highlighter Module (M14) 9

7.2.15 Hover Manager Module (M15) 9

7.3 Software Decision Module 000000 10
7.3.1 Measurements Module (M16) 10

7.3.2 Pylint Analyzer Module (M17) 10

7.3.3 Testing Functionality Module (M18) 10

7.3.4 Smell Refactorer Module (M19) 10

7.3.5 Refactor Manager Module (M20) 11

8 Traceability Matrix 11

1l

9 Use Hierarchy Between Modules

10 User Interfaces

11 Design of Communication Protocols

12 Timeline

List of Tables

= = O 00 ~J O UL W N -

— O

Module Hierarchy
Trace Between Functional Requirements and Modules
Trace Between Look & Feel Requirements and Modules
Trace Between Usability & Humanity Requirements and Modules
Trace Between Performance Requirements and Modules
Trace Between Operational & Environmental Requirements and Modules . .
Trace Between Maintenance & Support Requirements and Modules
Trace Between Security Requirements and Modules
Trace Between Cultural and Compliance Requirements and Modules
Trace Between Anticipated Changes and Modules
Timeline e

List of Figures

SO W N =

Use hierarchy among modules
Use hierarchy among modules
VS Code Plugin Setup
VS Code Plugin Commands
VS Code Code Analysis Interaction
VS Code Code Refactoring Interaction(in progress for selected line)

v

15

16

18

18

3 Introduction

Decomposing a system into modules is a commonly accepted approach to developing soft-

ware. A module is a work assignment for a programmer or programming team (Parnas et al.,

1984). We advocate a decomposition based on the principle of information hiding (Parnas,

1972). This principle supports design for change, because the “secrets” that each module

hides represent likely future changes. Design for change is valuable in SC, where modifica-

tions are frequent, especially during initial development as the solution space is explored.
Our design follows the rules layed out by Parnas et al. (1984), as follows:

e System details that are likely to change independently should be the secrets of separate
modules.

e Fach data structure is implemented in only one module.

e Any other program that requires information stored in a module’s data structures must
obtain it by calling access programs belonging to that module.

After completing the first stage of the design, the Software Requirements Specification
(SRS), the Module Guide (MG) is developed (Parnas et al., 1984). The MG specifies the
modular structure of the system and is intended to allow both designers and maintainers
to easily identify the parts of the software. The potential readers of this document are as
follows:

e New project members: This document can be a guide for a new project member to
easily understand the overall structure and quickly find the relevant modules they are
searching for.

e Maintainers: The hierarchical structure of the module guide improves the maintainers’
understanding when they need to make changes to the system. It is important for a
maintainer to update the relevant sections of the document after changes have been
made.

e Designers: Once the module guide has been written, it can be used to check for consis-
tency, feasibility, and flexibility. Designers can verify the system in various ways, such
as consistency among modules, feasibility of the decomposition, and flexibility of the
design.

The rest of the document is organized as follows. Section 4 lists the anticipated and
unlikely changes of the software requirements. Section 5 summarizes the module decomposi-
tion that was constructed according to the likely changes. Section 6 specifies the connections
between the software requirements and the modules. Section 7 gives a detailed description
of the modules. Section 8 includes two traceability matrices. One checks the completeness
of the design against the requirements provided in the SRS. The other shows the relation
between anticipated changes and the modules. Section 9 describes the use relation between
modules.

4 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of the change,
the possible changes are classified into two categories. Anticipated changes are listed in
Section 4.1, and unlikely changes are listed in Section 4.2.

4.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden inside the modules.
Ideally, changing one of the anticipated changes will only require changing the one module
that hides the associated decision. The approach adapted here is called design for change.

AC1: The user interface of the plugin. Enhancements may be required to improve usability
or accommodate new features. Specific anticipated changes include:

Refactoring Suggestions Display: Updates to how refactoring suggestions are
presented, such as side-by-side views of original and refactored code.

Theme Support: Adding compatibility with various VS Code themes, including
light and dark modes.

Visual Indicators: Implementing color-coded indicators to highlight the impact
of energy savings for each refactoring suggestion.

Interactive Elements: Introducing interactive components like tooltips or progress
indicators to guide users during the refactoring process.

Customization Options: Allowing users to configure Ul elements, such as ad-
justing the sensitivity of code smell detection or selecting preferred refactoring
styles.

AC2: The VS Code plugin’s functionality. Future versions may expand to support more
complex refactorings or additional code smells that users can address with minimal
setup. Changes may involve adding more customizable user settings.

AC3: The refactorers responsible for detecting and fixing specific code smells. As more
code smells are identified and refactoring techniques are developed, new modules may
be added or existing ones may evolve. For example:

Base Refactorer : Updates to the base refactorer module to support new refac-
toring patterns or improved algorithms.

Complex List Comprehension : Adding or modifying the logic for simplifying
complex list comprehensions.

Long Element Chain : Refining the logic to handle longer chains of elements
and optimize their readability and performance.

Long Lambda Function : Improvements to better handle long lambda func-
tions, making them more efficient and readable.

e Long Message Chain : Extending the module’s ability to identify and refactor
long message chains.

e Member Ignoring Method : Enhancements to the module for detecting meth-
ods that ignore members, optimizing the code structure.

e Repeated Calls : Optimizing detection and handling of repeated function calls
to improve performance.

e String Concatenation in Loop : Adjusting the refactorer’s logic to improve
handling of string concatenation within loops.

e Long Parameter List : Future extensions to handle complex parameter lists in
a more structured manner, perhaps allowing for simplifications.

AC4: The core logic for identifying specific code smells. As the system evolves, new code
smells may be added to the system’s detection capabilities, necessitating changes to
this module.

AC5: The analyzers used to gather metrics and assess code quality.

AC6: The testing module responsible for ensuring the correct functionality of the refactor-
ers. As new features and code smells are added, this module may need updates to test
these changes thoroughly.

4.2 Unlikely Changes

The module design should be as general as possible. However, a general system is more
complex. Sometimes this complexity is not necessary. Fixing some design decisions at the
system architecture stage can simplify the software design. If these decision should later
need to be changed, then many parts of the design will potentially need to be modified.
Hence, it is not intended that these decisions will be changed.

UCI1: Transitioning from VS Code to another IDE. The plugin is tightly integrated with
VS Code’s API, making such a change complex.

UC2: Fundamental changes to the core logic of code smell detection. The current archi-
tecture is designed around widely accepted principles of software quality.

UC3: Changing from a plugin-based architecture to a standalone application. This would
require rethinking the entire deployment and user interaction model.

5 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a
hierarchy decomposed by secrets in Table 1. The modules listed below, which are leaves in
the hierarchy tree, are the modules that will actually be implemented.

M1: Smell Module

M2: BaseRefactorer Module

M3: MakeStaticRefactorer Module

M4: UseListAccumulationRefactorer Module
M5: UseAGeneratorRefactorer Module

Mé6: CacheRepeatedCallsRefactorer Module
MT7: LongElementChainRefactorer Module
MS8: LongParameterListRefactorer Module
M9: LongMessageChainRefactorer Module
M10: LonglLambdaFunctionRefactorer Module
M11: Plugin Initiator Module

M12: Backend Communicator Module
M13: Smell Detector Module

M14: File Highlighter Module

M15: Hover Manager Module

M16: Measurements Module

M17: Pylint Analyzer Module

M18: Testing Functionality Module

M19: Smell Refactorer Module

M20: Refactor Manager Module

6 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In
this stage, the system is decomposed into modules. The connection between requirements
and modules is listed in Table ?7.

Level 1 Level 2

Hardware-Hiding Module None

Smell Module
BaseRefactorer Module
MakeStaticRefactorer Module
Behaviour-Hiding Module UseListAccumulationRefactorer Module
UseAGeneratorRefactorer Module
CacheRepeatedCallsRefactorer Module
LongElementChainRefactorer Module
LongParameterListRefactorer Module
LongMessageChainRefactorer Module
LonglLambdaFunctionRefactorer Module
PluginInitiator Module
BackendCommunicator Module
SmellDetector Module
FileHighlighter Module
HoverManager Module

Measurements Module
Software Decision Module PylintAnalyzer Module
Testing Functionality Module
SmellRefactorer Module
RefactorManager Module

Table 1: Module Hierarchy

7 Module Decomposition

Modules are decomposed according to the principle of “information hiding” proposed by
Parnas et al. (1984). The Secrets field in a module decomposition is a brief statement of
the design decision hidden by the module. The Services field specifies what the module will
do without documenting how to do it. For each module, a suggestion for the implementing
software is given under the Implemented By title. If the entry is OS, this means that the
module is provided by the operating system or by standard programming language libraries.
Software Engineering means the module will be implemented by the Software Engineering
software.

Only the leaf modules in the hierarchy have to be implemented. If a dash (-) is shown,
this means that the module is not a leaf and will not have to be implemented.

7.1 Hardware Hiding Modules

This system has no hardware components.

7.2 Behaviour-Hiding Module
7.2.1 Smell Module (M1)

Secrets: Data structure of a code smell.
Services: Provides an interface for other modules to access information of a smell object.
Implemented By: EcoOptimizer

Type of Module: Abstract Data Type

7.2.2 Base Refactorer Module (M2)

Secrets: None
Services: Offers an interface for other refactoring modules to implement.

Implemented By: EcoOptimizer

7.2.3 MakeStaticRefactorer Module (M3)

Secrets: How to parse a given code file to its AST representation, how to traverse the AST
tree, how to modify specific nodes in the AST tree, how to convert the modified AST
tree back to source code and write it to an output file.

Services: Refactors the Member Ignoring Method (MIM) smell in a provided code
file to improve energy efficiency.

Implemented By: EcoOptimizer

7.2.4 UseListAccumulationRefactorer Module (M4)

Secrets: How to parse a given code file into its AST representation, how to traverse the
AST tree, how to find the initializing variable of the string concatenation, how to find
the scope of the concatenation, how to modify the given code file in plain text and
write it back to an output file.

Services: Refactors the String Concatenation Inside Loop (SCL) smell in a provided
code file to improve energy efficiency.

Implemented By: EcoOptimizer

7.2.5 UseAGeneratorRefactorer Module (M5)

Secrets: How to parse a given code file to its AST representation, how to traverse the AST
tree, how to modify specific nodes in the AST tree, how to convert the modified AST
tree back to source code and write it to an output file.

Services: Refactors the List Comprehension Instead of a Generator smell in a provided
code file to improve energy efficiency.

Implemented By: EcoOptimizer

7.2.6 CacheRepeatedCallsRefactorer Module (M6)

Secrets: How to parse a given code file to its AST representation, how to traverse the AST
tree, how to modify specific nodes in the AST tree, how to convert the modified AST
tree back to source code and write it to an output file.

Services: Refactors the Repeated Function Calls smell in a provided code file to improve
energy efficiency and performance.

Implemented By: EcoOptimizer

7.2.7 Long Element Chain Module (MT7)

Secrets: How to parse a given code file to its AST representation, traverse the AST tree to
identify dictionary assignments, analyze the structure of nested dictionaries, and flatten
them. Additionally, it identifies all access calls associated with these dictionaries in the
source code and determines how to update them to reflect the new flattened structure.

Services: Detects nested dictionaries in the source code using AST parsing, simplifies their
structure by flattening them, and updates all associated access calls throughout the
file. This improves code readability, reduces complexity, and ensures correctness while
maintaining the program’s intended behavior.

Implemented By: EcoOptimizer

7.2.8 Long Parameter List Module (M8)

Secrets: How to parse a given code file to its AST representation, traverse the AST tree
to identify functions or methods with long parameter lists, and encapsulate related
parameters into objects or structures. Additionally, it identifies all function or method
calls associated with these functions and updates their arguments to align with the
refactored signature.

Services: Detects long parameter lists in functions or methods using AST parsing, sim-
plifies their structure by grouping related parameters into objects or structures, and

updates all associated function or method calls throughout the file. This improves
code readability, reduces complexity, and ensures correctness while maintaining the
program’s intended behavior.

Implemented By: EcoOptimizer

7.2.9 Long Message Chain Refactorer (M9)

Secrets: Understanding the syntax and structure of Python code to identify/classify long
message chains, including both f-strings and non-f-string chains. This involves parsing
the target file, extracting method calls from identified long chains, and systematically
breaking them into separate statements while preserving the original functionality and
indentation. Additionally, it ensures unmatched brackets are corrected during refac-
toring.

Services: Detects long message chains in Python source code and refactors them by splitting
the chain into intermediate variables and a final result. This improves code readability
and maintainability while retaining the original program behavior.

Implemented By: EcoOptimizer

Type of Module: Library: a reusable component that provides functionality for refactor-
ing long message chains in Python code.

7.2.10 Long Lambda Function Refactorer (M10)

Secrets: Understanding the syntax and structure of Python code to identify long lambda
functions. This includes parsing the target file to locate lambda expressions, extract-
ing their arguments and bodies, and converting them into standard Python function
definitions. The module ensures proper handling of nested structures (e.g., paren-
theses, brackets, and braces) within the lambda body, and truncates overly complex
expressions at the first top-level comma for readability.

Services: Detects components of long lambda functions in Python source code and refactors
them by converting the lambda expression into a standalone function with a unique
name. This improves code readability, debugging, and maintainability. The mod-
ule inserts the newly defined function in the appropriate scope, updates the original
lambda usage with a function call, and validates the refactored code by maintaining
its functionality and measuring energy efficiency improvements.

Implemented By: EcoOptimizer

Type of Module: Library: a reusable component that provides functionality for refactor-
ing long lambda functions in Python code.

7.2.11 Plugin Initiator Module (M11)

Secrets: How to initialize the plugin, set up the environment for interaction, and handle
configurations for plugin commands.

Services: Initializes and manages the plugin’s setup, enabling its functionality without
exposing the underlying initialization logic.

Implemented By: EcoOptimizer

7.2.12 Backend Communicator (M12)

Secrets: How to establish communication between the plugin and Source Code Optimizer,
handle requests, and process responses.

Services: Provides an interface for sending requests to and receiving responses from Source
Code Optimizer. Abstracts the communication details from modules within the plugin.

Implemented By: EcoOptimizer

7.2.13 Smell Detector (M13)

Secrets: How to analyze Python code in active VS Code editor by accessing Source Code
Optimizer endpoint.

Services: Detects code smells in Python scripts using Source Code Optimizer and provides
structured data for further processing based on received output.

Implemented By: EcoOptimizer

7.2.14 File Highlighter Module (M14)

Secrets: How to identify code regions requiring attention and how to highlight those regions
in the file.

Services: Highlights areas in files that contain code smells and can be refactored, assisting
developers in identifying problem areas quickly.

Implemented By: EcoOptimizer

7.2.15 Hover Manager Module (M15)

Secrets: How to detect hover events, retrieve relevant information dynamically, and present
tooltips based on hovered elements.

Services: Manages hover interactions and displays contextual information for elements
within the user interface.

Implemented By: EcoOptimizer

7.3 Software Decision Module
7.3.1 Measurements Module (M16)

Secrets: How to measure energy consumption and carbon emissions of a given Python
program using the CodeCarbon library, including managing temporary directories for
storing output, executing the program, and processing the emissions data from a CSV

file.

Services: Provides functionality for measuring the energy consumption and carbon emis-
sions of a provided code file. This module handles execution, tracking, and data
extraction, ensuring that the emissions data is available for further analysis.

Implemented By: CodeCarbonEnergyMeter

7.3.2 Pylint Analyzer Module (M17)

Secrets: The internal design and execution of static code analysis using Pylint and AST
parsing, including custom detection and structuring of smells. These details are hidden
from external modules.

Services: The module provides the following services:

e Executes Pylint analysis on Python source code files.
e Performs AST-based custom checks for specific code smells.

e Filters and structures the analysis results into a standardized format for further
processing.

Implemented By: EcoOptimizer

7.3.3 Testing Functionality Module (M18)

Secrets: Runs testing suites in a subprocess.
Services: Checks whether the functionality of a given source code has changed.

Implemented By: EcoOptimizer

7.3.4 Smell Refactorer Module (M19)

Secrets: How to utilize Source Code Optimizer endpoint for refactoring specific code smells,
and how to sanitize received output.

Services: Refactors code smells in Python scripts using Source Code Optimizer and deter-
mines if received output is valid format.

Implemented By: EcoOptimizer

10

7.3.5 Refactor Manager Module (M20)

Secrets: How to manage the sequence of refactorings, coordinate the application of refac-
toring techniques, validate results after each step and revert at any stage.

Services: Decides if refactored result of Python code should be updated in the code editor
window. Determines if refactoring should be reverted if needed by user.

Implemented By: EcoOptimizer

8 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements
and between the modules and the anticipated changes.

Req. Modules

FR1 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
MI18

FR2 M1, M17

FR3 MI18

FR4 M18

FR5 M3, M4, M5, M6, M7, M10, M8, M9, M16

FR6 MI18

FR7 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,

FRS M1, M2, M3, M4, M5, M6, M7, M10, M8, M9, M16,
M17, M18

FR9 To be removed

FR10 Not implemented in code

FR11 M11, M12, M13, M19, M14, M15, M20

FR12 To be removed

FR13 M2, M3, M4, M5, M6, M7, M10, M8, M9

Table 2: Trace Between Functional Requirements and Modules

11

Req. Modules

LFR-AP 14 M11, M12, M13, M19, M14, M15, M20
LFR-AP 5 To be removed
LFR-ST 1-3 M11, M12, M13, M19, M14, M15, M20

Table 3: Trace Between Look & Feel Requirements and Modules

Req. Modules

UHR-PS1 1 M11, M12, M13, M19, M14, M15, M20
UHR-PS1 2 Not implemented in code

UHR-LRN 1 M11, M12, M13, M19, M14, M15, M20
UHR-LRN 2 Not implemented in code

UHR-ACS 1-2 M11, M12, M13, M19, M14, M15, M20
UHR-EOU 1-2 M11, M12, M13, M19, M14, M15, M20
UHR-UPL 1 M11, M12, M13, M19, M14, M15, M20

Table 4: Trace Between Usability & Humanity Requirements and Modules

Req. Modules

PR-SL 1 M17

PR-SL 2 M2, M3, M4, M5, M6, M7, M10, M8, M9

PR-CR 1 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
M18

PR-SCR 1 M18

PR-PAR 1 M18

PR-PAR 2 M17

PR-PAR 3 M2, M3, M4, M5, M6, M7, M10, M8, M9

PR-RFT 1 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
M18

PR-RFT 2 M2, M3, M4, M5, M6, M7, M10, M8, M9

PR-SER 1 M2

PR-LR 1 M1, M2, M3, M4, M5, M6, M7, M10, M8, M9, M16,
M17, M18

Table 5: Trace Between Performance Requirements and Modules

12

Req. Modules

OER-EP 1 N/A

OER-EP 2 N/A

OER-WE 1 M16

OER-IAS 1 To be removed

OER-IAS 2 M11, M12, M13, M19, M14, M15, M20

OER-IAS 3 To be removed

OER-PR 1 M1, M2, M3, M4, M5, M6, M7, M10, M8, M9, M16,
M17, M18

OER-RL 1 M1, M2, M3, M4, M5, M6, M7, M10, M8, M9, M16,
M17, M18

OER-RL 2 N/A

Table 6: Trace Between Operational & Environmental Requirements and Modules

Req. Modules

MS-MNT 1 M2

MS-MNT 2 Not implemented in code

MS-MNT 3 None

MS-MNT 4 N/A

MS-MNT 5 M1, M2, M3, M4, M5, M6, M7, M10, M8, M9, M16,
M17, M18

MS-SP 1 Not implemented in code

Table 7: Trace Between Maintenance & Support Requirements and Modules

13

Req.

Modules

SR-AR 1
SR-AR 2
SR-IR 1
SR-PR 1
SR-PR 2

SR-AUR 1

SR-AUR 2

SR-IM 1

To be removed

M16

M2, M3, M4, M5, M6, M7, M10, M8, M9

N/A

M2, M3, M4, Mb5, M6, M7, M10, M8, M9, M16, M17,
M18

M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
M18

M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
M18

N/A

Table 8: Trace Between Security Requirements and Modules

Req. Modules

CULT 1-3 M11, M12, M13, M19, M14, M15, M20

CL-LR 1 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,
M18

CL-SCR 1 M2, M3, M4, M5, M6, M7, M10, M8, M9, M16, M17,

MI18

Table 9: Trace Between Cultural and Compliance Requirements and Modules

AC Modules

AC1 M11, M14 , M15, M20

AC2 M11 , M19, M20

AC3 M2, M3, M4, M5, M6, M7, M8
AC4 M13, M17

AC5H M16, M17, M13

AC6 M18

Table 10: Trace Between Anticipated Changes and Modules

14

9 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Parnas (1978) said of two
programs A and B that A uses B if correct execution of B may be necessary for A to complete
the task described in its specification. That is, A uses B if there exist situations in which
the correct functioning of A depends upon the availability of a correct implementation of
B. Figure 1 illustrates the use relation between the modules. It can be seen that the graph
is a directed acyclic graph (DAG). Each level of the hierarchy offers a testable and usable
subset of the system, and modules in the higher level of the hierarchy are essentially simpler
because they use modules from the lower levels.Furthermore, figure 2 illustrates the use
relation between the modules of the VS Code Plugin, vis-a-vis the Source Code Optimizer
displayed in figure 1. In this figure for the plugin, the modules at the lowest level are the
ones closest to the user, and going up in the module indicates moving towards the backend
of the project, which is the Source Code Optimizer. It is a layered architecture where each
module serves a separate concern.

Ecooptimizer

(BaseRefactorer Hsubsystem RefacmnngJ TestRunner Measurments PylintAnanlyzer

L

! l I ! I l

Make Static Use List Use A Generalor Cache Repeated Long Element Long Parameter Long Lambda
Accumulation Refactorer Calls Chain List Function

SOURCE CODE OPTIMIZER (grey area)

Figure 1: Use hierarchy among modules

15

—

Source Code
Optimizer

—

.

—
Backend
Communicator

—

Y
Hover File
Manager Highlighter
K
Smell Smell
Detector Refactorer

Plugin
Initiator

Refactor
Manager

VS CODE PLUGIN(grey area)

Figure 2: Use hierarchy among modules

10 User Interfaces

The project is exposed to the user through the VS Code Plugin, which can be installed in
any developer’s local VS Code Editor. Figure 3 highlights the intial interface that the user
accesses when installating and enabling the plugin. Commands of the plugin are available
through various routes, one of them is the Command Palette as show in figure 4.

Commands are searchable and can be applied. Figure 5 showcases the application of
the "Eco: Refactor Plugin: Detect Smells” command, which at the end highlights all lines
containing code smells with yellow lines. On hover, information is available about the specific
code smell. The user also has the option to select or place their cursor on a specific line
that they want to refactor, and run the "Eco: Refactor Plugin: Refactor Smell” command
in order to refactor that specific line of code. Figure 6 provides a visual of this command in
progress, with updates being provided in bottom right corner.

16

) Welcome car_stuff.py @5 Extension: VS Code Plugin for Ecooptimizer X

VS Code Plugin for Ecooptimizer ve.o.1

undefined_publisher

Disable Uninstall Auto Update 8%

DETAILS FEATURES CHANGELOG

vs-code-plugin-for-ecooptimizer README L

Other
VS code extension for Ecooptimizer

More Info

Last 2025-01-15,
updated 19:39:14
Identifier undefined_publish
code-plugin-
for-

ecooptimizer

Figure 3: VS Code Plugin Setup

>Eco

Eco: Refactor Plugin: Refactor Smell © R
. Eco: Refactor Plugin: Detect Smells

recently used e}

Figure 4: VS Code Plugin Commands

17

car_stuffpy X

Code smells detected and highlighted

Detected 21 smells i the file.

o | A\ Select Interpreter | (*

car_stuff.py X

o

1

on | A\ Select interpreter | (*

Figure 6: VS Code Code Refactoring Interaction(in progress for selected line)

11 Design of Communication Protocols

12 Timeline

All code and corresponding documentation was aimed to be completed before Jan 6th our
Demo date for our supervisor.

18

Table 11: Timeline

Module Name Team Member Due Date
Base Refactorer Sevhena Walker Jan 6, 2025
Complex List Comprehension | Nivetha Kuruparan | Jan 6, 2025
Long Element Chain Ayushi Amin Jan 6, 2025
Long Lambda Function Mya Hussain Jan 6, 2025
Long Message Chain Mya Hussain Jan 6, 2025
Member Ignoring Method Sevhena Walker Jan 6, 2025
Repeated Calls Nivetha Kuruparan | Jan 6, 2025
String Concatenation in Loop | Sevhena Walker Jan 6, 2025
Long Parameter List Tanveer Brar Jan 6, 2025
Smell All Jan 31, 2025
Analyzers All Jan 31, 2025
Measurements All Jan 31, 2025
Testing Functionality All Jan 31, 2025

References

David L. Parnas. On the criteria to be used in decomposing systems into modules. Comm.
ACM, 15(2):1053-1058, December 1972.

David L. Parnas. Designing software for ease of extension and contraction. In ICSE ’78:
Proceedings of the 3rd international conference on Software engineering, pages 264-277,
Piscataway, NJ, USA, 1978. IEEE Press. ISBN none.

D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex systems.
In International Conference on Software Engineering, pages 408-419, 1984.

19

	Revision History
	Reference Material
	Abbreviations and Acronyms

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules
	Behaviour-Hiding Module
	Smell Module (M1)
	Base Refactorer Module (M2)
	MakeStaticRefactorer Module (M3)
	UseListAccumulationRefactorer Module (M4)
	UseAGeneratorRefactorer Module (M5)
	CacheRepeatedCallsRefactorer Module (M6)
	Long Element Chain Module (M7)
	Long Parameter List Module (M8)
	Long Message Chain Refactorer (M9)
	Long Lambda Function Refactorer (M10)
	Plugin Initiator Module (M11)
	Backend Communicator (M12)
	Smell Detector (M13)
	File Highlighter Module (M14)
	Hover Manager Module (M15)

	Software Decision Module
	Measurements Module (M16)
	Pylint Analyzer Module (M17)
	Testing Functionality Module (M18)
	Smell Refactorer Module (M19)
	Refactor Manager Module (M20)

	Traceability Matrix
	Use Hierarchy Between Modules
	User Interfaces
	Design of Communication Protocols
	Timeline

