Module dopes.data_analysis.polytec
Functions
def find_max(x, y, z, kind='maximum', height=None, width=None)
-
Expand source code
def find_max(x,y,z,kind="maximum",height=None,width=None): """ Function to find maximal values args: \n\t- x, y (array) : 1D array for the x and y position of the pixel \n\t- z (array) : 1D array with the values at position (x,y) and with the same dimension as x and y \n\t- kind (string) : the method to determine the maximum. "maximum" only takes the max value of the z array while "peaks" is looking for the maximal peak. This last method is more robust with regards to outlier. The minimum height and width can be specified. \n\t- height (None, scalar or 2-element sequence) : required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height. \n\t- width (None, scalar or 2-element sequence) : required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width. return: \n\t- x_max,y_max,z_max : three elements with the x, y position of the maximum value of the z array """ if kind=="maximum": index=np.nanargmax(z) x_max=x[index] y_max=y[index] z_max=z[index] elif kind == "peaks": n_interp=int(np.sqrt(len(z))) X,Y,Z=medfilt_2D(x,y,z,n_interp) if height is None: height = np.nanmax(Z[:,int(n_interp/2)])*0.1 if width is None: width = n_interp/np.nanmax(x)*0.1 param_peaks=find_peaks(Z[:,int(n_interp/2)],height=height,width=width) peak_x=param_peaks[0][np.nanargmax(param_peaks[1]["peak_heights"])] param_peaks=find_peaks(Z[peak_x],height=height,width=width) peak_y=param_peaks[0][np.nanargmax(param_peaks[1]["peak_heights"])] peak_height=np.nanmax(param_peaks[1]["peak_heights"]) x_max=X[peak_x,peak_y] y_max=Y[peak_x,peak_y] z_max=peak_height return x_max,y_max,z_max
Function to find maximal values
args:
-
x, y (array) : 1D array for the x and y position of the pixel
-
z (array) : 1D array with the values at position (x,y) and with the same dimension as x and y
-
kind (string) : the method to determine the maximum. "maximum" only takes the max value of the z array while "peaks" is looking for the maximal peak. This last method is more robust with regards to outlier. The minimum height and width can be specified.
-
height (None, scalar or 2-element sequence) : required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
-
width (None, scalar or 2-element sequence) : required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width.
return:
- x_max,y_max,z_max : three elements with the x, y position of the maximum value of the z array
-
def medfilt_2D(x, y, z, kernel_size=9, n_interp=None)
-
Expand source code
def medfilt_2D(x,y,z,kernel_size=9,n_interp=None): """ Function to convert unstructured 1D data (three vectors) in 2D grid for which the z values have been filtered with a 2D median filter to remove the outliers args: \n\t- x, y (array) : 1D array for the x and y position of the pixel \n\t- z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y \n\t- kernel_size (int) : size of the median filter window. \n\t- n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array return: \n\t- X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values filtered. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively. """ X, Y, Z_interp = unstructured_to_regular(x,y,z,n_interp) Z_med = medfilt2d(Z_interp,kernel_size) return X,Y,Z_med
Function to convert unstructured 1D data (three vectors) in 2D grid for which the z values have been filtered with a 2D median filter to remove the outliers
args:
-
x, y (array) : 1D array for the x and y position of the pixel
-
z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
-
kernel_size (int) : size of the median filter window.
-
n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
return:
- X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values filtered. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.
-
def plot_1D_line_from_file(file_path,
unit_mult=(1, 1),
use_lines=None,
ax=None,
color_list=None,
ls_list=None,
marker_list=None,
**plot_kwargs)-
Expand source code
def plot_1D_line_from_file(file_path,unit_mult=(1,1),use_lines=None,ax=None,color_list=None,ls_list=None,marker_list=None,**plot_kwargs): """ Function to plot a line data from a file args: \n\t- file_path (string) : the file to read \n\t- unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector. \n\t- use_lines (array) : list of lines to be plotted. Be careful that the number of column in the file is usually twice the number of lines (as each line has an x and z vector). \n\t- ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it \n\t- color_list, ls_list, marker_list (array) : list of color, linestyle and marker to be used for the data lines found in the files. If the length of the list is smaller than the number of data lines, the last component is kept for the last data lines. \n\t- plot_kwargs : this method also takes any keyword argument for the Axes.plot() function return: \n\t- fig, ax, data : the figure with its axe and the data array read from the file. If ax is provided, only data is returned """ if use_lines is not None: index=np.transpose(np.array([use_lines])) @ (2 * np.ones((1,2*len(use_lines))))+ np.array([[0,1]*len(use_lines)]) use_col=[int(i) for i in index[0]] else: use_col=None data=np.genfromtxt(file_path,skip_header=2,delimiter="\t",usecols=use_col) n_lines=int(len(data[0])/2) if ax is None: fig,ax=plt.subplots(dpi=200) ax.set_xlabel("d (mm)") ax.set_ylabel("z (mm)") if use_lines is None: lines_to_plot=range(n_lines) else: lines_to_plot=range(len(use_lines)) for i in lines_to_plot: d_lines=data[:,2*i]*unit_mult[0] z_lines=proc.moving_median(data[:,2*i+1],9)*unit_mult[1] if color_list is not None: plot_kwargs["color"]=color_list[np.min((i,len(color_list)-1))] if ls_list is not None: plot_kwargs["ls"]=ls_list[np.min((i,len(ls_list)-1))] plot_kwargs.pop("linestyle",None) if marker_list is not None: plot_kwargs["marker"]=marker_list[np.min((i,len(marker_list)-1))] ax.plot(d_lines,z_lines,**plot_kwargs) if ax is None: return fig,ax, data else: return data
Function to plot a line data from a file
args:
-
file_path (string) : the file to read
-
unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
-
use_lines (array) : list of lines to be plotted. Be careful that the number of column in the file is usually twice the number of lines (as each line has an x and z vector).
-
ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
-
color_list, ls_list, marker_list (array) : list of color, linestyle and marker to be used for the data lines found in the files. If the length of the list is smaller than the number of data lines, the last component is kept for the last data lines.
-
plot_kwargs : this method also takes any keyword argument for the Axes.plot() function
return:
- fig, ax, data : the figure with its axe and the data array read from the file. If ax is provided, only data is returned
-
def plot_map(x,
y,
z,
ax=None,
vmin=None,
vmax=None,
cmap='coolwarm',
medfilt=True,
kernel_size=9,
n_interp=None,
**contour_kwargs)-
Expand source code
def plot_map(x,y,z,ax=None,vmin=None,vmax=None,cmap="coolwarm",medfilt=True,kernel_size=9,n_interp=None, **contour_kwargs): """ Function to plot a 2D map from unstructured 1D data (three vectors) args: \n\t- x, y (array) : 1D array for the x and y position of the pixel \n\t- z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y \n\t- ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it \n\t- vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels. \n\t- cmap (str or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors. \n\t- medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid \n\t- kernel_size (int) : size of the median filter window. \n\t- n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array \n\t- contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf() return: \n\t- fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar) """ if vmin==None: vmin=0 if ax==None: fig,ax=plt.subplots(1,2,gridspec_kw={"wspace":0.1,"width_ratios":[5,0.2]}) ax[0].set_xlabel("x (mm)") ax[0].set_ylabel("y (mm)") if medfilt: X,Y,Z=medfilt_2D(x,y,z,kernel_size,n_interp) if vmax==None: vmax=np.ceil(np.nanmax(Z)*1e3)/1e3 ax[0].contourf(X, Y, Z, vmin=vmin, vmax=vmax,cmap=cmap,**contour_kwargs) else: if vmax==None: vmax=np.ceil(np.nanmax(z)*1e3)/1e3 ax[0].tricontourf(x, y, z, vmin=vmin, vmax=vmax,cmap=cmap, **contour_kwargs) fig.colorbar(mpl.cm.ScalarMappable(norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax), cmap=cmap), orientation='vertical', label="Deflection (µm)",cax=ax[1]) ax_map=ax[0] ax_bar=ax[1] return fig, ax_map, ax_bar
Function to plot a 2D map from unstructured 1D data (three vectors)
args:
-
x, y (array) : 1D array for the x and y position of the pixel
-
z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
-
ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
-
vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
-
cmap (str or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
-
medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
-
kernel_size (int) : size of the median filter window.
-
n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
-
contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
return:
- fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)
-
def plot_map_from_file(file_path,
n_step=1,
unit_mult=(1, 1, 1),
ax=None,
vmin=None,
vmax=None,
cmap='coolwarm',
medfilt=True,
kernel_size=9,
n_interp=None,
**contour_kwargs)-
Expand source code
def plot_map_from_file(file_path,n_step=1,unit_mult=(1,1,1),ax=None,vmin=None,vmax=None,cmap="coolwarm",medfilt=True,kernel_size=9,n_interp=None, **contour_kwargs): """ Function to plot a 2D map from a file of unstructured 1D data (three vectors x,y and z) args: \n\t- file_path (string) : the file to read \n\t- n_step (int) : reduce the number of point to be plotted by taking one point each n_point index of the x, y ,z vectors \n\t- unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector. \n\t- ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it \n\t- vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels. \n\t- cmap (string or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors. \n\t- medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid \n\t- kernel_size (int) : size of the median filter window. \n\t- n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array \n\t- contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf() return: \n\t- fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar) """ n_step=10 data=np.genfromtxt(file_path) x=data[::n_step,0] * unit_mult[0] y=data[::n_step,1] * unit_mult[1] z=data[::n_step,2] * unit_mult[2] if vmin==None: vmin=0 if ax==None: fig,ax=plt.subplots(1,2,gridspec_kw={"wspace":0.1,"width_ratios":[5,0.2]}) ax[0].set_xlabel("x (mm)") ax[0].set_ylabel("y (mm)") if medfilt: X,Y,Z=medfilt_2D(x,y,z,kernel_size,n_interp) if vmax==None: vmax=np.ceil(np.nanmax(Z)*1e3)/1e3 ax[0].contourf(X, Y, Z, vmin=vmin, vmax=vmax,cmap=cmap,**contour_kwargs) else: if vmax==None: vmax=np.ceil(np.nanmax(z)*1e3)/1e3 ax[0].tricontourf(x, y, z, vmin=vmin, vmax=vmax,cmap=cmap, **contour_kwargs) fig.colorbar(mpl.cm.ScalarMappable(norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax), cmap=cmap), orientation='vertical', label="Deflection (µm)",cax=ax[1]) ax_map=ax[0] ax_bar=ax[1] return fig, ax_map, ax_bar
Function to plot a 2D map from a file of unstructured 1D data (three vectors x,y and z)
args:
-
file_path (string) : the file to read
-
n_step (int) : reduce the number of point to be plotted by taking one point each n_point index of the x, y ,z vectors
-
unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
-
ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
-
vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
-
cmap (string or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
-
medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
-
kernel_size (int) : size of the median filter window.
-
n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
-
contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
return:
- fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)
-
def unstructured_to_regular(x, y, z, n_interp=None)
-
Expand source code
def unstructured_to_regular(x,y,z,n_interp=None): """ Function to convert unstructured 1D data (three vectors) in 2D grid args: \n\t- x, y (array) : 1D array for the x and y position of the pixel \n\t- z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y \n\t- n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array return: \n\t- X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values interpolated. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively. """ if n_interp==None: n_interp=int(np.sqrt(len(z))) x_interp = np.linspace(min(x), max(x),n_interp) y_interp = np.linspace(min(y), max(y),n_interp) X, Y = np.meshgrid(x_interp, y_interp) # 2D grid for interpolation Z=griddata(list(zip(x, y)), z, (X, Y), method='linear') return X,Y,Z
Function to convert unstructured 1D data (three vectors) in 2D grid
args:
-
x, y (array) : 1D array for the x and y position of the pixel
-
z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
-
n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
return:
- X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values interpolated. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.
-