

NeuroML with PyMOOSE

Aditya Gilra,
Chaitanya Chintaluri,

 Niraj Dudani
NCBS, Bangalore, India

libNeuroML meeting
UCL, London

July 26th, 2012

History:
NeuroML import in MOOSE β1.3
● Siji George (Upi lab)
● Uses libNeuroML v0.2:

http://neuroml.svn.sourceforge.net/viewvc/neuroml/TestLibNeuroML/v0.2/libneuroml/

– C++, libxml2
– moose/branches/moose-Beta-1.3.0/external/neuroML_src

● moose/branches/moose-Beta-1.3.0/neuroML_IO

● moose/branches/moose-Beta-1.3.0/DEMOS/NeuroML_Reader

– Granule, Purkinje, CA1 (Ca pool, K_AHP, etc)

http://neuroml.svn.sourceforge.net/viewvc/neuroml/TestLibNeuroML/v0.2/libneuroml/

Why python importer then?
● libNeuroML v0.2: no NetworkML

● Bhalla & Bower mitral cell '93 (284 comps):
– GENESIS→NEURON (Andrew Davison)

– NEURON→NeuroML morphology exporter

exports <cablegroup> tags to group cables

– libNeuroML v0.2 only supports <meta:group> tags
inside <cable> tags.

– Redundancy in NeuroML1 – bad?

● Bug importing a validated H channel

● Python easier than debugging C++

Aditya

Importer MOOSE β1.4 – Aditya
● ElementTree module

– Included / standard in Python2.5

– Mostly compatible with the faster
cElementTree or lxml, can switch later

● ChannelML, MorphML, NetworkML from
file/node.

● Load channels, then cells into /library. Then
create populations & projections. OR

● Load NeuroML file and load cells / channels from
it, or separate files in its directory.

Aditya

MOOSE β1.4 GUI – Chaitanya

Chaitanya

MOOSE β1.4 GUI – Chaitanya

Chaitanya

OB model – Aditya: Usage
from moose.neuroml import *

load_channels()

CML = ChannelML({'temperature':CELSIUS})

CML.readChannelMLFromFile('../channels/Ih_cb.xml')

cellSegmentDict = load_cells()

MML = MorphML({'temperature':CELSIUS})

mitral_dict =
MML.readMorphMLFromFile('../cells/mitral_bbmit1993davison_neuroML
_L1_L2_L3_mod.xml',{})

cellSegmentDict.update(mitral_dict)

populationDict = { 'populationname1':(cellname,{instanceid1:moosecell, ... }) , ... }

projectionDict = { 'projectionname1':(source,target,
[(syn_name1,pre_seg_moosepath,post_seg_moosepath),...]) , ... }

(populationDict,projectionDict) = \

NML.readNetworkMLFromFile(filename,cellSegmentDict,params=tweaks)

Aditya

ChannelML1 issues

● Global properties like temperature (meta?)
● Lookup table channels – Na in BBmit93
● Destexhe etal 's receptor-saturating

synapse (implemented in MOOSE)

http://cns.iaf.cnrs-gif.fr/files/synapse.pdf

Aditya

MorphML1 issues

● <cablegroup>s inside <cables> (NEURON
export)

versus
● <meta:group> tags within <cable>

– Former: easy to implement

– Latter: easy to read / understand model

– XSLT converter between these?

Aditya

MorphML1 issues
● <segment> and <cable>

– 1 segment to a compartment?

● Soma with dendrites at opp ends:
– <segment> has opt attrib cable

– <cable> & fract_along_parent attrib.

– Need to parse <segments> and <cables>
to get connectivity

● Attrib for every segment: connect proximal
vs distal to parent.

Aditya

NetworkML1 issues
● Rotation of cell instances
● Inhomogeneous populations?

– Override say RMP of individual cells

– cell_type as a list in <population>

– Collections of populations with same
potential synaptic locations

– Projections should not be affected

Aditya

Implementation issues
● Rotation of cell instances by <meta:notes>
● Asym compartment converted to sym

compartment by Hines solver in MOOSE:
axial of parent to raxial of child segment

● Changing params of channel in MorphML
not implemented

● Need clean separation of NeuroML reader
to in-memory model VS sim-dependent
model creation code!

Aditya

XSLT to X3D – Aditya
● Enhancements to the XSL file by Padraig:

– NetworkML support:

– Populations and projections

– Cells as spheres / morphology if present

– Cell morphology with dendritic widths

● On the NeuroML website
● Olfactory bulb model (Aditya) visualized in

X3D ...

Aditya

 Aditya

Moogli – Chaitanya

● hdf5 import: file includes morphology of the
cell(s) being visualized.

● NEO support coming
Chaitanya

Moogli

OB model
(Aditya)
Visualized
using old
hacked
Moogli
(Chaitanya)

LEMS

● Core set of ComponentTypes should
correspond to existing objects in simulators

– Performance issues: Niraj – hsolve

● Markov channels implemented in MOOSE
– Vishaka, Niraj

– Kinetic Schemes directly translate? – Niraj

Niraj

Acknowledgements
● MOOSE team:

– Upi, Subha, Niraj, Chaitanya,

 Harsha, Siji, Aditya

● Lab 13 members
● Funding:

– NCBS/TIFR,

– DAE/SRC,

– SBCNY/NIGNS

– INCF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

