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Abstract
pyannote.metrics is an open-source Python library aimed
at researchers working in the wide area of speaker diarization.
It provides a command line interface (CLI) to improve repro-
ducibility and comparison of speaker diarization research re-
sults. Through its application programming interface (API), a
large set of evaluation metrics is available for diagnostic pur-
poses of all modules of typical speaker diarization pipelines
(speech activity detection, speaker change detection, cluster-
ing, and identification). Finally, thanks to visualization capa-
bilities, we show that it can also be used for detailed error anal-
ysis purposes. pyannote.metrics can be downloaded from
http://pyannote.github.io.
Index Terms: evaluation, speaker diarization, reproducible re-
search, open-source software

1. Introduction
Speaker diarization is the task of partitioning an audio stream
into homogeneous temporal segments according to the identity
of the speaker. Automatic speech transcription also benefits
from speaker diarization to address the question “who speaks
what?”. Resulting augmented (or “rich”) transcription can be
very useful for multimedia documents structuring and indexing.

Thanks to open initiatives such as the series of NIST “Rich
Transcription” evaluations [1], or ESTER [2] and ETAPE [3]
benchmarks, the state-of-the-art for speaker diarization has
achieved significant improvement since 2000. Despite address-
ing the same task, these initiatives used different evaluation
metrics, different implementations of these metrics [4, 5], all
provided as standalone (Perl or Lua) command line tools.

In this paper, we introduce pyannote.metrics, an open-
source Python library for reproducible evaluation, diagnostic,
and error analysis of speaker diarization systems. Python is
currently being adopted by a growing number of researchers
in speaker identification [6, 7], machine learning [8], or deep
learning [9]. Evaluating speaker diarization using the same lan-
guage as the one used for developing, training, and testing a
system has several advantages. In particular, it may be very
convenient when the actual evaluation metric serves as a cost
function to minimize during training.

For the sake of completeness, pyannote.metrics can
also be used as a command line tool (described in Section 2) to
compute the de facto standard diarization error rate NIST im-
plementation. Inspired by Bob [7] database package paradigm,
pyannote.metrics rely on standardized database interfaces
to ensure reproducibility and fair comparison of speaker diariza-
tion systems. It also provides a large collections of additional
evaluation metrics (summarized in Figure 1) that can be used
for diagnostic purposes, either using the command line tool, or
directly as a Python module. Those additional metrics are de-
scribed, discussed, and compared in Section 3. Finally, another

strength of pyannote.metrics lies in its advanced visualiza-
tion and error analysis features. This is introduced in Section 4.

2. Reproducible evaluation
There are two main issues that may arise with results reported
in the literature. Firstly, even though the same public datasets
are used, the actual evaluation protocol may differ slightly from
one paper to another. Secondly, the implementation of the re-
ported evaluation metrics may also differ. The first objective of
the pyannote.metrics library is to address these two prob-
lems, and provide a convenient way for researchers to evaluate
their approaches in a reproducible and comparable manner. Fig-
ure 2 shows an example use of the command line interface that
is provided to solve this problem.

2.1. Tasks

Not only can pyannote.metrics.py command line tool be
used to compute the diarization error rate using NIST im-
plementation, one can also evaluate the typical four sub-
modules used in most speaker diarization systems [10], de-
picted in Figure 1. Practically, the first positional argu-
ment (e.g. diarization in Figure 2) is a flag indi-
cating which task should be evaluated. Apart from the
diarization flag that is used for evaluating speaker diariza-
tion results, other available flags are detection (speech activ-
ity detection), segmentation (speaker change detection), and
identification (supervised speaker identification). Depend-
ing on the task, a different set of evaluation metrics is computed,
which are listed in Section 3.

2.2. Datasets and protocols

pyannote.metrics provides an easy way to ensure the same
protocol (i.e. manual groundtruth and training/development/test
split) is used for evaluation. Internally, it relies on
a collection of Python packages that all derive from
the pyannote.database main package, that provides a
convenient API to define training/development/test splits,
along with groundtruth annotations. As of March 2017,
pyannote.database packages exist for the ETAPE cor-
pus [3], the REPERE corpus [11, 12], and the AMI corpus [13].
As more people contribute new pyannote.database pack-
ages, they will be added to the pyannote ecosystem. In Fig-
ure 2, the development set of the TV evaluation protocol of the
ETAPE dataset is used. Results are both reported for each file in
the selected subset, and aggregated into one final metric value
(cf. line starting with TOTAL).

2.3. File formats

While the MDTM [4] file format is used in this example, several
other file formats are available (and can be contributed) thanks
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Figure 1: A typical pipeline for speaker diarization, aligned with the list of available evaluation metrics

$ pyannote.metrics.py diarization --subset=development Etape.SpeakerDiarization.TV hypothesis.mdtm

Diarization (collar = 0 ms) error purity coverage total correct % fa. % miss. % conf. %
-------------------------------------- ------- -------- ---------- -------- --------- ----- ------ ----- ------- ---- ------- -----
BFMTV_BFMStory_2011-03-17_175900 14.64 94.74 90.00 2582.08 2300.22 89.08 96.16 3.72 80.14 3.10 201.72 7.81
LCP_CaVousRegarde_2011-02-17_204700 17.80 89.13 86.90 3280.72 2848.42 86.82 151.78 4.63 208.29 6.35 224.01 6.83
LCP_EntreLesLignes_2011-03-18_192900 23.46 79.52 79.03 1704.97 1337.80 78.46 32.89 1.93 157.14 9.22 210.03 12.32
LCP_EntreLesLignes_2011-03-25_192900 26.75 76.97 75.86 1704.13 1292.83 75.86 44.61 2.62 158.38 9.29 252.92 14.84
LCP_PileEtFace_2011-03-17_192900 10.73 93.33 92.30 1611.49 1487.32 92.30 48.73 3.02 55.49 3.44 68.67 4.26
LCP_TopQuestions_2011-03-23_213900 18.28 98.25 94.20 727.26 668.65 91.94 74.36 10.22 16.41 2.26 42.20 5.80
LCP_TopQuestions_2011-04-05_213900 27.97 97.95 79.81 818.03 638.68 78.08 49.45 6.04 17.46 2.13 161.89 19.79
TV8_LaPlaceDuVillage_2011-03-14_172834 21.43 92.89 89.64 996.12 892.04 89.55 109.36 10.98 11.80 1.18 92.28 9.26
TV8_LaPlaceDuVillage_2011-03-21_201334 66.23 77.24 70.64 1296.86 691.76 53.34 253.80 19.57 29.16 2.25 575.95 44.41
TOTAL 23.27 88.18 84.55 14721.65 12157.71 82.58 861.14 5.85 734.28 4.99 1829.67 12.43

Figure 2: pyannote-metrics.py example output

to the internal use of the pyannote.parser package.

3. Diagnostic
A typical speaker diarization pipeline is depicted in Figure 1.
The first step is usually dedicated to speech activity detection,
where the objective is to remove all non-speech regions. Then,
speaker change detection aims at segmenting speech regions
into homogeneous segments. The subsequent clustering step
tries to group those speech segments according to the identity of
the speaker. Finally, an optional supervised classification step
may be applied to actually identify every speaker cluster in a
supervised way.

Looking at the final performance of the system is usually
not enough for diagnostic purposes. In particular, it is often
necessary to evaluate the performance of each module sepa-
rately to identify their strenght and weakness, or to estimate
the influence of their errors on the complete pipeline. This
section provides the list of metrics that were implemented in
pyannote.metrics with that very goal in mind.

3.1. Detection

Speech activity detection modules can be evaluated using, de-
tection error rate, precision, and recall.

detection error rate =
false alarm + missed detection

total

where false alarm is the duration of non-speech incorrectly clas-
sified as speech, missed detection is the duration of speech in-
correctly classified as non-speech, and total is the total duration
of speech in the reference. Note that these metrics do not take
overlapping speech into account. In other words, overlapping
speech regions are counted only once.

3.2. Segmentation

As depicted in Figure 3, (speaker) change detection modules
can be evaluated using two pairs of dual metrics: precision and
recall, or purity and coverage. Precision and recall are stan-
dard metrics based on the number of correctly detected speaker
boundaries. In Figure 3, recall is 75% because 3 out of 4 refer-
ence boundaries were correctly detected, and precision is 100%

reference

hypothesis

100% 60% 90%

65% 70% 100%
purity

coverage

reference

hypothesis precision

recall
OK OK OKKO

OK OK OK

1 2 3

A B C

tolerance

Figure 3: Segmentation metrics available in
pyannote.metrics

because all hypothesized boundaries are correct. The main
weakness of that pair of metrics (and their combination into a
f-score) is that it is very sensitive to the tolerance parameter, i.e.
the maximum distance between two boundaries for them to be
matched. From one segmentation paper to another, authors may
used very different values, thus making the approaches difficult
to compare.

Instead, we think that segment-wise purity and coverage
should be used instead. They have several advantages over pre-
cision and recall, including the fact that they do not depend
on any tolerance parameter, and that they directly relate to the
cluster-wise purity and coverage used for evaluating speaker di-
arization. Segment-wise coverage is computed for each seg-
ment in the reference as the ratio of the duration of the inter-
section with the most co-occurring hypothesis segment and the
duration of the reference segment. For instance, coverage for
reference segment 1 is 100% because it is entirely covered by
hypothesis segment A. Purity is the dual metric that indicates
how pure hypothesis segments are. For instance, segment A
is only 65% pure because it is covered at 65% by segment 1
and 35% by segment 2. The final values are duration-weighted
average over each segment.

3.3. Diarization

Diarization error rate (DER) is the de facto standard metric for
evaluating and comparing speaker diarization systems. It is de-
fined as follows:

DER =
false alarm + missed detection + confusion

total



where false alarm is the duration of non-speech incorrectly clas-
sified as speech, missed detection is the duration of speech in-
correctly classified as non-speech, confusion is the duration of
speaker confusion, and total is the total duration of speech in the
reference. Note that this metric does take overlapping speech
into account, potentially leading to increased missed detection
in case the speaker diarization system does not include an over-
lapping speech detection module.

3.3.1. “Optimal” vs. “greedy”

Two implementations of the diarization error rate are available
(optimal and greedy), depending on how the one-to-one map-
ping between reference and hypothesized speakers is computed.
The optimal version uses the Hungarian algorithm [14] to com-
pute the mapping that minimize the confusion term, while the
greedy version operates in a greedy manner, mapping reference
and hypothesized speakers iteratively, by decreasing value of
their cooccurrence duration. In practice, the greedy version is
much faster than the optimal one, especially for files with a large
number of speakers – though it may slightly over-estimate the
value of the diarization error rate.

3.3.2. Purity and coverage

While the diarization error rate provides a convenient way
to compare different diarization approaches, it is usually not
enough to understand the type of errors commited by the sys-
tem. Purity [15] and coverage [16] are two dual evaluation met-
rics that provide additional insight on the behavior of the sys-
tem. They are defined as follows:

purity =

∑
cluster

max
speaker

|cluster ∩ speaker|∑
cluster

|cluster|

coverage =

∑
speaker

max
cluster
|speaker ∩ cluster|∑

speaker

|speaker|

where |speaker| (respectively |cluster|) is the speech duration
of this particular reference speaker (resp. hypothesized cluster),
and |speaker∩cluster| is the duration of their intersection. Over-
segmented results (e.g. too many speaker clusters) tend to lead
to high purity and low coverage, while under-segmented results
(e.g. when two speakers are merged into one large cluster) lead
to low purity and higher coverage.

3.3.3. Use case

Figure 4 depicts the evolution of LIMSI multi-stage speaker di-
arization system [17] applied on the ETAPE dataset [3]. It is
roughly made of four consecutive modules (segmentation, BIC
clustering, Viterbi resegmentation, and CLR clustering). From
the upper part of the figure (DER as a function of the module),
it is clear that each module improves the output of the previ-
ous one. Yet, the lower part of the figure clarifies the role of
each module. BIC clustering tends to increase the size of the
speaker clusters, at the expense of purity (−7%). Viterbi reseg-
mentation addresses this limitation and greatly improves cluster
purity (+5%), with very little impact on the actual cluster cover-
age (+2%). Finally, CLR clustering brings an additional +5%
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Figure 4: Diagnosing LIMSI multi-stage speaker diarization
system [17]

coverage improvement.

3.4. Identification

In case prior speaker models are available, the speech turn clus-
tering module in Figure 1 may be followed by a supervised
speaker recognition module for cluster-wise supervised classifi-
cation. pyannote.metrics also provides a collection of eval-
uation metrics for this identification task. This includes preci-
sion, recall, and identification error rate (IER):

IER =
false alarm + missed detection + confusion

total

which is similar to the diarization error rate (DER) introduced
previously, except that the confusion term is computed di-
rectly by comparing reference and hypothesis labels, and does
not rely on a prior one-to-one matching.

3.5. Collar and evaluation map

Because manual annotations cannot be precise at the audio sam-
ple level, it is common in speaker diarization research to re-
move from evaluation a 500ms collar around each speaker turn
boundary (250ms before and after). Most of the metrics avail-
able in pyannote.metrics support a collar parameter, which
defaults to 0.

Moreover, though audio files can always be processed en-
tirely (from beginning to end), there are cases where reference
annotations are only available for some regions of the audio
files. All metrics support the provision of an evaluation map [4]
that indicate which part of the audio file should be evaluated.

4. Visual error analysis
As useful as those metrics can be, it is often necessary to have
a closer look at the actual output of each module, for error
analysis or visual inspection. Existing audio annotation tools



such as transcriber [18] or Praat [19] may be used for that pur-
pose. However, they require the researcher to generate annota-
tion files, switch from their Python environment to a new soft-
ware, and then only be able to browse and inspect the anno-
tations. Moreover, because they were designed for annotation
purposes, they do not provide advanced functionalities to easily
locate hypothesis errors.
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Figure 5: Inspecting the output of speaker diarization modules

Because it internally relies on pyannote.core, advanced
visualization capabilities, pyannote.metrics addresses the
first limitation. It can be used to visualize each step of any
speaker diarization pipeline, without leaving the current Python
or Jupyter Notebook [20] environment (see Appendix). Figure 5
was obtained using this feature – showing it can also be used to
generate publication-quality figures.
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Figure 6: Visualizing segmentation errors

Finally, pyannote.metrics also provides a few tools ded-
icated to the analysis of segmentation or diarization errors.
Figure 6 provides an example of segmentation error analysis.
Given a reference and hypothesized segmentations, the third
line is generated automatically and allows to quickly get insight
at the type and location of segmentation errors. This example
contains three errors: one boundary is not at the right location
(shift error), one boundary is missing (under-segmentation er-
ror), and one segment is incorrecly split into two smaller ones
(over-segmentation error).

5. Conclusion
In this paper, we introduced pyannote.metrics an open-
source Python library for reproducible evaluation, diag-
nostic, and error analysis of speaker diarization sys-

tems. Installation instructions, example notebooks, and
documentation can be found on the dedicated website:
http://pyannote.github.io.

The list of implemented metrics is obviously not exhaus-
tive (especially as far as error analysis is concerned) and
pyannote.metrics is meant to be community-driven. Con-
tributions are welcome: additional metrics, documentation im-
provement, new pyannote.database packages, ...

6. Appendix
Figure 7 showcases the integration with Jupyter Notebook, and
provides a few examples of the pyannote.metrics object-
oriented API.

Figure 7: Jupyter Notebook integration
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