
Module Interface Specification for Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan
Sevhena Walker
Tanveer Brar
Mya Hussain
Ayushi Amin

January 18, 2025

1 Revision History

Date Version Notes

January 17th,
2025

0.1 Initial Draft

i

2 Symbols, Abbreviations and Acronyms

See SRS Documentation.

ii

https://github.com/ssm-lab/capstone--source-code-optimizer/blob/main/docs/SRS/SRS.pdf

Contents

1 Revision History i

2 Symbols, Abbreviations and Acronyms ii

3 Introduction 1

4 Notation 1

5 Module Decomposition 3

6 MIS of Smell Data Type 4
6.1 Module . 4
6.2 Uses . 4
6.3 Syntax . 4
6.4 Semantics . 4

6.4.1 State Variables . 4
6.4.2 Environment Variables . 5
6.4.3 Assumptions . 5
6.4.4 Access Routine Semantics . 5
6.4.5 Local Functions . 5

7 MIS of Base Refactorer 6
7.1 Module . 6
7.2 Uses . 6
7.3 Syntax . 6
7.4 Semantics . 6

7.4.1 State Variables . 6
7.4.2 Environment Variables . 6
7.4.3 Assumptions . 6
7.4.4 Access Routine Semantics . 6
7.4.5 Local Functions . 7

8 MIS of Long Message Chain Refactorer 8
8.1 Module . 8
8.2 Uses . 8
8.3 Syntax . 8

8.3.1 Exported Constants . 8
8.3.2 Exported Access Programs . 8

8.4 Semantics . 8
8.4.1 State Variables . 8
8.4.2 Environment Variables . 8
8.4.3 Assumptions . 9

iii

8.4.4 Access Routine Semantics . 9
8.4.5 Local Functions . 9

9 MIS of Long Lambda Function Refactorer 10
9.1 Module . 10
9.2 Uses . 10
9.3 Syntax . 10

9.3.1 Exported Constants . 10
9.3.2 Exported Access Programs . 10

9.4 Semantics . 10
9.4.1 State Variables . 10
9.4.2 Environment Variables . 10
9.4.3 Assumptions . 11
9.4.4 Access Routine Semantics . 11
9.4.5 Local Functions . 11

10 MIS of Long Parameter List Refactorer 12
10.1 Module . 12
10.2 Uses . 12
10.3 Syntax . 12

10.3.1 Exported Constants . 12
10.3.2 Exported Access Programs . 12

10.4 Semantics . 12
10.4.1 State Variables . 12
10.4.2 Environment Variables . 12
10.4.3 Assumptions . 13
10.4.4 Access Routine Semantics . 13
10.4.5 Local Functions . 13

11 MIS of Use List Accumulation Refactorer 14
11.1 Module . 14
11.2 Uses . 14
11.3 Syntax . 14
11.4 Semantics . 15

11.4.1 State Variables . 15
11.4.2 Environment Variables . 15
11.4.3 Assumptions . 15
11.4.4 Access Routine Semantics . 15
11.4.5 Local Functions . 16

12 MIS of Make Method Static Refactorer 17
12.1 Module . 17
12.2 Uses . 17

iv

12.3 Syntax . 17
12.4 Semantics . 17

12.4.1 State Variables . 17
12.4.2 Environment Variables . 17
12.4.3 Assumptions . 18
12.4.4 Access Routine Semantics . 18
12.4.5 Local Functions . 18

13 MIS of Long Element Chain Refactorer 19
13.1 Module . 19
13.2 Uses . 19
13.3 Syntax . 19

13.3.1 Exported Constants . 19
13.3.2 Exported Access Programs . 19

13.4 Semantics . 19
13.4.1 State Variables . 19
13.4.2 Environment Variables . 19
13.4.3 Assumptions . 20
13.4.4 Access Routine Semantics . 20
13.4.5 Local Functions . 20

14 MIS of Measurements Module 21
14.1 Module . 21
14.2 Uses . 21
14.3 Syntax . 21

14.3.1 Exported Constants . 21
14.3.2 Exported Access Programs . 21

14.4 Semantics . 22
14.4.1 State Variables . 22
14.4.2 Environment Variables . 22
14.4.3 Assumptions . 22
14.4.4 Access Routine Semantics . 22
14.4.5 Local Functions . 23

15 MIS of Pylint Analyzer 24
15.1 Module . 24
15.2 Uses . 24
15.3 Syntax . 24
15.4 Semantics . 24

15.4.1 State Variables . 24
15.4.2 Environment Variables . 25
15.4.3 Assumptions . 25
15.4.4 Access Routine Semantics . 25

v

15.4.5 Local Functions . 26

16 MIS of Testing Functionality 27
16.1 Module . 27
16.2 Uses . 27
16.3 Syntax . 27
16.4 Semantics . 27

16.4.1 State Variables . 27
16.4.2 Environment Variables . 27
16.4.3 Assumptions . 27
16.4.4 Access Routine Semantics . 27
16.4.5 Local Functions . 28

17 MIS of Use A Generator Refactorer 29
17.1 Module . 29
17.2 Uses . 29
17.3 Syntax . 29
17.4 Semantics . 29

17.4.1 State Variables . 29
17.4.2 Environment Variables . 29
17.4.3 Assumptions . 29
17.4.4 Access Routine Semantics . 30
17.4.5 Local Functions . 30

18 MIS of Cache Repeated Calls Refactorer 31
18.1 Module . 31
18.2 Uses . 31
18.3 Syntax . 31
18.4 Semantics . 31

18.4.1 State Variables . 31
18.4.2 Environment Variables . 31
18.4.3 Assumptions . 31
18.4.4 Access Routine Semantics . 32
18.4.5 Local Functions . 32

19 MIS of Plugin Initiator 33
19.1 Module . 33
19.2 Uses . 33
19.3 Syntax . 33
19.4 Semantics . 33

19.4.1 State Variables . 33
19.4.2 Environment Variables . 33
19.4.3 Assumptions . 33

vi

19.4.4 Access Routine Semantics . 33
19.4.5 Local Functions . 33

20 MIS of Backend Communicator 34
20.1 Module . 34
20.2 Uses . 34
20.3 Syntax . 34
20.4 Semantics . 34

20.4.1 State Variables . 34
20.4.2 Environment Variables . 34
20.4.3 Assumptions . 34
20.4.4 Access Routine Semantics . 34
20.4.5 Local Functions . 35

21 MIS of Smell Detector 35
21.1 Module . 35
21.2 Uses . 35
21.3 Syntax . 35
21.4 Semantics . 35

21.4.1 State Variables . 35
21.4.2 Environment Variables . 35
21.4.3 Assumptions . 35
21.4.4 Access Routine Semantics . 36
21.4.5 Local Functions . 36

22 MIS of Smell Refactorer 36
22.1 Module . 36
22.2 Uses . 36
22.3 Syntax . 36
22.4 Semantics . 36

22.4.1 State Variables . 36
22.4.2 Environment Variables . 36
22.4.3 Assumptions . 37
22.4.4 Access Routine Semantics . 37
22.4.5 Local Functions . 37

23 MIS of File Highlighter 37
23.1 Module . 37
23.2 Uses . 37
23.3 Syntax . 37
23.4 Semantics . 37

23.4.1 State Variables . 37
23.4.2 Environment Variables . 38

vii

23.4.3 Assumptions . 38
23.4.4 Access Routine Semantics . 38
23.4.5 Local Functions . 38

24 MIS of Hover Manager 38
24.1 Module . 38
24.2 Uses . 38
24.3 Syntax . 39
24.4 Semantics . 39

24.4.1 State Variables . 39
24.4.2 Environment Variables . 39
24.4.3 Assumptions . 39
24.4.4 Access Routine Semantics . 39
24.4.5 Local Functions . 39

25 MIS of Refactor Manager 40
25.1 Module . 40
25.2 Uses . 40
25.3 Syntax . 40
25.4 Semantics . 40

25.4.1 State Variables . 40
25.4.2 Environment Variables . 40
25.4.3 Assumptions . 40
25.4.4 Access Routine Semantics . 40
25.4.5 Local Functions . 41

26 Appendix — Reflection 42

viii

3 Introduction

The following document details the Module Interface Specifications (MIS) for the Source
Code Optimizer project. The Source Code Optimizer is a software tool designed to analyze,
refactor, and optimize Python source code to improve energy efficiency, maintainability,
and performance. This tool incorporates a combination of static code analysis using Pylint,
abstract syntax tree (AST) parsing, and custom refactoring techniques to detect and address
various code smells in Python programs.

The application allows developers to identify inefficient coding patterns, refactor them
into optimized alternatives, and validate the results through built-in testing mechanisms.
Key features include support for custom smell detection, energy profiling, and modular
refactorers tailored to specific code smells, such as long method chains or inefficient list com-
prehensions. By automating parts of the optimization process, the Source Code Optimizer
helps developers have the option of choosing to reduce emissions and produce more efficient
software.

Complementary documents include the System Requirement Specifications (SRS) and
Module Guide (MG). The full documentation and implementation can be found at: https:
//github.com/ssm-lab/capstone--source-code-optimizer

4 Notation

The following table summarizes the primitive data types used by Software Engineering.
The specification of Software Engineering uses some derived data types: sequences, strings,
and tuples. Sequences are lists filled with elements of the same data type. Strings are
sequences of characters. Tuples contain a list of values, potentially of different types. In
addition, Software Engineering uses functions, which are defined by the data types of their
inputs and outputs. Local functions are described by giving their type signature followed by
their specification.

1

https://github.com/ssm-lab/capstone--source-code-optimizer
https://github.com/ssm-lab/capstone--source-code-optimizer

Data Type Notation Description

optional ? denotes a variable as optional

any type Any any data type is acceptable

character char a single symbol or digit

String str a sequence of characters

integer Z a number without a fractional component
in (-∞, ∞)

natural number N a number without a fractional component
in [1, ∞)

real R any number in (-∞, ∞)

boolean B True or False

code smell Smell a collection of data representing a code
smell

path Path Data object representing a path in a
filesystem

list list[T] a collection of objects of type T

set set[T] a collection of unique objects of type T

dictionary dict data structure containing multiple key-
value pairs

AST Node AST AST node representing any AST node

AST Constant Constant AST node representing a constant

AST Function Definition FuncDef AST node representing a function defini-
tion

AST Module Module AST node representing a Module

AST Class Definition ClassDef ast node representing a class definition

AST Call Call ast node representing a function call

AST Lambda Lambda ast node representing a lambda function

AST List Comprehension ListComp ast node representing a list comprehension

AST Generator Expression GenExp ast node representing a generator expres-
sion

current instance self a reference to the current instance of a
module

Table 1: MIS Notation

2

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1 Level 2

Hardware-Hiding Module None

Behaviour-Hiding Module

Smell Module
BaseRefactorer Module
MakeStaticRefactorer Module
UseListAccumulationRefactorer Module
UseAGeneratorRefactorer Module
CacheRepeatedCallsRefactorer Module
LongElementChainRefactorer Module
LongParameterListRefactorer Module
LongMessageChainRefactorer Module
LongLambdaFunctionRefactorer Module
PluginInitiator Module
BackendCommunicator Module
SmellDetector Module
FileHighlighter Module
HoverManager Module

Software Decision Module
Measurements Module
PylintAnalyzer Module
Testing Functionality Module
SmellRefactorer Module
RefactorManager Module

Table 2: Module Hierarchy

3

6 MIS of Smell Data Type

Smell

6.1 Module

Contains data related to a code smell.

6.2 Uses

None

6.3 Syntax

Exported Constants: None
Exported Access Programs: None

6.4 Semantics

6.4.1 State Variables

� absolutePath: str: Absolute path to the source file containing the smell.

� column: int: Starting column in the source file where the smell is detected.

� confidence: str: Confidence level for the smell detection.

� endColumn?: int: Ending column for the smell location, if applicable.

� endLine?: int: Ending line number for the smell location, if applicable.

� occurences: dict: Contains positional data related to where the smell is located in
a code file.

� message: str: Descriptive message explaining the smell.

� messageId: str: Unique identifier for the specific message or warning.

� module: str: Module or component name containing the smell.

� obj: str: Specific object associated with the smell.

� path: str: Relative path to the source file from the project root.

� symbol: str: Symbol or code construct involved in the smell.

� type: str: Type or category of the smell.

4

6.4.2 Environment Variables

None

6.4.3 Assumptions

� All values provided to the fields of Smell conform to the expected data types and
constraints.

6.4.4 Access Routine Semantics

Smell()

� transition: Creates a dictionary-like structure with the defined attributes representing
a code smell.

� output: Returns a Smell instance.

6.4.5 Local Functions

None.

5

7 MIS of Base Refactorer

BaseRefactorer

7.1 Module

The interface that all refactorers of this system will inherit from.

7.2 Uses

None

7.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: dict,

initial emissions: R
None None

7.4 Semantics

7.4.1 State Variables

� temp dir: Path: Directory path for storing refactored files.

7.4.2 Environment Variables

None

7.4.3 Assumptions

� output dir exists or can be created, and write permissions are available.

7.4.4 Access Routine Semantics

init (self, output dir: Path)

� transition: Initializes the temp dir variable within output dir.

� output: self

� exception: None.

6

refactor(self, file path: Path, pylint smell: dict, initial emissions: R)

� transition: Abstract method. No transition defined.

� output: None.

� exception: None.

7.4.5 Local Functions

None.

7

8 MIS of Long Message Chain Refactorer

LongMessageChainRefactorer

8.1 Module

LongMessageChainRefactorer is a module that identifies and refactors long message chains
in Python code to improve readability, maintainability, and performance. It specifically
handles long chains by breaking them into separate statements, ensuring proper refactoring
while maintaining the original functionality.

8.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell:

Smell, initial emissions: R
None TypeError,

IOError

8.4 Semantics

8.4.1 State Variables

� temp dir: Temporary directory for intermediate refactored files.

8.4.2 Environment Variables

� File system: Used to read, write, and store temporary and refactored files.

� Logger: Logs information during refactoring.

8

8.4.3 Assumptions

� Input files are valid Python scripts.

� Smells identified by pylint smell include valid line numbers.

� Refactored code must pass the provided test suite.

8.4.4 Access Routine Semantics

init (output dir: Path)

� Transition: Initializes the refactorer with the specified output directory.

� Output: self.

� Exception: None.

refactor(file path: Path, pylint smell: Smell, initial emissions: R)

� Transition:

– Reads the file at file path.

– Identifies the line with a long message chain.

– Refactors the chain by breaking it into separate statements.

– Writes the refactored code to a temporary file.

– Evaluates the refactored code’s energy efficiency and functionality.

� Output: None. Refactored file is saved if improvements are validated.

� Exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

8.4.5 Local Functions

remove unmatched brackets(input string: str)

� Transition: Removes unmatched parentheses from the input string.

� Output: Returns the string with unmatched parentheses removed.

� Exception: None.

9

9 MIS of Long Lambda Function Refactorer

LongLambdaFunctionRefactorer

9.1 Module

LongLambdaFunctionRefactorer is a module that refactors long lambda functions in Python
code by converting them into normal functions. This improves code readability, maintain-
ability, and performance, while reducing potential energy consumption.

9.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell:

Smell, initial emissions: R
None TypeError,

IOError

9.4 Semantics

9.4.1 State Variables

� temp dir: Temporary directory for intermediate refactored files.

9.4.2 Environment Variables

� File system: Used to read, write, and store temporary and refactored files.

� Logger: Logs information during refactoring.

10

9.4.3 Assumptions

� Input files are valid Python scripts.

� Smells identified by pylint smell include valid line numbers.

� Refactored code must pass the provided test suite.

9.4.4 Access Routine Semantics

init (output dir: Path)

� Transition: Initializes the refactorer with the specified output directory.

� Output: self.

� Exception: None.

refactor(file path: Path, pylint smell: Smell, initial emissions: R)

� Transition:

– Reads the file at file path.

– Identifies the line with a long lambda function.

– Refactors the lambda into a normal function.

– Writes the refactored code to a temporary file.

� Output: None. Refactored file is saved if improvements are validated.

� Exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

9.4.5 Local Functions

truncate at top level comma(body: str)

� Transition: Truncates the lambda body at the first top-level comma, ignoring commas
within nested parentheses, brackets, or braces.

� Output: Returns the truncated lambda body as a string.

� Exception: None.

11

10 MIS of Long Parameter List Refactorer

LongParameterListRefactorer

10.1 Module

LongParameterListRefactorer is a module that identifies and refactors functions or meth-
ods with long parameter lists(detected beyond configured threshold) in Python code. The
refactoring aims to improve code readability, maintainability, and energy efficiency by en-
capsulating related parameters into objects and removing unused ones.

10.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

� Inherits from Python’s ast module’s NodeTransformer

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: R
None TypeError, IOError

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

� File system: Used for reading, writing, and storing temporary and refactored files.

� Logger: Logs details of the refactoring process.

12

10.4.3 Assumptions

� Input files are valid Python scripts.

� Smells identified by pylint smell include valid line numbers.

� Refactored code must pass the provided test suite.

10.4.4 Access Routine Semantics

init (output dir: Path)

� Transition: Initializes the refactorer with the specified output directory.

� Output: self.

� Exception: None.

refactor(file path: Path, pylint smell: Smell, initial emissions: R)

� Transition:

1. Reads the file at file path and locates the target function using pylint smell.

2. Analyzes function body to remove unused parameters. Updates the function
signature and references in the code accordingly.

3. If number of used parameters also exceeds the maximum configured limit, en-
capsulates related parameters into classes. Updates the function signature and
references in the code accordingly.

4. Writes the refactored code to a temporary file.

� Output: None.Refactored file is saved if improvements are validated.

� Exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

10.4.5 Local Functions

1. get used parameters(function node: FuncDef, params: list[str]) -> set[str]:
Identifies parameters used within the function body.

2. get parameters with default value(default values: list[Constant], params:

list[str]) -> dict: Maps parameter names to their default values.

3. classify parameters(params: list[str]) -> dict: Classifies parameters into data
and config groups based on naming conventions.

13

4. create parameter object class(param names: list[str], default value params:

dict, class name: str) -> str: Generates class definitions for encapsulating pa-
rameters.

5. update function signature(function node: FuncDef, params: dict) -> FuncDef:
Updates function signatures to use encapsulated parameter objects.

6. update parameter usages(function node: FuncDef, params: dict) -> FuncDef:
Replaces parameter usages within the function body with attributes of encapsulated
objects.

7. update function calls(tree: Module, function node: FuncDef, params: dict)

-> Module: Updates all calls to the refactored function.

11 MIS of Use List Accumulation Refactorer

UseListAccumulationRefactorer

11.1 Module

The UseListAccumulationRefactorermodule identifies and refactors string concatenations
in loops in Python code to improve the performance and energy efficiency of the software.
It specifically handles these concatenations by, instead, adding the string for each iteration
to a list that is then converted to a string using Python’s join() function, ensuring proper
refactoring while maintaining the original functionality.

11.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

� Inherits from Python’s ast module’s NodeTransformer

11.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: Real

None TypeError, IOError

14

11.4 Semantics

11.4.1 State Variables

� target line: int: Line number where refactoring is applied.

� target node: ASTnode: Node representing the concatenation variable.

� assign var: str: Name of the variable the target node represents.

� last assign node: ASTnode: Last initialization/assignment of the assign var prior
to the start of the loop.

� concat node: ASTnode: Node where concatenation occurs.

� scope node: ASTnode: Scope where refactoring is inserted.

� outer loop: ASTnode: Outermost loop before the start of the concatenation.

11.4.2 Environment Variables

None

11.4.3 Assumptions

� The input file contains valid Python syntax.

� pylint smell provides a valid line number for the detected code smell.

11.4.4 Access Routine Semantics

init (self, output dir: Path)

� transition: Initializes the refactorer with output dir and sets default state variables.

� output: self.

� exception: None

refactor(self, file path: Path, pylint smell: Smell, initial emissions: R)

� transition: Parses file path, identifies string concatenations in loops, modifies code
for list accumulation, and writes refactored code to a file.

� output: None.

� exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

15

11.4.5 Local Functions

find last assignment(self, scope: ASTnode)

� transition: Identifies the last assignment of assign var within the given scope.

� output: None.

� exception: Raises TypeError if given scope is null.

find scope()

� transition: Finds the scope for refactoring based on AST node ancestry.

� output: None.

� exception: Raises TypeError if concat node is not set.

add node to body(self, code file: str)

� transition: Inserts list accumulation and join statements into code file.

� output: Returns the modified source code as a string.

� exception: Raises TypeError if target node or outer loop is not set.

16

12 MIS of Make Method Static Refactorer

MakeStaticRefactorer

12.1 Module

The MakeStaticRefactorer module identifies and refactors class methods that don’t make
use of their instance attributes to improve the readability, performance and energy efficiency
of the software. It specifically handles these methods by turning them into static functions
and ensuring any calls to this method use the proper calling syntax. This ensures proper
refactoring while maintaining the original functionality.

12.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

� Inherits from Python’s ast module’s NodeTransformer

12.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: R
None TypeError, IOError

12.4 Semantics

12.4.1 State Variables

� target line: int: Line number where refactoring is applied.

� mim method class: str: Class name containing the method to refactor.

� mim method: str: Method name to refactor.

12.4.2 Environment Variables

None

17

12.4.3 Assumptions

� The input file contains valid Python syntax.

� pylint smell provides a valid line number for the detected code smell.

12.4.4 Access Routine Semantics

init (self, output dir: Path)

� transition: Initializes the refactorer with output dir and sets default state variables.

� output: self.

� exception: None.

refactor(self, file path: Path, pylint smell: Smell, initial emissions: R)
� transition: Parses file path, identifies the target function, modifies it to be static,
and validates refactoring.

� output: None.

� exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

12.4.5 Local Functions

visit FunctionDef(self, node: FuncDef)

� transition: Adds the staticmethod decorator to the target method and removes the
self parameter if present.

� output: Returns the modified FunctionDef node.

� exception: None

visit ClassDef(self, node: ClassDef)

� transition: Identifies the class containing the target method.

� output: Returns the modified ClassDef node.

� exception: None.

visit Call(self, node: Call)

� transition: Updates method call references to use the class name instead of self.

� output: Returns the modified Call node.

� exception: None.

18

13 MIS of Long Element Chain Refactorer

LongElementChainRefactorer

13.1 Module

LongElementChainRefactorer is a module that refactors long element chains, specifically
focusing on flattening nested dictionaries to improve readability, maintainability, and energy
efficiency. The module uses a recursive flattening strategy while caching previously seen
patterns for optimization.

13.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: R
None TypeError, IOError

13.4 Semantics

13.4.1 State Variables

� reference map: Maps element chain references to their line numbers and corre-
sponding values.

13.4.2 Environment Variables

� File system: Used to read, write, and store temporary and refactored files.

� Logger: Logs information during the refactoring process.

19

13.4.3 Assumptions

� Input files are valid Python scripts.

� Smells identified by pylint smell include valid line numbers.

� Refactored code must pass the provided test suite.

13.4.4 Access Routine Semantics

init (output dir: Path)

� Transition: Initializes the refactorer with the specified output directory and sets up
internal caching structures.

� Output: self.

� Exception: None.

refactor(file path: Path, pylint smell: Smell, initial emissions: R)

� Transition:

– Reads the file at file path.

– Identifies nested dictionary chains for flattening.

– Refactors the identified chain by flattening the dictionary and replacing its occur-
rences.

– Writes the refactored code to a temporary file.

� Output: None. Refactored file is saved if improvements are validated.

� Exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

13.4.5 Local Functions

� flatten dict(d: dict[str, Any], parent key?: str)
Recursively flattens a nested dictionary by combining keys with underscores.

� extract dict literal(node: ASTnode)
Converts an Abstract Syntax Tree (AST) dictionary literal into a Python dictionary.

� find dict assignments(tree: ASTnode, name: str)
Extracts dictionary assignments given the name of the dictionary from the AST and
returns them as a dictionary.

20

� collect dict references(tree: ASTnode)
Identifies and stores all dictionary access patterns in the ‘ reference map‘.

� generate flattened access(base var: str, access chain: list[str])
Generates a flattened dictionary key string by combining elements of an access chain
with underscores.

14 MIS of Measurements Module

Measurements

14.1 Module

The MeasurementsModule is a module designed to measure and track the carbon emissions
generated by executing Python scripts. By leveraging the CodeCarbon library, it allows
developers to assess the environmental impact of their code execution. The module runs
a specified Python file, tracks the associated carbon emissions during the execution, and
logs the results for further analysis. It provides functionality for measuring, logging, and
extracting emissions data in a structured manner to help improve energy efficiency in software
development.

14.2 Uses

� Uses CodeCarbon library for track energy consumption

� Uses TemporaryDirectory to store temporary files

� Inherits from BaseEnergyMeter

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name In Out Exceptions
init output dir:

Path

self None

measure energy None None CalledProcessError and FileReading exceptions

21

14.4 Semantics

14.4.1 State Variables

� Emissions data: Stores the emissions data extracted from the CSV file generated
by CodeCarbon. It is populated after the energy measurement process completes
successfully. The value is either a dictionary containing the last row of emissions data
or None if no data was extracted due to an error.

14.4.2 Environment Variables

� TEMP: Sets the temporary directory location for Windows systems. Used during the
CodeCarbon energy measurement process.

� TMPDIR: Sets the temporary directory location for Unix-based systems. Used during
the CodeCarbon energy measurement process.

� Logger: A logging mechanism that logs various events during the energy measurement
process, including errors, completion of measurements, and other key actions.

14.4.3 Assumptions

� The file at file path is a valid Python script.

� The CodeCarbon tool is properly installed and configured.

� The EmissionsTracker can successfully execute the Python script specified by file path.

� The emissions data is captured in a CSV format and can be extracted correctly.

� The temporary directories are correctly set up and accessible during execution.

14.4.4 Access Routine Semantics

init (file path: Path)

� Transition: Initializes the CodeCarbonEnergyMeter with the specified file path and
logger. It sets up the necessary internal state for energy measurement and prepares
the environment.

� Output: self.

� Exception: None.

22

measure energy()

� Transition:

– Logs the start of the energy measurement process.

– Creates a temporary directory to store custom data.

– Initializes the EmissionsTracker from CodeCarbon.

– Runs the script specified by file path and captures the output.

– Stops the tracker after execution and stores the emissions data.

– If available, it extracts the emissions data from the generated CSV file.

� Output:

– Logs the results of the energy measurement process.

– Stores the emissions data in self.emissions data.

� Exception:

– Logs an error if the file cannot be executed or if the emissions file is not created.

– If the emissions data cannot be extracted from the CSV file, logs the issue.

14.4.5 Local Functions

extract emissions csv(csv file path: Path) Extracts emissions data from a CSV
file generated by CodeCarbon.

� Input: csv file path - The path to the CSV file containing emissions data.

� Output: Returns the last row of emissions data as a dictionary, or None if an error
occurs.

23

15 MIS of Pylint Analyzer

PylintAnalyzer

15.1 Module

The PylintAnalyzer module performs static code analysis on Python files using Pylint,
with additional custom checks for detecting specific code smells. It outputs detected smells
in a structured format for further processing.

15.2 Uses

� Uses Python’s pylint library for code analysis

� Uses ast module for parsing and analyzing abstract syntax trees

� Uses astor library for converting AST nodes back to source code

� Integrates with custom checkers, including StringConcatInLoopChecker

� Accesses configuration settings from analyzers config

15.3 Syntax

Exported Constants: None
Exported Access Programs:
Name In Out Exceptions
init file path: Path,

source code: Module

self None

build pylint options None list[str] None
analyze None None JSONDecodeError, Exception
configure smells None None None
filter for one code smell pylint results:

list[Smell], code:

str

list[Smell] None

15.4 Semantics

15.4.1 State Variables

� file path: Path: The path to the Python file being analyzed.

� source code: Module: The parsed abstract syntax tree of the source file.

� smells data: list[dict]: A list of detected code smells, represented as dictionar-
ies.

24

15.4.2 Environment Variables

None

15.4.3 Assumptions

� The input file is valid Python code and can be parsed into an AST.

� Configuration settings, such as extra Pylint options and custom smell definitions, are
valid.

15.4.4 Access Routine Semantics

init (self, file path: Path, source code: Module)

� transition: Initializes the analyzer with the provided file path and AST of the source
code.

� output: self.

� exception: None.

build pylint options()

� transition: Constructs the list of Pylint options based on the file path and configura-
tion settings.

� output: Returns a list of strings representing Pylint options.

� exception: None.

analyze()

� transition: Executes Pylint analysis and custom checks, populating smells data with
detected smells.

� output: None.

� exception: Raises JSONDecodeError if Pylint’s output cannot be parsed. Raises
Exception for other runtime errors.

configure smells()

� transition: Filters smells data to include only configured smells.

� output: None.

� exception: None.

25

filter for one code smell(self, pylint results: list[Smell], code: str)

� transition: Filters the given Pylint results for a specific code smell identified by code.

� output: Returns a list of smells matching the specified code.

� exception: None.

15.4.5 Local Functions

detect long message chain(self, threshold?: int)

� transition: Identifies method chains exceeding the specified threshold.

� output: Returns a list of smells for long method chains.

� exception: None.

detect long lambda expression(self, threshold length?: int, threshold count?:

int)

� transition: Detects lambda expressions exceeding length or expression count thresh-
olds.

� output: Returns a list of smells for long lambda expressions.

� exception: None.

detect long element chain(self, threshold?: int)

� transition: Detects dictionary access chains exceeding the specified threshold.

� output: Returns a list of smells for long dictionary chains.

� exception: None.

detect repeated calls(self, threshold?: int)

� transition: Identifies repeated function calls exceeding the threshold.

� output: Returns a list of smells for repeated function calls.

� exception: None.

� parse line(file path: Path, line: int): Parses a specific line of code into an
AST node.

� get lambda code(lambda node: Lambda): Returns the string representation of a
lambda expression.

26

16 MIS of Testing Functionality

TestRunner

16.1 Module

Responsible for validating that any refactorings made to the source code do not modify it’s
original functionality.

16.2 Uses

� Uses Python’s subprocess library

16.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions
init run command: str,

project path: Path

self None

retained functionality None B CalledProcessError

16.4 Semantics

16.4.1 State Variables

� project path: Path: Path to the source code directory.

� run command: str: Command used to run the tests.

16.4.2 Environment Variables

None

16.4.3 Assumptions

� The provided run command is a valid shell command.

� project path is a valid path working source code directory.

16.4.4 Access Routine Semantics

init (self, run command: str, project path: Path)

� transition: Initializes the test runner with the given run command and project path.

27

� output: self.

� exception: None.

retained functionality()

� transition: Runs the specified test command in the given project path. Logs success
or failure, including standard output and error streams.

� output: Returns True if the tests passed; otherwise, returns False.

� exception: Raises a CalledProcessError if an eror occurs while running the tests in
a subprocess.

16.4.5 Local Functions

None.

28

17 MIS of Use A Generator Refactorer

UseAGeneratorRefactorer

17.1 Module

The UseAGeneratorRefactorer module identifies and refactors unnecessary list comprehen-
sions in Python code by converting them to generator expressions. This refactoring improves
energy efficiency while maintaining the original functionality.

17.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

� Uses Python’s ast module for parsing and manipulating abstract syntax trees

17.3 Syntax

Exported Constants: None
Exported Access Programs:
Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: R
None IOError, TypeError

17.4 Semantics

17.4.1 State Variables

� temp dir: Path: Directory path for storing refactored files.

� output dir: Path: Directory path for saving final refactored code.

17.4.2 Environment Variables

None

17.4.3 Assumptions

� The input file contains valid Python syntax.

� pylint smell provides a valid line number for the detected code smell.

29

17.4.4 Access Routine Semantics

init (self, output dir: Path)

� transition: Initializes the temp dir variable within output dir.

� output: self.

� exception: None.

refactor(self, file path: Path, pylint smell: Smell, initial emissions: R)

� transition: Parses file path, identifies unnecessary list comprehensions, modifies the
code to use generator expressions, and validates refactoring.

� output: None.

� exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

17.4.5 Local Functions

replace node(self, tree: Module, old node: ListComp, new node: GeneratorExp)

� transition: Replaces an old node in the AST with a new node.

� output: None.

� exception: None.

30

18 MIS of Cache Repeated Calls Refactorer

CacheRepeatedCallsRefactorer

18.1 Module

The CacheRepeatedCallsRefactorer module identifies repeated function calls in Python
code and refactors them by caching the result of the first call to a temporary variable.
This refactoring improves performance and energy efficiency while preserving the original
functionality.

18.2 Uses

� Uses Smell interface for data access

� Inherits from BaseRefactorer

� Uses Python’s ast module for parsing and manipulating abstract syntax trees

18.3 Syntax

Exported Constants: None
Exported Access Programs:
Name In Out Exceptions
init output dir: Path self None

refactor file path: Path, pylint smell: Smell,

initial emissions: R
None IOError, TypeError

18.4 Semantics

18.4.1 State Variables

� cached var name: str: Name of the temporary variable used for caching.

� target line: int: Line number where refactoring is applied.

18.4.2 Environment Variables

None

18.4.3 Assumptions

� The input file contains valid Python syntax.

� pylint smell provides valid occurrences of repeated calls with line numbers and call
strings.

31

18.4.4 Access Routine Semantics

init (self, output dir: Path)

� transition: Initializes the temp dir variable within output dir.

� output: self.

� exception: None.

refactor(self, file path: Path, pylint smell: Smell, initial emissions: R)

� transition: Parses file path, identifies repeated function calls, inserts a cached vari-
able for the first call, updates subsequent calls to use the cached variable, and validates
refactoring.

� output: None.

� exception: Raises IOError if input file cannot be read. Raises TypeError if source
file cannot be parsed into an AST.

18.4.5 Local Functions

� get indentation(lines, line number): Determines the indentation of a specific
line.

� replace call in line(line, call string, cached var name): Replaces repeated
calls with the cached variable.

� find valid parent(tree): Identifies the valid parent node containing all occurrences
of the repeated call.

� find insert line(parent node): Determines the line to insert the cached variable.

32

19 MIS of Plugin Initiator

19.1 Module

Plugin Initiator is a module that initializes the VS Code plugin and registers commands
for VS Code Plugin.

19.2 Uses

� Smell Detector to register the command for detecting code smells.

� Smell Refactorer to register the command for refactoring user’s selected code smell.

19.3 Syntax

Exported Constants: None
Exported Access Programs: None

19.4 Semantics

19.4.1 State Variables

None

19.4.2 Environment Variables

� VS CODE API: Used to register commands.

19.4.3 Assumptions

� The plugin is correctly loaded in VS Code.

� Source Code Optimizer executable is reachable and operational.

19.4.4 Access Routine Semantics

activate()

� Transition: Activates the plugin and registers commands.

� Output: None.

� Exception: None.

19.4.5 Local Functions

None

33

20 MIS of Backend Communicator

20.1 Module

BackendCommunicator handles all communication between the plugin and the backend ser-
vice. It sends requests for analysis or refactoring and receives results.

20.2 Uses

Source Code Optimizer executable for energy measurement, smell detection and refactoring
of applications.

20.3 Syntax

Exported Constants: None
Exported Access Programs:
Name In Out Exceptions
sendRequest requestType: string, data: any Promise Communication Error

20.4 Semantics

20.4.1 State Variables

None

20.4.2 Environment Variables

� NETWORK: Used for communicating with Source Code Optimizer.

� LOGGER: Logs any communication errors.

20.4.3 Assumptions

� Source Code Optimizer executable is reachable and operational.

� Python file with no syntax errors is present in the VS Code editor.

20.4.4 Access Routine Semantics

sendRequest(requestType: str, data: Any)

� Transition: Sends the provided request to Source Code Optimizer and receives a
response.

� Output: A promise that resolves with Source Code Optimizer’s response.

� Exception: Logs any errors encountered during communication.

34

20.4.5 Local Functions

None

21 MIS of Smell Detector

21.1 Module

Smell Detector analyzes the active file for code smells and interacts with Source Code
Optimizer for detection.

21.2 Uses

� Backend Communicator for communicating with Source Code Optimizer for smell de-
tection.

� File Highlighter for highlighting detected smells in the editor.

21.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions
detect None None Active file not found

21.4 Semantics

21.4.1 State Variables

None

21.4.2 Environment Variables

� EDITOR: Used to access the active file.

21.4.3 Assumptions

� There is an active Python file with no syntax error in the editor.

� Source Code Optimizer correctly identifies smells.

35

21.4.4 Access Routine Semantics

detect()

� Transition: Reads the active file, sends it to Source Code Optimizer for analysis, and
highlights detected smells in the editor.

� Output: None.

� Exception: Throws an error if no active file is found.

21.4.5 Local Functions

None

22 MIS of Smell Refactorer

22.1 Module

Smell Refactorer applies a refactoring to a detected smell.

22.2 Uses

� Backend Communicator for sending the smell data to Source Code Optimizer for refac-
toring.

� Refactor Manager for managing refactoring workflows.

22.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exception
refactor smell: Smell None Invalid input

22.4 Semantics

22.4.1 State Variables

None

22.4.2 Environment Variables

� EDITOR: Used to apply refactored changes.

36

22.4.3 Assumptions

� The smell data is valid and correctly identifies a refactorable issue.

22.4.4 Access Routine Semantics

refactor(smell: Smell)

� Transition: Sends the smell data to the backend for refactoring and applies the
changes in the editor.

� Output: None.

� Exception: Logs errors for invalid inputs or failed refactoring.

22.4.5 Local Functions

None

23 MIS of File Highlighter

23.1 Module

File Highlighter is a module that manages highlighting of code regions in the VS Code
editor.

23.2 Uses

None

23.3 Syntax

Exported Constants: None
Exported Access Programs:
Name In Out Exception
highlight range: range[] None None
clear None None None

23.4 Semantics

23.4.1 State Variables

� highlightedRanges: Stores the currently highlighted regions in the editor.

37

23.4.2 Environment Variables

� EDITOR: Used to apply and clear highlights.

23.4.3 Assumptions

� The VS Code editor is active and accessible.

� Python file with no syntax errors is currently open in the editor.

23.4.4 Access Routine Semantics

highlight(ranges: Range[])

� Transition: Adds highlights to the specified ranges in the editor.

� Output: None.

� Exception: None.

clear()

� Transition: Removes all highlights from the editor.

� Output: None.

� Exception: None.

23.4.5 Local Functions

None

24 MIS of Hover Manager

24.1 Module

Hover Manager manages hover effects to display contextual information.

24.2 Uses

� File Highlighter for providing contextual information about highlighted smells.

38

24.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exception
showHover position: Position None None
clearHover None None None

24.4 Semantics

24.4.1 State Variables

� currentHover: Stores the currently displayed hover information.

24.4.2 Environment Variables

� EDITOR: Used to display hover effects.

24.4.3 Assumptions

None

24.4.4 Access Routine Semantics

showHover(position: Position)

� Transition: Displays hover information at the specified position.

� Output: None.

� Exception: None.

clearHover()

� Transition: Clears any active hover information.

� Output: None.

� Exception: None.

24.4.5 Local Functions

None

39

25 MIS of Refactor Manager

25.1 Module

Refactor Manager manages the process of applying refactorings to detected smells.

25.2 Uses

None

25.3 Syntax

Exported Constants: None
Exported Access Programs:

Name In Out Exceptions

applyRefactor refactor: Refactor None Validation error
previewRefactor refactor: Refactor None None
undoRefactor None None None

25.4 Semantics

25.4.1 State Variables

� appliedRefactors: Stores a history of applied refactors.

25.4.2 Environment Variables

� EDITOR: Used to apply and preview refactors.

25.4.3 Assumptions

� The refactoring data is valid and corresponds to detected smells.

25.4.4 Access Routine Semantics

applyRefactor(refactor: Refactor)

� Transition: Applies the provided refactor to the active editor.

� Output: None.

� Exception: Logs validation errors if the refactor cannot be applied.

previewRefactor(refactor: Refactor)

� Transition: Displays a preview of the refactor in the editor.

40

� Output: None.

� Exception: None.

undoRefactor()

� Transition: Reverts the most recently applied refactor.

� Output: None.

� Exception: None.

25.4.5 Local Functions

None

41

26 Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate
attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning
and that of your group as a whole, and to find ways to improve in the future. Reflection
is an important part of the learning process. Reflection is also an essential component of a
successful software development process.

Reflections are most interesting and useful when they’re honest, even if the stories they
tell are imperfect. You will be marked based on your depth of thought and analysis, and not
based on the content of the reflections themselves. Thus, for full marks we encourage you
to answer openly and honestly and to avoid simply writing “what you think the evaluator
wants to hear.”

Please answer the following questions. Some questions can be answered on the team
level, but where appropriate, each team member should write their own response:

Group Reflection

1. Which of your design decisions stemmed from speaking to your client(s) or a proxy
(e.g. your peers, stakeholders, potential users)? For those that were not, why, and
where did they come from?

The decision to modularize the refactorers into specific ”smell-focused” components
was largely inspired by a conversation with our supervisor, who is also our primary
stakeholder. During one of our discussions, our supervisor suggested that the prob-
lem at hand had the potential to evolve into a graduate-level reinforcement learning
project. This idea of managing multiple refactoring strategies and selecting the best
one based on certain conditions led to the insight that organizing the refactorers by
the specific types of code smells they address would make the system more extensible.
By focusing each component on a particular code smell, we could later build upon the
design and possibly incorporate machine learning or reinforcement learning strategies
to optimize refactorer selection. This modular approach would allow for easier inte-
gration of additional strategies in the future, making the tool scalable as the project
evolves.

Another important design decision influenced by our supervisor was the idea to validate
the refactored code using a test suite. Our supervisor emphasized that in a real-world
application, validating the integrity of the refactored code with a comprehensive test
suite was a crucial step.

Both of these design decisions were informed by valuable input from our supervisor,
ensuring that the project stayed grounded in real-world applicability and allowed for
future enhancements and improvements.

2. While creating the design doc, what parts of your other documents (e.g. requirements,
hazard analysis, etc), it any, needed to be changed, and why?

42

While creating the design document, several components of the project were revised
to improve clarity and focus. Specifically, the list of code smells targeted by the
refactoring library was refined by adding new smells that align more closely with our
sustainability goals and removing others deemed less impactful. This required up-
dates to the requirements document to ensure it accurately reflected the new scope
of supported refactorings. Additionally, the decision was made to remove the metric
reporting functionality due to its complexity and limited time, which led to correspond-
ing modifications in both the requirements document and the VnV plan, where this
feature had previously been considered for validation. Moreover, the reinforcement
learning model, initially intended to optimise refactoring decisions, was excluded from
the project due to time constraints and implementation challenges. This necessitated
updates to the hazard analysis document to remove risks associated with this compo-
nent and to better align the analysis with the reduced project scope. These changes
ensure consistency and maintain a realistic and achievable project timeline.

3. What are the limitations of your solution? Put another way, given unlimited resources,
what could you do to make the project better? (LO ProbSolutions)

The energy measurement library we selected, Codecarbon, proved to be less reliable
than anticipated, which affects the accuracy of some of our results. Ideally, we would
replace it with a more dependable resource. However, due to time constraints and the
inherent complexity of measuring CO2 emissions from code, this isn’t feasible within
the scope of this project. For now, we are assuming Codecarbon’s reliability. In a real-
world implementation, we would prioritize using a more robust energy measurement
system.

4. Give a brief overview of other design solutions you considered. What are the benefits
and tradeoffs of those other designs compared with the chosen design? From all the
potential options, why did you select the documented design? (LO Explores)

We considered incorporating a machine learning aspect into the project, specifically
using reinforcement learning (RL) to manage the refactoring process. The idea was
to treat the selection and application of refactoring strategies as a decision-making
process, where an agent could learn the best strategies over time based on rewards and
outcomes.

In this approach, the agent would represent the system that applies different refactoring
techniques to the code. The environment would be the code itself, with various code
smells and inefficiencies that the agent needs to address. The actions the agent would
take would involve selecting and applying one of the predefined refactoring strategies
(like long lambda function or long parameter list). The reward would be the resulting
decrease in energy consumption (i.e., reduction in CO2 emissions), measured after the
code is refactored and executed. The agent would receive a positive reward for actions
that successfully lead to more energy-efficient code and a negative reward for actions
that increase energy consumption. Over time, the agent would learn to prioritize and
apply the most effective refactoring techniques based on the rewards it receives.

43

While this machine learning solution seemed promising, there were a few trade-offs
to consider. First, implementing reinforcement learning would significantly increase
the complexity of the project. It would require training data, fine-tuning the agent’s
learning parameters, and ensuring that the agent’s actions actually lead to measurable
improvements in CO2 efficiency. Additionally, RL would require ongoing iteration
to improve its performance, which could be time-consuming and resource-intensive,
especially given the limited time available for the project.

Another concern was that reinforcement learning, while powerful, might not always be
the most effective or efficient solution for this kind of task. The selection of refactoring
strategies is not necessarily a highly complex decision-making process that requires
learning over time. Since we already have a set of predefined strategies, a more direct,
rule-based approach was more appropriate. We could achieve the same results without
the need for training the agent or dealing with the unpredictability of machine learning
models.

Given these trade-offs, we opted to stick with the more straightforward approach of
selecting and applying refactoring strategies based on predefined rules. This decision
was driven by the need for a practical and efficient solution within the given project
constraints. While reinforcement learning could be an interesting exploration for future
versions of the tool, the current design provides a reliable and manageable way to
achieve the desired results without adding unnecessary complexity.

Mya Hussain

1. What went well while writing this deliverable?

Writing the deliverable helped to clearly decompose the system into manageable mod-
ules. This ensured no functionality was missed in the implementation process and that
all components connected in a way that made sense.

2. What pain points did you experience during this deliverable, and how did you resolve
them?

It was strange that we had already coded the project before completing this deliverable.
It acted as more of a sanity check that our design decisions made sense rather than an
actual blueprint of what to do. This made this deliverable easier to write as the code
was already present but also made the work feel unnecessarily redundant i.e boring to
do. It often felt like I was documenting things that were already clear or implemented.
This repetition made the process less engaging and, at times, a bit tedious. To resolve
this, I focused on framing the document as an opportunity to validate and formalize
our design decisions, which helped shift the mindset from simply checking off tasks to
reaffirming the thought process behind our choices.

Sevhena Walker

1. What went well while writing this deliverable?

44

Our team already had a pretty solid idea of how we wanted to break up our system,
as well as the key components that should be involved, even before we started working
on the MG and MIS documents. We had already coded a decent portion of the system
and, in doing so, had explored and tested various design approaches and options. This
hands-on experience gave us a strong foundation and a practical understanding of
what worked and what didn’t, which significantly influenced our final design choices.
For example, we had already determined that the refactorers would be structured as
individual classes inheriting from a common base class, which simplified documenting
shared functionality in the MIS.

2. What pain points did you experience during this deliverable, and how did you resolve
them?

One of the biggest pain points was turning our informal design ideas and code into
well-defined, modular components with clear inputs, outputs, and semantics. We had
to carefully review the existing code to make sure the documentation matched its
behaviour while keeping things flexible for future changes. We also ran into some
inconsistencies that required minor refactoring to clean up our interfaces. Another
tricky part was finding the right balance between providing enough detail and keeping
the documentation readable without going too deep into implementation. We tackled
these problems by reviewing everything multiple times, getting feedback, and simpli-
fying where we could to make things clearer.

Nivetha Kuruparan

1. What went well while writing this deliverable? Planning out the different modules
early on was incredibly helpful for me. It allowed me to clearly identify how various
parts of the system interact and what functionality could be combined or separated.
This structured approach not only helped in designing the system but also made it
easier to focus on what each module should accomplish, ensuring no major functionality
was overlooked.

2. What pain points did you experience during this deliverable, and how did you resolve
them? It was challenging for me to think through each module thoroughly and ensure
that every input, output, and state variable was captured accurately. This required
going through the implementation multiple times and considering edge cases that might
not have been obvious at first. Breaking the process into smaller, more manageable
tasks and carefully reviewing each module helped resolve this challenge.

Ayushi Amin

1. What went well while writing this deliverable? Honestly, once I got into it, things
flowed pretty smoothly. Breaking everything down into smaller sections helped a ton.
It made the whole thing feel less intimidating. I also felt like I had a good understanding

45

of how the modules all connected, which made it easier to explain things. We all had
our own parts to work on based on the modules we have and were going to create so
it was easier to work on something I was familiar with. Also, talking it through with
my teammates about some of the trickier parts really helped me feel more confident
about what I was writing. We all did code reviews and helped eachother out on parts
we didn’t quite get or thought we got. Overall, it felt pretty satisfying to see it all
come together.

2. What pain points did you experience during this deliverable, and how did you resolve
them? I think the hardest part of this was visualizing extra dependencies and functions
I would need to create to make my module work. We had coded out a portion of it
but it did not include everything. I had to make sure I was not missing anything
important. It felt like I was stuck in this loop of overthinking every little detail. To
get past it, I took a break and came back with a fresh perspective, which helped a bit.
I also hit up one of my teammates to talk through the parts I was struggling with.
They gave me some ideas and helped me confirm I was on the right track since some
of the modules I did were similar to theirs so we were able to collaborate easily. After
that, things did not feel as stressful, and I was able to wrap it up.

Tanveer Brar

1. What went well while writing this deliverable? The best part about writing this
deliverable was getting the chance to design the user interface before having imple-
mented it. The Source Code Optimizer has already been designed and implemented as
a result of the POC assignment in November. We had not implemented the VS Code
Plugin for it yet, so getting the chance to actually think about its design was very
rewarding(especially since most academic projects I have done before either involved
no design component or very minimal for a small program). Each modules has clear
responsibilities, which helped me anticipate all needed requirements for this plugin
through a logical framework(POC implementation was a lot of trial and error). The
other good thing were the built in labels for anticipated changes and modules, which
helped me easily write down the traceability matrix.

2. What pain points did you experience during this deliverable, and how did you resolve
them? One of the biggest challenges that I faced was identifying the correct module
for each anticipated change in the traceability matrix. My team mate had worked on
the anticipated changes, Some of these changes had overlapping responsibilities across
modules, so I carefully reviewd the module responsibilities over again to be able to point
out the modules for each change. It needed a lot of cross referencing the module guide
and anticipated changes to make sure nothing was missde. Also, when determining
module dependencies in the ”Uses” section for each module’s decomposition, I was not
fully sure about which modules should depend on which for the VS Code Plugin. This
is because there can be multiple possible ways, for example the Plugin Initializer or

46

Smell Detector being able to directly call Source Code Optimizer. While resolving this,
I realized that while there is no one perfect mapping of dependencies, the goal should
be to be as modular as possible and apply the seperation of concerns principle. This
is why, for example, the Backend Communicator is the only module in the design that
communicates with Source Code Optimizer.

47

	Revision History
	Symbols, Abbreviations and Acronyms
	Introduction
	Notation
	Module Decomposition
	MIS of Smell Data Type
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Base Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Long Message Chain Refactorer
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Long Lambda Function Refactorer
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Long Parameter List Refactorer
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Use List Accumulation Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Make Method Static Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Long Element Chain Refactorer
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Measurements Module
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Pylint Analyzer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Testing Functionality
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Use A Generator Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Cache Repeated Calls Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Plugin Initiator
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Backend Communicator
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Smell Detector
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Smell Refactorer
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of File Highlighter
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Hover Manager
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	MIS of Refactor Manager
	Module
	Uses
	Syntax
	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	Appendix — Reflection

