Software Requirements Specification for Software
Engineering: subtitle describing software

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

March 24, 2025

Contents

1 Purpose of the Project 1
1.1 User Business e 1
1.2 Goals of the Project 1
2 Naming Conventions and Terminology 1
2.1 Glossary of All Terms, Including Acronyms, Used by Stakeholders involved in
the Project 1
3 Stakeholders 5
3.1 Client e 5
3.2 Customer 5
3.3 Other Stakeholders 5
3.4 Hands-On Users of the Project 6
3.5 Personas 6
3.6 Priorities Assigned to Users 8
3.7 User Participation. 8
3.8 Maintenance Users and Service Technicians 8
4 Mandated Constraints 8
4.1 Solution Constraints 8
4.2 Implementation Environment of the Current System 8
4.3 Partner or Collaborative Applications 9
4.4 Off-the-Shelf Software 9
4.5 Anticipated Workplace Environment 9
4.6 Schedule Constraints L 9
4.7 Budget Constraints 9
4.8 Enterprise Constraintso 10
5 Relevant Facts And Assumptions 10
5.1 Relevant Facts. 10
5.2 Business Rules 10
5.3 Assumptions 10
6 The Scope of the Work 11
6.1 The Current Situation 11
6.2 The Context of the Work 11
6.3 Work Partitioningo 13
6.4 Specifying a Business Use Case (BUC) 13
7 Business Data Model and Data Dictionary 15
7.1 Business Data Model o 15
7.2 Data Dictionaryo 16

i

8 The Scope of the Product

8.1 Product Boundary .
8.2 Product Use Case Tab

le . . .

8.3 Individual Product Use Cases (PUC’s)

8.4 System State Diagram

9 Functional Requirements
9.1 Functional Requirements

10 Look and Feel Requirements
10.1 Appearance Requirements

10.2 Style Requirements .

11 Usability and Humanity

Requirements

11.1 Ease of Use Requirements
11.2 Personalization and Internationalization Requirements
11.3 Learning Requirements o oo

11.4 Understandability and

Politeness Requirements

11.5 Accessibility Requirements L

12 Performance Requirements

12.1 Speed and Latency Re

quirements Lo

12.2 Safety-Critical Requirements L.

12.3 Precision or Accuracy

Requirements L.

12.4 Robustness or Fault-Tolerance Requirements
12.5 Capacity Requirementso
12.6 Scalability or Extensibility Requirements
12.7 Longevity Requirementso Lo

13 Operational and Environmental Requirements
13.1 Expected Physical Environmento 000
13.2 Wider Environment Requirements
13.3 Requirements for Interfacing with Adjacent Systems
13.4 Productization Requirements L.

13.5 Release Requirements

14 Maintainability and Sup

port Requirements

14.1 Maintenance Requirements L.
14.2 Supportability Requirements oL
14.3 Adaptability Requirements

15 Security Requirements
15.1 Access Requirements

15.2 Integrity Requirements

15.3 Privacy Requirements
15.4 Audit Requirements

il

16
16
17
19
22

24
24

27
27
28

28
28
28
29
29
29

30
30
30
30
31
31
31
31

32
32
32
32
33
33

33
33
34
34

15.5 Immunity Requirements

16 Cultural Requirements
16.1 Cultural Requirements

17 Compliance Requirements

17.1 Legal Requirements . .

17.2 Standards Compliance Requirements

18 Open Issues

19 Off-the-Shelf Solutions
19.1 Ready-Made Products
19.2 Reusable Components

19.3 Products That Can Be Copied

20 New Problems

20.1 Effects on the Current Environment
20.2 Effects on the Installed Systems L.

20.3 Potential User Problems

20.4 Limitations in the Anticipated Implementation Environment That May In-

hibit the New Product
20.5 Follow-Up Problems .

21 Tasks
21.1 Project Planning . . .

21.2 Planning of the Development Phases

22 Migration to the New Product
22.1 Requirements for Migration to the New Product
22.2 Data That Has to be Modified or Translated for the New System

23 Costs
23.1 Metrics for Estimation
23.2 Estimation Approach .
23.3 Cost Breakdown
23.4 Estimated Cost

24 User Documentation and

Training

24.1 User Documentation Requirements

24.2 Training Requirements
25 Waiting Room

26 Ideas for Solution

v

38
38

39
39
39

39

40
40
40
40

40
40
40
41

41
41

42
42
43

44
44
45

45
45
45
45
46

46
46
46

47

48

Revision History

Date Name Notes

October 11th, 2024 All Created initial revision of SRS

January 2nd, 2025 All Added clarification to training requirements

January Hth, 2025 All Update FR-7, FR-8, Ideas for Solution

January 6th, 2025 All Fixed link references to tables and figures and added

preambles to those sections, move glossary section,
added symbolic constants

February 8th, 2025 All Removed requirement for interfacing with GitHub Ac-
tions.
February 10th, 2025 All Updated the data dictionary and business data model
February 10th, 2025 All Updated costs, compliance requirements, security re-
quirements and scope of the product.
March 24th, 2025 All Updated and added functional requirements.
March 24th, 2025 Mya Updated Usability and Humanity Requirements.
Hussain
March 24th, 2025 Ayushi Updated maintainability and support requirements.
Amin
March 24th, 2025 Ayushi Updated cultural requirements.
Amin

March 24th, 2025 Sevhena Updated solution constraints, style requirements,
Walker wider environment reqs, updated MD-EC1 to be less

ambiguous.

March 24th, 2025 Mya Updated Performance Requirements.
Hussain

March 24th, 2025 Mya Updated New Problems.
Hussain

March 24th, 2025 Ayushi Updated Scope of Work.
Amin

March 24th, 2025 Ayushi Updated user documentation and training require-
Amin ments.

March 24th, 2025 Ayushi Updated migration of new product.
Amin

March 24th, 2025 Ayushi Updated Costs section.
Amin

March 24th, 2025 Mya Created state diagram closes feedback.
Hussain

Symbolic Constants

‘ Name ‘ Value ‘
ENERGY _SAVE 5%
SMELL_COVERAGE 80%
TEST_FUNCTION_THRESH 100%
REFACTOR_EFFICACY_THRESH 95%
REFACTOR_REVERT_LIMIT 5 commits
CRITICAL_ENERGY_SAVE_THRESH 10%
MIN_USER_CONFIDENCE 70%
MAX_TASK_CLICKS 4 clicks
MIN_USER_EOU 80%
SMALL_FILE_TIME 5 sec
LARGE_FILE_TIME 30 sec
REFACTOR_TIME 30 sec
DETECTION_ACC 90%
LARGE_CODE_BASE_TIME 2 min
NEW_REFACTOR_TIME 7 days
COMPREHENSION_TIME 2 days
ROLLBACK_TIME 1h
MIN_CODE_COVERAGE 80%

OS_PERF _DIFF_LIMIT

5%

Table 1: Table of Symbolic Constants

vi

1 Purpose of the Project

1.1 User Business

The Information and Communications Technology (ICT) sector, an essential component of
the global economy, is responsible for 2-4% of global CO2 emissions today, with projections
suggesting this could rise to 14% by 2040 (Belkhir and Elmeligi, 2018). To meet sustainabil-
ity goals, including a 72% reduction in CO2 emissions by 2040 (Freitag and Berners-Lee,
2021), this sector must find ways to improve energy efficiency.

One area of concern is the energy consumption of software systems. However, for software
engineers, it is not practical for them to focus on optimizing energy consumption while
developing complex programs. Instead, supporting tools and technologies are needed to
assist in improving energy efficiency without altering the intended behaviour of the software.

This project aims to tackle Python, a popular but energy inefficient programming lan-
guage. Python consumes significantly more energy compared to more efficient languages
like C and Rust—over 70 times more energy, on average, for similar tasks (Pereira et al.,
2017). The project’s goal is to develop tools to reduce Python’s energy consumption through
automated refactoring. While this will not solve the entire problem of the carbon footprint
associated with the software, it is a step towards more energy-efficient practices in the soft-
ware development process.

1.2 Goals of the Project

Purpose: The purpose of this project is to provide software engineers with tools to optimize
the energy efficiency of Python programs by automating refactoring suggestions, while still
allowing users to review and decide whether to apply the changes.

Advantage: By reducing the energy consumption of Python programs, this project will
contribute to the broader effort of decreasing the carbon footprint of software development,
supporting the ICT sector’s goal of reducing CO2 emissions by 72% by 2040 (Freitag and
Berners-Lee, 2021).

Measurement: The project’s success can be measured by the reduction in energy usage
achieved after applying the refactorings. Benchmarks will compare the energy consumption
of original and refactored code, to achieve a measurable percentage reduction in energy
consumption.

2 Naming Conventions and Terminology

2.1 Glossary of All Terms, Including Acronyms, Used by Stake-
holders involved in the Project

supervisor A member of faculty from McMaster University responsible for overseeing a
project being worked on by students taking the SFWRENG 4G06 Capstone course.

large-scale applications Applications that manage high volumes of data, users, or trans-
actions, typically requiring scalable architectures.

cloud-hosted applications Software applications deployed and run on remote cloud
servers, accessible over the internet.

environmental footprint The total impact an activity or product has on the environ-
ment, measured by metrics like carbon emissions and resource consumption.

refactoring The process of restructuring existing code without changing its external be-
haviour to improve readability, performance, or maintainability.

mobile environment A software environment specifically designed for mobile devices,
such as smartphones or tablets, which have limited resources.

embedded environment A software environment where applications run on specialized
hardware with constrained resources, often without traditional operating systems.

SaaS Software as a Service (SaaS) refers to cloud-based software applications delivered to
users via the internet on a subscription basis.

backend The part of a software system that handles server-side logic, database interac-
tions, and application functionality not directly visible to users.

software developer A professional who designs, writes, and maintains software applica-
tions or systems.

data analyst A professional who processes and analyzes large sets of data to help organi-
zations make informed decisions.

tech company A company focused on technology products and services, including soft-
ware, hardware, and IT services.

freelance Self-employed individuals who offer specialized services, such as software devel-
opment, without long-term commitments to any employer.

usability testing A method of evaluating how easy and user-friendly a software applica-
tion or product is by observing real users interacting with it.

Python Code Refers to the original Python code given by the end user to refactor.

Refactored Code Refers to the Python code that had refactorings made to it.

library A collection of pre-written code that developers can reuse in their projects to add
specific functionalities.

Git A distributed version control system that allows multiple developers to track changes
in source code, collaborate, and manage project history efficiently.

GitHub A web-based platform used for version control and collaboration on code through
Git repositories.

Actions A GitHub feature that automates tasks such as testing, deployment, and contin-
uous integration via custom workflows.

workflow A sequence of automated steps or actions that define a process, often for con-
tinuous integration, deployment, or testing.

Visual Studio Code A free, open-source code editor developed by Microsoft, known for
its versatility and wide range of extensions.

VS Code An abbreviation of Visual Studio Code

Visual Studio Code (VS Code) marketplace An online platform where users can
discover, install, and manage extensions that enhance the functionality of Visual Studio

Code.

JSON JavaScript Object Notation, a lightweight data format used to store and exchange
information between systems.

XML Extensible Markup Language, a data format used to encode documents in a way
that is both human-readable and machine-readable.

package manager A tool that automates the process of installing, updating, and manag-
ing software packages or libraries in a project.

PIP A package manager for Python that simplifies the installation and management of
Python libraries.

IDE Integrated Development Environment, a software application providing tools like a
code editor, debugger, and compiler to facilitate development.

progress indicators Visual or textual cues, such as loading bars or percentages, that
inform users about the status of ongoing processes.

plugin A software component that adds specific features or functionalities to an existing
software system.

configuration file A file used to define settings or preferences for a software application,
often stored in a human-readable format like JSON or XML.

dashboard A user interface that provides an overview of key information and metrics,
typically presented in graphs, charts, and tables.

sync The process of ensuring that data is consistent across multiple systems or devices by
automatically updating changes in real-time.

programming language A formal language used to write software programs by providing
instructions that a computer can execute.

Python A programming language known for its simplicity and versatility, widely used in
web development, data science, and automation.

Java A programming language known for its portability and scalability, commonly used
for enterprise-level applications.

C/C++ A programming language family used for system programming, game develop-
ment, and applications requiring high performance.

C# A programming language developed by Microsoft, primarily used for developing ap-
plications on the .NET platform.

JavaScript A programming language used primarily for adding interactivity to web pages
and building dynamic web applications.

TypeScript A programming language that builds on JavaScript by adding static typing,
improving code reliability and scalability.

Go A programming language created by Google, designed for simplicity and efficiency in
building scalable applications.

Rust A programming language focused on safety, performance, and concurrency, often
used in system programming.

3 Stakeholders

The stakeholders involved in this project include all individuals and groups that have a
direct or indirect interest in the development, implementation, and usage of the refactor-
ing library for energy efficiency. These stakeholders influence project decisions and will be
impacted by their outcomes. Understanding their roles and expectations is crucial for ensur-
ing that the library meets the needs of its users and aligns with broader organizational goals.

This section introduces the client, customer, and other stakeholders that are involved
in the project. Finally, we will look at the users of the product, specifically the hands-
on-users, what their personas may look like, their priority levels, and what kind of
participation we can expect from them throughout the development of this product.

3.1 Client

The client of this project is Dr. Istvan David from McMaster’s Department of Computing
and Software. As the project supervisor, his role is to guide the development team with his
technical and domain expertise. As the client, he sets the product’s requirements and will
be involved throughout its development.

3.2 Customer

The customers of this product are software developers. Specifically, they are the devel-
opers that work in teams for small to large corporations, or freelancers looking to improve
their services. They will be the primary users of the product and, therefore, will offer critical
feedback on its effectiveness such as suggestions for improvement and/or additional features.
Any feedback received from this stakeholder will be given top priority for consideration as
the goal for this tool is to be an integral part of a software developer’s workflow.

3.3 Other Stakeholders

Project Managers

They oversee project operations and focus on reducing energy costs associated with large-
scale or cloud-hosted applications. They might leverage the refactoring library to reduce
operational costs and achieve business sustainability goals.

Business Sustainability Teams

This stakeholder is responsible for reducing the company’s environmental footprint by an-
alyzing its energy emissions. They will use the energy efficiency metrics provided by the
refactoring library to improve environmental sustainability practices within their organiza-
tion.

End Users

End users refer to the users of software that uses the product in its development. They will
indirectly reap benefits from these applications that have been optimized using the refactor-
ing library. Software used, especially mobile or embedded environments where battery life is
a key concern, might prove to be more responsive and efficient. They have no involvement
in the development of the product.

Regulatory Bodies

This stakeholder is responsible for establishing regulations governing energy consumption
and sustainability standards. They can promote the adoption of energy-efficient software
practices and potentially certify tools that meet regulatory standards.

3.4 Hands-On Users of the Project

Software Developers

e User Role: Integrate library into the codebase, provide tests to check refactoring
against original functionality

Subject Matter Experience: Journeyman to Master

Technological Experience: Journeyman to Master

Attitude toward technology: Varies (conservative to positive)

Physical location: Remote (at home), in-person (work office) or hybrid

Business Sustainability Teams

e User Role: Access metrics provided by library
e Subject Matter Experience: Journeyman
e Technological Experience: Novice to Journeyman

e Attitude toward technology: Neutral to positive

3.5 Personas

Persona: Raven Reyes

Age: 37
Job Title: Senior Software Developer
Education: Bachelor’s in Computer Science

Work Environment: Works at a mid-sized SaaS company with a focus on improving their
environmental footprint.

Professional Background: Has over 15 years of experience in software development, spe-
cializing in backend systems. Worked with various programming languages (Python, Java,
and C++), and is well-versed in optimizing code for performance.

Need: With the company more focused on sustainability, Raven and her team need to go
through their codebase and apply energy efficient changes to their code.

Challenges: Knowing what to change in their code to make it more efficient is challenging,
not to mention the incredible amount of code they will have to sift through. We are talking
hundreds of thousands of lines of code!

Persona: Christopher Robin

Age: 34
Job Title: Data Analyst
Education: Bachelor’s in Data Science

Work Environment: Works at a large corporation that has recently started increasing
their efforts to become a sustainable company.

Professional Background: Over 8 years of experience in data analysis, just recently look-
ing into sustainability metrics. Christopher regularly collaborates with I'T teams to track
performance metrics and recently energy consumption metrics to help identify areas for im-
provement.

Need: Christopher needs accurate data on energy consumption from the company’s software
systems to generate insights that drive sustainability initiatives and help meet corporate en-
vironmental targets.

Challenges: Translating raw technical data into meaningful insights that can guide deci-
sions is difficult, especially when working with complex systems.

Persona: Draco Malfoy

Age: 29
Job Title: Freelance Software Developer
Education: Bachelor’s in Software Engineering

Work Environment: Works remotely on multiple freelance projects for small and mid-
sized businesses, focusing on web applications and backend systems.

Professional Background: Has 7 years of experience working with various clients to
develop and optimize software, primarily in Python and JavaScript. He often works on tight
deadlines, where balancing performance and development speed is key.

Need: Draco needs efficient ways to optimize the code he writes for clients, particularly
in terms of performance and energy efficiency, as more businesses become environmentally
conscious.

Challenges: As a freelancer, time is money. Draco needs tools that help him quickly
identify inefficiencies in the code and refactor them, without spending hours analyzing large
codebases or learning new systems.

3.6 Priorities Assigned to Users

Key Users: Software Developers, Business Sustainability Teams
Secondary User: Project Managers

3.7 User Participation

For the bulk of the development process, requirements will be gathered from the development
team itself with the help of the project supervisor, Dr. Istvan David.
During the testing phase, usability testing will be conducted to further refine the product.

3.8 Maintenance Users and Service Technicians

Due to the nature of this project as a capstone requirement, there are currently no expected
maintenance users.

4 Mandated Constraints

4.1 Solution Constraints

MD-SL 1. The system must exclusively focus on refactoring Python code.

Rationale: Python, while widely adopted for its simplicity and versatility, is
known to be less energy-efficient compared to other programming languages. This
project aims to address this inefficiency by providing targeted refactoring solutions
for Python code.

Fit Criterion: The system must accept only Python code as input and produce
refactored Python code as output.

Priority: High

MD-SL 2. The plugin must be implemented as a Visual Studio Code (VSCode) extension.

Rationale: VSCode is one of the most popular IDEs among developers, and
integrating the tool as a VSCode extension ensures accessibility and ease of use.
Fit Criterion: The plugin must be installable from the VSCode marketplace
and provide seamless integration with the VSCode environment.

Priority: High

4.2 Implementation Environment of the Current System

MD-EC 1. The product shall be able to run on standard laptop environments, including typi-
cal developer setups with operating systems such as Windows, macOS, and Linuz.

Rationale: Developers will primarily use the tool on personal workstations, in-
cluding laptops, and it must integrate smoothly with typical development en-
vironments. Supporting standard laptop environments ensures that the tool is
accessible to a wide range of users without the need for specialized hardware.

Fit Criterion: The tool must be installable and functional on a standard laptop
with Visual Studio Code. It should perform effectively on standard developer
workstations without surpassing typical processing power or memory capacity
limits.

Priority: High

4.3 Partner or Collaborative Applications

The project will focus on developing the tool with flexibility for integration with Visual Studio
Code. While no specific partner applications are required, understanding these possibilities
can aid smoother integration. Future collaboration with Python development tools may be
considered, but no formal interface constraints are needed at this stage.

4.4 Off-the-Shelf Software

The project has no strict requirements for off-the-shelf software but will leverage open-source
libraries to enhance functionality and maintain flexibility. Tools like CodeCarbon for energy
measurement and Python analysis libraries may be used. While no legal issues are expected,
all tools will be assessed for compatibility. Documentation will be maintained, though no
specific constraints are set at this stage.

4.5 Anticipated Workplace Environment

The workplace will include standard software development setups. The tool should offer a
non-intrusive interface suited for quiet workspaces and providing quick feedback in collabo-
rative environments.

4.6 Schedule Constraints

SCHD 1. The project shall be completed by April 2025, with interim deadlines for key mile-
stones such as Proof of Concept (November 2024) and the final demonstration
(March 2025).

Rationale: These deadlines are based on the academic timeline and the expecta-
tions of the capstone course.

Fit Criterion: All project components must be completed and fully functional
by the final demonstration in March 2025.

Priority: High

4.7 Budget Constraints

BDGT 1. The project shall not exceed the resources available to the team, which includes
free open-source software and free services like GitHub for hosting.

Rationale: The team does not have a budget for paid services or proprietary
software.

Fit Criterion: The project must be implemented using free tools and libraries
and hosted on GitHub.
Priority: High

4.8 Enterprise Constraints

ENTP 1. The product shall be built to comply with the standards of McMaster University’s
capstone project requirements and academic integrity policies.

Rationale: The project is part of the university’s curriculum and must adhere to
its standards.

Fit Criterion: The product must meet the requirements specified by the course
syllabus and project advisor.

Priority: High

5 Relevant Facts And Assumptions

5.1 Relevant Facts

Not applicable to this system.

5.2 Business Rules

The following are some business rules established between the team.

1. Project Timeline Adherence: All milestones must be completed according to the
established project timeline. Any delays or unexpected circumstances must be reported
to the team as soon as possible.

2. Pull Request Review Requirement: All pull requests must receive at least two
independent reviews before they can be merged into the main branch. Reviewers must
provide feedback or approval within 48 hours of the request to ensure timely progress.

3. Team Communication Standard: All team members are required to communicate
in a friendly and respectful manner during discussions, meetings, and in all written
communications. Constructive feedback should be provided with the intent to support
and enhance team collaboration.

5.3 Assumptions

It is assumed for this system that users will be seeking to refactor Python code and will
make use of Visual Studio Code.

10

6 The Scope of the Work

This section defines the boundaries and objectives of the work, focusing on the tasks and
components required to develop and deliver the refactoring library. It provides a clear view
of how the system operates within its context and breaks the work into logical partitions to
facilitate development and implementation.

6.1 The Current Situation

The current software development landscape often prioritizes functionality and performance
over energy efficiency. Many existing Python codebases are not optimized for energy con-
sumption, leading to unnecessary power usage and increased carbon footprint. The following
aspects characterize the current situation:

1. Manual Refactoring: Developers typically perform refactoring manually, which is
time-consuming and prone to errors.

2. Limited Awareness: Many developers lack awareness of energy-efficient coding prac-
tices and their impact on overall energy consumption.

3. Absence of Automated Tools: There is a lack of widely adopted automated tools
specifically designed to refactor Python code for energy efficiency.

4. Performance-Centric Optimization: Most existing optimization tools focus on
performance improvements rather than energy efficiency.

5. Inefficient Code Patterns: Many codebases contain inefficient code patterns that
consume more energy than necessary.

The project aims to address these issues by:

1. Automated Refactoring Library: Developing a Python library that automatically
detects and refactors code for improved energy efficiency.

2. IDE Integration: Creating a Visual Studio Code plugin that integrates the refactor-
ing library, providing real-time suggestions and automated refactoring options.

3. Energy Consumption Measurement: Implementing tools to measure and compare
energy consumption before and after refactoring.

4. Developer Education: Raising awareness about energy-efficient coding practices
through the tool’s suggestions and documentation.

6.2 The Context of the Work

The purpose of this subsection is to illustrate the flow of inputs, outputs, and interactions
between the refactoring library and its external systems, such as developers and energy mea-
surement tools. Figure 1 highlights the connections between the system’s components and
external elements, ensuring a comprehensive understanding of its operational environment.

11

Energy
Consumption
Tool

Python Code Total Energy Consumed

Users

Refactoring
Tool

Figure 1: Work Context Diagram

12

6.3 Work Partitioning

In this subsection, the work needed to complete this system is divided into distinct activities,
such as identifying code smells, applying refactorings, and measuring energy efficiency. As
seen in Table 2, each partition outlines its purpose, dependencies, and deliverables to provide
a structured overview of the project’s tasks.

Event # | Event Name Input Output(s)
1 Users submit Python code Python Code Refactored Code
2 Energy Analysis of code Python Code Total FEnergy Con-
sumed

3 Refactoring library produces refac- | Python Code Correct Refactoring
toring

4 Viewing Energy consumption met- | Refactored Code | Energy Consumption
rics Metrics

Table 2: Work Partitioning of System

6.4 Specifying a Business Use Case (BUC)

Each event listed in Table 2 is expanded into an individual business use case which describes
how the system handles specific scenarios.

BUC 1: Users submit Python code

Input: Python Code
Output: Refactored Code
Pre-condition: User uses the VS Code plugin to submit python code to the refactoring

tool

Scenario:

1.
2.

A A

Refactoring tool receives the Python code

Code Carbon is used to store energy consumption data for the original Python code
submitted

Tool analyzes the code for inefficiencies (PyLint)
Python code is provided to the appropriate refactorer in the library
Specific refactorer produces the correct refactoring for the code

Energy consumption is measured of refactored code and compared to the original data

13

7. Refactored code is received by the user
Sub Variation:
e Ja: If no code smells are identified, then user is notified of no code smells present in

the file and code is returned to the user

e 7a: If energy consumption increases for refactored code, the original code is returned
to user with a description of the issue

BUC 2: Energy Analysis of Code

Input: Python Code
Output: Total Energy Consumed
Pre-condition: Submission of Python code to the Energy Consumption Tool

Scenario:

1. Tool receives Python Code
2. Energy consumed is measured during execution

3. Results of total energy consumed is received by the refactoring tool

BUC 3: Refactoring Library Produces Refactoring

Input: Python Code
Output: Correct Refactoring
Pre-condition: Request for refactored code from the specific refactorer based on code smell

Scenario:

1. Specific refactorer receives Python Code
2. Analyze Code for refactoring
3. Implement a refactoring for the given code based on pre-defined strategies

4. Return refactored code to user
Sub Variation:

e Ja: If refactoring can not be done on given code, the refactorer will return original code
to user

BUC 4: Viewing Energy Consumption Metrics

Input: Refactored Code

Output: Energy Consumption Metrics

Pre-condition: Energy consumption of refactored code is less than energy consumption of
original code

Scenario:

1. Metrics are compiled in an accessible format for developers to review

14

7 Business Data Model and Data Dictionary

This section describes the structure and organization of the data that flows through the
refactoring library. It explains how the system’s components interact with data entities,
ensuring a consistent and well-defined understanding of the information processed by the
System.

7.1 Business Data Model

The following diagram (Figure 2) illustrates the relationships between key components of
the system as well as their interactions with external components.

ecooptimizer

2]

Refactoring

h

cll cll

Analysis - Controller

2]

Energy Measurement

¥

IDE Plugin

Figure 2: Business Data Model of System

15

7.2 Data Dictionary

Table 3 shown below defines each component in the system, including its attributes, type,
and purpose. It ensures clarity and consistency in data handling and serves as a reference
for development and testing.

Name Content Type

ecooptimizer Controller + Analysis + Refactoring + Energy package
Measurement

IDE extension A plugin containing the ecooptimizer package External
delivered as an IDE extension Service

Provider

Controller Controlls the flow of execution within the Module
package. Responsible for calling other modules
and handling outputs

Refactoring Contains all necessary tools for refactoring the Module
code smells defined in the package

Energy measures the energy consumption of the given Module

Measurement source code

Analysis Contains all necessary tools for the analysis of Module

the code smells defined in the package

Table 3: Data Dictionary for the System

8 The Scope of the Product

This section outlines the boundaries and functionality of the refactoring library, detailing
what the system will and will not deliver. It focuses on the internal components of the
library, their interactions, and how they collectively address the project’s objectives.

8.1 Product Boundary

This subsection includes a diagram (Figure 3) showing the system’s boundary, identifying
its internal components and their interactions. It clarifies what falls within the scope of the
product and what lies outside its responsibility.

16

User

Change Tool Configuration
Detected Smells

——
Request Refactoring

Accept/Reject Resul Its |

Access Documentatoin

Clear Smell History

VS Code Plugin

Code Analysis Tool

(PUCH)

Refactoring
Engine(PUCS6)
Refactoring
Preview(PUC10,11
Documentation
Viewer(PUC13
Log Generator(PUC
14)

Cache

|

Display Logs

Configuration(PUC2,3,4,5)

andler(PUC12

Code

Code

Energy

Measurement
Tool

Bundled Request
Code Analysis
Controller(PUC 1)

Energy
Controller(PUC 8,9)

Energy Consumption Data

Refactoring
Controller(PUC7)

Refactoring Library

Figure 3: Product Boundary Diagram of System

8.2 Product Use Case Table

The following table summarizes the primary use cases of the refactoring library, such as
identifying code smells, measuring energy consumption, applying refactorings, and allowing
users to accept or reject refactored code. Each use case briefly describes the interaction
between the user and the system.

17

PUC # | PUC Name Actor/s Input & Output(s) | Functional
Require-
ment

1 Detect Code Smells VS Code Original Code (in), FR1, FR2,
Plugin (via Identified Code Smells | FR11
Refactoring (out)
Lib.)
2 Toggle Smell Linting | User Toggle Command (in), | FR17
Enabled/Disabled
Linting (out)
3 Filter Code Smells User Filter Criteria (in), FR10
Filtered Smells (out)
4 Configure Smell User Threshold Parameters | FR14,
Detection (in), Updated FR19
Detection Rules (out)
5 Configure Smell User Display Preferences FR12
Display (in), Updated VS
Code Settings (out)
6 Select Code Smell User Selected Code Smell FR13
(in)
7 Refactor Code VS Code Code Segment (in), FR3, FR4,
Plugin (via Refactored Code (out) | FRS8
Refactoring
Lib.)
8 Measure Energy Refactoring Original Code (in), FR6
(Before) Library (via Initial Energy Results
Energy Tool) | (out)
9 Measure Energy Refactoring Refactored Code (in), | FR6
(After) Library (via | Final Energy Results
Energy Tool) | (out)
10 Show Results VS Code Refactored Code, FR6, FR11
Plugin Performance Metrics
(out)
11 Accept/Reject Results | User Refactored Code, FR16
Energy Results (in),
Decision (out)
12 Clear Smell History User Clear Command (in), | FR18
Reset Cache (out)
13 Access Documentation | User Help Request (in), FR7
Documentation (out)
14 Generate System Logs | System Log Request (in), Log | FR15

File (out)

Table 4: Product Use Ca%g Table with FR Coverage

8.3 Individual Product Use Cases (PUC’s)

This subsection expands on the use cases listed in Table 4, providing a detailed description
of each. It explains how the system components work together to fulfill each use case,
emphasizing expected functionality and outcomes for users.

PUC 1: Detect Code Smells
Trigger: The VS Code Plugin processes the input code using the refactoring library.

Preconditions:

e The VS Code Plugin has received the original code.

e The Refactoring Library is active and ready to analyze code.

Actors: VS Code Plugin (via Refactoring Library).

Outcome: Code smells are identified and presented to the user.
Input: Original Python Code.

Output: List of detected code smells.

PUC 2: Toggle Smell Linting
Trigger: User requests to enable or disable smell detection highlighting.

Preconditions:

e The VS Code Plugin is active.
e Code file is open in the editor.

Actors: User.

Outcome: Smell detection highlighting is toggled on/off.
Input: Toggle Command.

Output: Enabled/Disabled smell highlighting.

PUC 3: Filter Code Smells
Trigger: User applies filters to focus on specific smell types.

Preconditions:

e Code smells have been detected.

e Smell list is visible to user.

Actors: User.

Outcome: Only filtered smells are displayed.
Input: Filter Criteria.

Output: Filtered subset of detected smells.

PUC 4: Configure Smell Detection
Trigger: User modifies detection parameters for specific smells.

Preconditions:

19

e None.

Actors: User.

Outcome: Smell detection thresholds are updated.
Input: Threshold Parameters.

Output: Updated Detection Rules.

PUC 5: Configure Smell Display
Trigger: User accesses settings to modify smell display preferences.

Preconditions:
e None.

Actors: User.

Outcome: Code smells are displayed according to user-configured visual styles.
Input: Display Preferences (color, design).

Output: Updated visual representation of smells in linted files.

PUC 6: Select Code Smell for Refactoring
Trigger: The user selects a detected code smell to be refactored.

Preconditions:

e The system has identified code smells.

e The user is reviewing the detected smells.

Actors: User.

Outcome: The selected smell is sent to the refactoring tool.
Input: Selected Code Smell.

Output: Selected smell is marked for refactoring.

PUC 7: Refactor Code
Trigger: The user has selected a code smell for refactoring.

Preconditions:

e Code smells have been detected.

e The user has selected a smell to refactor.

Actors: VS Code Plugin (via Refactoring Library).
Outcome: The system refactors the selected code smell.
Input: Code Segment.

Output: Refactored Python Code.

PUC 8: Measure Energy Consumption Before Refactoring
Trigger: The refactoring library submits the original code to the energy measurement tool.

Preconditions:

20

e The system has received the original code.
e The energy measurement tool is active and connected.
Actors: Refactoring Library (via Energy Measurement Tool).
Outcome: Initial energy consumption is measured.
Input: Original Python Code.
Output: Initial Energy Consumption Results.
PUC 9: Measure Energy Consumption After Refactoring
Trigger: The refactored code is submitted to the energy measurement tool.

Preconditions:

e The system has refactored the code.

e The energy measurement tool is active and connected.

Actors: Refactoring Library (via Energy Measurement Tool).
Outcome: Final energy consumption is measured.

Input: Refactored Python Code.

Output: Final Energy Consumption Results.

PUC 10: Show Results

Trigger: Refactored code and energy consumption metrics are ready.

Preconditions:

e The refactoring process has completed.

e Energy consumption before and after refactoring has been measured.

Actors: VS Code Plugin.
Outcome: The refactored code and performance metrics are presented to the user.
Output: Refactored Code, Energy Consumption Results.

PUC 11: Accept or Reject Refactoring Results
Trigger: The user reviews the refactored code and its energy consumption results.

Preconditions:
e The system has presented the refactored code and energy consumption results.

Actors: User.

Outcome: The user accepts or rejects the refactored code. If rejected, no changes are
applied. If accepted, the refactored code replaces the original.

Input: Refactored Code, Energy Consumption Results.

Output: Accepted or Rejected Decision.

21

PUC 12: Clear Smell History
Trigger: User requests to clear previously detected smells.

Preconditions:
e Smell detection history exists.

Actors: User.

Outcome: All stored smell detection data is removed.
Input: Clear Command.

Output: Reset cache state.

PUC 13: Access Documentation
Trigger: User looks up for documentation.

Preconditions:
e Documentation is available.

Actors: User.

Outcome: Documentation is displayed to user.
Input: Help Request.

Output: Documentation content.

PUC 14: Generate System Logs
Trigger: System records operational data and user requests logs.

Preconditions:
e User has used the system.

Actors: System.

Outcome: Log entries are created for system events.
Input: Log Request.

Output: Log File entries.

8.4 System State Diagram

The following is a state diagram of the system.

22

Refactoring Process

Apply Specific
Refactoring

(Impro\rement Found | J'mPfW'!me"'t Found:
=——_ Energy consumption reduced
while maintaining functionality

Measure Energy
(Original) k
- -

Show changes

Measure Energy Preview Changes

Improvement
P (Split Screen)

found

(Refactored)

Start tool Display metrics
Initialization
Load configurations
| : |
' J Metrics Display

(\.r‘t-:rifyr Python versionw

L J

A

No
mprovement

Initialization
complete

Accept changes
(apply)

(Code Input\ (No Improvement FoundL No Improvement:

— Refactoring didn't reduce
éd file

energy consumption

Mark as Reject changes
Invalid file \Retry optimal (discard)

| Smell Detection | Ermrw (No Valid Refactoring |
No smells Smells Continue
found detected analysis
No Smells Found Update Smell Display

parameters

ser changes
settings

Configuration

Figure 4: System State Diagram

23

User selects
smell

9 Functional Requirements

9.1
FR 1.

FR 2.

FR 3.

FR 4.

FR 5.

Functional Requirements

The system must accept Python source code files.

Rationale: The system needs to process Python code as its primary input to refactor
and improve energy efficiency.

Fit Criterion: The system successfully processes valid Python files without errors
and provides feedback for invalid files.

Priority: High

The system must identify specific code smells that can be targeted for energy saving.

Rationale: Energy inefficiencies are often related to well-known code smells, so iden-
tifying them is the first step in improving efficiency.

Fit Criterion: The tool should be meet the SMELL_COVERAGE for the detection
and reporting of the following smells: Long Parameter List (LPL), Long Message
Chain (LMC), Long Element Chain (LEC), Long Lambda Function (LLF), Complex
List Comprehension (CLC), Member Ignoring Method (MIM), Cache Repeated Calls
(CRC), String Concat in Loop (SCL).

Priority: High

The system must suggest at least one appropriate refactoring for each detected code
smell to decrease energy consumption or indicate that none can be found.

Rationale: For developers to optimize their code, the tool must provide an appro-
priate refactoring suggestion based on detected code smells.

Fit Criterion: The suggested refactored code demonstrates a measurable improve-
ment in energy consumption as measured in kg.

Priority: High

The system must produce valid refactored Python code as output or indicate that no
possible refactorings were found.

Rationale: Refactored code must remain functional and error-free to ensure main-
tainability and usability.

Fit Criterion: The output code is syntactically correct and adheres to Python stan-
dards, validated by an automatic linter.

Priority: High

The tool must require Python version 3.10 to run but must be capable of analyzing
and refactoring Python code written for versions 3.8 and newer.

Rationale: The tool leverages features available in Python 3.10 for its operation
while ensuring compatibility with analyzing codebases written in Python 3.8 and 3.9,
which are the most widely adopted recent major versions in use.

Fit Criterion: The tool operates correctly in a Python 3.10 environment and suc-
cessfully analyzes and refactors code written for Python versions 3.8, 3.9, and newer.
Priority: Medium

24

FR 6.

FR 7.

FR 8.

FR 9.

The system must generate and display energy consumption metrics.

Rationale: Developers need clear metrics as a justification for energy efficient refac-
torings.

Fit Criterion: Energy consumption metrics are clear, well-structured, and provide
actionable insights, allowing users to easily understand the results.

Priority: Medium

The tool must provide comprehensive documentation and help resources.

Rationale: Detailed documentation is necessary to help users install, understand,
and use the tool effectively.

Fit Criterion: Documentation covers installation, usage, and troubleshooting, re-
ceiving positive feedback for clarity and completeness from users.

Priority: Medium

The system shall provide developers with refactoring suggestions within an IDE before
changing code, allowing them to review and approve energy-efficient changes.

Rationale: Giving developers control over which refactorings are applied ensures
that they can maintain the balance between energy efficiency and their coding style
or project requirements.

Fit Criterion: The IDE plugin must display at least two refactoring options for
inefficient code patterns, allowing developers to either apply or reject them before
making any changes.

Priority: Medium

The system shall provide developers with refactoring suggestions within an IDFE before
changing code, allowing them to review and approve energy-efficient changes.

Rationale: Giving developers control over which refactorings are applied ensures
that they can maintain the balance between energy efficiency and their coding style
or project requirements.

Fit Criterion: The IDE plugin must display at least two refactoring options for
inefficient code patterns, allowing developers to either apply or reject them before
making any changes.

Priority: Medium

FR 10. The system must allow users to filter detected code smells within the IDE plugin.

Rationale: Developers should be able to focus on specific types of inefficiencies based
on their project needs and priorities.

Fit Criterion: The plugin provides a user-friendly interface that enables filtering
detected code smells by category, severity, or type, ensuring a customized refactoring
experience.

Priority: Medium

FR 11. The system should indicate code smells within a smell-linted file.

Rationale: Developers need a clear visual representation of detected code smells to

25

efficiently identify problematic areas in their code.

Fit Criterion: The system highlights detected code smells within the source file, for
example, by underlining or marking affected lines.

Priority: High

FR 12. The system should allow users to configure how code smells are displayed within a
smell-linted file.

Rationale: Different developers may have varying preferences for visual indicators
(e.g., colors, underlines, icons) to improve readability and accommodate accessibility
needs.

Fit Criterion: The system provides user-adjustable settings (e.g., via a preferences
menu) to modify the visual representation of code smells, such as changing highlight
colors, toggling line markers, or selecting icon-based annotations.

Priority: Medium

FR 13. The system must allow for refactoring of specific smells.

Rationale: Developers should have the flexibility to refactor only selected code smells
rather than applying all refactorings at once.

Fit Criterion: Users can click on a specific detected smell and choose to refactor
only that issue.

Priority: High

FR 14. The system must allow users to configure specific smell detection parameters.

Rationale: Different projects may have varying definitions of what constitutes a
long lambda function or a long message chain, so customizable thresholds improve
flexibility.

Fit Criterion: The system provides a configuration interface where users can set
thresholds for smell detection (e.g., defining the maximum acceptable length for a
lambda function or the number of chained method calls before triggering a warning).
Priority: Medium

FR 15. The system should generate and allow users to access logs of system processes.

Rationale: Logs provide transparency on system operations, helping users debug
issues and track changes.

Fit Criterion: The system generates logs detailing detected smells, applied refac-
torings, and system errors, accessible through an interface or log file.

Priority: Medium

FR 16. The system must allow users to accept or reject suggested refactored changes and
apply the corresponding action.

Rationale: Developers should have control over the changes made to their code to
ensure refactorings align with project requirements.

Fit Criterion: The tool provides an interface where users can review, accept, or
reject suggested refactorings before they are applied.

Priority: High

26

FR 17. The system must allow users to toggle smell linting on and off within the IDE.

Rationale: Users should be able to control whether code smell detection is actively
running, especially to avoid distractions in certain workflows.

Fit Criterion: The system provides a toggle button to turn smell linting on or off.
When this is enabled, the tool automatically highlights smells in open files, and when
disabled, all highlighting/indications are removed.

Priority: Medium

FR 18. The system must allow users to remove the history of detected smells and other
cached data.

Rationale: Clearing stored data helps users maintain a clean workspace, manage
storage, and reset the tool for a fresh start.

Fit Criterion: The system provides an option to delete previously detected smells
and cached data, ensuring a reset state when needed.

Priority: Medium

FR 19. The system should allow for the enabling and disabling of specific smells for detection.

Rationale: Developers may want to focus on certain types of inefficiencies while
ignoring others based on project-specific needs.

Fit Criterion: The system provides an interface where users can enable or disable
specific code smells from being detected and reported.

Priority: Medium

10 Look and Feel Requirements

10.1 Appearance Requirements

LFR-AP 1. The IDE plugin refactoring interface shall present the original and refactored
code side by side, allowing developers to compare and choose between them easily.

Rationale: Providing a side-by-side view of the original and refactored code
helps developers make informed decisions about applying changes.

Fit Criterion: The interface must display the original code on one side and
the refactored code on the other, with clear options for developers to accept or
reject the refactorings without confusion.

Priority: High

LER-AP 2. The tool shall have a minimalist design, focusing only on essential elements to
reduce clutter.

Rationale: A clean and simple interface allows developers to focus on the code
and refactoring suggestions without distractions, improving usability.

Fit Criterion: The tool should prominently display only the code, refactoring
suggestions, and energy metrics, omitting unnecessary visual elements or dis-
tractions.

Priority: Low

27

10.2 Style Requirements

LFR-ST 1. The tool design shall be visually appealing and modern, aligning with contempo-
rary software development tools.

Rationale: A modern design improves user experience and satisfaction, making

the tool more enjoyable to use.

Fit Criterion: The number of users that express satisfaction with the tool’s vi-

sual design and layout after their initial interaction should meet the MIN_USER_CONFIDENCI

Priority: Medium

11 Usability and Humanity Requirements

11.1 Ease of Use Requirements

UHR-EOU 1. The tool shall have an intuitive user interface that simplifies navigation and
functionality.

Rationale: A simple, intuitive interface allows users to access the tool’s key
features quickly, improving usability and reducing the learning curve.

Fit Criterion: Users should be able to complete key tasks (e.g., parsing
code, configuring settings) MAX_TASK_CLICKS limit.

Priority: High

UHR-EOU 2. The tool shall provide clear and concise prompts for user input.

Rationale: Clear instructions help users understand what inputs are re-
quired, minimizing confusion and errors during the process.

Fit Criterion: The amount of test users that report that prompts are
straightforward and guide them effectively through the process should meet
the MIN_USER_EOU.

Priority: High

11.2 Personalization and Internationalization Requirements

UHR-PSI 1. The tool shall allow users to enable or disable detection of individual code smells.

Rationale: Developers should be able to focus on relevant code smells for their
specific project needs.

Fit Criterion: Users can successfully toggle detection of any smell type on or
off.

Priority: High

UHR-PSI 2. The tool shall allow users to customize highlight colors for each detected code
smell type.

Rationale: Custom colors improve readability and accommodate different vi-
sual preferences.
Fit Criterion: Users can successfully change highlight colors for any smell

28

type.
Priority: Medium

11.3 Learning Requirements

UHR-LRN 1. The tool shall provide context-sensitive help that offers assistance based on the
current user actions.

Rationale: Context-sensitive help ensures that users can receive timely and
relevant assistance, reducing confusion and improving usability.
Fit Criterion: Help resources should be accessible within MAX_TASK_CLICKS

limit.
Priority: High
UHR-LRN 2. The tool shall have an available YouTube video demonstrating installation.

Rationale: Video tutorials provide visual learning resources that can make
the installation process more accessible to users.

Fit Criterion: A YouTube video demonstrating installation should be present
and easily accessible.

Priority: Low

11.4 Understandability and Politeness Requirements

UHR-UPL 1. The tool shall communicate errors and issues politely and constructively.

Rationale: Polite and constructive error messages reduce frustration and en-
hance the user experience, making the tool more approachable.

Fit Criterion: User feedback should reflect that at least the MIN_USER_EOU
of users perceive error messages as helpful and courteous, rather than frustrat-
ing or vague.

Priority: Medium

11.5 Accessibility Requirements

UHR-ACS 1. The tool shall provide high-contrast colour themes to improve visibility for users
with visual impairments.

Rationale: High-contrast themes ensure that visually impaired users can
easily navigate and use the tool, enhancing accessibility.

Fit Criterion: Users should have access to at least 1 high contrast theme.
Priority: Low

29

12 Performance Requirements

12.1 Speed and Latency Requirements

PR-SL 1.

PR-SL 2.

The tool shall analyze and detect code smells in the input code within a reasonable
time frame.

Rationale: Fast analysis ensures that developers do not experience significant
delays while reviewing code.

Fit Criterion: The tool should complete the analysis for files up to 250 lines
of code in under SMALL_FILE_TIME, and for files up to 3000 lines in under
LARGE_FILE_TIME.

Priority: High

The refactoring process shall be executed efficiently without noticeable delays.

Rationale: Fast refactoring ensures a smooth workflow for developers, preventing
frustration during development.

Fit Criterion: The tool should refactor the code and generate output in under
REFACTOR_TIME for small to medium-sized files (up to 5,000 lines).
Priority: Medium

12.2 Safety-Critical Requirements

PR-SCR 1. The tool shall ensure that no runtime errors are introduced in the refactored code

that could result in data loss or system failures.

Rationale: Preventing runtime errors ensures system stability and reliability
after refactoring.

Fit Criterion: The refactored code must produce valid Python code verified
by the user upon accepting changes

Priority: High

12.3 Precision or Accuracy Requirements

PR-PAR 1. The tool shall reliably identify code smells with minimal false positives and neg-

atives.

Rationale: High detection accuracy ensures that developers are not misled by
incorrect or missed suggestions.

Fit Criterion: Detection accuracy should exceed DETECTION_ACC when
validated against a set of known cases.

Priority: Medium

PR-PAR 2. The tool shall produce valid refactored Python code as output or indicate that no

possible refactorings were found.

Rationale: Ensuring that the tool produces valid output is essential for main-
taining code quality.

30

Fit Criterion: The output code is syntactically correct and adheres to Python

standards.
Priority: Medium

12.4 Robustness or Fault-Tolerance Requirements

PR-RFT 1. The tool shall gracefully handle unexpected inputs, such as invalid code or non-
Python files.

Rationale: Ensuring stability with error handling prevents tool crashes and
improves user experience.

Fit Criterion: The tool should provide clear error messages and recover from
input errors without crashing, ensuring stability.

Priority: High

12.5 Capacity Requirements
PR-CR 1. The tool shall efficiently manage large codebases.

Rationale: Efficient handling of large projects ensures that the tool remains
usable for teams working with extensive codebases.

Fit Criterion: The tool must process projects with up to 3000 lines of code
within LARGE_CODE_BASE_TIME, maintaining performance standards.

Priority: High

12.6 Scalability or Extensibility Requirements

PR-SER 1. The tool shall be designed to allow easy addition of new code smells and refac-
toring methods in future updates.

Rationale: Extensibility ensures that the tool remains relevant and adaptable
to future developments in coding standards and practices.

Fit Criterion: New code smells or refactorings can be incorporated with mini-
mal changes to existing code, ensuring that current functionality remains intact.
Priority: Medium

12.7 Longevity Requirements

PR-LR 1. The tool shall be maintainable and adaptable to future versions of Python and
changing coding standards.

Rationale: Ensuring the tool can be updated easily guarantees that it will re-

main useful and relevant over time.
Fit Criterion: The codebase should be well-documented and modular, facilitat-

ing updates with minimal effort.
Priority: Medium

31

13 Operational and Environmental Requirements

The Operational and Environmental Requirements define the conditions under which the sys-
tem must function effectively. These requirements ensure that the system performs reliably
within specified operational boundaries, such as compatibility, deployment, and environmen-
tal constraints. Additionally, this section addresses the external environmental factors that
could influence the system. Meeting these requirements is critical to ensure the tool’s proper
operation and sustainability in various working environments.

13.1 Expected Physical Environment
OER-EP 1. The product shall be used in temperatures ranging from 10°C - 35°C.

Rationale: A computer’s safe operating range is 10°C - 35°C (Christensson,
2016). If the computer doesn’t work then it is not possible to use the refactoring
library.

Fit Criterion: The computer turns on, and no temperature warning is issued.
Priority: High

OER-EP 2. The product shall be used in proximity to a stable power supply.
Rationale: As a coding library, the product depends on the continuing opera-
tion of the computer system it is used on. Should the computer lose power, the
refactoring library will see its processes halted.
Fit Criterion: The computer is connected to a power outlet or the computer
possesses charge on its battery.
Priority: High

13.2 Wider Environment Requirements

Not applicable.

13.3 Requirements for Interfacing with Adjacent Systems
OER-IAS 1. The library should be compatible with the Visual Studio Code (VSCode) IDE.

Rationale: Developers will be able to refactor code easily without leaving
their working environment, therefore enhancing the accessibility and usability
of the library.

Fit Criterion: An extension is available for installation in VSCode market-
place.

Priority: Medium

OER-IAS 2. The library should support importing existing codebases and exporting refactored
code and energy savings reports in standard formats (e.g., JSON, XML)

Rationale: This ensures that users can easily integrate the library into their
existing workflows without significant disruption.
Fit Criterion: Developers are able to refactor existing codebases and view

32

relevant metrics.
Priority: Medium

13.4 Productization Requirements

OER-PR 1.

The library shall be package with PIP and made available to python users through
the public package manager.

Rationale: As a widely used package manager, PIP will be able to distribute
the library to any users that wish to use it.

Fit Criterion: Users are able to install the library using pip install.
Priority: Medium

13.5 Release Requirements

OER-RL 1.

OER-RL 2.

All core functionalities specified in the requirements must be implemented and
tested, including energy consumption measurement, automated refactoring, and
reporting features.

Rationale: This will ensure that the library delivers the promised capabilities
to users.
Fit Criterion: Follows the steps outlined in the Verification and Validation

(V&V) plan.
Priority: Medium

The library must be ready for release by March 17th, 2025.

Rationale: The library must be ready for final demonstration as a requirement
of the McMaster University SFRWENG 4G06 Capstone course.

Fit Criterion: The project is ready for the final demonstration of the appointed
date.

Priority: Low

14 Maintainability and Support Requirements

The following are defined as maintainability requirements:

14.1 Maintenance Requirements

MS-MNT 1. The tool must allow new refactoring techniques to be added within one week of

identification.

Rationale: Rapid integration of new techniques ensures the tool remains up-
to-date with evolving best practices in energy-efficient coding.

Fit Criteria: Developers can integrate new refactoring methods into the tool,

and they are fully operational within NEW_REFACTOR_TIME.
Priority: Medium

33

MS-MNT 2. The tool must be maintainable by developers who are not the original creators.
Rationale: Ensuring that new developers can easily understand and modify
the system reduces dependency on original developers and facilitates long-term
maintenance.

Fit Criteria: Comprehensive documentation is available such as setup guides
and code comments, allowing new developers to understand and modify the
system within COMPREHENSION_TIME.

Priority: High

MS-MNT 3. The tool must allow for easy rollback of updates in case of errors.
Rationale: Quick rollback capabilities minimize downtime and user disruption
in case an update introduces issues.
Fit Criteria: Any update can be reverted with minimal effort, ensuring the
system returns to a stable state within ROLLBACK_TIME.
Priority: Medium

MS-MNT 4. The tool must provide automated testing for all refactoring functions.
Rationale: Automated testing ensures that changes do not introduce new
bugs, maintaining the reliability and stability of the tool.
Fit Criteria: All refactoring methods have associated unit tests that run auto-
matically with each code change, ensuring code coverage meets MIN_.CODE_COVERAGE.
Priority: High

MS-MNT 5. Fach version of the library must maintain compatibility with the current re-
leases of external libraries during its development phase.
Rationale: Keeping external libraries up-to-date ensures compatibility and
leverages improvements or security patches provided by library maintainers.
Fit Criteria: The system successfully integrates updates from external li-
braries without breaking existing functionality.
Priority: Medium

14.2 Supportability Requirements

This section is not needed for this project.

14.3 Adaptability Requirements

MS-AD 1. The system must be compatible with the latest stable version of python (v3.13).
Rationale: This allows the library to use the most up-to-date features, per-
formance improvements, and security patches. Furthermore, it will ensure that
users can integrate the library into modern projects without compatibility issues,
reduces the risk of vulnerabilities.

Fit Criteria: The system passes all test cases when run in python 3.13.
Priority: High

34

MS-AD 2.

MS-AD 3.

MS-AD 4.

MS-AD 5.

MS-AD 6.

The system should offer backward compatibility with Python 3.10 and higher.
Rationale: Offering backwards compatibility makes the library more accessible
to users who may need to use the library in legacy codebases that can’t easily be
upgraded. Based on Python’s versioning schedule, version 3.10 will not be con-
sidered end-of-life until nearly 2 years after the scheduled end of the development
of this system.

Fit Criteria: All features of the system must work on Python 3.10 and higher
versions, with minimal degradation in performance or functionality

Priority: Low

The system must be able to detect and handle Python version-specific features and
syntaz.

Rationale: Depending on the Python version of the source code, the refactorings
should be made accordingly to not introduce compatibility errors.

Fit Criteria: The input source code should pass the given test cases.
Priority: High

The energy measurement module must be adaptable to cloud-based systems.
Rationale: Many modern applications are hosted and run in cloud environments
so, it is essential for the energy measurement module to operate effectively in
cloud-based systems. This ensures that developers can accurately measure the
energy consumption of their cloud-hosted applications.

Fit Criteria: The energy consumption module returns usable statistics related
to the energy consumption of the cloud-application.

Priority: Medium

The system must be deployable in both cloud-based environments and on-premise
infrastructures to meet different user needs.

Rationale: Whether the system is being used locally or in the cloud, developers
still need access to the features offered by the system. Some developers might not
even host their applications, and, even if they do, they might want to conduct
local testing.

Fit Criteria: The system should be fully functional in both cloud and local
environments, with minimal configuration changes.

Priority: Medium

The system must support major operating systems, including Windows, macOS,
and Linuz.

Rationale: Developers may not all use the same operating system (OS), it’s
actually unlikely (even impossible) that they do. Allowing users to use the library
on their preferred OS will only increase the adoption of the system.

Fit Criteria: The system must pass all tests on Windows 10+, macOS 13+
(Ventura and later), and Linux distributions such as Ubuntu 22.04.5+ without
requiring different codebases or significant modifications.

Priority: Low

35

MS-AD 7.

MS-AD 8.

The system must provide seamless functionality across different versions of the
same operating system.

Rationale: Users do not adopt the latest version of an OS at the same rate and
some programs are to complex or fragile to upgrade to newer systems.

Fit Criteria: The system runs without errors or crashes across multiple versions
of Windows, macOS, and Linux, with no compatibility issues in handling file
systems, dependencies, or libraries.

Priority: Low

The system must offer consistent performance (e.g., refactoring speed, energy
consumption measurements) regardless of the underlying operating system.
Rationale: Having the system be OS dependent would invalidate the point of
being compatible with multiple OSes and conflict with requirement MS-AD 6.
Fit Criteria: Performance metrics, such as time taken for refactoring and en-
ergy measurements, must not vary by more than OS_PERF_DIFF_LIMIT across
different operating systems during testing.

Priority: Low

15 Security Requirements

15.1 Access Requirements

SR-AR 1.

SR-AR 2.

The tool must be capable of protecting data during active sessions without requir-
g authentication of the user.

Rationale: Ensuring secure handling of data during processing eliminates the
need for user authentication, thereby improving the tool’s accessibility. Organi-
zational code is already access-controlled for developers, therefore authentication
is unnecessary for the tool.

Fit Criterion: The tool allows users to submit code and view refactoring results
without requiring login credentials, and no sensitive data is stored beyond the
active session.

Priority: High

Only the refactoring tool can communicate with the energy consumption tool.
Rationale: Energy consumption tool is an internal abstracted service that is not
directly needed by the user.

Fit Criterion: The refactoring tool does not include any exposed API endpoints
to the energy consumption tool.

Priority: High

15.2 Integrity Requirements

SR-IR 1.

The tool must prevent unauthorized, external changes to the refactored code and
energy reports.

36

Rationale: The system must maintain code consistency and correctness of the
original input and energy improvement data. Any corruption of the code could
undermine trust in the tool.

Fit Criterion: The system must reject malformed data inputs, ensure data in-
tegrity during processing and transmission, and maintain comprehensive logging
of system activities. It should safeguard against data corruption to maintain trust
in the tool’s outputs..

Priority: High

15.3 Privacy Requirements

SR-PR 1.

SR-PR 2.

The tool must ensure that no personal user data, such as GitHub profile, commit
history, working hours, or any identifiable information, is collected or stored dur-
g ils operation.

Rationale: Personal information, including coding habits, working patterns, and
associated data (such as GitHub profile or commits), is sensitive and must not be
used to ensure that users maintain full control over their personal data.

Fit Criterion: The tool analyzes code and provides refactoring suggestions with-
out collecting, storing or transmitting any personal information about the user.
Priority: High

Any data related to user submissions, energy metrics and refactored results must
be treated as confidential and handled securely throughout processing and trans-
MISSLON.

Rationale: The tool must ensure user trust by safeguarding all user submissions
and related data against unauthorized access or tampering. Secure handling of
data during active sessions maintains the integrity and reliability of the tool.

Fit Criterion: The system processes user submissions, energy metrics, and refac-
tored results securely within the active session. No data is stored or retained after
processing, ensuring all user information remains private and protected.
Priority: High

15.4 Audit Requirements

SR-AUR 1. The tool should maintain a log of operational events related to the refactoring

process, including code detetction, energy analysis, and refactoring.

Rationale: The tool must ensure transparency in its operation by providing a
record of key system actions, enabling the user to debug or review tool behav-
ior.

Fit Criterion: The system generates a log of important operational events,
such as the start and completion of analysis, energy measurements, and refac-
torings.

Priority: Medium

37

SR-AUR 2. The tool should log user-triggered actions, such as code submissions and the ini-

tiation of refactoring processes, without storing any user-specific or identifiable
data.

Rationale: The tool must provide accountability for user interactions with the
system, allowing the user to trace and verify the actions they have taken within
the session.

Fit Criterion: The system logs events such as user code submissions, requests
for refactoring, and access to refactoring results. These logs do not include per-
sonal identifiable user data.

Priority: Medium

15.5 Immunity Requirements

SR-IMR 1. The tool must minimize exposure to external threats, ensuring that the refactoring

process is protected from unauthorized interference.

Rationale: Reducing reliance on external systems decreases vulnerability to
external threats, such as malware or unauthorized access, and ensures a secure
and reliable refactoring process.

Fit Criterion: The system operates without any external server communication
so as exposure to external threats is limited. This setup inherently reduces
exposure to external security risks.

Priority: High

16 Cultural Requirements

The cultural requirements of this project include the following:

16.1 Cultural Requirements

CULT 1. The tool must avoid using colours or symbols that could be culturally sensitive or

CULT 2.

offensive.

Rationale: Ensuring cultural sensitivity in design helps avoid alienating or of-
fending users from diverse backgrounds, which is critical for global acceptance and
usability.

Fit Criteria: Conduct a cultural review to ensure that all icons and colours used
in the tool are neutral and universally acceptable. Priority: Low

The tool must not include content that could be considered culturally insensitive.
Rationale: Avoiding culturally insensitive content ensures that the tool is respect-
ful and inclusive, fostering a positive user experience across different cultures.
Fit Criteria: A cultural sensitivity review is conducted to ensure all content is
appropriate for a global audience. Priority: Medium

38

17 Compliance Requirements

17.1 Legal Requirements

CR-LR 1. The system must respect user privacy by avoiding the collection of any personal
or identifiable data.

Rationale: Ensuring privacy builds user trust and minimizes risks associated
with handling sensitive information, even when specific privacy laws are not tar-
geted.

Fit Criterion: The system avoids collecting or storing personal user data, in-
cluding information about user activities and profiles, and operates entirely within
the user’s local environment.

Priority: Medium

17.2 Standards Compliance Requirements

CR-SCR 1. The system must conform to established Python coding standards and best prac-
tices for maintainability, readability and quality.

Rationale: Adhering to standards such as PEP 8 ensures the system’s code-
base remains consistent, maintainable and compatible with coding standards,
facilitating future development and collaboration.

Fit Criterion: The system implements static code analysis and adheres to
Python coding standards, including PEP 8.

Priority: Medium

18 Open Issues

This section outlines unresolved questions and challenges that may impact the development,
functionality, or integration of the system. These issues require further research, discussion,
or testing to ensure successful project completion.

e Further research is needed to determine the optimal balance between energy efficiency
and code readability. While refactoring may improve energy consumption metrics, it
could inadvertently make the codebase less maintainable and more difficult to expand
in the long term.

e The same can be said when it comes to performance. More energy efficient code might
actually end up being less efficient when it comes to time and space complexity.

39

19 Off-the-Shelf Solutions

19.1 Ready-Made Products

e Pylint: A widely used static code analysis tool that detects various code smells in
Python. It can be integrated into the refactoring tool to help identify inefficiencies in
the code.

e Flake8: Linter that combines checks for style guide enforcement and code quality.
Flake8 can assist in maintaining code standards while the tool focuses on energy effi-
ciency.

e PyJoule: A tool for measuring the energy consumption of Python code. This product
can provide essential data to evaluate the impact of refactorings on energy usage.

19.2 Reusable Components

e Rope: A library for Python that provides automated refactoring capabilities, helping
streamline the process of improving code quality.

19.3 Products That Can Be Copied

e SonarQube: An open-source platform designed for continuous inspection of code
quality. It helps developers manage code quality and security by analyzing source code
to identify potential issues. Its architecture and methods for detecting code smells
could be adapted to focus specifically on energy efficiency.

20 New Problems

20.1 Effects on the Current Environment

The introduction of the energy efficiency refactoring tool may lead to several changes in the
current development environment. These effects include:

1. The tool temporarily increases CPU and memory usage while running. The tool aims
to optimize energy efficiency in code however it takes energy to run - in large code-
bases this could be significant energy and impact the performance of other applications
running concurrently.

2. The tool may have its own dependencies that now need to be included in the app or
installed into the current system. Think Pysmells, Pyjoule etc.

20.2 Effects on the Installed Systems

1. Existing systems may need to be evaluated for compatibility with the new tool. Older
versions of Python or other needed dependencies may not support the tool.

40

2. The refactoring process could lead to variations in the performance of existing appli-
cations

3. As the tool updates existing code, thorough testing will be needed to ensure everything
still works correctly. This may require more effort from QA teams and additional time
and resources to check the updated code.

20.3 Potential User Problems

1. Users may face difficulties in understanding how to effectively utilize the tool, particu-
larly if they are not familiar with concepts like code smells and refactoring techniques.
This learning curve may lead to initial frustration or reduced productivity.

2. Some users may be resistant to adopting new tools or processes, particularly if they
perceive the existing workflows as sufficient. This resistance could hinder the tool’s
successful implementation and limit its overall effectiveness.

3. Users may misinterpret the output reports generated by the tool, such as energy savings
or performance metrics. If users do not fully understand how to interpret these results,
it could lead to incorrect conclusions about the tool’s impact on their code.

4. There is a risk that users might become overly reliant on the tool for refactoring
without fully understanding the underlying principles. This could result in poor coding
practices if users do not engage in thoughtful analysis of the suggested changes.

20.4 Limitations in the Anticipated Implementation Environment
That May Inhibit the New Product

1. Limited Computational Resources: Environments with restricted computational
power may face challenges when running the tool, especially for large codebases. Lim-
ited resources could result in longer processing times or failures during analysis and
refactoring.

20.5 Follow-Up Problems

1. Ongoing Maintenance: The tool will need regular updates to stay compatible with
new programming languages or standards, adding to the workload.

2. Performance Trade-offs: Users may find that while some refactorings improve en-
ergy efficiency, they could negatively impact other performance metrics, such as exe-
cution speed.

41

21 Tasks

21.1 Project Planning

e Development Approach The team will use an agile development approach with the
following high-level process:

Initial requirements gathering and product backlog creation

Sprint planning and execution

Regular testing and quality assurance

Stakeholder reviews and feedback

Iterative refinement

o O W N

Release planning and deployment
e Key Tasks

— Form cross-functional development team (already completed)
— Create initial product backlog and prioritize features

— Set up development environments and tools

Establish CI/CD pipeline using GitHub Actions

— Develop core functionality:

* Determine code smells to address for energy-saving
*x Implement code smell detection

*

Develop appropriate refactorings for detected smells
x Measure energy consumption before and after refactoring

— Build out additional features iteratively
— Conduct regular testing (unit, integration, user acceptance)

— Refine based on stakeholder feedback

— Present final solution to stakeholders
e Timeline Estimate

— Requirements Document (Revision 0): October 9th, 2024

— Hazard Analysis (Revision 0): October 23rd, 2024

— Verification & Validation Plan (Revision 0): November 1st, 2024
— Proof of Concept: November 11th-22nd, 2024

— Design Document (Revision 0): January 15th, 2025

Project Demo (Revision 0): February 3rd-14th, 2025

Final Demonstration: March 17th-30th, 2025

42

— Final Documentation: April 2nd, 2025
— Capstone EXPO: TBD

¢ Resource Estimates The team consists of 5 members who will all function as devel-
opers, sharing responsibilities for creating issues, coding, testing, and documentation.

¢ Key Consideration

— Data migration may be necessary for existing systems
— A phased development approach will help minimize major setbacks

— Regular stakeholder involvement will ensure alignment with business needs
e Documentation Process

— Pull changes from docs (epic documentation branch)

Create a working branch with format [main contributor name|/[descriptive topic]
— Commit changes with descriptive names

— Create unit tests for changes

— Create a pull request to merge changes into an epic branch

— Wait for all tests run with GitHub Actions to pass

— Wait for at least two approvals from teammates

— Merge changes into the target branch

By following this agile approach and development process, the team aims to deliver a high-
quality product iteratively while maintaining flexibility to adapt to changing requirements

21.2 Planning of the Development Phases
The planning of the development phases is based on the deliverables submissions as follows:
1. Requirements Phase

e Deliverable: Requirements Document (Revision 0)
e Due Date: October 9th, 2024

2. Risk Assessment Phase

e Deliverable: Hazard Analysis (Revision 0)
e Due Date: October 23rd, 2024

3. Verification and Validation Planning

e Deliverable: Verification & Validation Plan (Revision 0)
e Due Date: November 1st, 2024

43

. Proof of Concept Implementation
e Period: November 11th-22nd, 2024
. Design Phase

e Deliverable: Design Document (Revision 0)
e Due Date: January 15th, 2025

. Initial Implementation and Demo

e Deliverable: Project Demo (Revision 0)
e Period: February 3rd-14th, 2025

. Final Implementation and Testing

e Deliverable: Final Demonstration
e Period: March 17th-30th, 2025

. Project Closure

e Deliverable: Final Documentation
e Due Date: April 2nd, 2025

. Project Presentation

e Event: Capstone EXPO
e Date: TBD

22 Migration to the New Product

22.1 Requirements for Migration to the New Product

The migration to the new tool will involve minimal disruption to existing workflows, as the
product is designed to integrate seamlessly with Visual Studio Code. Developers will be
able to continue using their current workflows, with the addition of the refactoring tool as
a library that can be installed directly via Python’s package manager (pip) and an IDE
plugin for an enhanced development experience. The minimal installation and integration
requirements ensure ease of adoption for developers without needing to overhaul existing

infrastructure or processes.

e Installation Phase: Developers can install the refactoring library directly using pip:
pip install ecooptimizer The IDE plugin can be installed by users through the

Visual Studio Code Extensions marketplace.

e Parallel Running: There is no need for a phased implementation or parallel running
of old and new systems. The tool can be directly integrated without affecting existing

code or infrastructure.

44

e Manual Backups: Since the tool does not alter data without the user approval, no
manual backups are required before installation.

e Phased Rollout: If required, developers can start using the IDE plugin first, followed
by the packaged version of the tool which will be installed using pip.

22.2 Data That Has to be Modified or Translated for the New
System

Not Applicable

23 Costs

The total cost of developing this project is primarily based on the effort involved by the
development team, given that the tools and platforms used (GitHub, open-source libraries)
are free. The project must be completed within the academic year (MVP ready by February
2025), which warrants smart planning and efficient resource allocation.

23.1 Metrics for Estimation

To estimate the total cost in terms of time and effort, the following key metrics have been
considered:

e Number of input/output flows for the system.

e Number of business events.

Number of product use cases.

Number of functional and non-functional requirements.

Number of constraint requirements.

23.2 Estimation Approach

Each deliverable has been assessed to estimate the time it will take to implement based on
the development environment. Early cost estimates are based on general knowledge of the
system and refined as the team gradually gets a better understanding of the scope.

23.3 Cost Breakdown

e Development Effort: Based on the team size and project timeline, following time
allocation is estimated:

— Initial Research & Setup: 50 hours per team member.

— Core development (e.g., refactoring tool, plugin): 300 hours per team member.

45

— Testing and debugging: 80 hours per team member.
— Documentation & finalization: 100 hours per team member.

— Total estimated effort: 530 hours per team member.
e Tools and Software:

— Open-source libraries: No associated costs.
e Testing Environment:

— The testing of the refactoring tool and energy consumption measurements is
planned to be carried out using free tools on open source projects, with no addi-
tional cost expected.

23.4 Estimated Cost

The above discussion indicates that the total effort will be approximately 2650 team hours
spread across the project phases. These estimates could be refined using more detailed
information as the project progresses.

24 User Documentation and Training

24.1 User Documentation Requirements

1. User Manual

e Purpose: Provide comprehensive guidance on how to use the refactoring plugin
in VSCode

e Target Audience: Software developers integrating the library into their projects

e Content: Installation instructions, API references, usage examples, and best
practices

24.2 Training Requirements

For end-users, formal training is not required. The tool is designed to be simple and intuitive,
with the assumption that primary users with experience in Python and software develop-
ment will have the necessary technical expertise to use the plugin tool effectively. The plugin
tool operates through clear, well-documented interfaces and requires minimal setup, allowing
users to quickly incorporate it into their workflow without additional training.

Furthermore, the tool will come with comprehensive user documentation that includes step-
by-step instructions on how to set up, integrate, and use the library within their existing
development processes. This documentation will provide examples of common use cases and
a clear explanation of the features of the tool, ensuring that users can get started easily and
efficiently.

46

25 Waiting Room

This section lists potential features and enhancements that are not critical for the initial
release of the system but may be considered for future updates. These ideas represent
additional functionalities that could improve the tool’s performance, user experience, or
integration with other systems.

WTRM 1.

WTRM 2.

WTRM 3.

WTRM 4.

WTRM 5.

The IDE plugin must provide interactive tips and progress indicators to guide
users during the refactoring process.

Rationale: This helps prevent user confusion during the refactoring process and
enhances the user experience by providing clear, real-time feedback.

Fit Criterion: Tips and progress indicators display automatically when users
initiate a refactoring action in the VSCode interface.

Priority: Medium

The tool must provide automated error reporting with user consent.

Rationale: Automated error reporting helps developers quickly identify and
address issues, improving the tool’s reliability and reducing downtime with an
option to include additional comments for context.

Fit Criterion: Users are prompted to send error reports when an issue occurs,
Priority: Medium

The tool must allow users to define custom refactoring rules or preferences within
the plugin.

Rationale: This would allow developers more flexibility and control, enabling
them to apply refactorings that best suit their projects while maintaining energy
efficiency.

Fit Criterion: Users can create a configuration file that describes their refac-
toring preferences.

Priority: High

The tool should provide a dashboard that offers deeper insights into refactoring
decisions, showing side-by-side comparisons of energy consumption before and
after refactoring, along with performance metrics.

Rationale: This would help users better understand the impact of refactoring
on both energy consumption and performance.

Fit Criterion: Users are able to access energy metrics for all their projects on
a centralized platform.

Priority: High

The tool show provide a plugin that integrates with multiple popular IDEs and
syncs information across them through a centralized database.

Rationale: Supporting multiple IDEs allows developers to use the tool within
their preferred coding environments, enhancing user experience and adoption.

47

WTRM 6.

WTRM 7.

WTRM 8.

Fit Criterion: Integration guides are provided for each supported IDE, with
successful installation and functionality confirmed through user testing.
Priority: Low

The refactoring library must be able to provide energy efficient refactorings for a
wide variety of program languages (e.g., Java, C/C++, C#, JavaScript, Type-
Sceript, Go, Rust, etc.)

Rationale: Users around the world code projects in multitudes of languages
depending on the context of their work. Being able to refactor in most popular
languages would allow for the widespread usage of the tool.

Fit Criterion: The tool accepts and tailors code from the detected/specified
language.

Priority: Low

A reinforcement learning model must be developed to learn from the most energy-
efficient refactorings and user preferences over time.

Rationale: The model must evolve to improve its refactoring suggestions by
identifying patterns in energy-efficient code transformations and user preferences.
By adapting its recommendations, the system will refine its ability to balance en-
ergy savings with maintainability and user preferences.

Fit Criterion: The reinforcement learning model is trained using gathered refac-
toring data and energy consumption measurement. Over multiple iterations, the
model should improve its ability to predict refactorings that maximize energy
efficiency while aligning with user choices.

Priority: Medium

The reinforcement learning model for the tool should accept human feedback in
the reinforcement learning process.

Rationale: This will allow users to guide the system’s refactoring decisions based
on developer expertise and preferences. Moreover, it will balance automated
refactoring with human oversight to ensure that complex refactoring decisions
align with the project’s goals and constraints.

Fit Criterion: The language model accepts human feedback and incorporates
it into its future decisions.

Priority: Medium

26 Ideas for Solution

In this section, we capture various ideas for implementing the project requirements. These
ideas provide technical approaches and methods for achieving the energy-efficient refactoring
of Python code through the refactoring tool and IDE integration. By capturing these ideas
now, we ensure that potential technical approaches are not lost and can be referred to during
the design and development phase.

48

e Refactoring Library Implementation via AST Parsing: Use Python’s built-in
ast (Abstract Syntax Tree) module to analyze code structure. The refactoring library
can traverse the AST to detect inefficiencies and apply refactorings without modifying
code functionality.

e IDE Plugin for Refactoring — Leveraging VS Code API: Build an extension
for Visual Studio Code that hooks into the editor’s event system to provide real-time
refactoring suggestions.

49

Appendix — Reflection

1. What knowledge and skills will the team collectively need to acquire to successfully complete
this capstone project?

e Learn how reinforcement learning works as well as how to incorporate it into our
project.

e Understanding of Python’s performance characteristics and common code smells

e Experience in using libraries like rope for automated refactoring and familiarity with
integrating linters such as Pylint or Flake8 into the development workflow.

e Ability to develop algorithms that analyze and compare different refactoring strate-
gies, using tools like PyJoule for energy profiling.

e Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed
using these languages.

2. (team) For each of the knowledge areas and skills identified in the previous question, what
are at least two approaches to acquiring the knowledge or mastering the skill?

e Learn how reinforcement learning works as well as how to incorporate it into our
project.
— Watch online courses on reinforcement learning.
— Read articles/books teaching reinforcement learning.

— Look through open source python projects that use reinforcement learning tools
such as PyTorch or TensorFlow.

— Read through the documentation for reinforcement learning tools.
e Understanding of Python’s performance characteristics and common code smells.
— Enrol in courses like Effective Python or Python Performance Optimization on
platforms like Coursera, edX, or Udemy.

— Work on real-world projects or contribute to open-source Python projects. Reg-
ular code reviews with a focus on performance will help identify common code
smells and inefficiencies.

o Ezxperience in using libraries like rope for automated refactoring and familiarity with
integrating linters such as Pylint or Flake§ into the development workflow.

— Set up a personal or team-based project that uses rope for refactoring and in-
tegrates linters (Pylint or Flake8). Experimenting with these tools in a real
project will provide direct experience with their workflows and limitations

— Read through documentation for the tools.

— Follow comprehensive tutorials or attend workshops focused on Python tooling.

o Ability to develop algorithms that analyze and compare different refactoring strate-
gies, using tools like PyJoule for energy profiling.

50

— Conduct research on energy-efficient algorithms and their application in Python
refactoring. Experiment with PyJoule to analyze the energy impact of different
code structures.

— Work under the guidance of a mentor or collaborate with experts in energy-
efficient computing.

e Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed
using these languages.

— Practise by building simple VS Code extensions using JavaScript or TypeScript
using tutorials on YouTube.

— Take online courses specifically tailored to JavaScript or TypeScript for extension
development

2. (Individual) Of the identified approaches, which will each team member pursue, and why
did they make this choice?

Ayushi Amin Reflection

Learn how reinforcement learning works as well as how to incorporate it into our project.

I would choose looking through open-source Python projects that use reinforcement learning
tools like PyTorch or TensorFlow. It lets me see real-world applications, understand how
others are using reinforcement learning, and gives me concrete examples to work with,
which helps me learn more effectively through hands-on experience.

Understanding of Python’s performance characteristics and common code smells.

I would go with practical experience, contributing to open-source projects, where I can
directly apply performance optimizations and get feedback through code reviews. Real-
world application will help cement these concepts better.

Experience in using libraries like rope for automated refactoring and familiarity with inte-
grating linters such as Pylint or Flake8 into the development workflow.

I would go for hands-on implementation in my projects. I learn best by doing, so I would
set up a project where I can integrate rope for refactoring and Pylint or Flake8 for linting.
This would give me a chance to really see how these tools fit into the development process,
and I could refine my setup as I work.

Ability to develop algorithms that analyze and compare different refactoring strategies, using
tools like PyJoule for energy profiling.

I would prefer diving into the research around energy-efficient algorithms and then trying
things out with PyJoule. I enjoy exploring new tools and methods, so experimenting with
how different code changes affect energy use would be a good challenge for me.

Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed using
these languages.

51

I like learning by creating, so I would build an extension right away. This way, I would get
immediate experience with JavaScript and TypeScript while learning the VS Code extension
framework.

Mya Hussain Reflection

To advance my skills for the capstone project, I plan on deepening my understanding of
Python’s performance characteristics and common code smells while leveraging my exist-
ing knowledge of Python. I plan to read up on different potential code smells, detection
methods and possible refactoring remedies and immediately apply these insights to help de-
velop a proof of concept (POC) for our project. For mastering refactoring tools like Rope
and integrating linters such as Pylint and Flake8, I will set up a local project environment
to experiment with these tools specifically for our POC. Additionally, I'll explore energy-
efficient algorithms and use PyJoule to analyze how different refactoring strategies impact
performance in our specific context. To enhance my proficiency in JavaScript or TypeScript
for developing VS Code extensions, I plan on watching online tutorials and perhaps take an
online Javascript/Typescript course as it has been a while since I have been familiar with
the syntax. I will also watch tutorials on how to set up a VSCode extension as this project
will be my first time doing it. I'm very excited to start coding up a POC and move on from
the documentation stage. With every requirement we write the team feels more and more
pressure to make sure our idea will work. It’s hard to write so much about a product that
doesn’t yet exist without having the proof that it can exist. Or at least my mind is having
a hard time writing so much about what currently is an empty repository.

Tanveer Brar Reflection

Learn how reinforcement learning works as well as how to incorporate it into our project.

I plan to watch online courses on reinforcement learning. I prefer learning visually whenever
possible. Since this is a fairly new concept for me, I think online courses would be the best,
providing a mix of lectures and self-assignments. A lot of courses also provide access to an
online learning community which is perfect for a beginner like me.

Understanding of Python’s performance characteristics and common code smells.

For this, I will contribute to open source Python projects. Live projects are a good way to
expose to practical coding challenges related to performance and code smells. It will also
allow me to learn from more experience contributors and spot common code smells so that
I can write scalable and efficient Python code.

FExperience in using libraries like rope for automated refactoring and familiarity with inte-
grating linters such as Pylint or Flake8 into the development workflow.

I will follow comprehensive tutorials to get experience in using Rope for automatic refac-
toring. Comprehension tutorials provide guided experience with Python tooling, helping
to explore features of tools like Rope, Pylint, and Flake8 in-depth. The tutorials are struc-
tured, therefore helping to quickly gain familiarity with functionality and usage in real-world
scenarios.

92

Ability to develop algorithms that analyze and compare different refactoring strategies, using
tools like PyJoule for energy profiling.

For this I will conduct research on energy-efficient algorithms and their application in
Python refactoring. This will give me the option to follow a hands-on approach which
allows for comparing different strategies and asses their energy consumption in multiple
scenarios.

Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed using
these languages.

For this I will practise building simple VS Code extensions using JavaScript or TypeScript
through YouTube tutorials. It can help me gain hands-on experience with the languages
in a real-world context. These practical exercises can be used to not only solidfiy my
understanding of JavaScript/TypeScript but also familiarize me with how these languages
are used to create functional VS Code extensions, enhancing both my coding skills and
extension development proficiency.

Sevhena Walker Reflection

Learn how reinforcement learning works as well as how to incorporate it into our project.

For this topic, I plan on watching online courses and tutorials since it’s a subject I have
basically no experience in. Watching videos is the better option for me in this case since
having someone explain the knowledge and providing examples will allow me to grasp the
material faster.

Understanding of Python’s performance characteristics and common code smells.

I believe reading articles and going through documentation will be best for me for this topic.
I already have a good base in programming and Python specifically so written documents
will allow me to digest the new information at my own pace.

Experience in using libraries like rope for automated refactoring and familiarity with inte-
grating linters such as Pylint or Flake8 into the development workflow.

When it comes to libraries and modules, I tend to fare well by just reading the documen-
tation and looking over code examples using those tools.

Ability to develop algorithms that analyze and compare different refactoring strategies, using
tools like PyJoule for energy profiling.

For this topic, experimentation will be my best option as it is not really a matter of learning
something completely new but applying a new tool in a known environment.

Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed using
these languages.

I already have some experience working with those languages, so I will only need to refer
to the documentation for the occasional refresher on syntax and such.

53

Nivetha Reflection

Learn how reinforcement learning works as well as how to incorporate it into our project.

I prefer to look through open source Python projects that use reinforcement learning tools
to get used to it. While documentation and tutorials are readily available online whenever
I need to reference them, I'm interested in seeing how tools such as PyTorch are applied
in a live project so that I can get a clear understanding of their use. If possible, I will also
contribute to these open source projects to implement these tools in a side project before
doing for the capstone. This way I can be ready to implement in our project.

Understanding of Python’s performance characteristics and common code smells.

I will enrol in online courses since they include structured learning for these tools to optimize
Python code. These courses also include hands on exercises that I can practice solidifying
my skills for identifying performance bottlenecks and avoiding code smells.

Experience in using libraries like rope for automated refactoring and familiarity with inte-
grating linters such as Pylint or Flake8 into the development workflow.

I plan to follow comprehensive tutorials as these can break down complex topics into man-
ageable subtopics, therefore helping in gradually building experience in these libraries. 1
can follow them at my own pace, so I have time to both experiment and troubleshoot. This
way I can fully grasp the process of integrating these into Python projects.

Ability to develop algorithms that analyze and compare different refactoring strategies, using
tools like PyJoule for energy profiling.

I plan to conduct research on analyzing the energy impact on various code structures using
PyJoules. This way I can gather data to make informed refactoring decisions. This also
opens up the opportunity to develop more efficient algorithms that can optimize perfor-
mance and energy usage in Python applications.

Proficiency in JavaScript or TypeScript, as most VS Code extensions are developed using
these languages.

Taking online courses tailored to JavaScript or TypeScript for extension development would
give me a deeper understanding of how these languages are used in developing VS Code
extensions. These focused courses include key concepts and best practices, helping me
quickly become comfortable in the exact skills needed for extension development.

o4

References

Lotfi Belkhir and Ahmed Elmeligi. Assessing ict global emissions footprint: Trends
to 2040 and recommendations. Journal of Cleaner Production, 2018. URL
https:/ /www.researchgate.net /publication /322205565 _Assessing_ICT _global_emissions_
footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development .-, ..
- %25%20by %202040%20%5B11%5D %20.

Per Christensson. What is the safe operating temperature range for a computer? PC.net,
2016. URL https://pc.net/helpcenter/safe_temperature range_computer.

Charlotte Freitag and Mike Berners-Lee. The real climate and transforma-
tive impact of ict: A critique of estimates, trends, and regulations. Pat-
terns Volume 2, Issue 9, 2, 2021. doi: 10.1016/j.patter.2021.100340. URL
https://www.sciencedirect.com/science/article/pii/S2666389921001884#:~:text=If%
20the%20ICT %20sector %20should, these%20sectors%20will %20have%20to.

R. Pereira, P. Dixit, M. Rubio-Gonzalez, and C. Rubio-Gonzalez. Energy efficiency across
programming languages: How do energy, time, and memory relate? In Proceedings of the
10th ACM SIGPLAN International Conference on Software Language Engineering, pages
256-267, 2017. doi: 10.1145/3136014.3136031. URL https://doi.org/10.1145/3136014.
3136031.

%)

https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://pc.net/helpcenter/safe_temperature_range_computer
https://www.sciencedirect.com/science/article/pii/S2666389921001884#:~:text=If%20the%20ICT%20sector%20should,these%20sectors%20will%20have%20to
https://www.sciencedirect.com/science/article/pii/S2666389921001884#:~:text=If%20the%20ICT%20sector%20should,these%20sectors%20will%20have%20to
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031

	Purpose of the Project
	User Business
	Goals of the Project

	Naming Conventions and Terminology
	Glossary of All Terms, Including Acronyms, Used by Stakeholders involved in the Project

	Stakeholders
	Client
	Customer
	Other Stakeholders
	Hands-On Users of the Project
	Personas
	Priorities Assigned to Users
	User Participation
	Maintenance Users and Service Technicians

	Mandated Constraints
	Solution Constraints
	Implementation Environment of the Current System
	Partner or Collaborative Applications
	Off-the-Shelf Software
	Anticipated Workplace Environment
	Schedule Constraints
	Budget Constraints
	Enterprise Constraints

	Relevant Facts And Assumptions
	Relevant Facts
	Business Rules
	Assumptions

	The Scope of the Work
	The Current Situation
	The Context of the Work
	Work Partitioning
	Specifying a Business Use Case (BUC)

	Business Data Model and Data Dictionary
	Business Data Model
	Data Dictionary

	The Scope of the Product
	Product Boundary
	Product Use Case Table
	Individual Product Use Cases (PUC's)
	System State Diagram

	Functional Requirements
	Functional Requirements

	Look and Feel Requirements
	Appearance Requirements
	Style Requirements

	Usability and Humanity Requirements
	Ease of Use Requirements
	Personalization and Internationalization Requirements
	Learning Requirements
	Understandability and Politeness Requirements
	Accessibility Requirements

	Performance Requirements
	Speed and Latency Requirements
	Safety-Critical Requirements
	Precision or Accuracy Requirements
	Robustness or Fault-Tolerance Requirements
	Capacity Requirements
	Scalability or Extensibility Requirements
	Longevity Requirements

	Operational and Environmental Requirements
	Expected Physical Environment
	Wider Environment Requirements
	Requirements for Interfacing with Adjacent Systems
	Productization Requirements
	Release Requirements

	Maintainability and Support Requirements
	Maintenance Requirements
	Supportability Requirements
	Adaptability Requirements

	Security Requirements
	Access Requirements
	Integrity Requirements
	Privacy Requirements
	Audit Requirements
	Immunity Requirements

	Cultural Requirements
	Cultural Requirements

	Compliance Requirements
	Legal Requirements
	Standards Compliance Requirements

	Open Issues
	Off-the-Shelf Solutions
	Ready-Made Products
	Reusable Components
	Products That Can Be Copied

	New Problems
	Effects on the Current Environment
	Effects on the Installed Systems
	Potential User Problems
	Limitations in the Anticipated Implementation Environment That May Inhibit the New Product
	Follow-Up Problems

	Tasks
	Project Planning
	Planning of the Development Phases

	Migration to the New Product
	Requirements for Migration to the New Product
	Data That Has to be Modified or Translated for the New System

	Costs
	Metrics for Estimation
	Estimation Approach
	Cost Breakdown
	Estimated Cost

	User Documentation and Training
	User Documentation Requirements
	Training Requirements

	Waiting Room
	Ideas for Solution

