
Verification and Validation Report: Software
Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

March 11, 2025

Revision History

Date Version Notes

March 8th, 2025 0.0 Started VnV Report

i

Symbols, Abbreviations and Acronyms

symbol description

T Test

TC Test Case

VSCode Visual Studio Code

ii

Contents

1 Functional Requirements Evaluation 1
1.1 Code Input Acceptance Tests . 1
1.2 Code Smell Detection and Refactoring Suggestion (RS) Tests 1
1.3 Output Validation Tests . 2
1.4 Tests for Reporting Functionality . 2
1.5 Documentation Availability Tests . 3
1.6 IDE Extension Tests . 3

2 Nonfunctional Requirements Evaluation 4
2.1 Usability . 4
2.2 Performance . 6
2.3 Maintainability and Support . 13
2.4 Look and Feel . 14
2.5 Operational & Environmental . 16
2.6 Security . 16
2.7 Compliance . 16

3 Comparison to Existing Implementation 17

4 Unit Testing 17
4.1 API Endpoints . 17

4.1.1 Smell Detection Endpoint . 17
4.1.2 Refactor Endpoint . 18

4.2 Analyzer Controller Module . 19
4.3 CodeCarbon Measurement . 20
4.4 Smell Analyzers . 22

4.4.1 String Concatenation in Loop . 22
4.4.2 Long Element Chain Detector Module 25
4.4.3 Repeated Calls Detection Module . 27
4.4.4 Long Lambda Element Detection Module 28
4.4.5 Long Message Chain Detector Module 29

4.5 Refactorer Controller Module . 30
4.6 Smell Refactorers . 31

4.6.1 String Concatenation in Loop . 31
4.6.2 Member Ignoring Method . 33
4.6.3 Long Element Chain Refactorer Module 33
4.6.4 Repeated Calls Refactoring Module 34
4.6.5 Use a Generator Refactoring Module 35
4.6.6 Long Lambda Element Refactorer . 37
4.6.7 Long Message Chain Refactorer . 37
4.6.8 Long Parameter List . 39

4.7 VS Code Extension . 40
4.7.1 Detect Smells Command . 40

iii

4.7.2 Refactor Smell Command . 41
4.7.3 File Highlighter . 42
4.7.4 File Hashing . 43
4.7.5 Line Selection Manager Module . 44
4.7.6 Hover Manager Module . 45
4.7.7 Handle Smell Settings Module . 46
4.7.8 Handle Smell Settings Module . 47
4.7.9 Wipe Workspace Cache Command 47
4.7.10 Backend . 49

5 Changes Due to Testing 49
5.1 Usability and User Input Adjustments . 49
5.2 Detection and Refactoring Improvements . 50
5.3 VS Code Extension Enhancements . 50
5.4 Future Revisions and Remaining Work . 50

6 Automated Testing 51

7 Trace to Requirements 51

8 Trace to Modules 51

9 Code Coverage Metrics 51
9.1 VSCode Extension . 52
9.2 Python Backend . 52

List of Tables

1 Participant Feedback and Implementation Decisions 6
2 Smell Detection Endpoint Test Cases . 18
3 Refactor Endpoint Test Cases . 19
4 Analyzer Controller Module Test Cases . 20
5 CodeCarbon Measurement Test Cases . 22
6 String Concatenation in Loop Detection Test Cases 25
7 Long Element Chain Detector Module Test Cases 27
8 Repeated Calls Detection Module Test Cases 28
9 Long Lambda Element Detector Module Test Cases 28
10 Long Message Chain Detector Module Test Cases 30
11 Refactorer Controller Module Test Cases . 31
12 String Concatenation in Loop Refactoring Test Cases 33
13 Member Ignoring Method Refactoring Test Cases 33
14 Long Element Chain Refactorer Test Cases 34
15 Cache Repeated Calls Refactoring Module Test Cases 35
16 Use a Generator Refactoring Module Test Cases 36
17 Long Lambda Element Refactorer Test Cases 37

iv

18 Long Message Chain Refactorer Test Cases 38
19 Long Parameter List Refactoring Test Cases 40
20 Detect Smells Command Test Cases . 41
21 Refactor Smell Command Test Cases . 42
22 File Highlighter Test Cases . 43
23 Hashing Tools Test Cases . 44
24 Line Selection Module Test Cases . 45
25 Hover Manager Module Test Cases . 46
26 VS Code Settings Management Module Test Cases 47
27 Wipe Workspace Cache Command Test Cases 48
28 Backend Test Cases . 49

List of Figures

1 User Satisfaction Survey Data . 5
2 Detection Time vs File Size . 7
3 Refactoring Times by Smell Type (Log Scale) 8
4 Refactoring Times Heatmap . 9
5 Energy Measurement Times Distribution . 10
6 Comparative Refactoring Times per File Size 11
7 Energy vs Refactoring Time Correlation . 12
8 Side-by-Side Code Comparison in VS Code Plugin 14
9 Side-by-Side Refactoring Panel in Light Mode 15
10 Side-by-Side Refactoring Panel in Dark Mode 15
11 Coverage Report of the Python Backend Library 51
12 Coverage Report of the VSCode Extension 52

v

This Verification and Validation (V&V) report outlines the testing process used to ensure
the accuracy, reliability, and performance of our system. It details our verification approach,
test cases, and validation results, demonstrating that the system meets its requirements and
functions as intended. Key findings and resolutions are also discussed.

1 Functional Requirements Evaluation

1.1 Code Input Acceptance Tests

1. test-FR-1A Valid Python File Acceptance

The valid Python file acceptance test ensures that the system correctly processes
a syntactically valid Python file without errors. A correctly formatted Python file was
provided as input, and the expected result was that the system should accept the file
without issue. The actual result confirmed that the system successfully processed
the valid file without generating any errors.

2. test-FR-1A-2 Feedback for Python File with Bad Syntax

This test verifies that the system correctly handles Python files containing deliberate
syntax errors. A Python file with syntax errors was fed into the system, and the
expected result was that the system should reject the file and provide an appropriate
error message indicating the syntax issue. The actual result confirmed that the
system correctly identified the syntax errors and displayed the expected error message.

3. test-FR-1A-3 Feedback for Non-Python File

The non-Python file test ensures that the system correctly rejects unsupported file
types and provides clear feedback. A document file (document.txt) and a script with
an incorrect file extension (script.js) were tested. The expected result was that the
system should reject the files and return an error message indicating that the file format
is not supported. The actual result confirmed that the system correctly flagged the
non-Python files and provided the appropriate error message.

1.2 Code Smell Detection and Refactoring Suggestion (RS) Tests

1. test-FR-2 Code Smell Detection and Refactoring Suggestion

The code smell detection and refactoring tests validate the system’s ability to
identify and refactor specific code smells that impact energy efficiency. These tests
ensure compliance with functional requirement FR2 and were conducted through
unit testing.

The tester provided Python files containing common code smells such as long pa-
rameter lists, repeated function calls, and inefficient string concatenation.
The expected result was that the system would correctly detect these smells and
suggest appropriate refactoring strategies. The actual result confirmed that the sys-

1

tem successfully identified all tested code smells, displayed warnings, and provided
optimization suggestions. More details can be found in the unit tests.

1.3 Output Validation Tests

1. test-FR-OV-1 Verification of Valid Python Output

The output validation test ensures that refactored Python code remains syntac-
tically correct and compliant with Python standards. This validation is crucial for
maintaining functional requirement FR3, as it confirms that the refactored code
behaves identically to the original but with improved efficiency.

A Python file with detected code smells was refactored, and the expected result was
that the optimized code should pass a syntax check and retain its original functionality.
The actual result confirmed that the refactored code was valid, passed linting checks,
and maintained correctness.

1.4 Tests for Reporting Functionality

The reporting functionality of the tool is a critical feature that provides comprehensive
insights into the refactoring process, including detected code smells, applied refactorings,
energy consumption measurements, and test results. These tests ensure that the reporting
feature operates correctly and delivers accurate, well-structured information as specified in
functional requirement FR9.

At this stage, the reporting functionality is still under development, and testing has not
yet been conducted. The tests outlined below will be performed in Revision 1 once the
reporting feature is fully implemented.

1. test-FR-RP-1 A Report With All Components Is Generated

This test ensures that the tool generates a comprehensive report that includes all neces-
sary information required by FR9. The system should produce a structured summary
of the refactoring process, displaying detected code smells, applied refactorings, and
energy consumption metrics.

Planned Test Execution: After refactoring, the tool will invoke the report genera-
tion feature, and a user will validate that the output meets the structure and content
specifications.

2. test-FR-RP-2 Validation of Code Smell and Refactoring Data in Report

This test will verify that the report correctly includes details on detected code smells
and refactorings, ensuring compliance with FR9.

Planned Test Execution: The tool will generate a report, and its contents will be
compared with the detected code smells and refactorings to confirm accuracy.

3. test-FR-RP-3 Energy Consumption Metrics Included in Report

2

This test will validate that the reporting feature correctly includes energy consumption
measurements before and after refactoring, aligning with FR9.

Planned Test Execution: A user will analyze the energy consumption metrics in
the generated report to ensure they accurately reflect the measurements taken during
the refactoring process.

4. test-FR-RP-4 Functionality Test Results Included in Report

This test will ensure that the reporting functionality accurately reflects the results of
the test suite, summarizing test pass/fail outcomes after refactoring.

Planned Test Execution: The tool will generate a report, and validation will be
conducted to confirm that it includes a summary of test results matching the actual
execution outcomes.

1.5 Documentation Availability Tests

The following tests will ensure that the necessary documentation is available as per FR10.
Since documentation is still under development, these tests have not yet been conducted and
will be included in Revision 1.

1. test-FR-DA-1 Test for Documentation Availability

This test verifies that the system provides proper documentation covering installation,
usage, and troubleshooting.

Planned Test Execution: Review the documentation for completeness, clarity, and
accuracy, ensuring it meets FR10.

1.6 IDE Extension Tests

The following tests ensure that users can integrate the tool as a VS Code extension in compli-
ance with FR11. Local testing has been conducted successfully, confirming the extension’s
ability to function within the development environment. Once all features are implemented,
the extension will be packaged and tested in a deployed environment.

1. test-FR-IE-1 Installation of Extension in Visual Studio Code

This test ensures that the refactoring tool extension can be installed from the Visual
Studio Marketplace.

Test Execution: The extension was installed locally, and its presence in the Exten-
sions View was confirmed.

Future Testing: Once all features are implemented, the extension will be zipped,
packaged, and tested as a published extension.

2. test-FR-IE-2 Running the Extension in Visual Studio Code

This test validates that the extension functions correctly within the development en-
vironment, detecting code smells and suggesting refactorings.

3

Test Execution: Local tests confirmed that activating the extension successfully
detects code smells and applies refactorings.

Future Testing: Once the extension is packaged, additional tests will be conducted
to confirm functionality in a deployed environment.

2 Nonfunctional Requirements Evaluation

2.1 Usability

Key Findings

� The extension demonstrated strong functionality in detecting code smells and providing
refactoring suggestions.

� Participants appreciated the preview feature and energy savings feedback.

� Major usability issues included sidebar visibility, refactoring speed, and UI clar-
ity.

Methodology

The usability test involved 5 student developers familiar with VSCode but with no prior
experience using the extension. Participants performed tasks such as detecting code smells,
refactoring single and multi-file smells, and customizing settings. Metrics included task
completion rate, error rate, and user satisfaction scores. Additional qualitative data was
collected using surveys that gathered background information of the participants as well as
their opinions post testing (9.2).

Results

The following is an overview of the most significant task that the test participants performed.
Information on the tasks themselves can be found in the Appendix (9.2).

Quantitative Results

� Task Completion Rate:

– Task 1-3 (Smell Detection): 100% success rate.

– Task 4 (Initiate Refactoring): 100% success rate.

– Task 6 (Multi-File Refactoring): 60% success rate (participants struggled
with identifying clickable file names).

– Task 7 (Smell Settings): 100% success rate.

� User Satisfaction:

4

– Confidence in Using the Tool: 4.2/5.

– Satisfaction with UI Design: 4.0/5.

– Trust in Refactoring Suggestions: 4.5/5.

Figure 1: User Satisfaction Survey Data

Qualitative Results

Participants found the code smell detection intuitive and accurate, and they appreciated the
preview feature and Accept/Reject buttons. However, they struggled with sidebar visibility,
refactoring speed, and UI clarity. Hover descriptions were overwhelming, and some elements
(e.g., “(6/3)”) were unclear.

Discussion

The usability test revealed that the extension performs well in detecting code smells and
providing refactoring suggestions. Participants appreciated the energy savings feedback but
requested clearer explanations of how refactoring improves energy efficiency. The sidebar
and refactoring process were identified as major pain points, requiring immediate attention.

The extension met its core functionality objectives but fell short in UI clarity and per-
formance reliability. Participants expressed interest in using the extension in the future,
provided the identified issues are addressed. The test highlighted the need for better on-
boarding, clearer documentation, and performance optimizations to enhance user satisfaction
and adoption.

Feedback and Implementation Plan

The following table summarizes participant feedback and whether the suggested changes will
be implemented:

5

Feedback Implementation
Decision

Reason

Relocate the sidebar or change
its colour for better visibility.

Partial The relocation of the
sidebar is not something
that is in scope during the
development period.

Make Accept/Reject buttons
more prominent and visually
distinct.

Yes High user frustration.

Allow users to customize colours
for different types of smells.

Yes Enhances user experience.

Optimize the refactoring process
to reduce wait times.

No This is a time intensive ask
that is not in scope.

Add progress bars or loading
messages to manage user
expectations.

Yes Additional messages will be
added to the UI.

Provide step-by-step instructions
and a tutorial for new users.

Yes This was already planned
and will be implemented
for revision 1.

Simplify hover descriptions and
provide examples or links to
documentation.

Yes The hover content will be
improved for revision 1.

Explain how refactoring saves
energy, possibly with
visualizations.

Partial No visualizations will be
added, but better
explanation of smells will
be provided.

Table 1: Participant Feedback and Implementation Decisions

2.2 Performance

This testing benchmarks the performance of ecooptimizer across files of varying sizes (250,
1000, and 3000 lines). The data includes detection times, refactoring times for specific smells,
and energy measurement times. The goal is to identify scalability patterns, performance bot-
tlenecks, and opportunities for optimization.

Related Performance Requirement: PR-1

The test cases for this module can be found here

This script benchmarks the following components:

1. Detection/Analyzer Runtime (via AnalyzerController.run analysis)

6

https://github.com/ssm-lab/capstone--source-code-optimizer/blob/new-poc/tests/benchmarking/benchmark.py

2. Refactoring Runtime (via RefactorerController.run refactorer)

3. Energy Measurement Time (via CodeCarbonEnergyMeter.measure energy)

For each detected smell (grouped by smell type), refactoring is run 10 times to compute
average times.

The following is for your reference:

Type of Smell Code Smell Name

Pylint R0913 Long Parameter List

Pylint R6301 No Self Use

Pylint R1729 Use a Generator

Custom LMC001 Long Message Chain

Custom UVA001 Unused Variable or Attribute

Custom LEC001 Long Element Chain

Custom LLE001 Long Lambda Expression

Custom SCL001 String Concatenation in Loop

Custom CRC001 Cache Repeated Calls

1. Detection Time vs File Size

Figure 2: Detection Time vs File Size

7

What: Linear plot showing code smell detection time growth with file size

Why: Understand scalability of detection mechanism

The detection time grows non-linearly with file size, suggesting a potential O(n2) com-
plexity. For a 250-line file, detection takes 0.38 seconds, while a 1000-line file takes 0.90
seconds (a 2.4Ö increase). At 3000 lines, the detection time jumps to 2.58 seconds (a 2.9Ö
increase from 1000 lines). This indicates that the detection algorithm scales poorly for larger
files, which could become problematic for very large codebases. However, the absolute times
remain reasonable, with detection completing in under 3 seconds even for 3000-line files
making this not a current critical bottleneck.

2. Refactoring Times by Smell Type (Log Scale)

Figure 3: Refactoring Times by Smell Type (Log Scale)

What: Logarithmic plot of refactoring times per smell across file sizes

Why: Identify most expensive refactorings and scalability patterns

The logarithmic plot reveals a clear hierarchy of refactoring costs. The most expensive
smells are R6301 and R0913, which take 6.13 seconds and 5.65 seconds, respectively, for a
3000-line file. These smells show exponential growth, with R6301 increasing by 14.6Ö from
250 to 3000 lines. In contrast, low-cost smells like LLE001 and LMC001 remain consistently
fast (0.03 seconds) across all file sizes. This suggests that optimizing R6301 and R0913 should
be a priority, as they dominate the refactoring time for larger files.

8

3. Refactoring Times Heatmap

Figure 4: Refactoring Times Heatmap

What: Color-coded matrix of refactoring times by smell/file size

Why: Quick visual identification of hot spots

The heatmap provides a quick visual summary of refactoring times across smells and file
sizes. The darkest cells correspond to R6301 and R0913 at 3000 lines, confirming their status
as the most expensive operations. In contrast, LLE001 and LMC001 remain light-colored
across all sizes, indicating consistently low costs. The heatmap also highlights the dramatic
variation in refactoring times: at 3000 lines, the fastest smell (LLE001) is 200Ö faster than
the slowest (R6301).

9

4. Energy Measurement Times Distribution

Figure 5: Energy Measurement Times Distribution

What: Box plot of energy measurement durations

Why: Verify measurement consistency across operations

Energy measurement times are remarkably consistent, ranging from 5.54 to 6.14 seconds
across all operations and file sizes. The box plot shows no significant variation with file size,
suggesting that energy measurement is operation-specific rather than dependent on the size
of the file. This stability could indicate that the energy measurement process has a fixed
overhead, which could simplify efforts in the future if we were to create our own energy
measurement module.

10

5. Comparative Refactoring Times per File Size

Figure 6: Comparative Refactoring Times per File Size

What: Side-by-side bar charts per file size

Why: Direct comparison of refactoring costs at different scales

The side-by-side bar charts reveal consistent dominance patterns across file sizes. R6301
and R0913 are always the top two most expensive smells, while LLE001 and LMC001 remain
the cheapest. Notably, the relative cost difference between the most and least expensive
smells increases with file size: at 250 lines, the ratio is 100:1, but at 3000 lines, it grows
to 200:1. This suggests that the scalability of refactoring operations varies significantly by
smell type.

11

6. Energy vs Refactoring Time Correlation

Figure 7: Energy vs Refactoring Time Correlation

What: Scatter plot comparing refactoring and energy measurement times

Why: Identify potential relationships between effort and energy impact

The scatter plot shows no clear correlation between refactoring time and energy mea-
surement time. Fast refactorings like LLE001 and slow refactorings like R6301 both result
in energy measurement times clustered between 5.5 and 6.1 seconds. This makes perfect
sense as the refactoring operations and energy measurement are disjoint functionalities in
the code.

Key Insights and Recommendations

� Bottleneck Identification: The smells R6301 and R0913 are the primary bottlenecks,
consuming over 50% of the total refactoring time for 3000-line files. Optimizing these
operations should be a top priority.

� Scalability Concerns: Both detection and refactoring times scale poorly with file
size, suggesting O(n2) complexity. This could become problematic for very large code-
bases.

12

� Low-Hanging Fruit: Smells like LLE001 and LMC001 are consistently fast to refactor,
making them ideal candidates for early refactoring efforts.

� Energy Measurement Stability: Energy measurement times seem consistent across
operations and file sizes, indicating a fixed overhead. This simplifies efforts to correlate
refactoring with energy savings.

� Disproportionate Costs: The cost difference between the most and least expensive
smells grows with file size, highlighting the need for targeted optimization.

The analysis reveals significant scalability challenges for both detection and refactoring,
particularly for smells like R6301 and R0913. While energy measurement times are sta-
ble, their lack of correlation with refactoring time suggests that additional metrics may be
needed to accurately assess energy savings. Future work should focus on optimizing high-cost
operations and improving the scalability of the detection algorithm.

2.3 Maintainability and Support

1. test-MS-1: Extensibility for New Code Smells and Refactorings

To validate the extensibility of our tool, we structured the codebase using a modular
design, where new code smell detection and refactoring functions can be easily added
as separate components. In simpler terms, each refactoring and each custom detection
is placed in its own file. A code walkthrough confirmed that existing modules remain
unaffected when adding new detection logic. We successfully integrated a sample code
smell and its corresponding refactoring method with minimal changes, ensuring that
the new function was accessible through the main interface. This demonstrated that
our architecture supports future expansions without disrupting core functionality.

2. test-MS-2: Maintainable and Adaptable Codebase

We conducted a static analysis and documentation walkthrough to assess the main-
tainability of our codebase. The code was reviewed for modular organization, clear
separation of concerns, and adherence to coding standards. All modules were correctly
seperated and organzied. Documentation will be updated to include detailed descrip-
tions of functions and configuration files, ensuring clarity for future developers. Code
comments were refined to enhance readability, and function naming conventions were
standardized for consistency. These efforts ensured that the tool remains adaptable to
new Python versions and evolving best practices.

3. test-MS-3: Easy rollback of updates in case of errors

Once releases are made, each release will be properly tagged and versioned to ensure
smooth rollbacks through version control. This will all be handled with Git. done, but
this approach guarantees that users will be able to revert to a previous stable version
if needed, maintaining system integrity and minimizing disruptions.

13

2.4 Look and Feel

1. test-LF-1 Side-by-Side Code Comparison in IDE Plugin

The side-by-side code comparison feature in the IDE plugin was tested manually to
verify that users can clearly view the original and refactored code within the VS Code
interface. The test followed the procedure outlined in Test-LF-1, which specifies that
upon initiating a refactoring operation, the plugin should display the original and
modified versions of the code in parallel, allowing users to compare changes effectively.

The tester performed the test dynamically by opening a sample code file within the
plugin and applying various refactoring operations across all detected code smells. The
expected result was that the IDE plugin would correctly display the two versions side
by side, with clear options for users to accept or reject each change. The actual result
confirmed that the functionality operates as expected: refactored code was displayed
adjacent to the original code, ensuring an intuitive comparison process. The tester
was also able to interact with the accept/reject buttons, verifying their usability and
correctness.

A screenshot of the successful test execution is provided in Figure 8, illustrating the
side-by-side code comparison functionality within the IDE plugin.

Figure 8: Side-by-Side Code Comparison in VS Code Plugin

2. test-LF-2 Theme Adaptation in VS Code

The theme adaptation feature in the IDE plugin was tested manually to confirm that
the plugin correctly adjusts to VS Code’s light and dark themes without requiring
manual configuration. The tester performed the test by opening the plugin in both
themes and switching between them using VS Code’s settings.

The expected result was that the plugin’s interface should automatically adjust when
the theme is changed. The actual result confirmed that the plugin seamlessly transi-
tioned between light and dark themes while maintaining a consistent interface. The

14

images in Figures 9 and 10 illustrate the side-by-side refactoring panel in both light
mode and dark mode.

Figure 9: Side-by-Side Refactoring Panel in Light Mode

Figure 10: Side-by-Side Refactoring Panel in Dark Mode

3. test-LF-3 Design Acceptance

The design acceptance test was conducted as part of the usability testing session,
where developers and testers interacted with the plugin and provided feedback. This
test evaluated user experience, ease of navigation, and overall satisfaction with the
plugin’s interface.

The expected result was that users would be able to interact with the plugin smoothly
and provide structured feedback. The actual result confirmed that users were able to
navigate and use the plugin effectively. The feedback collected during this session was

15

used to assess the overall usability of the plugin. More details regarding this evaluation
can be found in the Usability Testing section.

2.5 Operational & Environmental

test-OPE-1 will be tested once the extension is officially launched.

test-OPE-2 tests a feature that is yet to be implemented.

test-OPE-3 will be tested once the python package is published.

2.6 Security

test-SRT-1: Audit Logs for Refactoring Processes

We conducted a combination of code walkthroughs and static analysis of logging mecha-
nisms to validate that the tool maintains a secure log of all refactoring processes, including
pattern analysis, energy analysis, and report generation. The objective was to do so while
covering the logging mechanisms for refactoring events, ensuring that logs are complete and
immutable.

The development team reviewed the codebase to confirm that each refactoring event (pattern
analysis, energy analysis, report generation) is logged with accurate timestamps and event
description. Missing log entries and/or insufficient details were identified and added to the
logging process.

Through this process, all major refactoring processes were correctly logged with accurate
timestamps. Logs are stored locally on the user’s device, ensuring that unauthorized modi-
fications are prevented by restricting external access.

The team was able to confirm that the tool maintains a secure logging system for refactoring
processes, with logs being tamper-resistant due to their local storage on user devices.

2.7 Compliance

1. test-CPL-1: Compliance with PIPEDA and CASL

This process was applied to all processes related to data handling and user commu-
nication within the local API framework with the objective of assesing whether the
tool’s data handling and communication mechanisms align with PIPEDA and CASL
requirements, ensuring that no personal information is stored, all processing is local,
and communication practices meet regulatory standards.
Through code review, the team confirmed that all data processing remains local and
does not involve external storage. During this time, internal API functionality was
also reviewed to ensure that user interactions are transient and not logged externally.

16

By going through the different workflows, the team verified that no personal data col-
lection occurs, eliminating the need for explicit consent mechanisms.
As a result of this process, it was concluded that the tool does not store any user
data. The tool also does not send unsolicited communications, aligning with CASL
requirements.

2. test-CPL-2: Compliance with ISO 9001 and SSADM Standards

This process evaluated development workflows, documentation practices, and adher-
ence to structured methodologies with the object of assessing whether the tool’s quality
management and software development processes align with ISO 9001 standards for
quality management and SSADM for structured software development.
Through an unbiased approach, the team verified the presence of structured documen-
tation, feedback mechanisms, and version tracking. It was also confirmed that a com-
bination of unit testing, informal testing and iteration processes were applied during
development. After code review, adherence to structured programming and modular
design principles was also confirmed. Our goal was to take a third perspective check
on whether these set of practices were applied to our development workflows. Develop-
ment follows reasonable structured processes and also includes formal documentation
of testing and quality assurance procedures. Version control system is present including
change tracking and basic project management.

3 Comparison to Existing Implementation

Not applicable.

4 Unit Testing

The following section outlines the unit tests created for the python backend modules and
the vscode extension.

4.1 API Endpoints

4.1.1 Smell Detection Endpoint

ID Ref.
Req.

Action Expected Result Actual Result Result

TC1 FR10,
OER-
IAS1

User requests to detect
smells in a valid file.

Status code is 200.
Response contains 2
smells.

All assertions
pass.

Pass

Continued on next page

17

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC2 FR10,
OER-
IAS1

User requests to detect
smells in a non-existent
file.

Status code is 404.
Error message
indicates file not
found.

All assertions
pass.

Pass

TC3 FR10,
OER-
IAS1

Internal server error
occurs during smell
detection.

Status code is 500.
Error message
indicates internal
server error.

All assertions
pass.

Pass

Table 2: Smell Detection Endpoint Test Cases

4.1.2 Refactor Endpoint

ID Ref.
Req.

Action Expected Result Actual Result Result

TC4 FR10,
OER-
IAS1

User requests to refactor
a valid source directory.

Status code is 200.
Response contains
refactored data and
updated smells.

All assertions
pass.

Pass

TC5 FR10,
OER-
IAS1

User requests to refactor
a non-existent source
directory.

Status code is 404.
Error message
indicates directory
not found.

All assertions
pass.

Pass

TC6 FR10,
OER-
IAS1

Energy is not saved after
refactoring.

Status code is 400.
Error message
indicates energy was
not saved.

All assertions
pass.

Pass

TC7 FR10,
OER-
IAS1

Initial energy
measurement fails.

Status code is 400.
Error message
indicates initial
emissions could not
be retrieved.

All assertions
pass.

Pass

Continued on next page

18

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC8 FR10,
OER-
IAS1

Final energy
measurement fails.

Status code is 400.
Error message
indicates final
emissions could not
be retrieved.

All assertions
pass.

Pass

TC9 FR10,
OER-
IAS1

Unexpected error occurs
during refactoring.

Status code is 400.
Error message
contains the
exception details.

All assertions
pass.

Pass

Table 3: Refactor Endpoint Test Cases

4.2 Analyzer Controller Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC10 FR2,
FR5,
PR-
PAR3

Test detection of
repeated function calls
in AST-based analysis.

One repeated
function call should
be detected.

All assertions
pass.

Pass

TC11 FR2,
FR5,
PR-
PAR3

Test detection of
repeated method calls
on the same object
instance.

One repeated method
call should be
detected.

All assertions
pass.

Pass

TC12 FR2 Test that no code smells
are detected in a clean
file.

The system should
return an empty list
of smells.

All assertions
pass.

Pass

TC13 FR2,
PR-
PAR2

Test filtering of smells
by analysis method.

The function should
return only smells
matching the
specified method
(AST, Pylint,
Astroid).

All assertions
pass.

Pass

Continued on next page

19

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC14 FR2,
PR-
PAR2

Test generating custom
analysis options for
AST-based analysis.

The generated
options should
include callable
detection functions.

All assertions
pass.

Pass

TC15 FR2,
FR5,
PR-
PAR3

Test correct logging of
detected code smells.

Detected smells
should be logged with
correct details.

All assertions
pass.

Pass

TC16 FR2,
FR5

Test handling of an
empty registry when
filtering smells.

The function should
return an empty
dictionary.

All assertions
pass.

Pass

TC17 FR2,
PR-
PAR2

Test that smells remain
unchanged if no
modifications occur.

The function should
not modify existing
smells if no changes
are detected.

All assertions
pass.

Pass

Table 4: Analyzer Controller Module Test Cases

4.3 CodeCarbon Measurement

20

ID Ref.
Req.

Action Expected Result Actual Result Result

TC18 PR-
RFT1,
FR6

Trigger CodeCarbon
measurements with a
valid file path.

CodeCarbon
subprocess for the file
should be invoked at
least once.
EmissionsTracker.

start and stop API
endpoints should be
called. Success
message
“CodeCarbon
measurement
completed
successfully.” should
be logged.

All assertions
pass.

Pass

TC19 PR-
RFT1

Trigger CodeCarbon
function with a valid file
path that causes a
subprocess failure.

CodeCarbon
subprocess run should
still be invoked.
EmissionsTracker.

start and stop API
endpoints should be
called. An error
message “Error
executing file” should
be logged. Returned
emissions data should
be None since the
execution failed.

All assertions
pass.

Pass

TC20 FR5,
PR-
SCR1

Results produced by
CodeCarbon run are at
a valid CSV file path
and can be read.

Emissions data should
be read successfully
from the CSV file.
The function should
return the last row of
emissions data.

All assertions
pass.

Pass

Continued on next page

21

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC21 PR-
RFT1,
FR6

Results produced by
CodeCarbon run are at
a valid CSV file path but
the file cannot be read.

An error message
“Error reading file”
should be logged.
The function should
return None because
the file reading failed.

All assertions
pass.

Pass

TC22 PR-
RFT1,
FR5

Given CSV Path for
results produced by
CodeCarbon does not
have a file.

An error message
“File file path does
not exist.” should be
logged.The function
should return None

since the file does not
exist.

All assertions
pass.

Pass

Table 5: CodeCarbon Measurement Test Cases

4.4 Smell Analyzers

4.4.1 String Concatenation in Loop

ID Ref.
Req.

Action Expected Result Actual Result Result

TC23 FR2 Detects += string
concatenation inside a
for loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC24 FR2 Detects <var = var +

...> string
concatenation inside a
loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC25 FR2 Detects += string
concatenation inside a
while loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

Continued on next page

22

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC26 FR2 Detects += modifying a
list item inside a loop.

One smell detected
with target
self.text[0] and
line 6.

All assertions
pass.

Pass

TC27 FR2 Detects += modifying an
object attribute inside a
loop.

One smell detected
with target
self.text and line 6.

All assertions
pass.

Pass

TC28 FR2 Detects += modifying a
dictionary value inside a
loop.

One smell detected
with target
data[’key’] and line
4.

All assertions
pass.

Pass

TC29 FR2 Detects multiple
separate string
concatenations in a loop.

Two smells detected
with targets result
and logs[0] on line
5.

All assertions
pass.

Pass

TC30 FR2 Detects string
concatenations with
re-assignments inside
the loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC31 FR2 Detects concatenation
inside nested loops.

One smell detected
with target result
and line 5.

All assertions
pass.

Pass

TC32 FR2 Detects multi-level
concatenations
belonging to the same
smell.

One smell detected
with target result
and two occurrences
on lines 4 and 5.

All assertions
pass.

Pass

TC33 FR2 Detects += inside an
if-else condition
within a loop.

One smell detected
with target result
and two occurrences
on line 4.

All assertions
pass.

Pass

TC34 FR2 Detects += using
f-strings inside a loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

Continued on next page

23

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC35 FR2 Detects += using %

formatting inside a loop.
One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC36 FR2 Detects += using
.format() inside a loop.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC37 FR2 Ensures accessing the
concatenation variable
inside the loop is NOT
flagged.

No smells detected. All assertions
pass.

Pass

TC38 FR2 Ensures regular string
assignments are NOT
flagged.

No smells detected. All assertions
pass.

Pass

TC39 FR2 Ensures number
operations with += are
NOT flagged.

No smells detected. All assertions
pass.

Pass

TC40 FR2 Ensures string
concatenation
OUTSIDE a loop is
NOT flagged.

No smells detected. All assertions
pass.

Pass

TC41 FR2 Detects a variable
concatenated multiple
times in the same loop
iteration.

One smell detected
with target result
and two occurrences
on line 4.

All assertions
pass.

Pass

TC42 FR2 Detects concatenation
where both prefix and
suffix are added.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC43 FR2 Detects += where new
values are inserted at
the beginning instead of
the end.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

Continued on next page

24

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC44 FR2 Ignores potential smells
where type cannot be
confirmed as a string.

No smells detected. All assertions
pass.

Pass

TC45 FR2 Detects string
concatenation where
type is inferred from
function type hints.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC46 FR2 Detects string
concatenation where
type is inferred from
variable type hints.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

TC47 FR2 Detects string
concatenation where
type is inferred from
class attributes.

One smell detected
with target result
and line 9.

All assertions
pass.

Pass

TC48 FR2 Detects string
concatenation where
type is inferred from the
initial value assigned.

One smell detected
with target result
and line 4.

All assertions
pass.

Pass

Table 6: String Concatenation in Loop Detection Test Cases

4.4.2 Long Element Chain Detector Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC49 FR2 Test with code that has
no chains.

No chains should be
detected.

All assertions
pass.

Pass

TC50 FR2 Test with chains shorter
than threshold.

No chains should be
detected for threshold
of 5.

All assertions
pass.

Pass

TC51 FR2 Test with chains exactly
at threshold.

One chain should be
detected at line 3.

All assertions
pass.

Pass

Continued on next page

25

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC52 FR2 Test with chains longer
than threshold.

One chain should be
detected with
message “Dictionary
chain too long (4/3)”.

All assertions
pass.

Pass

TC53 FR2 Test with multiple
chains in the same file.

Two chains should be
detected at different
lines.

All assertions
pass.

Pass

TC54 FR2 Test chains inside nested
functions and classes.

Two chains should be
detected, one inside a
function, one inside a
class.

All assertions
pass.

Pass

TC55 FR2 Test that chains on the
same line are reported
only once.

One chain should be
detected at line 4.

All assertions
pass.

Pass

TC56 FR2 Test chains with
different variable types.

Two chains should be
detected, one in a list
and one in a tuple.

All assertions
pass.

Pass

TC57 FR2 Test with a custom
threshold value.

No chains detected
with threshold 4. One
chain detected with
threshold 2.

All assertions
pass.

Pass

TC58 FR2 Test the structure of the
returned LECSmell
object.

Object should have
correct type, path,
module, symbol, and
occurrence details.

All assertions
pass.

Pass

TC59 FR2 Test chains within
complex expressions.

Three chains should
be detected in
different contexts.

All assertions
pass.

Pass

TC60 FR2 Test with an empty file. No chains should be
detected.

All assertions
pass.

Pass

26

TC61 FR2 Test with threshold of 1
(every subscript
reported).

One chain should be
detected with
message “Dictionary
chain too long (5/5)”.

All assertions
pass.

Pass

Table 7: Long Element Chain Detector Module Test Cases

4.4.3 Repeated Calls Detection Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC62 FR2,
PR-
PAR2

Test detection of
repeated function calls
within the same scope.

One repeated call
detected with two
occurrences.

All assertions
pass.

Pass

TC63 FR2,
PR-
PAR2

Test detection of
repeated method calls
on the same object
instance.

One repeated method
call detected with two
occurrences.

All assertions
pass.

Pass

TC64 FR2 Test that function calls
with different arguments
are not flagged.

No repeated calls
should be detected.

All assertions
pass.

Pass

TC65 FR2 Test that function calls
on modified objects are
not flagged.

No repeated calls
should be detected
due to object state
change.

All assertions
pass.

Pass

TC66 FR2,
PR-
PAR3

Test detection of
repeated external
function calls.

One repeated
function call detected
with two occurrences.

All assertions
pass.

Pass

TC67 FR2,
PR-
PAR3

Test detection of
repeated calls to
expensive built-in
functions.

One repeated
function call detected
with two occurrences.

All assertions
pass.

Pass

TC68 FR2,
PR-
PAR3

Test that built-in
functions with primitive
arguments are not
flagged.

No repeated calls
should be detected.

All assertions
pass.

Pass

Continued on next page

27

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC69 FR2 Test that method calls
on different object
instances are not
flagged.

No repeated calls
should be detected.

All assertions
pass.

Pass

Table 8: Repeated Calls Detection Module Test Cases

4.4.4 Long Lambda Element Detection Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC70 FR2 Test code with no
lambdas.

No smells should be
detected.

All assertions
pass.

Pass

TC71 FR2 Test short single lambda
(under thresholds).

No smells should be
detected.

All assertions
pass.

Pass

TC72 FR2 Test lambda exceeding
expression count
threshold.

One smell should be
detected.

All assertions
pass.

Pass

TC73 FR2 Test lambda exceeding
character length
threshold (100).

One smell should be
detected.

All assertions
pass.

Pass

TC74 FR2 Test lambda exceeding
both expression and
length thresholds.

At least one smell
should be detected.

All assertions
pass.

Pass

TC75 FR2 Test nested lambdas. Two smells should be
detected.

All assertions
pass.

Pass

TC76 FR2 Test inline lambdas
passed to functions.

Two smells should be
detected.

All assertions
pass.

Pass

TC77 FR2 Test trivial lambda with
no body.

No smells should be
detected.

All assertions
pass.

Pass

Table 9: Long Lambda Element Detector Module Test Cases

28

4.4.5 Long Message Chain Detector Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC78 FR2 Test chain with exactly
five method calls.

One smell should be
detected.

All assertions
pass.

Pass

TC79 FR2 Test chain with six
method calls.

One smell should be
detected.

All assertions
pass.

Pass

TC80 FR2 Test chain with four
method calls.

No smells should be
detected.

All assertions
pass.

Pass

TC81 FR2 Test chain with both
attribute and method
calls.

One smell should be
detected.

All assertions
pass.

Pass

TC82 FR2 Test chain inside a loop. One smell should be
detected.

All assertions
pass.

Pass

TC83 FR2 Test multiple chains on
the same line.

One smell should be
detected.

All assertions
pass.

Pass

TC84 FR2 Test separate statements
with fewer calls.

No smells should be
detected.

All assertions
pass.

Pass

TC85 FR2 Test short chain in a
comprehension.

No smells should be
detected.

All assertions
pass.

Pass

TC86 FR2 Test long chain in a
comprehension.

One smell should be
detected.

All assertions
pass.

Pass

TC87 FR2 Test five separate long
chains in one function.

Five smells should be
detected.

All assertions
pass.

Pass

TC88 FR2 Test chain with
attribute and index
lookups (no calls).

No smells should be
detected.

All assertions
pass.

Pass

TC89 FR2 Test chain with slicing. One smell should be
detected.

All assertions
pass.

Pass

TC90 FR2 Test multiline chain. One smell should be
detected.

All assertions
pass.

Pass

TC91 FR2 Test chain inside a
lambda.

One smell should be
detected.

All assertions
pass.

Pass

Continued on next page

29

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC92 FR2 Test chain with mixed
return types.

One smell should be
detected.

All assertions
pass.

Pass

TC93 FR2 Test multiple short
chains on the same line.

No smells should be
detected.

All assertions
pass.

Pass

TC94 FR2 Test chain inside a
conditional (ternary).

No smells should be
detected.

All assertions
pass.

Pass

Table 10: Long Message Chain Detector Module Test Cases

4.5 Refactorer Controller Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC95 FR5 User requests to refactor
a smell.

Correct smell is
identified. Logger logs
“Running refactoring
for long-element-chain
using
TestRefactorer.”
Correct refactorer is
called once with
correct argu-
ments. Output path is
test path.LEC001 1.py.

All assertions
pass.

Pass

TC96 UHR-
UPLD1

System handles missing
refactorer.

Raises
NotImplementedError

with message “No
refactorer
implemented for
smell:
long-element-chain.”
Logger logs error.

All assertions
pass.

Pass

Continued on next page

30

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC97 FR5 Multiple refactorer calls
are handled correctly.

Correct smell counter
incremented.
Refactorer is called
twice. First output:
test path.LEC001 1.py.
Second output:
test path.LEC001 2.py.

All assertions
pass.

Pass

TC98 FR5 Refactorer runs with
overwrite set to False.

Refactorer is called
once. Overwrite
argument is set to
False.

All assertions
pass.

Pass

TC99 PR-
RFT 1,
FR5

System handles empty
modified files correctly.

Modified files list
remains empty ([] in
output).

All assertions
pass.

Pass

Table 11: Refactorer Controller Module Test Cases

4.6 Smell Refactorers

4.6.1 String Concatenation in Loop

ID Ref.
Req.

Action Expected Result Actual Result Result

TC100 FR3,
FR6

Refactors empty initial
concatenation variable
(e.g., result = "").

Code is refactored to
use a list and join().

All assertions
pass.

Pass

TC101 FR3,
FR6

Refactors non-empty
initial concatenation
variable not referenced
before the loop.

Code is refactored to
use a list and join().

All assertions
pass.

Pass

TC102 FR3,
FR6

Refactors non-empty
initial concatenation
variable referenced
before the loop.

Code is refactored to
use a list and join().

All assertions
pass.

Pass

Continued on next page

31

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC103 FR3,
FR6

Refactors concatenation
where the target is not a
simple variable (e.g.,
result["key"]).

Code is refactored to
use a temporary list
and join().

All assertions
pass.

Pass

TC104 FR3,
FR6

Refactors concatenation
where the variable is not
initialized in the same
scope.

Code is refactored to
use a list and join().

All assertions
pass.

Pass

TC105 FR3,
FR6

Refactors prefix
concatenation (e.g.,
result = str(i)+

result).

Code uses
insert(0, ...) for
prefix concatenation.

All assertions
pass.

Pass

TC106 FR3,
FR6

Refactors concatenation
with both prefix and
suffix.

Code uses both
insert(0, ...) and
append(...).

All assertions
pass.

Pass

TC107 FR3,
FR6

Refactors multiple
concatenations in the
same loop.

Code uses
append(...) and
insert(0, ...) as
needed.

All assertions
pass.

Pass

TC108 FR3,
FR6

Refactors nested
concatenation in loops.

Code uses
append(...) and
insert(0, ...) for
nested loops.

All assertions
pass.

Pass

TC109 FR3,
FR6

Refactors multiple
occurrences of
concatenation at
different loop levels.

Code uses
append(...) for all
occurrences.

All assertions
pass.

Pass

TC110 FR3,
FR6

Handles reassignment of
the concatenation
variable inside the loop.

Code resets the list to
the new value.

All assertions
pass.

Pass

TC111 FR3,
FR6

Handles reassignment of
the concatenation
variable to an empty
value.

Code clears the list
using clear().

All assertions
pass.

Pass

Continued on next page

32

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC112 FR3,
FR6

Ensures unrelated code
and comments are
preserved during
refactoring.

Unrelated lines and
comments remain
unchanged.

All assertions
pass.

Pass

Table 12: String Concatenation in Loop Refactoring Test Cases

4.6.2 Member Ignoring Method

ID Ref.
Req.

Action Expected Result Actual Result Result

TC113 FR3,
FR6

Refactors a basic
member-ignoring
method.

Adds @staticmethod,
removes self, and
updates calls.

All assertions
pass.

Pass

TC114 FR3,
FR6

Refactors a
member-ignoring
method with
inheritance.

Updates calls from
subclass instances.

All assertions
pass.

Pass

TC115 FR3,
FR6

Refactors a
member-ignoring
method with subclass in
a separate file.

Updates calls from
subclass instances in
external files.

All assertions
pass.

Pass

TC116 FR3,
FR6

Refactors a
member-ignoring
method with subclass
method override.

Does not update calls
to overridden
methods.

All assertions
pass.

Pass

TC117 FR3,
FR6

Refactors a
member-ignoring
method with type hints.

Updates calls using
type hints to infer
instance type.

All assertions
pass.

Pass

Table 13: Member Ignoring Method Refactoring Test Cases

4.6.3 Long Element Chain Refactorer Module

33

ID Ref.
Req.

Action Expected Result Actual Result Result

TC118 PR-
PAR3,
FR6,
FR3

Test the long element
chain refactorer on basic
nested dictionary access

Dictionary should be
flattened, and access
updated

Refactoring
applied
successfully,
dictionary
access updated

Pass

TC119 PR-
PAR3,
FR6,
FR3

Test the long element
chain refactorer across
multiple files

Dictionary access
across multiple files
should be updated

Refactoring
applied
successfully
across multiple
files

TBD

TC120 PR-
PAR3,
FR6,
FR3

Test the refactorer on
dictionary access via
class attributes

Class attributes
should be flattened
and access updated

Refactoring
applied
successfully on
class attribute
accesses. All
accesses
changed
correctly.

Pass

TC121 PR-
PAR3,
FR6,
FR3

Ensure the refactorer
skips shallow dictionary
access

Refactoring should be
skipped for shallow
access

Refactoring
correctly
skipped for
shallow access

Pass

TC122 PR-
PAR3,
FR6,
FR3

Test the refactorer on
dictionary access with
mixed depths

Flatten the dictionary
up to the minimum
access depth

All dictionary
access chains
flattened to
minimum access
depth and
dictionary
flattened
successfully.

Pass

Table 14: Long Element Chain Refactorer Test Cases

4.6.4 Repeated Calls Refactoring Module

34

ID Ref.
Req.

Action Expected Result Actual Result Result

TC123 FR3,
FR5,
PR-
PAR3

Test that repeated
function calls are cached
properly.

The function calls
should be replaced
with a cached
variable.

All assertions
pass.

Pass

TC124 FR3,
FR5,
PR-
PAR3

Test that repeated
method calls on the
same object are cached.

Method calls should
be replaced with a
cached result stored
in a variable.

All assertions
pass.

Pass

TC125 FR3,
FR5,
PR-
PAR2

Test that repeated
method calls on different
object instances are not
cached.

Calls on different
object instances
should remain
unchanged.

All assertions
pass.

Pass

TC126 FR3,
FR5

Test that caching is
applied even with
multiple identical
function calls.

The repeated function
calls should be
replaced with a
cached variable.

All assertions
pass.

Pass

TC127 FR3,
FR5

Test caching when
refactoring function calls
that appear in a
docstring.

Function calls inside
the docstring should
not be modified.

All assertions
pass.

Pass

TC128 FR3,
FR5,
PR-
PAR3

Test caching of method
calls inside a class with
an unchanged instance
state.

Repeated method
calls should be cached
correctly.

All assertions
pass.

Pass

TC129 FR3,
FR5

Test that functions with
varying arguments are
not cached.

Calls with different
arguments should
remain unchanged.

All assertions
pass.

Pass

TC130 FR3,
FR5,
PR-
PAR2

Test that caching does
not interfere with scope
and closures.

The cached value
should remain valid
within the correct
scope.

All assertions
pass.

Pass

Table 15: Cache Repeated Calls Refactoring Module Test Cases

4.6.5 Use a Generator Refactoring Module

35

ID Ref.
Req.

Action Expected Result Actual Result Result

TC131 FR3,
FR5,
PR-
PAR3

Test refactoring of list
comprehensions in ‘all()‘
calls.

The list
comprehension should
be converted into a
generator expression.

All assertions
pass.

Pass

TC132 FR3,
FR5,
PR-
PAR3

Test refactoring of list
comprehensions in
‘any()‘ calls.

The list
comprehension should
be converted into a
generator expression.

All assertions
pass.

Pass

TC133 FR3,
FR5,
PR-
PAR3

Test refactoring of
multi-line list
comprehensions.

The multi-line
comprehension should
be refactored
correctly while
preserving
indentation.

All assertions
pass.

Pass

TC134 FR3,
FR5,
PR-
PAR3

Test refactoring of
complex conditions
within ‘any()‘ and ‘all()‘.

The refactored
generator expression
should maintain
logical correctness.

All assertions
pass.

Pass

TC135 FR3,
FR5

Test that improperly
formatted list
comprehensions are
handled correctly.

No unintended
modifications should
be applied to
non-standard formats.

All assertions
pass.

Pass

TC136 FR3,
FR5

Test that readability is
preserved in refactored
code.

The refactored code
should be clear,
well-formatted, and
maintain original
intent.

All assertions
pass.

Pass

TC137 FR3,
FR5

Test that list
comprehensions outside
of ‘all()‘ and ‘any()‘
remain unchanged.

The refactorer should
not modify list
comprehensions used
in other contexts.

All assertions
pass.

Pass

TC138 FR3,
FR5

Test refactoring when
‘all()‘ or ‘any()‘ calls are
nested.

The refactored code
should handle nested
expressions correctly.

All assertions
pass.

Pass

Table 16: Use a Generator Refactoring Module Test Cases

36

4.6.6 Long Lambda Element Refactorer

ID Ref.
Req.

Action Expected Result Actual Result Result

TC139 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a basic
single-line lambda.

Lambda is converted
to a named function.

All assertions
pass.

Pass

TC140 FR1,
FR2,
FR3,
FR5,
FR6

Ensure no print
statements are added
unnecessarily.

Refactored code
contains no print
statements.

All assertions
pass.

Pass

TC141 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a lambda
passed as an argument
to another function.

Lambda is converted
to a named function
and used correctly.

All assertions
pass.

Pass

TC142 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a lambda with
multiple parameters.

Lambda is converted
to a named function
with multiple
parameters.

All assertions
pass.

Pass

TC143 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a lambda used
with keyword
arguments.

Lambda is converted
to a named function
and used correctly
with keyword
arguments.

All assertions
pass.

Pass

TC144 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a very long
lambda spanning
multiple lines.

Lambda is converted
to a named function
preserving the logic.

All assertions
pass.

Pass

Table 17: Long Lambda Element Refactorer Test Cases

4.6.7 Long Message Chain Refactorer

37

ID Ref.
Req.

Action Expected Result Actual Result Result

TC145 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a basic method
chain.

Method chain is split
into intermediate
variables.

All assertions
pass.

Pass

TC146 FR1,
FR2,
FR3,
FR5,
FR6

Refactor a long message
chain with an f-string.

F-string chain is split
into intermediate
variables.

All assertions
pass.

Pass

TC147 FR1,
FR2,
FR3,
FR5,
FR6

Ensure modifications
occur even if the method
chain isn’t long.

Short method chain is
split into intermediate
variables.

All assertions
pass.

Pass

TC148 FR1,
FR2,
FR3,
FR5,
FR6

Ensure indentation is
preserved after
refactoring.

Refactored code
maintains proper
indentation.

All assertions
pass.

Pass

TC149 FR1,
FR2,
FR3,
FR5,
FR6

Refactor method chains
containing method
arguments.

Method chain with
arguments is split
into intermediate
variables.

All assertions
pass.

Pass

TC150 FR1,
FR2,
FR3,
FR5,
FR6

Refactor print
statements with method
chains.

Print statement with
method chain is split
into intermediate
variables.

All assertions
pass.

Pass

TC151 FR1,
FR2,
FR3,
FR5,
FR6

Refactor nested method
chains.

Nested method chain
is split into
intermediate
variables.

All assertions
pass.

Pass

Table 18: Long Message Chain Refactorer Test Cases

38

4.6.8 Long Parameter List

ID Ref.
Req.

Action Expected Result Actual Result Result

TC152 FR3,
FR6

Refactors a constructor
definition with 8
parameters, and class
initialization with
positional arguments.

Declares grouping
classes. Updates
constructor call with
grouped
instantiations. Also
updates function
signature and body to
reflect new
parameters.

All assertions
pass.

Pass

TC153 FR3,
FR6

Refactors a constructor
definition with 8
parameters with one
unused in body, as well
as class initialization
with positional
arguments.

Declares grouping
classes. Updates
constructor call with
grouped
instantiations. Also
updates function
signature and body to
reflect new used
parameters.

All assertions
pass.

Pass

TC154 FR3,
FR6

Refactors an instance
method with 8
parameters (two default
values) and the call
made to it (1 positional
argument).

Declares grouping
classes with default
values preserved.
Updates method call
with grouped
instantiations. Also
updates method
signature and body to
reflect new
parameters.

All assertions
pass.

Pass

Continued on next page

39

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC155 FR3,
FR6

Refactors a static
method with 8
parameters (1 with
default value, 4 unused
in body) and the call
made to it (2 positional
arguments)

Declares grouping
classes with default
values preserved.
Updates method call
with grouped
instantiations. Also
updates method
signature and body to
reflect new used
parameters.

All assertions
pass.

Pass

TC156 FR3,
FR6

Refactors a standalone
function with 8
parameters (1 with
default value that is also
unused in body) and the
call made to it (1
positional arguments)

Declares grouping
classes. Updates
method call with
grouped
instantiations. Also
updates method
signature and body to
reflect new used
parameters.

All assertions
pass.

Pass

Table 19: Long Parameter List Refactoring Test Cases

4.7 VS Code Extension

4.7.1 Detect Smells Command

ID Ref.
Req.

Action Expected Result Actual Result Result

TC157 FR10,
OER-
IAS1

No active editor is
found.

Shows error message:
“Eco: No active
editor found.”

All assertions
pass.

Pass

TC158 FR10,
OER-
IAS1

Active editor has no
valid file path.

Shows error message:
“Eco: Active editor
has no valid file
path.”

All assertions
pass.

Pass

Continued on next page

40

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC159 FR10,
OER-
IAS1

No smells are enabled. Shows warning
message: “Eco: No
smells are enabled!
Detection skipped.”

All assertions
pass.

Pass

TC160 FR10,
OER-
IAS1

Uses cached smells when
hash is unchanged and
same smells are enabled.

Shows info message:
“Eco: Using cached
smells for fake.path”

All assertions
pass.

Pass

TC161 FR10,
OER-
IAS1

Fetches new smells when
enabled smells change.

Calls wipeWorkCache,
updateHash, and
fetchSmells.
Updates workspace
data.

All assertions
pass.

Pass

TC162 FR10,
OER-
IAS1

Fetches new smells when
hash changes but
enabled smells remain
the same.

Calls updateHash and
fetchSmells.
Updates workspace
data.

All assertions
pass.

Pass

TC163 FR10,
OER-
IAS1

No cached smells and
server is down.

Shows warning
message: “Action
blocked: Server is
down and no cached
smells exist for this
file version.”

All assertions
pass.

Pass

TC164 FR10,
OER-
IAS1

Highlights smells when
smells are found.

Shows info messages
and calls
highlightSmells.

All assertions
pass.

Pass

Table 20: Detect Smells Command Test Cases

4.7.2 Refactor Smell Command

41

ID Ref.
Req.

Action Expected Result Actual Result Result

TC165 PR-
RFT1

No active editor is
found.

Shows error message
“Eco: Unable to
proceed as no active
editor or file path
found.”

All assertions
pass.

Pass

TC166 PR-
RFT1,
FR6

Attempting to refactor
when no smells are
detected in the file

Shows error message
“Eco: No smells
detected in the file for
refactoring.”

All assertions
pass.

Pass

TC167 FR6 Attempting to refactor
when selected line
doesn’t match any smell

Shows error message
“Eco: No matching
smell found for
refactoring.”

All assertions
pass.

Pass

TC168 FR5,
FR6,
FR10

Refactoring a smell
when found on the
selected line

Saves the current file.
Calls refactorSmell
method with correct
parameters. Shows
message “Refactoring
report available in
sidebar”. Executes
command to focus
refactor sidebar.
Opens and shows the
refactored preview.
Highlights updated
smells. Updates the
UI with new smells

All assertions
pass.

Pass

TC169 PR-
RFT2

Handling API failure
during refactoring

Shows error message
“Eco: Refactoring
failed. See console for
details.”

All assertions
pass.

Pass

Table 21: Refactor Smell Command Test Cases

4.7.3 File Highlighter

42

ID Ref.
Req.

Action Expected Result Actual Result Result

TC170 FR10,
OER-
IAS1,
LFR-
AP2

Creates decorations for a
given color.

Decoration is created
using vscode.window

.createTextEditor

DecorationType.

All assertions
pass.

Pass

TC171 FR10,
OER-
IAS1,
LFR-
AP2

Highlights smells in the
active text editor.

Decorations are set
using
setDecorations.

All assertions
pass.

Pass

TC172 FR10,
OER-
IAS1,
LFR-
AP2

Does not reset highlight
decorations on first
initialization.

Decorations are not
disposed of on the
first call.

All assertions
pass.

Pass

TC173 FR10,
OER-
IAS1,
LFR-
AP2

Resets highlight
decorations on
subsequent calls.

Decorations are
disposed of on
subsequent calls.

All assertions
pass.

Pass

Table 22: File Highlighter Test Cases

4.7.4 File Hashing

ID Ref.
Req.

Action Expected Result Actual Result Result

TC174 FR10,
OER-
IAS1

Document hash has not
changed.

Does not update
workspace storage.

All assertions
pass.

Pass

TC175 FR10,
OER-
IAS1

Document hash has
changed.

Updates workspace
storage.

All assertions
pass.

Pass

43

TC176 FR10,
OER-
IAS1

No hash exists for the
document.

Updates workspace
storage.

All assertions
pass.

Pass

Table 23: Hashing Tools Test Cases

4.7.5 Line Selection Manager Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC177 UHR-
EOU1

Call the
‘removeLastComment‘
method after adding a
comment.

The decoration is
removed and no
comment remains on
the line.

The decoration
is removed, and
no comment
appears on the
selected line.

Pass

TC178 UHR-
EOU1

Call ‘commentLine‘
method with null editor.

The method does not
throw an error.

The method
does not throw
an error.

Pass

TC179 UHR-
EOU1

Call ‘commentLine‘ on a
file with no detected
smells.

No comment is added
to the line.

No decoration is
added, and the
line remains
unchanged.

Pass

TC180 UHR-
EOU1

Call ‘commentLine‘ on a
file where the document
hash does not match.

The method does not
add a comment
because the document
has changed.

No decoration is
added due to
the document
hash mismatch.

Pass

TC181 UHR-
EOU1

Call ‘commentLine‘ with
a multi-line selection.

The method returns
early without adding
a comment.

No comment is
added to any
lines in the
selection.

Pass

TC182 UHR-
EOU1

Call ‘commentLine‘ on a
line with no detected
smells.

No comment is added
for the line.

No decoration is
added, and the
line remains
unchanged.

Pass

TC183 UHR-
EOU1

Call ‘commentLine‘ on a
line with a single
detected smell.

The comment shows
the first smell symbol
without a count.

Comment shows
the first smell
symbol: ‘Smell:
PERF-001‘.

Pass

Continued on next page

44

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC184 UHR-
EOU1

Call ‘commentLine‘ on a
line with a detected
smell.

A comment is added
on the selected line in
the editor showing
the detected smell.

Comment added
with the correct
smell symbol
and count.

Pass

TC185 UHR-
EOU1

Call ‘commentLine‘ on a
line with multiple
detected smells.

The comment shows
the first smell
followed by the count
of additional smells.

Comment shows
‘Smell:
PERF-001 —
(+1)‘.

Pass

Table 24: Line Selection Module Test Cases

4.7.6 Hover Manager Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC186 LFR-
AP2

Register hover provider
for Python files.

Hover provider
registered for Python
files.

Hover provider
is registered for
Python files.

Pass

TC187 LFR-
AP2

Subscribe hover
provider.

Hover provider
subscription
registered.

Hover provider
subscription
registered.

Pass

TC188 LFR-
AP2

Return hover content
with no smells.

Returns null for hover
content.

Hover content =
null.

Pass

TC189 LFR-
AP2,
FR2

Update smells with new
data.

Smells updated
correctly with new
data.

Smells are
updated
correctly with
new smells data.

Pass

TC190 LFR-
AP2,
FR2

Update smells correctly. Smells updated with
new content.

Current smells
content updated
to new smells
content
provided.

Pass

Continued on next page

45

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC191 LFR-
AP2

Generate valid hover
content.

Generates hover
content with correct
smell information.

Correct and
valid hover
content
generated for
given smell.

Pass

TC192 LFR-
AP2

Register refactor
commands.

Both commands
registered correctly
on initialization

Refactor
commands
registered
correctly.

Pass

Table 25: Hover Manager Module Test Cases

4.7.7 Handle Smell Settings Module

ID Ref.
Req.

Action Expected Result Actual Result Result

TC193 FR10,
UHR-
PSI1

Test retrieval of enabled
smells from settings.

Function should
return the current
enabled smells.

All assertions
pass.

Pass

TC194 FR10,
UHR-
PSI1

Test retrieval of enabled
smells when no settings
exist.

Function should
return an empty
object.

All assertions
pass.

Pass

TC195 FR10,
UHR-
PSI1,
UHR-
EOU2

Test enabling a smell
and verifying
notification.

Notification should be
displayed and cache
wiped.

All assertions
pass.

Pass

TC196 FR10,
UHR-
PSI1,
UHR-
EOU2

Test disabling a smell
and verifying
notification.

Notification should be
displayed and cache
wiped.

All assertions
pass.

Pass

Continued on next page

46

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC197 FR10,
UHR-
PSI1,
UHR-
EOU2

Test that cache is not
wiped if no changes
occur.

No notification or
cache wipe should
happen.

All assertions
pass.

Pass

TC198 FR10,
UHR-
PSI1

Test formatting of
kebab-case smell names.

Smell names should
be correctly converted
to readable format.

All assertions
pass.

Pass

TC199 FR10,
UHR-
PSI1

Test formatting with an
empty string input.

Function should
return an empty
string without errors.

All assertions
pass.

Pass

Table 26: VS Code Settings Management Module Test Cases

4.7.8 Handle Smell Settings Module

4.7.9 Wipe Workspace Cache Command

ID Ref.
Req.

Action Expected Result Actual Result Result

TC200 FR5,
FR8

Trigger the cache wipe
with no reason provided.

The smells cache
should be cleared and
reset to an empty
state. A success
message indicating
that the workspace
cache was successfully
wiped should be
displayed.

All assertions
pass.

Pass

Continued on next page

47

(Continued from previous page)

ID Ref.
Req.

Action Expected Result Actual Result Result

TC201 FR5,
FR8

Trigger the cache wipe
with the reason
“manual”.

Both the smells cache
and file changes cache
should be cleared and
reset to empty states.
A success message
indicating that the
workspace cache was
manually wiped by
the user should be
displayed.

All assertions
pass.

Pass

TC202 FR5,
FR8

Trigger the cache wipe
when there are no open
files.

A log message
indicating that there
are no open files to
update should be
generated.

All assertions
pass.

Pass

TC203 FR5,
FR8

Trigger the cache wipe
when there are open
files.

A message indicating
the number of visible
files should be logged,
and the hashes for
each open file should
be updated.

All assertions
pass.

Pass

TC204 FR5,
FR8

Trigger the cache wipe
with the reason
“settings”.

Only the smells cache
should be cleared. A
success message
indicating that the
cache was wiped due
to smell detection
settings changes
should be displayed.

All assertions
pass.

Pass

TC205 FR3,
FR5,
FR8

Trigger the cache wipe
when an error occurs.

An error message
should be logged, and
an error message
indicating failure to
wipe the workspace
cache should be
displayed to the user.

All assertions
pass.

Pass

Table 27: Wipe Workspace Cache Command Test Cases

48

4.7.10 Backend

ID Ref.
Req.

Action Expected Result Actual Result Result

TC206 PR-
SCR1,
PR-
RFT1

Trigger request to check
server status when
server responds with a
successful status.

The set status
method should be
called with the
ServerStatusType.UP

status

All assertions
pass.

Pass

TC207 PR-
SCR1,
PR-
RFT2

Trigger request to check
server status when
server responds with an
error status or fails to
respond.

The set status
method should be
called with the
ServerStatusType.DOWN

status

All assertions
pass.

Pass

TC208 FR-6,
PR-
RFT1

Trigger intialize logs call
with a valid directory
path, and backend
responds with success.

The function should
return true

indicating successful
log initialization.

All assertions
pass.

Pass

TC209 PR-
SCR1,
PR-
RFT2

Trigger intialize logs call
with a valid directory
path, and backend
responds with a failure.

TThe function should
return false

indicating failure to
initialize logs.

All assertions
pass.

Pass

Table 28: Backend Test Cases

5 Changes Due to Testing

During the testing phase, several changes were made to the tool based on feedback from user
testing, supervisor reviews, and edge cases encountered during unit and integration testing.
These changes were necessary to improve the tool’s usability, functionality, and robustness.

5.1 Usability and User Input Adjustments

One of the key findings from testing was the balance between automating refactorings and
allowing user control over changes. Initially, the tool required users to manually approve
every refactoring, which slowed down the workflow. However, after usability testing, it
became evident that an option to refactor all occurrences of the same smell type
would significantly improve efficiency. This led to the introduction of a ”Refactor Smell of
Same Type” feature in the VS Code extension, allowing users to apply the same refactoring
across multiple instances of a detected smell simultaneously. Additionally, we refined the

49

Accept/Reject UI elements to make them more intuitive and streamlined the workflow
for batch refactoring actions.

5.2 Detection and Refactoring Improvements

Heavy modifications were made to the detection and refactoring modules, particularly
in handling multi-file projects. Initially, the detectors and refactorers assumed a single-
file scope, leading to missed optimizations when function calls or variable dependencies
spanned across multiple files. After extensive testing, the detection system was updated
to track cross-file dependencies, ensuring that refactoring suggestions accounted for the
broader codebase.

5.3 VS Code Extension Enhancements

Through usability testing, it became apparent that integrating the tool as a VS Code
extension was a significant improvement over a standalone CLI tool. This led to the
following enhancements:

� Enhanced Hover Tooltips – Descriptions for detected code smells were rewritten to
be clearer and more informative.

� Smell Filtering Options – Users can now enable or disable specific code smell de-
tections directly from the VS Code settings menu.

5.4 Future Revisions and Remaining Work

Certain features, including report generation and full documentation availability,
have yet to be fully implemented. These components will be finalized in Revision 1, where
testing will ensure that:

� The reporting system correctly logs detected smells, applied refactorings,
and energy savings.

� The documentation includes detailed installation, usage, and troubleshoot-
ing guides.

Additionally, once all features are complete, theVS Code extension will be packaged
and tested as a full release to ensure seamless installation via the VS Code Marketplace.

Overall, the testing phase played a crucial role in refining the tool’s functionality, optimiz-
ing performance, and improving usability. The feedback gathered led to meaningful changes
that enhance both the developer experience and the effectiveness of automated refactoring.

50

6 Automated Testing

All test for the Python backend as well as the individual modules on the TypeScript side (for
the VSCode extension) are automated. The Python tests are run using Pytest by simply
typing pytest in the command line in the root project directory. All the Typescript tests
can be run similarly, though they run with Jest and through the command npm run test.
The results for both are printed to the console.

7 Trace to Requirements

8 Trace to Modules

9 Code Coverage Metrics

The following analyzes the code coverage metrics for the Python backend and frontend
(TypeScript) of the VSCode extension. The analysis is based on the coverage data provided
in Figure 11 (Python backend) and Figure 12 (frontend). Code coverage is a measure of how
well the codebase is tested, and it helps identify areas that may require additional testing.

Figure 11: Coverage Report of the Python Backend Library

51

Figure 12: Coverage Report of the VSCode Extension

9.1 VSCode Extension

The frontend codebase has an overall coverage of 45.43% for statements, 36.48% for branches,
42.62% for functions, and 45.53% for lines (Figure 12). These metrics fall below the global
coverage thresholds of 80% for the following reasons. The file extension.ts, which con-
tains the core logic for the VSCode extension, has 0% coverage as it is mainly made up of
initialization commands with no real logic that can be tested. The file refactorView.ts,
responsible for the refactoring view, also has 0% coverage. This module is a UI component
and will be tested for revision 1. Since handleEditorChange.ts is closely related to the UI
component, its testing has also been put off.

The file refactorSmell.ts has moderate coverage (55.37% statements, 45.23% branches),
with significant gaps in testing around lines 143–269 and 328–337 (Figure 12). This is due to
a feature that is not fully implemented and therefore not tested. Finally, configManager.ts
has not been tested as yet due to evolving configuration options, but will be tested for
revision 1.

9.2 Python Backend

The backend codebase has an overall coverage of 91% (Figure 11) and has been thoroughly
tested as it contains the key features of project and the bulk of the logic. The exception is
show logs.py, which handles the websocket endpoint for logging, due to the complex nature
of this module testing has been omitted. Since its function is mainly to broadcast logs it is
also relatively simple to verify its functionality manually

52

Appendix A – Usability Testing Data

Protocol

Purpose

The purpose of this usability test is to evaluate the ease of use, efficiency, and overall user
experience of the VSCode extension for refactoring Python code to improve energy efficiency.
The test will identify usability issues that may hinder adoption by software developers.

Objective

Evaluate the usability of the extension’s smell detection, refactoring process, cus-
tomization settings, and refactoring view.

� Assess how easily developers can navigate the extension interface.

� Measure the efficiency of the workflow when applying or rejecting refactorings.

� Identify areas of confusion or frustration.

Methodology

Test Type

Moderated usability testing.

Participants

� Target Users: Python developers who use VSCode.

� Number of Participants: 5–7.

� Recruitment Criteria:

– Experience with Python development.

– Familiarity with VSCode.

– No prior experience with this extension.

Testing Environment

� Hardware: Provided computer.

� Software:

– VSCode (latest stable release).

53

– The VSCode extension installed.

– Screen recording software (optional, for post-test analysis).

– A sample project with predefined code snippets containing various code
smells.

� Network Requirements: Stable internet connection for remote testing.

Test Moderator Role

� Introduce the test and explain objectives.

� Observe user interactions without providing assistance unless necessary.

� Take notes on usability issues, pain points, and confusion.

� Ask follow-up questions after each task.

� Encourage participants to think aloud.

Data Collection

Metrics

� Task Success Rate: Percentage of users who complete tasks without assistance.

� Error Rate: Number of errors or missteps per task.

� User Satisfaction: Post-test rating on a scale of 1–5.

Qualitative Data

� Observations of confusion, hesitation, or frustration.

� Participant comments and feedback.

� Follow-up questions about expectations vs. actual experience.

� Pre-test survey.

� Post-test survey.

54

Analysis and Reporting

� Identify common pain points and recurring issues.

� Categorize usability issues by severity:

– Critical: Blocks users from completing tasks.

– Major: Causes significant frustration but has workarounds.

– Minor: Slight inconvenience, but doesn’t impact core functionality.

� Provide recommendations for UI/UX improvements.

� Summarize key findings and next steps.

Next Steps

� Fix major usability issues before release.

� Conduct follow-up usability tests if significant changes are made.

� Gather further feedback from real users post-release.

Task List

Mock Installation Documentation

The extension can be installed to detect energy inefficiencies (smells) in your code and
refactor them.

Commands

Open the VSCode command palette (CTRL+SHIFT+P):

� Detect Smells: Eco: Detect Smells

� Refactor Smells: Eco: Refactor Smell or CTRL+SHIFT+R (or to be discovered).

Tasks

Report your observations aloud!

Task 1: Smell Detection

1. Open the sample.py file.

2. Detect the smells in the file.

3. What do you see?

55

Task 2: Line Selection

1. In the same sample.py file, select one of the highlighted lines.

2. What do you see?

3. Select another line.

Task 3: Hover

1. In the same file, hover over a highlighted line.

2. What do you see?

Task 4: Initiate Refactoring (Single)

1. In the same file, refactor any smell of your choice.

2. What do you observe immediately after?

3. Does a sidebar pop up after some time?

Task 5: Refactor Smell (Sidebar)

1. What information do you see in the sidebar?

2. Do you understand the information communicated?

3. Do you see what was changed in the file?

4. Try rejecting a smell. Did the file change?

5. Repeat Tasks 1, 4, and 5, but reject a smell. Did the file stay the same?

Task 6: Refactor Multi-File Smell

1. Open the main.py file.

2. Detect the smells in the file.

3. Refactor any smell of your choice.

4. Do you see anything different in the sidebar?

5. Try clicking on the new addition to the sidebar. Notice anything?

6. Try accepting the refactoring. Did both files change?

56

Task 7: Change Smell Settings

1. Open the sample.py file.

2. Detect the smells in the file.

3. Take note of the smells detected.

4. Open the settings page (CTRL+,).

5. Navigate to the Extensions drop-down and select Eco Optimizer.

6. Unselect one of the smells you noticed earlier.

7. Navigate back to the sample.py file.

8. Detect the smells again. Is the smell you unselected still there?

Participant Data

The following links point to the data collected from each participant:

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

Pre-Test Survey Data

The following link points to a CSV file containing the pre-survey data:

Click here to access the survey results CSV file.

Post-Test Survey Data

The following link points to a CSV file containing the post-survey data:

Click here to access the survey results CSV file.

57

Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate
attribute of Reflection.

The purpose of reflection questions is to give you a chance to assess your own learning
and that of your group as a whole, and to find ways to improve in the future. Reflection
is an important part of the learning process. Reflection is also an essential component of a
successful software development process.

Reflections are most interesting and useful when they’re honest, even if the stories they
tell are imperfect. You will be marked based on your depth of thought and analysis, and not
based on the content of the reflections themselves. Thus, for full marks we encourage you
to answer openly and honestly and to avoid simply writing “what you think the evaluator
wants to hear.”

Please answer the following questions. Some questions can be answered on the team
level, but where appropriate, each team member should write their own response:

1. What went well while writing this deliverable?

2. What pain points did you experience during this deliverable, and how did you resolve
them?

3. Which parts of this document stemmed from speaking to your client(s) or a proxy (e.g.
your peers)? Which ones were not, and why?

4. In what ways was the Verification and Validation (VnV) Plan different from the ac-
tivities that were actually conducted for VnV? If there were differences, what changes
required the modification in the plan? Why did these changes occur? Would you be
able to anticipate these changes in future projects? If there weren’t any differences,
how was your team able to clearly predict a feasible amount of effort and the right tasks
needed to build the evidence that demonstrates the required quality? (It is expected
that most teams will have had to deviate from their original VnV Plan.)

Mya Hussain

� What went well while writing this deliverable?

One of the most rewarding parts of completing this report was writing and compiling
the benchmarking and performance analysis. Seeing the data come to life through
plots and visualizations was very satisfying as we could see the underlying patterns we
knew existed in our code in a visual format. It also outted everyones performance on
their corresponding refactorers which was cool. Overall, the whole process of turning
raw data into meaningful insights was really fulfilling. It felt like I was uncovering
useful information that could really help improve the tool, which made the effort feel
worthwhile

58

� What pain points did you experience during this deliverable, and how did you resolve
them?

The biggest pain point for me was definitely the sheer amount of unit testing that had
to be done before even starting the report. Writing all those tests and making sure
everything worked as expected was a lot of legwork, it felt like I was stuck in an endless
loop of running tests, fixing bugs, and then running more tests. It was necessary but
not the most exciting part of the process. The tricky part was making sure the report
actually reflected all that effort. As we spent hours testing, and finding bugs, and fixing
them, so the tool is a lot better, but logging all of those fixes without 1. sounding like
the tool was broken to start and 2. overselling all the trivial tests we felt like we had
to do to achive coverage, was a challenge.

Sevhena Walker

� What went well while writing this deliverable?

A big win was how much of our work naturally fed into the report. Since we had already
been refining our verification and validation (V&V) process throughout development,
we weren’t starting from scratch, we just had to document what we had done. Having
clear test cases in place made it easier to describe our approach and results, rather
than writing purely in the abstract. Another positive was that our understanding of
the system had improved significantly by this point, so explaining our reasoning behind
certain tests felt more natural.

� What pain points did you experience during this deliverable, and how did you resolve
them?

One challenge was finalizing our tests while also writing about them. Since we were still
adjusting some test cases, we had to ensure that any changes were reflected correctly
in the report, which meant some back-and-forth edits. Another issue was balancing
detail; some sections needed more explanation than expected, while others felt overly
technical. We resolved this by reviewing each section with fresh eyes and making sure
we explained things clearly without unnecessary complexity. Time was also a factor,
as wrapping up both testing and documentation at the same time was a bit hectic.
We managed by setting smaller milestones to keep things on track and making sure to
check in regularly to avoid last-minute rushes.

Ayushi Amin

� What went well while writing this deliverable?

One of the best parts of working on this deliverable was how well my team collaborated.
We had a clear understanding of what needed to be covered, which made it easier to

59

organize our thoughts and avoid unnecessary back-and-forth. Writing about our unit
tests was also pretty smooth since we had already put a lot of effort into designing
them in the vnv-plan. It was satisfying to document the thought process behind
them, especially since they played a big role in making sure the tool was accurate and
functioned correctly. Another thing I really enjoyed was usability testing. It was fun
to see how others interacted with our tool and to get real feedback on what worked and
what did not. Seeing users struggle with certain parts that we thought were intuitive
was interesting to find out, but it also made the process more rewarding because we
could make meaningful improvements.

� What pain points did you experience during this deliverable, and how did you resolve
them?

One pain point I experienced was structering the unit tests report and tracing back to
the VnV plan tests. This is because The samples we had were really all over the place
and not consistent at all. It was difficult to know what information was required for
certian portions when most of the samples did not cover some portions. Also tracing
back to VnV Plan tests, I realized that that some tests were not feasible and it would
make no sense to do them for this project. Not entirely sure what we were thinking
when we wrote them. So we decided to modify our VnV plan to be more realistic with
the time frame we have and since a lot was changed in the scope of this project, we
removed certain tests to better suit our current project.

Nivetha Kuruparan

� What went well while writing this deliverable?

One of the things that went well while working on this deliverable was our ability to
catch a significant number of bugs and edge cases during testing. Through extensive
unit and integration testing, we identified multiple issues related to multi-file refactor-
ing, detection accuracy, and performance optimization. This allowed us to refine our
detection and refactoring mechanisms, making them more reliable and robust.

� What pain points did you experience during this deliverable, and how did you resolve
them?

One of the biggest challenges we faced was the overwhelming number of tests outlined
in the original V&V Plan. While comprehensive, implementing every test and writing
detailed reports for each became highly time-consuming and impractical. As a re-
sult, we had to carefully trim down and consolidate tests to focus on the most critical
functionalities while still maintaining full coverage of our system requirements. This
process involved combining similar tests and prioritizing cases that had the most sig-
nificant impact on correctness, usability, and performance. While this required careful
review and restructuring, it ultimately streamlined the validation process and improved
efficiency in writing the report.

60

Tanveer

� What went well while writing this deliverable?

The fun part was validating different requirements that we had defined in the VnV
Plan against our tool. I saw that some of them were too ambitious versus others could
have more points added for the verification. Overall, it was fun mapping non functional
requirements against the features of the tool. At the end of it, I was able to deduce
which NFR maps to a certain feature of the tool.

� What pain points did you experience during this deliverable, and how did you resolve
them?

Writing unit tests turned out to be harder than actual implementation because (1)
not only did I come across bugs when testing but also (2) mocking dependencies such
as vscode.workspace for our plugin was definitely a learning curve. It is important
to mentiont that I don’t believe that the course and capstone would have been the
same as testing, the team was testing left and right to get the maximum coverage.
To resolve the learning curve I referred to multiple tutorials online and eventually the
process became getting rid of the syntax errors or bugs in the unit test implementation
so that the tests could pass.

Group

� Which parts of this document stemmed from speaking to your client(s) or a proxy (e.g.
your peers)? Which ones were not, and why?

Parts of this document stemmed from speaking to users who acted as proxies for clients.
Specifically:

– Usability Testing Findings: The document details usability testing conducted
with student developers, who served as proxies for real-world users. Their feedback
on sidebar visibility, refactoring speed, UI clarity, and energy savings feedback
directly influenced the report.

– Methodology and Results: The task completion rates, user satisfaction scores,
and qualitative insights were derived from these interactions, making them user-
driven.

– Non-functional Requirements: This is based on client as some requirements
like look and feel is evaluated by client and usability testers since they will be the
ones using the application.

Parts of the document that did not stem from client or proxy interactions include:

– Functional Requirements Evaluations: These sections reference predefined
specifications/industry standards rather than direct client input.

61

– Implementation and Technical Explanations: These were formulated based
on the development team’s decisions, software documentation, and prior knowl-
edge rather than external feedback.

� In what ways was the Verification and Validation (VnV) Plan different from the ac-
tivities that were actually conducted for VnV? If there were differences, what changes
required the modification in the plan? Why did these changes occur? Would you be able
to anticipate these changes in future projects? If there weren’t any differences, how was
your team able to clearly predict a feasible amount of effort and the right tasks needed
to build the evidence that demonstrates the required quality? (It is expected that most
teams will have had to deviate from their original VnV Plan.)

There were definitely some differences between what we assumed would happen during
the VnV Plan and the results we actually got during testing. For example, the plan
initially assumed that energy measurement times would vary significantly with file size,
but the testing revealed that they were actually decently consistent. This meant we had
to adjust our focus in the report to highlight the fixed overhead of energy measurement
rather than exploring variability.

For the most part, though, all of the unit testing we planned in the VnV Plan was writ-
ten out per spec, and the code was fixed until all of them passed. This rigorous testing
process actually caught a lot of bugs and edge cases that we hadn’t fully anticipated
in the plan. For instance, some refactoring operations worked fine on smaller files but
broke on larger ones. Testing also revealed edge cases, like how the tool handled files
with multiline whitespace, nested structures, degenerate/trivial input (e.g.,
empty files or files with a single line), and wrong input (e.g., malformed code or
unsupported syntax). These cases weren’t explicitly called out in the original plan,
but they became a big part of the testing process once we realized how critical they
were to the tool’s reliability.

For example:

– Multiline whitespace: The tool initially struggled with files that had excessive
or irregular whitespace, which caused false positives in code smell detection. We
had to update the detection logic to handle these cases gracefully.

– Nested structures: Deeply nested code (e.g., loops within loops or functions
within functions) exposed performance bottlenecks and sometimes caused the tool
to crash. This led to optimizations in the refactoring algorithms.

– Degenerate/trivial input: Empty files or files with minimal content revealed
that some refactoring operations weren’t properly handling edge cases, so we
added checks to ensure the tool behaved correctly in these scenarios.

– Wrong input: Malformed or unsupported code caused unexpected errors, so we
improved error handling and added clearer feedback for users.

Fixing these issues required additional effort, but it ultimately made the tool more
robust and user-friendly.

62

These changes happened because testing revealed patterns in the data and uncovered
bugs that weren’t obvious during the planning phase. The bugs and edge cases we
found during testing forced us to revisit parts of the code and make improvements we
hadn’t planned for initially.

Some of these changes could be anticipated in future projects with more thorough
initial testing. If i could do it again I’d build more flexibility into the VnV Plan
to account for unexpected results and allocate extra time for debugging and edge-case
testing. I’d also include a broader range of test cases (e.g., multiline whitespace, wrong
input) in the initial plan to catch these issues sooner.

63

	Functional Requirements Evaluation
	Code Input Acceptance Tests
	Code Smell Detection and Refactoring Suggestion (RS) Tests
	Output Validation Tests
	Tests for Reporting Functionality
	Documentation Availability Tests
	IDE Extension Tests

	Nonfunctional Requirements Evaluation
	Usability
	Performance
	Maintainability and Support
	Look and Feel
	Operational & Environmental
	Security
	Compliance

	Comparison to Existing Implementation
	Unit Testing
	API Endpoints
	Smell Detection Endpoint
	Refactor Endpoint

	Analyzer Controller Module
	CodeCarbon Measurement
	Smell Analyzers
	String Concatenation in Loop
	Long Element Chain Detector Module
	Repeated Calls Detection Module
	Long Lambda Element Detection Module
	Long Message Chain Detector Module

	Refactorer Controller Module
	Smell Refactorers
	String Concatenation in Loop
	Member Ignoring Method
	Long Element Chain Refactorer Module
	Repeated Calls Refactoring Module
	Use a Generator Refactoring Module
	Long Lambda Element Refactorer
	Long Message Chain Refactorer
	Long Parameter List

	VS Code Extension
	Detect Smells Command
	Refactor Smell Command
	File Highlighter
	File Hashing
	Line Selection Manager Module
	Hover Manager Module
	Handle Smell Settings Module
	Handle Smell Settings Module
	Wipe Workspace Cache Command
	Backend

	Changes Due to Testing
	Usability and User Input Adjustments
	Detection and Refactoring Improvements
	VS Code Extension Enhancements
	Future Revisions and Remaining Work

	Automated Testing
	Trace to Requirements
	Trace to Modules
	Code Coverage Metrics
	VSCode Extension
	Python Backend

