Development Plan
Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

Table 1: Revision History

Date Developer(s) Change

September 18th, 2024 All Created first draft of document
September 23rd, 2024 All Finalized document




This document outlines the development plan for improving the energy effi-
ciency of engineered software through refactoring. Included are the details
on intellectual property, team roles, workflow structure, and project schedul-
ing. Additionally, the plan covers expected technologies, coding standards, and
proof of concept demonstrations, providing a clear road map for the project’s
progression.

1 Confidential Information?

No confidential information to protect.

2 IP to Protect

The software and associated documentation files for this project are pro-
tected by copyright, can be accessed at this link(referred to as ”License”). The
License does not grant any party the rights to modify, merge, publish, distribute,
sub license, or sell the software without explicit permission .

Unauthorized use, modification, or distribution of the software is prohibited
and may result in legal action.

Permission is granted on a case-by-case basis, non-transferable and non-
exclusive. No rights to exploit the software commercially or otherwise are
granted without prior written consent from the copyright holders.

3 Copyright License

See LICENSE file in root of repository, can be accessed at this link.

4 Team Meeting Plan

The team will meet multiple times a week, once during Monday tutorial
time and throughout the week as issues or concerns arise. The meetings will
be conducted either online through a Teams meeting or in-person on campus.
The team will hold an official meeting with the industry advisor once a week
yet the time has not been decided. The meeting with the advisor will be online
on Teams for the first three weeks, followed by in-person meetings later on.
Meetings itself will be structured as follows:

1. Each member will take turns giving a short recap of work they have ac-
complished throughout the week.

2. Members will voice any concerns or issues they may be facing.

3. Team will form a discussion and make decisions for the project.


https://github.com/ssm-lab/capstone--source-code-optimizer/blob/main/LICENSE
https://github.com/ssm-lab/capstone--source-code-optimizer/blob/main/LICENSE

4. Any/all questions will be documented for the next meeting with the ad-
visor.

The team will go ahead and use Issues on GitHub to add anything they may
want to talk about in the next meeting as the week progresses in order to have
some form of agenda for the next meeting.

5 Team Communication Plan

e Issues: GitHub

Meetings: Microsoft Teams

Meetings (with advisor): Discord Group Chat

¢ Informal Project Discussion: WhatsApp, Discord Server

Formal Project Discussion: Discord Server

6 Team Member Roles

As a team, we will all function as developers, sharing responsibilities for
creating issues, coding, testing, and documentation in the early stages. Specific
roles will be defined as the project evolves, allowing for flexibility and collabo-
ration.

During our scheduled meetings (with the supervisor, within the team, etc.),
we will follow an Agile Scrum structure, incorporating additional roles such as
Scrum Master and Scribe. These roles will rotate weekly, with the Scrum Mas-
ter responsible for organizing and leading the meetings, and the Scribe tasked
with documenting key details. This approach ensures active participation and
shared responsibility amongst team members.

We have chosen not to designate a team leader, as we all possess similar
skills and knowledge. Instead, we aim to work collaboratively to resolve any
challenges that arise.

7 Workflow Plan

The repository will contain two main persistent branches (branching off
main) throughout the project: dev and documentation. These branches,
that we will henceforth call "epic” branches, will be used for technical software
development and documentation changes respectively.

The average workflow for the project will proceed as follows:



1. Pull changes from the appropriate epic branch

2. Create working branch from epic branch with the format [main contrib-
utor name]/[descriptive related to topic of changes]

Create sub-working-branch from previous branch if necessary
Commit changes with descriptive name

Create unit tests for said changes

S ot e W

Create pull request to merge changes from sub/working branch into work-
ing/epic branch

7. Wait for all tests run with GitHub Actions to pass

8. Wait for two approvals from teammates other than the one who created
the Pull request

9. Merge changes into target branch (working or epic)

GitHub Issues will be used to track and manage bugs, feature requests,
and development tasks. Team members can report issues, propose enhance-
ments, and assign tasks to specific individuals. Each issue will be labelled (e.g.,
bug, enhancement, team-meeting) for easy categorisation, linked to relevant
milestones, and tracked through GitHub Project boards. Comments and
code references will be exploited to allow for collaboration and discussion on
potential solutions. Issues will also be integrated with pull requests, so they’ll
automatically close once fixes are merged.

For situations where a certain type of issue is projected to be created at a
steady frequency, templates will be created to facilitate their creation.

Milestones will be used to organize commits and pull requests for major
deliverables. Once all working branches associated to the milestone have been
merged into the appropriate epic branch, the team will go through the relevant
prepared checklist to make sure that all requirements have been met. Once this
is done, the epic branch will be merged into main as one pull request along with
the checklist.

The CI/CD pipeline will be implemented via GitHub to improve automated

testing as well as facilitate the feedback loop for the machine learning models
used by the library. More detailed information will be added later.

8 Project Decomposition and Scheduling

The project is hosted on GitHub under the organization of Sustainable Sys-
tems and Methods (SSM) Lab and can be accessed at this link.


https://github.com/ssm-lab/capstone--source-code-optimizer

The team currently has one GitHub Project setup to serve as a visual tool
not only to track deadlines for all tasks but also for accountability for assigned
tasks. The project can include cards for:

e Issues for course related deliverables
e Lecture and Meeting logs

e Issues for project specific tasks(such as building a certain component).

Schedule

While the development of our system will be broken down into smaller features,
the overall project will follow the following major deadlines.

Milestone Due Date
Problem Statement, Proof of Concept, and De- September 24th, 2024
velopment Plan

Requirements Document (Revision 0) October 9th, 2024
Hazard Analysis (Revision 0) October 23rd, 2024
Verification & Validation Plan (Revision 0) November 1st, 2024
Proof of Concept November 11th-22nd, 2024
Design Document (Revision 0) January 15th, 2025
Project Demo (Revision 0) February 3rd-14th, 2025
Final Demonstration March 17th-30th, 2025
Final Documentation April 2nd, 2025
Capstone EXPO TBD

9 Proof of Concept Demonstration Plan

For context, our POC will consist of roughly the following steps:
1. Determine the code smells we want to address for energy saving.

e List Comprehension in an any or all statement, Member Ignoring
Method, Long Paramter List, Unused Imports, Long Message Chain,
Unused Class Attributes and Variables

2. Determine the detectability of a specific code smell
e These code smells are detectable using Pylint or manual AST parsing.

3. Determine the appropriate refactorings for a particular detected smell that
results in decreased energy consumption.

e We will use codecarbon to measure the emissions of a python code
file. This step will involve various phases of trial and error as it is
not a 1-1 trivial solution. There could be various refactorings possible



for a given situation that all result in different energy consumption
levels. We want our tool to choose the most optimal refactoring
possible. For our POC this can exist as an algorithm. For our final
project we can attempt to implement a neural network to choose
between refactorings. There are also prebuilt free to use libraries we
can implement to perform simple refactorings.

4. Once we determine preset algorithms mapping detected smells to their
appropriate refactorings, we want to then make those changes in the code,
measure the energy consumption and test it against the original code
ensuring it is less.

5. The

code must then ensure that the original code functionallity is pre-

served. If it is not a different refactoring is required.

This can be done by testing the original test suite for the code against
the new one. This original test suite can be a required argument for
the user.

The following is a list of primary risks and how potential results from the POC
could mitigate them.

1. The refactorings we propose may not reduce the code’s energy consump-

tion.

If this occurs the team will have to re-analyze the results, revisit
refactoring strategies and conduct additional testing to ensure that
the proper refactorings are occuring. Code exists in two forms, fully
optimized, and not fully optimized. If it is the later, using a new
strategy should work provided our team has the expertise to find the
correct refactoring. If it is the former the correct use case of our tool
is simply the result that no new optimal refactorings could be found.
This is a valid result for some use cases.

2. Energy is decreased but functionality of the code is modified.

If this occurs then the refactoring we applied was incorrect for the
given code. A new refactoring should occur. Finding valid refactor-
ings can be implemented iteratively, it is okay for the code to get a
couple wrong so long as the final answer is correct. Requiring the
user to submit a test suite for the original code can ensure that the
code is not modified beyond its purpose. We can also add error han-
dling that lets the user be in charge of the refactorings by making
them suggestions instead of absolutes, that allows for the software
engineer to have more control over what their final code looks like.

Other smaller risks for our tool include:



e Integration challenges: Challenges adding our tool to people’s CI/CD
pipelines. What should that look like? How can we make it as acces-
sible as possible?

— Potential answer: If we make a plugin we should try and make it
compatible with a widely used IDE.

e Software developers not wanting to adopt energy saving into their code
bases. How can we make it as user friendly as possible?

— Potential answer: Ease of use and the success of the tool will be the
primary factors in it’s use. For corectness we can ensure we have
thorough testing to ensure the tool works as promised. For user
experiences we can conduct small trials or focus groups seeing what
people prefer.

e Code performance issues: A lot of code choices are tradeoffs. Are there
situations in which we would be decreasing runtime or performance to
achieve a better energy output? If so what consequences does this have?

— Potential answer: Allowing the tool to act as a suggestion rather than
a hard refactor and giving the developer the choice to undo changes
could help the engineer have more control over the specifications that
matter to them the most.

10 Expected Technology

This section contains a compilation of technologies that we expect to use for
our project following an initial analysis. The choice of technology might change
for one or more of the components if needed along the course of the project.

10.1 Languages

A diverse set of languages is being used to build different components of the
project. Here is a detailed breakdown:

1. Refactoring Library: Python
The library is being built in Python for the following reasons:

e The language has well-established libraries like ‘Rope’ for refactoring
and ‘PyJoules‘ for energy analysis, which can be leveraged for the
MVP.

e The language is widely used in both research and industry, making
the library adoptable by a broader community of developers.

2. VS Plugin: TypeScript
Given the VS Code architecture (based on web technologies), the plugin
needs to be built using JavaScript or TypeScript. The team has decided to
pursue development in TypeScript given our experience in the language.



10.2 External Libraries/Customization

To build an MVP, the team is relying on multiple external libraries to handle
the technical detail intensive work. Below is a list of external libraries that we
are using along with their purpose. Note that their usage will be replaced with
custom implementation once an MVP has been created and tested.

1. Code Energy Calculation: PyJoules
PyJoules is a well-documented library that calculates the energy consumed
on executing a given Python code base. Since the library calculates en-
ergy consumption at the hardware level, the calculations are very precise.
This makes it an ideal choice for analyzing the energy impact of code
refactorings.

2. Inefficient Code Pattern Detection: PySmells
After reviewing PySmells documentation, it can be deduced that a ma-
jority of code smells can be detected and resolved using the library.

3. Refactoring: Rope
Rope includes a wide range of refactorings, such as renaming, function
extraction, and code restructuring. Some of these will be useful when
refactoring for inefficient code patterns. Rope is an ideal choice as it
simplifies the process of identifying and replacing these code patterns with
more optimized versions.

10.3 DevOps Integration Framework

Since the goal is to integrate with GitHub, GitHub Actions is the natural choice
for the CI/CD part of the project. By using GitHub Actions, the library can
be configured to be automatically triggered whenever new code is pushed into
a branch. This action can be integrated with test suites provided by the user
to validate that functional behavior is retained past refactoring.

10.4 Machine Learning Model

The reinforcement learning model needs to be trained on specific refactoring
techniques and developer feedback. Since the problem space is unique to this
project, the model will be trained by the feedback received through the appli-
cation of the library.

10.5 Machine Learning Framework

For the learning model, the team has decided to utilize the PyTorch framework
for the following two reasons:

1. The framework is written in Python, so it’s easier to integrate with the
Python-based library.



2. The framework has a less steep learning curve compared to TensorFlow
since it’s syntactically similar to PyTorch.

10.6 Continuous Integration Plan

For automated testing and integration within the GitHub DevOps pipeline, the
team has decided to utilize GitHub Actions since they have a wide variety of
support articles for initial setup.

10.7 Additional Tools (for Development Support)

To ensure that the plugin, library, and reinforcement learning model run con-
sistently across different environments, Docker containers will be used. Since
these can package the entire application with its dependencies, there will be
consistency in development, testing, and deployment environments.

10.8 Linter Tools

To ensure best practices, all team members will be using the following combi-
nation of linter tools for Python code:

1. Mypy: This tool enforces type annotations, which helps to detect type-
related errors before runtime. Since Python is dynamically typed, Mypy
enhances code reliability by making types explicit.

2. Flake8: This tool checks code for style guide enforcement (PEP 8) and
can catch potential errors early in development, improving code quality
and maintainability.

10.9 Code Smell Tools

To identify code smells during development, the team will include PySmells in
the project. In addition to the fact that the tool covers a majority of Python
code smells, the team was enthusiastic about the fact that the library itself will
be used during implementation of the MVP.

10.10 Unit Testing

To ensure systematic testing of our growing codebase, the project will include
unit tests written in pytest. We have chosen this framework as it helps to write
scalable test cases, supports parameterized tests, and has easy integration with
coverage.py, which is our code coverage measuring tool.

10.11 Code Coverage

Coverage.py has been chosen to measure the code coverage. This will be a
useful tool to identify areas of the code base that need additional test coverage.



10.12 Performance Measurement

Performance measuring tools have been chosen to target common Python-specific
code problems. Here is a list of tools the team plans to integrate into the project:

1. PyTrace: This tool will be used to trace execution and will be particularly
useful in instances that might be prone to race conditions.

2. cProfile: This tool will be used to retrieve information on the time spent
on each function during execution. This will be particularly useful to
identify any performance bottlenecks.

11 Coding Standard

The team will include PEP 8 as the coding standard in the project. This
standard is widely accepted across the Python community, therefore there is
tons of resources available on initially setting it up. The team will have a useful
tool to automate style enforcement and ensure consistency across the code base.

10



Appendix — Reflection

Mya Hussain Reflection

1. Why is it important to create a development plan prior to starting the
project?
Development plans act as good starting points by establishing clear ob-
jectives, recourse requirements, timelines and by assigning accountability
within a project. This improves overall communication and understanding
between members by solidifying the intent and requirements of a project.
From my experience in industry, developers who don’t have a good grasp
of what they’re developing and why they’re developing it typically de-
liver products that either fail to meet the primary goal or prove useless
to the user. In real life, you develop products for people with various
backgrounds. People of different disciplines speak in different technical
tongues. Development plans are critical in syncing many people from var-
ious disciplines towards a common goal. They can also further can divide
the roles and responsibilities between the developers and later aid in mak-
ing development decisions that push progress towards the primary goals
defined in the document.

2. What disagreements did your group have in this deliverable, if any, and
how did you resolve them?

I would be lying if I were to say that my team had disagreements during the
first week of working on the project. The easy answer to this question is
to make up a disagreement of low significance and say we worked through
it using open democratic discussion and compromise. The truth is that it
is too early in the project for us to be disagreeing with each other. We're
in our “honeymoon stage” where all members are excited to work on the
project and are optimistic about the possible results we could achieve. Let
us be in love during week one. We have many more weeks left to disagree.

Ayushi Amin Reflection

1. Why is it important to create a development plan prior to starting the
project?
A development plan is important because it serves as a clear road map for
the project and ensures that all team members understand the the project
scope, objectives and timeline. A clear plan helps to identify potential risks
and areas of concern/challenges that can be caught at an early stage so a
solution can be crafted early on. This also helps in resource allocation by
ensuring that the necessary tools and budget are available when needed.

2. What disagreements did your group have in this deliverable, if any, and
how did you resolve them?

To be quite frank, our team did not have any disagreements during the
first couple weeks of working together.

11



Sevhena Walker Reflection

1. Why is it important to create a development plan prior to starting the
project?

When starting a project with a large scope, it is easy to get lost in all the
features you want to implement in the project. By establishing an action
plan from the start, you allow yourself and your team to develop concrete
goals and needs for your system. Taking a step back to analyze how the
components of your system are expected to interact with each other and
defining the intended end result is necessary.

Without this planning stage, you are essentially going in blind with only a
vague understanding and what you need to do. There is no way to organize
task between team members efficiently either since specific components are
sparsely detailed or non-existent. The project will be in a constant state
of "debugging” you could say, constantly trying to figure out how this
feature will work with the next and the next and so on. This would be
like trying to build a house while only ever looking at the next couple
meters in front of you.

2. What disagreements did your group have in this deliverable, if any, and
how did you resolve them?

I honestly cannot say that we had any disagreements as yet. Our team
tried our best to discuss what our goals for the project were and everything
was well communicated so that everyone was on the same page. We are at
the beginning stages of a project that will implement technology is mostly
new to us. We are excited, but also somewhat ignorant to some details
which makes it hard to ”disagree”.

Tanveer Brar Reflection

1. Why is it important to create a development plan prior to starting the
project?

After having created one, I believe a development plan is important as it
can be useful for the project in multiple ways. For one, it is a written
record of the team’s expected practices related to roles, communication,
etc.(which ensures that everyone is on the same page with these prac-
tices).This can also be used by instructors as the source of truth if there
are any conflicts in the project team.

Secondly, with the pre-written format/prompts we were compelled to
think about some logistics that we would otherwise have ignored(such as
communication plan and coding standards). In short, it set a great start-
ing note for the project so we were aware of our assumptions and were
also compelled to think about less obvious aspects of project planning.

12



2. What disagreements did your group have in this deliverable, if any, and
how did you resolve them?

We haven’t had any disagreements in our group for this deliverable. There
were multiple instances where each of us had different ideas on how to
approach a particular issue. After weighing in the pros and cons of each
idea together, we ended up picking one of them unanimously. This was
possible since we value each other’s thought process and take a non partial
approach when deliberating.

Nivetha Kuruparan Reflection

1. Why is it important to create a development plan prior to starting the
project?

A development plan is essential as it sets a structured foundation for the
project, helping to clarify the team’s objectives, roles, and processes before
work begins. This ensures that everyone shares a common understanding
of the project’s scope and expectations, reducing the likelihood of mis-
communication or misaligned efforts later on.

A development plan is also important because it helps unify team mem-
bers who have diverse technical skills, ensuring that everyone is working
towards the same end goal. By laying out the project scope, objectives,
and expectations clearly from the start, the plan serves as a guide that
helps team members understand how their contributions fit into the bigger
picture. This is important when skills vary across the team, as it prevents
disagreements and promotes collaboration.

2. What disagreements did your group have in this deliverable, if any, and
how did you resolve them?

Our group did not encounter any disagreements during this deliverable.
We had open communication from the start, which allowed us to share our
ideas and expectations early on. If there were minor differences in opin-
ions, we addressed them by discussing the pros and cons of each suggestion
and collaboratively deciding what would work best for the project.

Group Answers

e In your opinion, what are the advantages and disadvantages of using
Cl/CD?
CI/CD, or Continuous Integration/Continuous Deployment, is a process
where continuous integration involves automatically integrating code changes
from multiple contributors into a shared repository for every commit, and
continuous deployment ensures the code base is deployable at any time.
Key practices include automated testing and frequent commits, leading
to better code quality as bugs and conflicts are caught early and fixed
near their date of creation. Another advantage is faster time to market,

13



as code is integrated and deployed more quickly, allowing teams to deliver
features and fixes to users faster. This also improves collaboration through
feedback, as features pushed to shared repositories can be reviewed by the
team.

Disadvantages include the initial setup complexity of the CI/CD pipeline,
which can be time-consuming and challenging for those new to the pro-
cess. This requires ongoing maintenance and overhead to continuously
commit, test, and merge code, diverting time from feature development.
Additionally, the setup of automated tests and deployment workflows can
be complex and requires knowledge of the process. Risks include over-
reliance on automation, which could introduce security flaws. In other
terms:

Advantages:

1. Faster development since changes would be pushed constantly as test-
ing for new/fixed features would be successful

2. Shorter delivery times

3. Improved code quality (automated testing)

4. Easier change monitoring and rollback since there are five members
and multiple branches and changes based on the member

5. Increased efficiency and productivity
Disadvantages
1. Requires strong discipline and commitment from the entire team and
may be a learning curve for the team

2. May be challenging to implement for small teams since there is only
five members

3. Initial setup and configuration can be complex and time-consuming
since the team will be setting this up from scratch

14



Appendix — Team Charter

External Goals

Our team’s primary goal is to learn something new and valuable that can be
applied in the workforce, ensuring that this project enhances our practical skills.
Additionally, we aim to create a project that we can confidently discuss in
interviews, demonstrating our ability to work on real-world problems. While
we focus on personal and professional growth, we also aim for an A+ as a
nice-to-have achievement.

Attendance
Expectations

Our team expects full commitment to scheduled meetings, with everyone ar-
riving on time and staying for the entire duration. If a team member cannot
attend, they are expected to notify the group in advance and provide a valid
reason, as well as organize an alternative meeting time, if all team members need
to be present. Missing meetings without prior notice or frequently arriving late
will be addressed by the team to prevent disruptions.

Acceptable Excuse

An acceptable excuse for missing a meeting or a deadline includes unforeseen
emergencies, personal illness, family matters, or other significant personal obli-
gations, as long as the team is informed in advance. Unacceptable excuses
include vague or last-minute reasons such as simply forgetting or having con-
flicting non-essential plans, as these could impact the team’s progress.

In Case of Emergency

In the event of an emergency that prevents a team member from attending a
meeting or completing their assigned work for a deliverable, the team mem-
ber must inform the team as soon as possible through the team’s designated
communication channel (either on WhatsApp or Discord). This will allow for
adjustments to be made, such as redistributing tasks or rescheduling the meet-
ing if necessary. For deliverables, if the emergency impacts a deadline, the
team member should notify both the team and the professor promptly to en-
sure that any necessary arrangements are made without affecting the team’s
progress/grades.

Accountability and Teamwork
Quality

Our team has the following expectations regarding the quality of preparation
for meetings and the deliverables brought to the team:

15



e Meeting Preparation:

— Team members are expected to arrive at meetings fully prepared,
having reviewed relevant materials and completed their assigned tasks
in advance.

— Each member should come ready to discuss their progress, share in-
sights, and address any challenges they are facing.

— Members should ensure that their updates are clear and concise, al-
lowing meetings to stay focused and productive.

¢ Deliverables Quality:

— All deliverables must meet the team’s agreed-upon standards, demon-
strating a high level of accuracy, thoroughness, and attention to de-
tail.

— Each deliverable should be carefully reviewed by each member before
submission to avoid any errors or incomplete work.

— Deliverables must align with the project’s requirements and dead-
lines, ensuring they are both functional and meet the expected qual-
ity criteria.

e Accountability and Feedback:

— Team members are responsible for completing their work to a high
standard, communicating any issues early if they need assistance or
more time.

— Feedback on deliverables should be welcomed by all members, and
revisions should be made promptly to improve the overall quality of
the team’s output.

By maintaining these expectations, our team will ensure that meetings are effi-
cient and that all deliverables reflect a professional and high-quality standard.

Attitude

Our team has established the following expectations for team members’ con-
tributions, interactions, and cooperation to ensure a productive and respectful
working environment:

e Respectful Communication: All team members are expected to listen
to each other’s ideas and provide constructive feedback. Communication
should remain respectful, even in cases of disagreement.

e Open Collaboration: Each member is encouraged to share their ideas
openly. Everyone should be willing to collaborate and help each other
achieve team goals.

16



e Accountability: Team members are responsible for completing their
tasks by the agreed-upon deadlines. If a member is struggling, they are
expected to ask for help or communicate early.

e Positive Attitude: Maintaining a positive attitude, especially in chal-
lenging moments, is essential for team morale. Each member should en-
courage and support their teammates.

¢ Commitment to Quality: Every team member is expected to contribute
to the project with their best effort, ensuring that the final product reflects
high standards of quality.

We adopt the following code of conduct to guide behavior and interaction
among team members:

e Inclusivity: Our team values diversity and is committed to creating an
inclusive environment where everyone feels welcome and valued, regardless
of background, experience, or opinion.

e Professionalism: Members will engage professionally, refraining from
any inappropriate or offensive language or behavior. This applies to both
in-person and online interactions.

e Collaboration and Feedback: We encourage constructive feedback and
expect team members to accept and provide feedback in a way that helps
everyone grow. Criticism should be focused on the work, not the individ-
ual.

e No Tolerance for Harassment: Harassment of any kind will not be
tolerated. Any issues will be reported immediately and addressed in a
structured manner.

To manage conflicts or disagreements that may arise during the project, we have
a conflict resolution plan in place:

1. Address the Issue Directly: If a conflict arises, the involved members
should first try to resolve the issue directly through a respectful discussion.

2. Mediation by a Neutral Member: If the conflict cannot be resolved,
the team will appoint a neutral team member to act as a mediator to
facilitate a discussion and find common ground.

3. Escalation to Instructor/TA: In the event that the conflict cannot be
resolved within the team, the issue will be escalated to the instructor or
TA for further guidance and resolution.

4. Follow-Up and Monitoring: After resolving the conflict, the team will
continue to monitor the situation to ensure that the issue does not resur-
face and that team dynamics remain positive.

17



By adhering to these expectations, the code of conduct, and our conflict
resolution plan, we aim to maintain a positive, collaborative, and respectful
team environment.

Stay on Track

To keep our team on track, we will implement the following methods:

1.

Regular Check-ins and Progress Updates: We will hold weekly meet-
1ngs where each member will provide an update on their tasks and progress
and any concerns or troubles they faced. These updates will help us iden-
tify issues early and adjust accordingly to stay on schedule.

. Performance Metrics: We will track the following key metrics:

e Attendance at meetings and check-ins will be documented through
Issues on GitHub.

o Commits to the repository, ensuring steady contributions.

o Tuask completion rates, ensuring deadlines are met.

Rewards for High Performers: To encourage good performance, we
will recognize and celebrate team members who meet or exceed expecta-
tions. Informal rewards may include public recognition during meetings
or assigning leadership roles in future tasks.

Managing Under performance: If a team member’s performance is
below expectations:

o We will start with a team conversation to understand any obstacles
and offer support.

e If under performance continues, consequences may include more tasks
for milestone or in severe cases, a meeting with the TA or instructor.

Consequences for Not Contributing: If a team member does not
contribute their fair share:

e They may be assigned additional tasks to balance the workload.

e In serious cases, the issue will be brought up to the TA or instructor.

Incentives for Meeting Targets Early: Members who consistently
meet or exceed their targets will be rewarded with more desirable tasks
as per their wants, such as leadership roles in key project components,
helping to build their leadership experience. They will get first pick on
tasks for the next team milestone.

Team Building

For team building events, the team has decided to have bi-weekly hangouts to
bond and build relationships. The hangouts can attending on-campus events
together, getting food or bubble tea on/off campus and more.

18



Decision Making

In our group, our primary way of making decisions will be through consen-
sus. We believe that it is important to include everyone in the decision-making
process so it can lead to better outcomes and strong group work. In certain
situations where consensus cannot be reached, the group will take a vote and
each member will have equal say and the decision will be based on the majority
rule. We will make sure all group members had a chance to voice their opinions
before making the final decision through consensus or a vote.

To Handle disagreements: The team will address each disagreement directly
and respectfully.

1. Allow all team members to express their concerns and opinions without
interruption, ensuring everyone feels heard.

2. Keep the focus of the discussion on the topic at hand rather than personal
feelings.

3. When necessary, we may appoint a neutral party to facilitate the discus-
sion and help guide it to a resolution.

4. If a resolution is not found or the disagreement persists after the resolution
is found, we will aim to revisit our project goals and objectives to ensure
that our decisions align with our common purpose.

By following these strategies, we aim to maintain a collaborative and positive
team environment while effectively managing decisions and conflicts.

19



	Confidential Information?
	IP to Protect
	Copyright License
	Team Meeting Plan
	Team Communication Plan
	Team Member Roles
	Workflow Plan
	Project Decomposition and Scheduling
	Proof of Concept Demonstration Plan
	Expected Technology
	Languages
	External Libraries/Customization
	DevOps Integration Framework
	Machine Learning Model
	Machine Learning Framework
	Continuous Integration Plan
	Additional Tools (for Development Support)
	Linter Tools
	Code Smell Tools
	Unit Testing
	Code Coverage
	Performance Measurement

	Coding Standard

