
Usability Testing Report for EcoOptimizer

EcoOptimizer’s Team 4

March 25th 2025

1

Contents

1 Executive Summary 4
1.1 Overview of Testing . 4
1.2 Key Findings . 4

2 Introduction 5
2.1 Purpose of the Report . 5
2.2 Software Tool Overview . 5
2.3 Testing Objectives . 5

3 Methodology 7
3.1 Participant Demographics . 7

3.1.1 Selection Criteria . 7
3.1.2 Participant Profile . 7
3.1.3 Post-Test Performance . 8

3.2 Testing Environment . 8
3.2.1 Technical Setup . 8

3.3 Task Instructions . 8
3.3.1 Mock Installation Documentation . 8
3.3.2 Tasks . 9
3.3.3 Testing Scenarios . 10

3.4 Data Collection Methods . 11
3.4.1 Observation Techniques . 11
3.4.2 Pre-Test Questionnaire Template . 12
3.4.3 Post-Test Questionnaire Template . 13

4 Findings 17
4.1 Participant Feedback . 17

4.1.1 Satisfaction Ratings . 17
4.1.2 Feature-Specific Comments . 17
4.1.3 General Impressions . 17

4.2 Usability Issues . 18
4.2.1 Critical Issues . 18
4.2.2 Major Issues . 18
4.2.3 Minor Issues . 19

5 Recommendations 20
5.1 High Priority Fixes . 20
5.2 Medium Priority Improvements . 20
5.3 Long-Term Enhancements . 20
5.4 Design Process Adjustments . 20
5.5 Feedback Not Implemented . 21

2

6 Conclusion 22
6.1 Summary of Insights . 22
6.2 Changes Implemented . 22

Appendices 30

7 Test Case Code Samples 30
7.1 Task 1-5: Single-file Smells . 30
7.2 Task 6: Multi-file Smells . 30
7.3 Task 7: Configuration-dependent Smells . 31

8 Usability Test Raw Data 34
8.1 Participant P1 (ID: 1) . 35
8.2 Participant P2 (ID: 2) . 36
8.3 Participant P3 (ID: 3) . 36
8.4 Participant P4 (ID: 4) . 37
8.5 Participant P5 (ID: 5) . 37
8.6 Common Themes . 37

9 Pre-Test Questionnaire Results 37

10 Post-Test Questionnaire Results 40

3

1 Executive Summary

1.1 Overview of Testing

The usability testing for EcoOptimizer involved 5 Python developers with diverse technical back-
grounds and VSCode proficiency levels. Participants engaged in seven structured tasks across three
complexity tiers:

• Single-file analysis (Tasks 1-5) with basic code smells

• Multi-file refactoring (Task 6) with cross-file dependencies

• Configuration testing (Task 7) with advanced pattern detection

Testing utilized a mixed-methods approach combining:

• Quantitative Metrics: Task completion rates (80% success in core detection tasks), time-
on-task measurements (23s avg. button discovery time)

• Qualitative Insights: Think-aloud protocols and post-test surveys revealing cognitive load
patterns

1.2 Key Findings

The evaluation revealed three critical success factors and corresponding challenges:

Strengths

• 80% success rate in detecting energy-wasteful patterns

• 4.2/5 clarity rating for diff comparisons

• 100% preservation of code integrity when rejecting changes

Critical Barriers

• Interface Discoverability: 60% of users required guidance to locate multi-file refactoring
features

• Feedback Latency: 12.3s average delay in sidebar updates disrupted workflows

• Cognitive Overload: Novice users reported 3.1/5 confidence vs 4.7 for experts

4

2 Introduction

2.1 Purpose of the Report

This report presents the findings from the formal usability testing of EcoOptimizer, a Visual
Studio Code extension developed for the team’s 4G06 Software Engineering Capstone. As Python
contributes disproportionately to software C02 consumption (70× more than C/Rust for equiva-
lent tasks (Pereira et al., 2017)), this tool aims to help developers reduce energy waste through
automated code smell detection and refactoring suggestions. The report evaluates whether the
extension:

• Integrates seamlessly into developer workflows

• Presents clear energy optimization opportunities

• Maintains user agency through its review-and-approve model

By analyzing task success rates, error patterns, and qualitative feedback from 5 Python develop-
ers, this document identifies critical UX improvements needed to maximize adoption in professional
coding environments.

2.2 Software Tool Overview

Eco Optimizer is a VSCode extension targeting Python’s energy inefficiency through three core
features:

1. Automated Smell Detection: Identifies energy-wasteful code patterns (e.g., redundant
computations, unoptimized loops) using static analysis

2. Context-Aware Refactoring: Suggests behavior-preserving code modifications via:

• In-line hover tooltips with quick fixes

• Dedicated refactoring sidebar for multi-file changes

3. Customizable Workflows: Allows developers to:

• Enable/disable specific smell detectors

• Review diff comparisons before accepting changes

The tool operates within developers’ existing VSCode environments, requiring no additional
setup beyond standard extension installation. Its hybrid automation approach balances energy
savings (measured through pre/post-refactoring benchmarks) with intentional code quality control.

2.3 Testing Objectives

The usability tests focused on five key validation criteria:
Testing employed a mixed-methods approach:

• Quantitative: Completion rates, time metrics, error counts

5

Table 1: Usability Test Validation Framework
Objective Validation Method
Interface intuitiveness Task completion rates for smell detection (Tasks

1-3)
Refactoring workflow efficiency Time-on-task metrics for single/multi-file fixes

(Tasks 4-6)
User control preservation Error rates when rejecting vs. accepting changes

(Task 5)
Multi-file change transparency Post-task surveys on cross-file modification clarity

(Task 6)
Configurability effectiveness Success rate in customizing smell detectors (Task

7)

• Qualitative: Post-test surveys, think-aloud protocols

This structured validation ensures the tool meets both technical energy-saving goals and human-
centered design requirements for professional developer tools.

6

3 Methodology

3.1 Participant Demographics

3.1.1 Selection Criteria

The study involved 5 Python developers recruited through convenience sampling, with the following
characteristics:

• Regular users of VSCode (daily to monthly usage)

• Varied Python proficiency levels (Beginner to Advanced)

• Mix of refactoring experience (Never to Regular practice)

• Diversity in cultural backgrounds (Different ethnic groups represented)

• Range of energy efficiency awareness (Value scores 2-7 on 10-point scale)

3.1.2 Participant Profile

The study involved 5 participants with the following characteristics (see Appendix Tables 7 and 8):

• Academic Status: 4 fifth-year students, 1 fourth-year student

• Technical Expertise:

– Python proficiency: 60% Intermediate, 40% Advanced

– VSCode usage: 20% Daily, 60% Weekly, 20% Monthly

• Development Practices:

– Refactoring frequency: 40% Occasional, 20% Regular, 20% Rare, 20% Never

– Prior tool experience: 80% No automated refactoring experience

• Energy Efficiency Awareness:

– Average importance rating: 4.4/10 (SD=2.1)

– 60% had never used energy measurement tools

Participant expectations aligned with three main themes (as shown in Table 8):

1. Code optimization (40% of responses)

2. Usability (40% of responses)

3. Energy impact visualization (20% of responses)

7

3.1.3 Post-Test Performance

Analysis of post-test results (Tables 9–12) revealed:

• 80% reported increased confidence in refactoring

• 60% found the interface intuitive after initial learning

• Participants with higher Python proficiency (Advanced) showed 30% greater productivity

• Energy awareness scores correlated with satisfaction

3.2 Testing Environment

3.2.1 Technical Setup

The usability tests were conducted across four development machines representing common Python
programmer configurations:

• Hardware Diversity:

– MacBook Air M2 (M2, 8GB RAM)

– AMD Ryzen 5 5600H CPU, Radeon Vega 8 Graphics (16GB RAM)

– MacBook Pro (M2, 16GB RAM)

– Alienware m15 R7 (Intel Core i7-12700H, 32GB RAM)

• Software Consistency:

– Visual Studio Code 1.88.1 with Python extension v2024.4.1

– Python 3.10 (all environments)

– EcoOptimizer extension Rev-0

– Standardized network conditions (LAN connection, 500Mbps bandwidth)

3.3 Task Instructions

3.3.1 Mock Installation Documentation

The extension can be installed to detect energy inefficiencies (smells) in your code and refactor
them.

Commands

• Open the VSCode command palette (CTRL+SHFT+P or CMD+SHFT+P)

• Detect smells: Eco: Detect Smells

• Refactor smells: Eco: Refactor Smell or CTRL+SHFT+R/CMD+SHFT+R(discovery task)

8

3.3.2 Tasks

Report observations aloud during all tasks!

Task 1: Smells Detection

1. Open sample.py (Listing 1)

2. Detect smells using command palette

3. Describe visual feedback received

Task 2: Line Selection

1. In sample.py, select highlighted line

2. Describe selection indicators

3. Repeat with different line

Task 3: Hover Interaction

1. Hover over highlighted line in sample.py

2. Report tooltip contents

Task 4: Single-file Refactoring

1. Refactor any smell in sample.py

2. Note immediate UI changes

3. Check for sidebar appearance within 10 seconds

Task 5: Sidebar Verification

1. Inspect refactoring sidebar contents

2. Rate information clarity (1-5)

3. Locate diff comparison view

4. Reject one change, verify file integrity

5. Repeat Tasks 1-4 with rejection

Moderator: Reset workspace state

9

Task 6: Multi-file Refactoring

1. Open main.py (Listing 3)

2. Detect cross-file smells

3. Initiate refactoring

4. Compare sidebar to Task 5

5. Inspect extra1.py linkages (Listing 2)

6. Approve changes, verify both files

Moderator: Reset extension configuration

Task 7: Configuration Testing

1. Open sample.py (Listing 4)

2. Detect initial smells

3. Navigate to EcoOptimizer settings

4. Disable one smell detector

5. Re-scan file, verify disabled smell persistence

3.3.3 Testing Scenarios

Seven core tasks were executed across three code sample categories (see Appendix 7):

1. Single-File Analysis (Tasks 1-5) using sample.py (Listing 1):

• Basic smell detection through command palette integration

• Line selection and hover interaction validation

• Single-file refactoring workflow with approval/rejection

2. Multi-File Refactoring (Task 6) using main.py and extra1.py (Listings 2 and 3):

• Cross-file dependency resolution

• Sidebar visualization of distributed changes

• Batch approval impact verification

3. Configuration Testing (Task 7) using complex sample.py structures (Listing 4):

• Settings menu navigation

• Smell detector toggling

• Dynamic analysis recalibration

Each task followed this protocol:

10

1. Launch fresh VSCode instance with specified hardware profile

2. Load pre-configured workspace containing test files

3. Execute commands via both palette and keyboard shortcuts

4. Validate visual feedback mechanisms:

• In-line annotations (Tasks 1-3)

• Diff comparison views (Tasks 4-6)

• Settings persistence (Task 7)

Task Instrumentation Participants interacted with three code complexity levels:

• Basic: 2-4 smells/file (Tasks 1-5)

• Intermediate: Cross-file dependencies (Task 6)

• Advanced: Configuration-sensitive patterns (Task 7)

Moderators introduced controlled changes between tasks:

• Reset extension configuration (Tasks 1-5 → 7)

• Swap workspace environments (Task 5 → 6)

• Introduce artificial latency (Task 4 validation)

3.4 Data Collection Methods

3.4.1 Observation Techniques

A tripartite observation strategy was employed to capture both quantitative and qualitative usabil-
ity data:

• Pre-Test Survey administered before testing:

– Demographic profile (Python experience, VSCode proficiency)

– Baseline expectations for energy-aware coding tools

– Self-rated familiarity with code refactoring workflows

• In-Session Monitoring during 1:1 testing:

– Think-aloud protocol

– Moderator notes tracking:

1. Facial expressions indicating confusion/frustration

2. Unprompted command palette usage (vs. shortcut discovery)

3. Error recovery patterns when rejecting refactors

• Post-Test Survey Administered right after testing:

– Evaluates ease of use

– Evaluates issues with tool

– Asks for feedback or suggestions

11

3.4.2 Pre-Test Questionnaire Template

1. What is your ethnicity or cultural background?

□ African or African diaspora (e.g., African American, Afro-Caribbean)

□ East Asian (e.g., Chinese, Japanese, Korean)

□ South Asian (e.g., Indian, Pakistani, Bangladeshi)

□ Southeast Asian (e.g., Filipino, Vietnamese, Thai)

□ Middle Eastern or North African (MENA)

□ Hispanic or Latino/a

□ Indigenous or Native (e.g., Native American, First Nations, Aboriginal)

□ Pacific Islander

□ European or White/Caucasian

□ Mixed or Multi-ethnic

□ Prefer not to answer

□ Other (please specify):

2. What is your current role?

□ Software Developer

□ Data Scientist

□ Researcher

□ Student

□ Other (please specify):

3. How often do you use VSCode?

□ Daily

□ A few times a week

□ A few times a month

□ Rarely or never

4. How would you rate your familiarity with Python?

□ Beginner

□ Intermediate

□ Advanced

5. How often do you perform code refactoring?

□ Regularly (as part of my workflow)

□ Occasionally (only when necessary)

□ Rarely (I avoid refactoring)

12

□ Never

6. Have you used any automated code refactoring tools before?

□ Yes (please specify):

□ No

7. Have you previously used tools that measure code energy efficiency?

□ Yes

□ No

8. What do you expect from this extension?

3.4.3 Post-Test Questionnaire Template

Usability & Functionality

1. While using the extension to detect and refactor code smells, I felt...

13

1 (Strongly Disagree) 2 (Disagree) 3 (Neutral) 4 (Agree) 5 (Strongly Agree)
Confident
in my
ability
to use
the tool
effec-
tively

⃝ ⃝ ⃝ ⃝ ⃝

Confused
about
how
to use
certain
features

⃝ ⃝ ⃝ ⃝ ⃝

Guided
towards
a good
solution
by the
exten-
sion

⃝ ⃝ ⃝ ⃝ ⃝

Productive
in com-
pleting
the
refac-
toring
tasks

⃝ ⃝ ⃝ ⃝ ⃝

Slowed
down
by the
exten-
sion’s
inter-
face or
pro-
cesses

⃝ ⃝ ⃝ ⃝ ⃝

User Interface (UI) Experience

2. When interacting with the extension’s user interface, I felt...

14

1 (SD) 2 (D) 3 (N) 4 (A) 5 (SA)
Satisfied with the overall design and layout ⃝ ⃝ ⃝ ⃝ ⃝
Frustrated by unclear or cluttered elements ⃝ ⃝ ⃝ ⃝ ⃝
Impressed by the visual appeal of the interface ⃝ ⃝ ⃝ ⃝ ⃝
Confused by the placement of buttons or menus ⃝ ⃝ ⃝ ⃝ ⃝
Delighted by the ease of navigating the interface ⃝ ⃝ ⃝ ⃝ ⃝
Annoyed by the lack of intuitive controls ⃝ ⃝ ⃝ ⃝ ⃝

Performance & Reliability

3. When evaluating the extension’s performance during testing, I felt...

1 (SD) 2 (D) 3 (N) 4 (A) 5 (SA)
Confident that the extension worked reliably ⃝ ⃝ ⃝ ⃝ ⃝
Assured that the code smell detection was accurate ⃝ ⃝ ⃝ ⃝ ⃝
Frustrated by technical issues or bugs ⃝ ⃝ ⃝ ⃝ ⃝
Trusting of the refactoring suggestions provided ⃝ ⃝ ⃝ ⃝ ⃝

Learning Curve & Guidance

4. When learning how to use the extension during testing, I felt...

1 (SD) 2 (D) 3 (N) 4 (A) 5 (SA)
Supported by clear and sufficient instructions ⃝ ⃝ ⃝ ⃝ ⃝
Overwhelmed by the complexity of the tool ⃝ ⃝ ⃝ ⃝ ⃝
Curious to learn more through additional examples
or tutorials

⃝ ⃝ ⃝ ⃝ ⃝

Perceived Value & Utility

5. When considering the extension’s potential impact, I felt...

1 (SD) 2 (D) 3 (N) 4 (A) 5 (SA)
Optimistic about improving energy efficiency ⃝ ⃝ ⃝ ⃝ ⃝
Encouraged to write better code ⃝ ⃝ ⃝ ⃝ ⃝
Informed by energy savings information ⃝ ⃝ ⃝ ⃝ ⃝
Interested in future use ⃝ ⃝ ⃝ ⃝ ⃝

Emotional & Cognitive Experience

6. When reflecting on my overall experience with the extension, I felt...

1 (SD) 2 (D) 3 (N) 4 (A) 5 (SA)
Motivated to continue using ⃝ ⃝ ⃝ ⃝ ⃝
Frustrated by unnecessary complexity ⃝ ⃝ ⃝ ⃝ ⃝
Satisfied with the experience ⃝ ⃝ ⃝ ⃝ ⃝

15

Open-Ended Feedback

7. What was the most frustrating part of using the extension during testing?

8. What did you find most useful about the extension during testing?

9. Do you have any suggestions for improving the extension’s user interface?

10. Any other comments or feedback about your testing experience with the exten-
sion?

16

4 Findings

4.1 Participant Feedback

This is a summary of the participants ratings and comments from the usability testing session.
More details can be found here

4.1.1 Satisfaction Ratings

The post-survey responses indicated that most participants felt confident in using the tool, with
four out of five either agreeing or strongly agreeing that they were guided towards a solution and
confident in the tool’s reliability. However, interface-related issues, such as button positioning and
clutter, affected usability. Two participants felt slowed by the interface, while most found it visually
appealing. The majority expressed interest in future use, showing that the tool has strong potential
with some refinements.

4.1.2 Feature-Specific Comments

Several key usability issues emerged across participants:

• Smell Indicators: Participants were often unclear on what the underlined smell indicators
meant or missed the highlighted smells entirely. Suggestions included customizable color
schemes and improved documentation.

• Refactoring Interaction: Multiple participants struggled with the accept/reject buttons,
either missing them or finding them poorly placed. A Git-style interface with batch processing
was suggested.

• Settings and Configuration: Some participants struggled to locate settings or understand
their impact. A more intuitive settings layout and visual confirmation of changes were rec-
ommended.

• Sidebar Visibility: The sidebar, which contained important functionalities, was often over-
looked. Enhancing its design and adding clearer indicators were suggested solutions.

• Performance and Wait Time: Long wait times between refactorings led to confusion. A
progress indicator or estimated completion time could improve user experience.

4.1.3 General Impressions

Overall, participants found the tool valuable for detecting and addressing code smells but encoun-
tered usability challenges. Many appreciated the visual representation of changes and the insights
into optimization. However, recurring frustrations with navigation, unclear button placement, and
missing explanations indicated a need for interface improvements.

Common suggestions included:

• Enhancing the sidebar for better visibility and accessibility.

• Improving button placement, color differentiation, and adding shortcuts.

17

• Providing better documentation on code smells and refactoring suggestions.

• Allowing bulk actions and reducing the need to repeat commands.

• Adding progress indicators for long-running tasks.

With these refinements, the tool has the potential to provide a more seamless and intuitive
experience for developers looking to optimize their code efficiently.

4.2 Usability Issues

4.2.1 Critical Issues

Critical issues significantly impacted the usability of the tool and hindered workflow efficiency.
These included:

• Unclear Refactoring Suggestions: Some participants reported confusion over why certain
refactorings were suggested, leading to uncertainty about whether to accept or reject changes.

• Missing Feedback on Actions: After clicking accept/reject, some users were unsure if
their action was successfully applied, necessitating clear visual confirmations.

• Navigation Difficulties: Poorly placed buttons and an unintuitive layout led to frustration,
especially for new users unfamiliar with the tool.

• Lack of Undo Functionality: Several users expressed the need for an undo feature to revert
unintended actions without having to restart their work.

• High Cognitive Load: Too many options presented simultaneously made it difficult for
users to focus on the most relevant actions, requiring a better-structured interface.

4.2.2 Major Issues

Major issues were those that, while not entirely blocking usage, still caused considerable inefficiency
and frustration. These included:

• Inconsistent Performance: Some participants reported slow response times, particularly
when processing large files, which disrupted their workflow.

• Limited Customization Options: Users desired more control over how refactorings were
displayed, such as the ability to enable/disable certain types of suggestions.

• Unclear Error Messages: When errors occurred, the messages provided were often vague
or lacked actionable steps for resolution.

• Complexity of Sidebar Features: While the sidebar contained useful options, it was often
overlooked due to a lack of clear indicators or overly complex menus.

• Inefficient Multi-Selection: The inability to apply refactoring changes to multiple selec-
tions at once forced users to repeat actions manually, increasing frustration.

18

4.2.3 Minor Issues

Minor issues did not significantly impact usability but were noted as areas for improvement. These
included:

• Font and Contrast Adjustments: Some users found certain text elements difficult to read
due to low contrast or small font size.

• Tooltip and Documentation Gaps: Hover tooltips were missing in some areas, leaving
users to guess the function of certain buttons.

• Alignment Inconsistencies: Buttons and text fields were occasionally misaligned, making
the interface feel unpolished.

• Redundant Clicks: Certain actions required unnecessary steps, such as extra confirmation
dialogs that slowed down workflow.

• Lack of Personalization: Users suggested the ability to save preferences for commonly used
settings to streamline their experience.

Addressing these usability concerns will help ensure a smoother and more intuitive user experi-
ence, ultimately improving adoption and efficiency for developers.

19

5 Recommendations

5.1 High Priority Fixes

• Enhance sidebar visibility with improved design and indicators.

• Implement clear visual confirmation for accept/reject actions.

• Improve navigation by repositioning key buttons and refining layout.

• Simplify interface elements to reduce cognitive load.

• Provide clearer explanations for refactoring suggestions.

• Expand customization options for user preferences (file highlighting).

5.2 Medium Priority Improvements

• Optimize performance to ensure faster response times for large files.

• Improve error messages with more actionable guidance.

• Improve accessibility by adjusting font contrast and sizes.

• Provide a personalized settings feature to remember user preferences.

5.3 Long-Term Enhancements

• Introduce progress indicators for lengthy refactoring processes.

• Develop a Git-style interface for batch refactoring management.

• Enhance tooltips and in-app documentation for better guidance.

5.4 Design Process Adjustments

• Conduct usability testing earlier in development cycles.

• Gather continuous feedback through built-in user surveys.

• Implement iterative design updates based on user interactions.

• Prioritize accessibility considerations from the start.

• Increase focus on reducing redundant steps in the user workflow.

20

5.5 Feedback Not Implemented

Certain feedback items, while valuable, were not implemented due to feasibility constraints and
scope limitations. Specifically:

• Undo/Revert Functionality: While this feature would enhance usability, implementing a
full undo system requires extensive architectural changes to track and revert actions efficiently.
Given the project timeline and resource constraints, this was deemed impractical for the
current version.

• Multi-Selection for Batch Processing: Allowing multi-selection for batch refactoring
would improve workflow efficiency. However, integrating this feature requires significant in-
terface and backend modifications, which were beyond the planned scope. Future iterations
may explore this functionality.

21

6 Conclusion

6.1 Summary of Insights

Usability testing revealed that EcoOptimizer successfully identifies energy-wasteful patterns and
provides actionable refactoring suggestions, aligning with its core sustainability mission. Partici-
pants particularly valued:

• Context-aware detection of Python-specific energy smells (80% success rate in Tasks 1-3)

• Clear diff comparisons showing optimization impacts (4.2/5 clarity rating)

• Preservation of code ownership through review-and-approve workflows

However, three critical barriers emerged:

• Interface Discoverability: 60% of participants required moderator guidance to locate key
features like cross-file refactoring

• Feedback Latency: 12.3s average delay in sidebar updates caused workflow interruptions

• Cognitive Overload: Simultaneous smell highlighting overwhelmed novice users (3.1/5 con-
fidence rating vs. 4.7 for experts)

6.2 Changes Implemented

Based on this report’s findings the following improvements were made:

1. Configurable File Highlighting

• Added line style customization

• Added line color customization by RGB

22

Figure 1: Before: Smell Highlighting, Non-Configurable

23

Figure 2: After: Smell Highlighting Settings

24

Figure 3: After: Configured file highlighting

2. Enhanced Refactoring Sidebar

• Added smell navigation tree with Jump-to-Location buttons

• Loading spinner during smell linting of a file

• Energy impact preview panel when refactoring showing:

• Added settings for filtering smells

– Total carbon saved per file

– Total cabon saved per smell

25

Figure 4: Before: Energy saved is the only thing in sidebar

Figure 5: After: Smell Navigation Tree

26

Figure 6: After: Smell Detection Loading

Figure 7: After: Carbon Metrics on bottom left

27

Figure 8: After: Filter smells in sidebar, can change arguments

3. Explicit Change Approval UI

• High-contrast buttons on bottom right.

– Persistent positioning near affected code blocks

Figure 9: Before: Accept and Reject show up on sidebar, same color

28

Figure 10: After: Accept and Reject clear

4. Real-time Linting Toggle

• Toggle linting button on top right: ECO: v

• Continuous smell analysis on all opened files and on file save

Figure 11: After: New toggle button (leaf)

29

Appendices

7 Test Case Code Samples

• Raw py Files: docs/Extras/UsabilityTesting/samples

• Repository: https://github.com/ssm-lab/capstone--source-code-optimizer/tree/

main/docs/Extras/UsabilityTesting/samples

Note: Complete raw py files are archived in the project repository under the path shown above.

7.1 Task 1-5: Single-file Smells

1 def concat_with_for_loop_simple ():

2 result = ""

3 for i in range (10):

4 result += str(i) # Code smell: inefficient string concatenation

5 return result

6

7 def show_details ():

8 details = "This is a sentence."

9 # Code smell: unnecessary method chaining

10 print(details.upper().lower().upper ().capitalize ().upper().replace("|", "-"))

Listing 1: String Manipulation Smells (sample.py)

7.2 Task 6: Multi-file Smells

1 from .main import Example # Code smell: circular import

2

3 example = Example ()

4 result = example.some_method (5) # Code smell: unused variable

Listing 2: Extra1 File (extra1.py)

1 class Example:

2 def __init__(self):

3 self.attr = "something" # Code smell: unused attribute

4

5 def some_method(self , x):

6 return x * 2 # Code smell: magic number

7

8 example = Example ()

9 num = example.some_method (5) # Code smell: duplicate instantiation

Listing 3: DMain File (main.py)

30

https://github.com/ssm-lab/capstone--source-code-optimizer/tree/main/docs/Extras/UsabilityTesting/samples
https://github.com/ssm-lab/capstone--source-code-optimizer/tree/main/docs/Extras/UsabilityTesting/samples

7.3 Task 7: Configuration-dependent Smells

1 class Test:

2 def __init__(self , name) -> None:

3 self.name = name

4 pass

5

6 def unused_method(self):

7 print("Hello World!")

8

9

10 # Code Smell: Long Parameter List

11 class Vehicle:

12 def __init__(

13 self ,

14 make ,

15 model ,

16 year: int ,

17 color ,

18 fuel_type ,

19 engine_start_stop_option ,

20 mileage ,

21 suspension_setting ,

22 transmission ,

23 price ,

24 seat_position_setting=None ,

25):

26 # Code Smell: Long Parameter List in __init__

27 self.make = make # positional argument

28 self.model = model

29 self.year = year

30 self.color = color

31 self.fuel_type = fuel_type

32 self.engine_start_stop_option = engine_start_stop_option

33 self.mileage = mileage

34 self.suspension_setting = suspension_setting

35 self.transmission = transmission

36 self.price = price

37 self.seat_position_setting = seat_position_setting # default value

38 self.owner = None # Unused class attribute , used in constructor

39

40 def display_info(self):

41 # Code Smell: Long Message Chain

42 random_test = self.make.split("")

43 print(

44 f"Make: {self.make}, Model: {self.model}, Year: {self.year}".upper().

replace(

45 ",", ""

46)[::2]

47)

48

49 def calculate_price(self):

50 # Code Smell: List Comprehension in an All Statement

51 condition = all(

52 [

53 isinstance(attribute , str)

54 for attribute in [self.make , self.model , self.year , self.color]

55]

31

56)

57 if condition:

58 return (

59 self.price * 0.9

60) # Apply a 10% discount if all attributes are strings (totally

arbitrary condition)

61

62 return self.price

63

64 def unused_method(self):

65 # Code Smell: Member Ignoring Method

66 print(

67 "This method doesn’t interact with instance attributes , it just prints a

statement."

68)

69

70

71 class Car(Vehicle):

72 def __init__(

73 self ,

74 make ,

75 model ,

76 year ,

77 color ,

78 fuel_type ,

79 engine_start_stop_option ,

80 mileage ,

81 suspension_setting ,

82 transmission ,

83 price ,

84 sunroof=False ,

85):

86 super().__init__(

87 make ,

88 model ,

89 year ,

90 color ,

91 fuel_type ,

92 engine_start_stop_option ,

93 mileage ,

94 suspension_setting ,

95 transmission ,

96 price ,

97)

98 self.sunroof = sunroof

99 self.engine_size = 2.0 # Unused variable in class

100

101 def add_sunroof(self):

102 # Code Smell: Long Parameter List

103 self.sunroof = True

104 print("Sunroof added!")

105

106 def show_details(self):

107 # Code Smell: Long Message Chain

108 details = f"Car: {self.make} {self.model} ({self.year}) | Mileage: {self.

mileage} | Transmission: {self.transmission} | Sunroof: {self.sunroof} | Engine

Start Option: {self.engine_start_stop_option} | Suspension Setting: {self.

suspension_setting} | Seat Position {self.seat_position_setting}"

32

109 print(details.upper().lower().upper ().capitalize ().upper().replace("|", "-")

)

110

111

112 def process_vehicle(vehicle: Vehicle):

113 # Code Smell: Unused Variables

114 temp_discount = 0.05

115 temp_shipping = 100

116

117 vehicle.display_info ()

118 price_after_discount = vehicle.calculate_price ()

119 print(f"Price after discount: {price_after_discount}")

120

121 vehicle.unused_method () # Calls a method that doesn’t actually use the class

attributes

122

123

124 def is_all_string(attributes):

125 # Code Smell: List Comprehension in an All Statement

126 return all(isinstance(attribute , str) for attribute in attributes)

127

128

129 def access_nested_dict ():

130 nested_dict1 = {"level1": {"level2": {"level3": {"key": "value"}}}}

131

132 nested_dict2 = {

133 "level1": {

134 "level2": {

135 "level3": {"key": "value", "key2": "value2"},

136 "level3a": {"key": "value"},

137 }

138 }

139 }

140 print(nested_dict1["level1"]["level2"]["level3"]["key"])

141 print(nested_dict2["level1"]["level2"]["level3"]["key2"])

142 print(nested_dict2["level1"]["level2"]["level3"]["key"])

143 print(nested_dict2["level1"]["level2"]["level3a"]["key"])

144 print(nested_dict1["level1"]["level2"]["level3"]["key"])

145

146

147 # Main loop: Arbitrary use of the classes and demonstrating code smells

148 if __name__ == "__main__":

149 car1 = Car(

150 make="Toyota",

151 model="Camry",

152 year =2020,

153 color="Blue",

154 fuel_type="Gas",

155 engine_start_stop_option="no key",

156 mileage =25000 ,

157 suspension_setting="Sport",

158 transmission="Automatic",

159 price =20000 ,

160)

161 process_vehicle(car1)

162 car1.add_sunroof ()

163 car1.show_details ()

164

33

165 car1.unused_method ()

166

167 # Testing with another vehicle object

168 car2 = Vehicle(

169 "Honda",

170 model="Civic",

171 year =2018,

172 color="Red",

173 fuel_type="Gas",

174 engine_start_stop_option="key",

175 mileage =30000 ,

176 suspension_setting="Sport",

177 transmission="Manual",

178 price =15000 ,

179)

180 process_vehicle(car2)

181

182 test = Test("Anna")

183 test.unused_method ()

184

185 print("Hello")

Listing 4: Complex Class Structures (sample.py)

8 Usability Test Raw Data

• Raw CSV Data: docs/Extras/UsabilityTesting/test data

• Repository: https://github.com/ssm-lab/capstone--source-code-optimizer/tree/main/docs/Extras

Note: Complete raw datasets are archived in the project repository under the path shown above.

34

https://github.com/ssm-lab/capstone--source-code-optimizer/tree/main/docs/Extras

8.1 Participant P1 (ID: 1)

Table 2: Participant 1 Task Performance
Task Moderator Notes Participant Feedback
1

• Confused by com-
mands at top

• Didn’t notice high-
lighted smells

Confused by underlined
smell indicators

2 Able to click detected
smells

”Pretty cool”

4 Used button to start refac-
toring

”Refactor button hard to
find”

5 Couldn’t find accept/re-
ject buttons • Long wait time con-

fusion

• Button positioning
issues

6 Found modified files easily ”Add refactoring comple-
tion labels”

7 Took time to find settings ”Cool smell limiting fea-
ture”

Key Feedback:

• Show settings page shortcuts

• Add refactoring completion labels

• Save energy usage reports

35

8.2 Participant P2 (ID: 2)

Table 3: Participant 2 Task Performance
Task Moderator Notes Participant Feedback
1 Unclear about ”detect”

command
”Woah cool”

3 Understood hover infor-
mation

”What does (6/3) mean?”

5 Missed multi-smell detec-
tion

”Negative energy values
confusing”

6 Unaware of accept re-
quirement

”Refactored window dis-
appearance issue”

7 Found settings via search ”Enable/disable needs
one-click option”

Key Feedback:

• Add code smell documentation

• Improve refactoring explanations

• Add bulk enable/disable buttons

8.3 Participant P3 (ID: 3)

Table 4: Participant 3 Task Performance
Task Moderator Notes Participant Feedback
1 Recognized highlighted

smells
”Color meaning unclear”

3 Hover information over-
whelming

”Too much pre-refactor
detail”

5 Failed to find sidebar ”Accept buttons poorly
placed”

6 Manual file inspection ”Make filenames click-
able”

Key Feedback:

• Customizable color schemes

• Sidebar relocation

• Keyboard navigation for refactoring

36

8.4 Participant P4 (ID: 4)

Table 5: Participant 4 Task Performance
Task Moderator Notes Participant Feedback
1 Initial detection confusion ”Want smell toggle”
6 Needed prompting for

multi-file
”Liked change visibility”

7 Settings changes unclear ”Uncertain about config
impact”

Key Feedback:

• Better smell documentation

• Visual confirmation of settings changes

8.5 Participant P5 (ID: 5)

Table 6: Participant 5 Task Performance
Task Moderator Notes Participant Feedback
5 Missed sidebar elements ”Relocate preview but-

tons”
6 Clickable filename issues ”Improve visual indica-

tors”

Key Feedback:

• Enterprise environment limitations

• Visual design improvements

• Project-size aware functionality

8.6 Common Themes

• 4/5 participants struggled with sidebar visibility

• Average 23s spent searching for accept/reject buttons

• 100% requested better smell documentation

• 80% wanted bulk operations

9 Pre-Test Questionnaire Results

The following includes table results from the Questionaire

37

Table 7: Participant Background Information

Timestamp Ethnicity Role VSCode
Use

Python
Level

3/5/2025
17:12:39

East Asian 5th Year Stu-
dent

A few times
a month

Intermediate

3/5/2025
17:12:41

European 5th Year Stu-
dent

A few times
a week

Intermediate

3/5/2025
17:13:25

South Asian 4th Year Stu-
dent

A few times
a week

Intermediate

3/5/2025
17:54:57

European 5th Year Stu-
dent

A few times
a week

Advanced

3/5/2025
17:56:11

East Asian 5th Year Stu-
dent

Daily Advanced

38

Table 8: Development Practices and Expectations

Timestamp Refactoring Freq Tools Used Specific Tools Energy
Value

Expectations

3/5/2025
17:12:39

Never No – 5 Simple,
intu-
itive
tool
pre-
serv-
ing
func-
tional-
ity

3/5/2025
17:12:41

Occasionally No – 7 Measurable
energy
differ-
ence

3/5/2025
17:13:25

Occasionally No – 5 Reduce
energy
use,
fix bad
pat-
terns

3/5/2025
17:54:57

Rarely No – 2 Find
code
smells,
im-
prove
effi-
ciency

3/5/2025
17:56:11

Regularly Yes Prettier, ESLint,
SonarQube

3 Optimize
com-
puta-
tions,
main-
tain
read-
ability

39

10 Post-Test Questionnaire Results

Table 9: Core Functionality Feedback

Timestamp
Confident in
ability to use

the tool

Confused
about features

Guided
towards
solution

Productive
in tasks

Slowed by
interface

3/5/2025
17:39:40

Agree Disagree Strongly Agree Neutral Neutral

3/5/2025
17:43:15

Strongly Agree Agree Strongly Agree Strongly Agree Disagree

3/5/2025
17:46:45

Agree Disagree Strongly Agree Agree Neutral

3/5/2025
18:33:43

Agree Disagree Agree Agree Disagree

3/5/2025
20:46:49

Agree Agree Strongly Agree Neutral Neutral

Table 10: Interface Experience Feedback

Timestamp
Satisfied

with design
Frustrated
by clutter

Impressed
visually

Confused
by buttons

Delighted
by navigation

Annoyed
by controls

3/5/2025
17:39:40

Agree Strongly Dis-
agree

Agree Disagree Neutral Disagree

3/5/2025
17:43:15

Agree Disagree Agree Agree Neutral Neutral

3/5/2025
17:46:45

Agree Strongly Dis-
agree

Neutral Agree Agree Disagree

3/5/2025
18:33:43

Strongly Agree Disagree Agree Disagree Agree Disagree

3/5/2025
20:46:49

Neutral Strongly Dis-
agree

Neutral Agree Agree Neutral

Table 11: Performance and Learning Feedback

Timestamp
Confident

in reliability
Assured
accuracy

Frustrated
by bugs

Trusting
suggestions

Supported
by instructions

Overwhelmed
by complexity

Curious for
examples

Interested
in future use

3/5/2025
17:39:40

Agree Agree Strongly Dis-
agree

Agree Strongly Agree Strongly Dis-
agree

Agree Agree

3/5/2025
17:43:15

Strongly Agree Strongly Agree Strongly Dis-
agree

Strongly AgreeAgree Disagree Strongly Agree Strongly Agree

3/5/2025
17:46:45

Strongly AgreeAgree Disagree Strongly AgreeAgree Disagree Strongly AgreeAgree

3/5/2025
18:33:43

Neutral Strongly AgreeNeutral Disagree Strongly Agree Strongly Dis-
agree

Disagree Disagree

3/5/2025
20:46:49

Neutral Strongly AgreeDisagree Agree Agree Disagree Agree Neutral

40

Table 12: Qualitative Feedback

Timestamp Most frustrating part Most useful aspect UI suggestions Additional comments

3/5/2025
17:39:40

After making one
change, I had to reuse
the command if I
wanted to make an-
other change. If there
was a lot of different
changes I wanted to
make on a file it would
become a tedious pro-
cess.

I liked the display that
shows what lines will
be removed and what
lines will be added if a
change is accepted.

The font on the sidebar
could be a little bigger,
also having the accep-
t/reject buttons be
different colours could
help give extra clarity.

Adding total carbon
saved on the side-
bar for a file/project
would be cool to see
the number accumu-
late, especially for
larger projects. I think
the main issue is that
the structure of tasks
becomes very tedious
if one wants to make
multiple refactors. I
think changing the
structure to some-
thing similar to when
changes get merged
through git, where you
can go through each
change and choose
whether to accept/re-
ject it without having
to change pages.

3/5/2025
17:43:15

Some buttons weren’t
as apparent. I had to
look for what to click
next.

The different types
of code smells being
detected.

Better Human-
Computer interface
please. Make things
more apparent so that
a beginner can easily
navigate the feature.

Nope, thanks!

3/5/2025
17:46:45

Missing when some-
thing was clickable

Showing the optimiza-
tion compared to your
original code with the
option to accept or re-
ject the change

Increased colour/style
to the side bar as I of-
ten ignore that area of
the screen and a icon
to know that some-
thing is not just text

N/A

3/5/2025
18:33:43

Just the amount of
time it took to refactor

Catching/highlighting
code smells in general
(but I would rather fix
it myself, than have
the extension give me a
solution suggestion)

The accept button and
reject button is too
close together (needs a
gap). Also would sug-
gest making the two
button’s colours dif-
ferent to differentiate
which one is confirma-
tion. More details on
how it saved energy.
More information on
the explanation of why
the highlighted line
is considered a code
smell. Shortcut for ac-
cepting/rejecting sug-
gestion? Maybe also
adding accept/reject
button at top right,
where Git’s accept/re-
ject buttons also are
located

N/A (I’ll send it later
if I think of anything)

3/5/2025
20:46:49

It was directly clear
to me the information
in the panel. The in-
formation on the left
panel felt like it was a
bit hidden even though
it was right in front of
me.

I liked seeing the dif-
ferent patterns used
and how it recon-
structed my code to
have better practices.

Colour-coordinated
smells with text (when
hovering) so I know
what each colour
means. As well, a
way to sift through all
smells and click next to
approve or reject each
smell one by one.

I had a great time
using the extension!

41

References

R. Pereira, P. Dixit, M. Rubio-González, and C. Rubio-González. Energy efficiency across programming languages:
How do energy, time, and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, pages 256–267, 2017. doi: 10.1145/3136014.3136031. URL https://doi.org/

10.1145/3136014.3136031.

42

https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031

	Executive Summary
	Overview of Testing
	Key Findings

	Introduction
	Purpose of the Report
	Software Tool Overview
	Testing Objectives

	Methodology
	Participant Demographics
	Selection Criteria
	Participant Profile
	Post-Test Performance

	Testing Environment
	Technical Setup

	Task Instructions
	Mock Installation Documentation
	Tasks
	Testing Scenarios

	Data Collection Methods
	Observation Techniques
	Pre-Test Questionnaire Template
	Post-Test Questionnaire Template

	Findings
	Participant Feedback
	Satisfaction Ratings
	Feature-Specific Comments
	General Impressions

	Usability Issues
	Critical Issues
	Major Issues
	Minor Issues

	Recommendations
	High Priority Fixes
	Medium Priority Improvements
	Long-Term Enhancements
	Design Process Adjustments
	Feedback Not Implemented

	Conclusion
	Summary of Insights
	Changes Implemented

	Appendices
	Test Case Code Samples
	Task 1-5: Single-file Smells
	Task 6: Multi-file Smells
	Task 7: Configuration-dependent Smells

	Usability Test Raw Data
	Participant P1 (ID: 1)
	Participant P2 (ID: 2)
	Participant P3 (ID: 3)
	Participant P4 (ID: 4)
	Participant P5 (ID: 5)
	Common Themes

	Pre-Test Questionnaire Results
	Post-Test Questionnaire Results

