
Hazard Analysis

Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

Table 1: Revision History

Date Developer(s) Change

25 October 2024 All Created initial revision of Hazard Analysis
29 December 2024 Tanveer Brar Updated critical assumptions based on peer review feedback
January 3rd, 2025 Sevhena Walker Added Symbolic Constants, clarified boundaries of system,

expanded recommended actions for HZ-13, adjusted failure mode
for HZ-15

March 24th, 2025, Sevhena Walker Updated system boundary and components
March 24th, 2025, Mya Hussain Updated FEMA Table
March 24th, 2025, Ayushi Amin Updated SCR Requirements
March 24th, 2025, Mya Hussain Added Plugin Hazards

i

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Hazard Analysis Introduction . 1

2 Scope and Purpose of Hazard Analysis 1

3 System Boundaries and Components 1
3.1 Core Modules . 2

3.1.1 Analysis Module . 2
3.1.2 Refactoring Module . 2
3.1.3 Energy Measurement Module . 2

3.2 Visual Studio Code Extension . 2

4 Critical Assumptions 3

5 Failure Mode and Effect Analysis 4

6 Safety and Security Requirements 1

7 Roadmap 3

ii

1 Introduction

1.1 Problem Statement

The Information and Communications Technology (ICT) sector is currently responsible for approximately
2-4% of global CO2 emissions, a figure projected to rise to 14% by 2040 without intervention (Belkhir and
Elmeligi, 2018). To align with broader economic sustainability goals, the ICT industry must reduce its CO2
emissions by 72% by 2040 (Freitag and Berners-Lee, 2021). Optimizing energy consumption in software
systems is a complex task that cannot rely solely on software engineers, who often face strict deadlines and
busy schedules. This creates a pressing need for supporting technologies that help automate this process.
This project aims to develop a tool that applies automated refactoring techniques to optimize Python code
for energy efficiency while preserving its original functionality.

1.2 Hazard Analysis Introduction

A hazard is defined as a property or condition in the system, combined with a condition in the environ-
ment, that has the potential to cause harm or damage—referred to as loss (Leveson, 2021). In software
development, hazards can take various forms beyond just safety hazards, including security risks, usability
challenges, incorrect inputs, or technical limitations like lack of internet connectivity.

This project focuses on developing an automated tool to refactor Python code for energy efficiency while
preserving its original functionality. While this initiative holds significant potential for reducing CO2 emis-
sions in the Information and Communications Technology (ICT) sector, it also introduces various hazards.
These hazards could arise from technical shortcomings, ethical challenges, or the inadvertent introduction
of new problems during the refactoring process. This hazard analysis aims to identify and assess these risks
to ensure the successful development and adoption of the tool.

2 Scope and Purpose of Hazard Analysis

The scope of this hazard analysis covers the potential risks and losses associated with the automated refac-
toring tool throughout its lifecycle. The primary hazards include:

• Technical Failures: Inaccurate refactorings, undetected code smells, or energy optimization that
does not meet its intended goals could result in performance issues or loss of functionality.

• Security Risks: The automated nature of the tool may introduce security vulnerabilities, particularly
if the refactorings unintentionally affect the security posture of the original code.

• User Insensitivity: If the tool is not designed with the users in mind, it could disrupt developer work-
flows or lead to the rejection of the tool. This can result in loss of productivity or missed opportunities
for energy efficiency.

• External Conditions: The tool’s dependency on environmental factors, such as the availability of
internet connection or access to third-party libraries, could limit its usefulness in certain scenarios.
This can lead to delays or failures in the refactoring process.

The purpose of this analysis is to identify these hazards, assess their potential impact, and outline
strategies for mitigating them. By doing so, we aim to prevent losses related to time, resources, security,
and the overall effectiveness of the tool, ensuring that it contributes positively to reducing the ICT sector’s
energy consumption and CO2 emissions.

3 System Boundaries and Components

The system consists of three core modules integrated through a Visual Studio Code extension that serves as
the primary user interface. All components operate locally on the user’s machine without external depen-
dencies.

1

3.1 Core Modules

3.1.1 Analysis Module

• Purpose: Statically analyzes entire Python files to detect energy-inefficient code patterns

• Key Functions:

– Implements smell detection per requirement FR-2

– Outputs detection results

• Integration: Receives complete files and smell configuration from VS Code extension

3.1.2 Refactoring Module

• Purpose: Applies energy-saving transformations to address detected inefficiencies

• Key Functions:

– Generates refactored code versions per requirement FR-3

– Coordinates with Energy Measurement Module

– Outputs refactored code and energy metrics

3.1.3 Energy Measurement Module

• Purpose: Quantifies energy consumption using codecarbon

• Key Functions:

– Measures original and refactored code energy use

3.2 Visual Studio Code Extension

• Role: Primary user interface and system orchestrator

• Key Functions:

– Receives complete Python files from user workspace

– Displays detected smells with configurable visuals (FR-12)

– Allows triggering of refactoring operations (FR-16)

– Presents side-by-side refactoring comparisons (LFR-AP 1)

– Allows accept/reject decisions for changes (FR-16)

– Displays energy metrics and savings (FR-6)

User VS Code Extension

Analysis Module Refactoring Module Energy Measurement

Python files

File analysis

Detected smells Energy metrics

Refactoring options

User decisions

Figure 1: System component interaction diagram showing communication pathways

2

4 Critical Assumptions

• The Energy Measurement Model will provide accurate and consistent energy consumption metrics
across different platforms (Windows, macOS, Linux). There are no discrepancies in measurements due
to platform differences that could result in ineffective refactoring.

• The Refactoring Module solely identifies code smells that are validated by the development team’s
testing to reduce energy consumption. The module will not refactor the code smell if it is determined
that the change will not result in measurable energy savings for the specific code being refactored.

• Custom-made refactoring strategies and Rope are capable of generating effective and correct refactor-
ings.

• Users of the tool are experienced Python developers with knowledge of code refactoring and software
optimization. Basic proficiency in programming is expected to navigate the tool and its features
effectively.

• The tool will be used in a development environment, such as individual developer machines or a non-
production remote repository, where configurations can be adjusted as needed. Stability and scalability
requirements for large-scale production use are not assumed.

• The tool assumes that users act in good faith and use the system as intended. Potential hazards from
malicious misuse (for example, injecting harmful code or exploiting refactoring logic) are considered
out of scope for the current version but may be addressed in future versions.

• The tool assumes limited concurrent usage during energy measurement operation as simultaneous
execution of resource-intensive processes could impact energy consumption metrics.

3

5 Failure Mode and Effect Analysis

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref

E
n
e
rg

y
M

e
a
su

re
m
e
n
t

Background tasks could
be incorrectly included in
energy measurement.

Background tasks that
are not related to the
Python code under
refactoring could skew
the overall result for
consumed energy. This
could:

• skew the energy
consumption metrics and
mislead users.

• produces refactorings
that do not save energy
due to faulty
measurement.

The Energy Measurement
Module lacks a filtering
mechanism to isolate the
specific Python code
snippet being refactored.
This allows unrelated
background tasks or idle
processes to be included
in the overall energy
measurement.

Use process-level tracking to
distinguish between the
Python code under refactoring
and unrelated background
tasks.

SCR-1 HZ 1

Table continues on next page

4

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref
E
n
e
rg

y
M

e
a
su

re
m
e
n
t

The Energy Measurement
Module does not provide
energy consumption data
in a timely manner

• User experiences delays
in receiving energy
consumption feedback,
which can slow down
their refactoring process.

• The tool may be
considered inefficient by
users, potentially causing
them to not adopt it.

• Computational
overhead in the Energy
Measurement Module

• Delays in accessing low
level hardware
components that are
needed for energy
measurement

• Investigate CodeCarbon’s
configuration options to find a
balance between accuracy and
performance based on the size
and complexity of the code
being refactored.

• Implement parallel
processing to measure energy
consumption and run code
smell detection
simultaneously. This can
reduce the overall time by
allowing energy measurements
to be done without holding up
other tasks.

• Implement a graceful
timeout mechanism if
CodeCarbon takes too long to
respond.

• Provide users with an
estimated time for completion
so they are aware of ongoing
measurements if energy
measurement exceeds a set
time.

SCR-1,
SCR-8

HZ 2

Table continues on next page

5

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref
E
n
e
rg

y
M

e
a
su

re
m
e
n
t

The energy measure
module does not provide
any data at all

Refactoring fails due to
no energy metrics
available for validation of
changes

• The system does not
have the necessary
administrative or
system-level permissions
to access energy-related
data, especially in cloud
environments

• The energy
measurement process
might be too slow,
resulting in timeouts or
delays that cause no
metrics to be reported
within the expected time
frame.

• Ensure the software has
sufficient permissions to access
low-level system metrics, such
as power usage, and grant
administrative privileges if
needed.

• Increase the allowed time
frame for measurements to
complete

• Implement a functionality
in the system that allows that
prompts the user with a
request to pause the
refactoring process and restart
at the same point when the
system is less busy

SCR-1,
SCR-3,
SCR-7,
SCR-8

HZ 3

R
e
fa
c
to

ri
n
g

Incorrect refactorings
suggestions were given • Refactored code

increases the energy
consumption instead of
reducing it.

• Functionality of
refactored code is not
consistent from that of
the original code.

• Refactoring logic
misses some edge cases.

• Refactoring module
creates syntactically
incorrect code.

Validate the changes by
verifying energy consumption
statistics before applying
changes to the code by adding
validation rules

SCR-2 HZ 4

A memory leak occurs
during the refactoring
process

• Gradual increase in
memory usage leading to
application lagging,
crashing or freezing

• Poor memory
management during the
refactoring process

Implement automatic garbage
collection or memory
de-allocation after each
refactoring step

SCR-6 HZ 5

Table continues on next page

6

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref

The refactoring improves
energy efficiency but
degrades other
performance metrics like
speed or memory usage

• The software becomes
slower or uses more
memory, which could
counteract the benefits of
energy optimization.

• Poor trade-offs made
by the refactoring
algorithm between energy
efficiency and other
performance factors.

Implement multifactor
optimization, balancing
energy efficiency with other
performance metrics. If this is
not possible inform the user of
potential degradation when
suggesting at-risk refactorings.

SCR-2 HZ 6

R
e
fa
c
to

ri
n
g

The refactoring tool
modifies code that relies
on external libraries,
causing incompatibility
with these libraries.

• Code fails to execute or
produces unexpected
behaviour due to altered
interactions with
third-party libraries.

• Lack of awareness of
how certain refactorings
impact external
dependencies, especially
with complex or
dynamically loaded
libraries.

Implement a detection
mechanism that identifies
external library dependencies
and exempts them from
refactorings unless explicitly
requested by the user.

SCR-4 HZ 7

The tool accesses or
refactors code that
contains sensitive
information (e.g., API
keys, credentials), which
could lead to
unintentional exposure or
mismanagement of this
data.

• Sensitive information
could be mishandled,
leading to potential
security breaches, privacy
violations, or
unauthorized access.

• Refactorings alter or
expose parts of the code
that store or transmit
sensitive data, without
proper checks.

Implement security-focused
static analysis tools that
identify sensitive code sections
and prevent them from being
refactored. Warn users when
refactoring such areas.

SCR-5 HZ 8

E
n
e
rg

y
M

e
a
su

re
m
e
n
t

Incorrect energy
measurements are used
for refactoring decisions,
leading to poor
optimization or
functional errors in the
refactored code.

• Incorrect energy
measurements leading to
suboptimal or erroneous
refactoring decisions.

• Energy inefficiencies or
functional degradation in
the refactored code

Incorrect measurements
of energy usage was
validated and used by
Reinforcement Learning
Model which created
incorrect refactorings.

Introduce validation
mechanisms for energy data
before using it for refactoring
decisions.

SCR-1 HZ 9

Table continues on next page

7

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref
E
n
e
rg

y
M

e
a
su

re
m
e
n
t

Simultaneous refactoring
operations without
proper synchronization
lead to conflicts or
inconsistencies, causing
code instability or
unexpected behavior.

• Conflicts or
inconsistencies arising
from multiple refactoring
operations executed
simultaneously

• Code instability or
unintended behavior in
the refactored codebase

• Lack of synchronization
or conflict resolution
mechanisms for parallel
refactoring

Introduce locking mechanisms
or dependency checks to
ensure safe concurrent
operations.

SCR-9 HZ 10

A
ll

C
o
m
p
o
n
e
n
ts

The system shuts down or
crashes during an ongoing
optimization process.

• Energy Measurement:
Incomplete energy
metrics can result in
inaccurate energy savings
reporting.

• Refactoring: Loss of
progress in ongoing
optimization can lead to
delays.

• Hardware failure,
power outage or
insufficient system
resources

• Unhandled software
exceptions or errors
during the tool’s usage

• Prolonged
measurement operations
that exceed system
capacity

• Implement a checkpointing
mechanism to periodically
save intermediate refactoring
states

• Enable a recovery workflow
to reload saved checkpoints
and resume from the last
recorded state

SCR-1,
SCR-10

HZ-11

P
lu
g
in

U
I

UI displays outdated or
incorrect energy metrics • Users apply suboptimal

refactorings based on
inaccurate data.

• Reduced trust in tool
reliability.

• Cached data not
refreshed in real-time.

• Validation failures in
energy metric updates.

• Implement real-time data
validation and refresh
mechanisms.

• Display timestamps for last
metric update.

SCR-11 HZ-12

Table continues on next page

8

Table 2: FMEA Table

Component Failure Modes Effects of Failure Causes of Failure Recommended Action SR Ref
P
lu
g
in

U
I

Accidental application of
changes without
confirmation

• Unintended code
modifications leading to
functional errors.

• Lack of confirmation
dialogs or undo
functionality.

• Require user confirmation
before applying changes.

• Implement an undo feature
for recent actions.

SCR-12 HZ-13

Inadequate progress
feedback during long
operations

• Users abort processes
prematurely, causing
incomplete refactoring.

• Missing progress
indicators or status
notifications.

• Add progress bars and time
estimates for long operations.

• Provide status updates
(e.g., ”Measuring energy...
75%”).

SCR-13 HZ-14

Inaccessible UI for users
with disabilities • Exclusion of users who

rely on assistive
technologies.

• Non-compliance with
accessibility standards
(e.g., WCAG).

• Ensure keyboard navigation
support.

• Add screen reader
compatibility and alt-text for
visual elements.

SCR-14 HZ-15

Misconfiguration due to
unclear UI • Incorrect refactoring

settings lead to degraded
performance.

• Complex configuration
options without guidance.

• Simplify UI with tooltips
and inline validation.

• Provide preset
configurations for common use
cases.

SCR-15 HZ-16

9

6 Safety and Security Requirements

Symbol Value

LOG THRESH 100%

REFACTOR TEST THRESH 100%

REFACTOR SECURE THRESH 100%

REFACTOR EFFECT THRESH 95%

PERFORM TOL 5%

RUNS THRESH 100%

EDIT THRESH 100%

DETECT ACC 100%

MEM ALERT THRESH 100%

RISK REFACTOR THRESH 100%

ENERGY DELAYS 100%

ENERGY VALID THRESH 100%

TEST TRIAGE THRESH 100%

SAVE TIME 30 sec

MAX DATA LOSS 1%

FAIL SCENARIO THRESH 100%

METRIC REFRESH TIME 2 sec

UNDO ACTIONS 5

PROGRESS UPDATE TIME 5 sec

Table 3: Symbolic Constants

SCR 1. The system shall log all energy consumption metrics with timestamps and indicate which processes
were measured to aid in future analysis and troubleshooting.
Rationale: Detailed logging with timestamps and process attribution ensures accurate energy data
and helps identify delays or misattributions.
Fit Criterion: LOG THRESH of energy analysis logs must include timestamps and process-level
breakdowns of all measured processes.
Associated Hazards: HZ-1, HZ-2, HZ-3, HZ-9, HZ-11
Priority: High

SCR 2. The system shall ensure that all refactored code passes performance metrics such as energy efficiency,
speed, and memory usage.
Rationale: Proper performance checks ensure refactorings improve/maintain performance.
Fit Criterion: REFACTOR TEST THRESH of refactorings must pass tests covering all code paths, and
performance must remain within PERFORM TOL across energy, speed, and memory metrics.
Associated Hazards: HZ-4, HZ-6
Priority: High

SCR 3. The system shall check for necessary system-level permissions to access energy consumption data
and alert users if permissions are missing.
Rationale: Lack of access may lead to failure in energy data retrieval, which can hinder the accuracy
of analysis.
Fit Criterion: RUNS THRESH of runs shall check for and request permissions if required, and alert
the user in case of failures.

1

Associated Hazards: HZ-3
Priority: High

SCR 4. The system shall detect and exempt external library dependencies from refactorings to avoid com-
patibility issues.
Rationale: Modifying external dependencies could lead to system instability or incompatibility
with other tools or frameworks.
Fit Criterion: DETECT ACC detection accuracy for external library code during refactoring.
Associated Hazards: HZ-7
Priority: Medium

SCR 5. The system shall not refactor or alter code containing sensitive information (noted by user), ensur-
ing security is maintained.
Associated Rationale: Refactoring sensitive code may introduce vulnerabilities and compromise
security.
Fit Criterion: REFACTOR SECURE THRESH of refactorings must pass a security check to avoid tam-
pering with sensitive information.
Associated Hazards: HZ-8
Priority: High

SCR 6. The system shall implement memory leak detection during refactoring and alert users if any issues
are detected.
Rationale: Memory leaks may cause system crashes and reduce performance.
Fit Criterion: MEM ALERT THRESH of memory leak incidents should trigger an error alert and
resolution process.
Associated Hazards: HZ-5
Priority: Medium

SCR 7. The system shall require user approval for high-impact refactorings (those modifying more than 50
lines of code) or low-confidence refactorings (based on a ranked list of code smells), providing visi-
bility and oversight for critical changes.
Rationale: Automated decisions could introduce errors without human oversight, and users should
be aware of significant changes.
Fit Criterion: RISK REFACTOR THRESH of refactorings exceeding 50 lines or flagged as low-confidence
by the ranked smell list must require user approval before proceeding.
Associated Hazards: HZ-3
Priority: High

SCR 8. The system shall alert users to any delays or failures in reporting energy consumption, ensuring
transparency in reporting.
Rationale: Users need to be aware of any issues in energy reporting to troubleshoot and resolve
potential problems.
Fit Criterion: ENERGY DELAYS of energy measurement delays or failures must trigger a user alert.
Associated Hazards: HZ-2, HZ-3
Priority: High

SCR 9. The system shall implement synchronization mechanisms to prevent conflicts during concurrent
refactorings, ensuring that refactoring operations do not interfere with each other.
Rationale: Without synchronization, concurrent refactorings could lead to code instability, unin-
tended behavior, or data corruption.
Associated Hazards: HZ-10
Priority: High

SCR 10. The system shall implement a checkpointing mechanism to periodically save the state of the opti-
mization process, including the refactoring progress, energy measurement data, and provide recovery
options in case of a system shutdown or failure.
Rationale: Periodic checkpointing ensures progress is not lost during unexpected system failures,

2

allowing users to resume optimization.
Fit Criterion: The system must save progress at least every SAVE TIME during optimization and
allow recovery with no more than MAX DATA LOSS in FAIL SCENARIO THRESH of failure scenarios.
Associated Hazards: HZ-11
Priority: High

SCR 11. The system shall ensure the UI displays real-time, validated energy metrics.
Rationale: Outdated or incorrect data may lead users to make poor refactoring decisions.
Fit Criterion: All energy metrics must refresh within METRIC REFRESH TIME of measurement com-
pletion, and timestamps must be visible.
Associated Hazards: HZ-12
Priority: High

SCR 12. The system shall require user confirmation before applying changes.
Rationale: Prevents accidental code modifications and allows users to revert mistakes.
Fit Criterion: 100% of refactoring applications require explicit user confirmation; undo function-
ality supports at least the last UNDO ACTIONS actions.
Associated Hazards: HZ-13
Priority: High

SCR 13. The system shall provide real-time progress feedback for all operations exceeding PROGRESS UPDATE TIME.
Rationale: Transparency during long operations reduces user frustration and prevents premature
termination.
Fit Criterion: Progress bars or status messages must update at least every PROGRESS UPDATE TIME

during lengthy tasks.
Associated Hazards: HZ-14
Priority: Medium

SCR 14. The system shall comply with WCAG 2.1 accessibility standards to ensure usability for individuals
with disabilities.
Rationale: Accessible design ensures equitable access to all users.
Fit Criterion: UI passes automated accessibility audits (e.g., contrast ratios, keyboard navigation).
Associated Hazards: HZ-15
Priority: Medium

SCR 15. The system shall validate user configurations and provide tooltips/presets to prevent misconfigura-
tion.
Rationale: Clear guidance reduces configuration errors that impact refactoring outcomes.
Fit Criterion: 100% of configuration screens include inline validation and tooltips for complex
options.
Associated Hazards: HZ-16
Priority: Medium

7 Roadmap

Requirements that will be implemented during the capstone timeline:

• SCR 1

• SCR 2

• SCR 3

• SCR 4

• SCR 5

• SCR 6

• SCR 9

• SCR 10

• SCR 11

• SCR 12

• SCR 13

• SCR 15

Requirements implemented in the future:

3

• SCR 7: This will be audited on a regular basis which will be a future implementation.

• SCR 8: This can be implemented in the future as it is not a high priority and not the biggest concern
to this project.

4

Appendix — Reflection

Nivetha Kuruparan

1. What went well while writing this deliverable?

While writing this hazard analysis, one thing that went well was identifying missing requirements that
had not been captured in the original SRS document. As we analyzed potential hazards, especially
related to security and communication, it became clear that certain protections—like secure authenti-
cation and making sure we are tracking the correct energy needed more attention. Catching these gaps
allowed us to enhance the system’s robustness and ensure that our requirements addressed both safety
and security concerns comprehensively. This process also helped align our priorities more effectively,
as we were able to associate risks with specific requirements and refine the overall design.

2. What pain points did you experience during this deliverable, and how did you resolve them?

A pain point during this deliverable was mapping out the safety requirements to the identified hazards.
It was challenging to ensure that each requirement accurately addressed specific risks, especially when
certain hazards overlapped or required more nuanced handling. Determining the exact scope of each
safety requirement, while avoiding redundancy, took considerable time and effort. To resolve this, we
revisited the hazard analysis step-by-step, carefully analyzing each potential failure and its impact
on the system, which helped clarify how the requirements should be structured. Collaborating with
the team to cross-check each hazard also helped ensure that we didn’t overlook critical risks or assign
incorrect priorities.

Sevhena Walker

1. What went well while writing this deliverable?

One thing that went really well during the hazard analysis was how it helped me catch issues I’d
originally missed. The structured process made it easier to step back and look at our project from a
different perspective, which helped highlight potential risks I hadn’t thought of before.

2. What pain points did you experience during this deliverable, and how did you resolve them?

I’ll be honest the worst part of this deliverable was formatting the FMEA table in latex. It doesn’t
seem right to talk about pain points without mentioning the one thing that truly had me pulling my
hair out. In terms of the actual content of the deliverable, brainstorming hazards was challenging, but
not exactly a pain. The challenging part was coming up with solution or mitigating actions to counter
those hazards. Some components, like the reinforcement model, I have truly no experience with and
its pretty hard to come up with solutions to risks you have never even experienced, let alone thought
of.

Tanveer Brar

1. What went well while writing this deliverable?

This deliverable was pretty short compared to previous ones but we were still on top of our toes when
it came to planning it within the team. I like that we allowed everyone to pick up topics that interested
them the most and left the key piece of work(FMEA table) to be worked on collaboratively in Overleaf
by everyone. Timely spiliting of the work gave us ample time to finish individual assignments as well
as review other people’s contributions.

2. What pain points did you experience during this deliverable, and how did you resolve them?

The main challenge that I faced was mapping the Failure Modes to appropriate security requirements.
Some of the failure modes that I came up with aligned with the security requirements written previously,
but more content needed to be added to those. To resolve this, I added the additional description needed
for these security requirements for some hazards and created new requirements for others.

5

Mya Hussain

1. What went well while writing this deliverable?

We divided up the work early and were all able to complete sections at our own pace or ahead of time
depending on our midterm schedules. This week was particularly busy because all of us had midterms
so I was able to complete my section during reading week to reduce the capstone workload during the
week. Although I will say it’s a little disappointing that every time we are done on time (which has
been every time so far) the deliverable is extended last minute. I don’t want to complain too much
though because I have a feeling that if I do complain it won’t be extended next time I’d actually like it
to be. So far team dynamics and morale have been good. I appreciate the level of organization we’ve
been able to have so far as it made collaborating so much smoother and has helped everyone stay on
track with our tasks.

2. What pain points did you experience during this deliverable, and how did you resolve them?

Determining which factors qualify as hazards for our analysis was somewhat unclear. A hazard is
defined as anything with the potential to cause harm or loss, yet certain risks may emerge from poor
design, complicating our decision on whether to include them. For example, user interface hazards like
”the tool does not provide clear feedback to the user after refactoring” can technically be classified as
a hazard. While we aim to mitigate team-imposed hazards, it raises the question of whether we should
simply avoid designing a flawed product in the first place, and not include these hazards in the analysis
or if we should do a worst-case analysis and include every possible pitfall. The same argument could
be made for some security hazards for example ”while parsing user input code, the software encounters
malware and executes it,” avoiding this is something a good tool should already have built in, so it
begs the question of ”how bad do we envision our final product when analyzing hazards?” We were
able to get some clarification on this in our TA 1-1 meeting but ultimately tried to keep it high level
so our report didn’t end up being too long.

Ayushi Amin

1. What went well while writing this deliverable?

I think one of the best things about writing this deliverable was how well we collaborated using Overleaf.
It made it super easy to work together on the FMEA table. We divided up the work, so everyone had
their own sections to focus on, but we also helped each other out when needed. This teamwork really
made a difference because we could share ideas and give feedback in real time. Even though we had
midterms this week, which delayed our progress a bit, everything ended up working out. We managed
our time well, and I was impressed with how we all stayed on track despite the busy schedule. It
felt good to see how our combined efforts came together in the final product. Overall, I think our
collaboration really strengthened the quality of our work.

2. What pain points did you experience during this deliverable, and how did you resolve them?

One big challenge I faced was figuring out the difference between general risks and specific hazards for
our project. At first, it was a bit confusing, and we spent some time debating whether certain issues
were specific enough. To resolve this, I looked up examples from other projects, which helped clarify
things for everyone. Overall, even though there were some bumps along the way, working through
these challenges taught me a lot about hazard analysis and teamwork in software development.

Group Answer

3. Which of your listed risks had your team thought of before this deliverable, and which did you think of
while doing this deliverable? For the latter ones (ones you thought of while doing the Hazard Analysis),
how did they come about?

The risks that we had thought of before this deliverable include HZ6, HZ7, HZ9 and HZ10. All
remaining risks(HZ1, HZ2, HZ3, HZ4, HZ5, HZ8, HZ11, HZ12, HZ13, HZ14, HZ15 and HZ16) were
thought of during the deliverable. To come up with ideas, we analyzed the system on a component by

6

component basis in order to identify risks on a granular level(components defined earlier in Section 3 of
this document). Defining critical assumptions before brainstorming the risks helped create a boundary
for lookout for possible things that could go wrong with each component. It is important to note that a
deeper understanding of our dependencies, such as PyJoules for energy measurements, helped identify
possible things that could go wrong when implementing those in their respective modules. We adopted
an iterative approach to the brainstorming, as identifying ground level risks helped to identify other
risks over an entire week of deliberation.

4. Other than the risk of physical harm (some projects may not have any appreciable risks of this form),
list at least 2 other types of risk in software products. Why are they important to consider?

(a) Data Security Risk: Software products are a storehouse of data related to its users. If sensitive
data is exposed to vulnerabilities, it can leads to breaches. This risk is important to consider as
a a breach can harm users as well as the organization’s reputation. Addressing this risk is critical
for maintaining trust and preventing legal battles.

(b) Operational Risk: Live hosted software products are bound to face risks related to live perfor-
mance, such as slow performance and/or system downtime. These are important to consider as
they are post-implementation risks that directly impact system availability to users. This can
impact user productivity and cause financial loss to the organization, which is why they should
be considered.

References

Lotfi Belkhir and Ahmed Elmeligi. Assessing ict global emissions footprint: Trends to 2040 and
recommendations. Journal of Cleaner Production, 2018. URL https://www.researchgate.net/
publication/322205565 Assessing ICT global emissions footprint Trends to 2040 recommendations#:
∼:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20.

Charlotte Freitag and Mike Berners-Lee. The real climate and transformative impact of ict: A critique
of estimates, trends, and regulations. Patterns Volume 2, Issue 9, 2, 2021. doi: 10.1016/j.patter.
2021.100340. URL https://www.sciencedirect.com/science/article/pii/S2666389921001884#:∼:text=If%
20the%20ICT%20sector%20should,these%20sectors%20will%20have%20to.

Nancy Leveson. How to perform hazard analysis on a ‘system-of-systems’. Massachusetts Institute of Tech-
nology, 2021. URL http://sunnyday.mit.edu/SOS-hazard-analysis.pdf. Accessed: 2024-10-16.

7

https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://www.researchgate.net/publication/322205565_Assessing_ICT_global_emissions_footprint_Trends_to_2040_recommendations#:~:text=in%20industrial%20development.-,...,%25%20by%202040%20%5B11%5D%20
https://www.sciencedirect.com/science/article/pii/S2666389921001884#:~:text=If%20the%20ICT%20sector%20should,these%20sectors%20will%20have%20to
https://www.sciencedirect.com/science/article/pii/S2666389921001884#:~:text=If%20the%20ICT%20sector%20should,these%20sectors%20will%20have%20to
http://sunnyday.mit.edu/SOS-hazard-analysis.pdf

	Introduction
	Problem Statement
	Hazard Analysis Introduction

	Scope and Purpose of Hazard Analysis
	System Boundaries and Components
	Core Modules
	Analysis Module
	Refactoring Module
	Energy Measurement Module

	Visual Studio Code Extension

	Critical Assumptions
	Failure Mode and Effect Analysis
	Safety and Security Requirements
	Roadmap

