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Other aspects were explored but omitted from the final report: 

Change Detection 

No change point was found according to offline change detection methods 

Data Overview 
This section examines the core characteristics and statistical properties of the time
series. Understanding these attributes is important for assessing data quality and
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gaining a preliminary context. We explore the temporal structure, summary statistics,
and distribution patterns to create a baseline understanding of your data. 

Time Series Plot 

Figure 1: Time series line plot.

A total of 69 observations spanning from January 1990 to September 1995. These
are collected with a monthly sampling frequency.

The data ranges from a minimum of 1250 to a maximum of 11620, starting in
11060 and ending in 1510 during the observed period. The average growth
percentage per observation is 9.92% (median equal to -3.57%), with an average
value of 4402.75. There are no missing values in the time series.

Trend, Seasonality, and Residuals 

Figure 2: Seasonal, Trend, and Residuals components after decomposition on a monthly frequency using the
STL (Season-Trend decomposition using LOESS) method.

The trend strength is 0.8 (ranges from 0 to 1). The following tests indicate that the
time series is non-stationary in trend or level: Augmented Dickey-Fuller. On the
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other hand, other tests (Philips-Perron) fail to reject the hypothesis that the data is
stationary.

The seasonal strength is 0.55 (ranges from 0 to 1). All hypothesis tests carried out
(Wang-Smith-Hyndman and OCSB) indicate that the time series is stationary in
seasonality.

The STL decomposition residuals show unbalanced behavior: 43.48% of residuals
are positive and 56.52% negative. The average magnitude of positive residuals is
927.498 compared to -708.165 for negative residuals. In terms of auto-correlation
structure, the residuals show significant temporal dependency in some of the first
12 lags according to the Ljung-Box test. This suggests that the decomposition
method is missing some systematic patterns.

Auto-Correlation 

Figure 3: Auto-correlation plot up to 24 lags.

The following lags show significant autocorrelation: t-1, t-2, t-3, t-4, t-5, t-6, t-7, t-8,
t-9, t-10, t-11, t-12, and t-15. The autocorrelation is positive for all lags with a
significant value.

None of the lags relative to the seasonal period (t-12 and t-24) show any
significant autocorrelation.
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Partial Auto-Correlation 

Figure 4: Partial Auto-correlation plot up to 24 lags. At each lag, the partial auto-correlation takes into account
the previous correlations.

The following lags show significant partial autocorrelation: t-1, t-2, t-3, t-4, t-8, t-10,
t-15, t-18, t-19, and t-20. 

None of the lags relative to the seasonal period (t-12 and t-24) show any
significant partial autocorrelation.

Trend 
Trend refers to the long-term change in the mean level of a time series. It reflects
systematic and gradual changes in the data over time. Understanding the trend is
important for identifying long-term growth or decline, structural changes, and making
informed modeling decisions. This section examines the characteristics of the trend of
the time series. 

Trend Line Plot 

Figure 5: Time series trend plot.

There is a strong downward trend. The following test suggest that the trend is
non-stationary (i.e. not deterministic): Augmented Dickey-Fuller. But, the test
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Philips-Perron did not find evidence for non-stationarity around a deterministic
trend.

The same tests were applied to analyse stationarity around a constant level. The
following tests reject this hypothesis: KPSS and Augmented Dickey-Fuller. But, the
test Philips-Perron suggest stationarity.

Preliminary experiments: Including a trend explanatory variable which denotes
the position (row id) of each observation does not improve forecasting accuracy.
These experiments were conducted using a LightGBM algorithm and evaluated
using SMAPE loss function. Using only lag-based features the model achieved a
SMAPE of 33.46% on the test set. Including the trend variable leads to a score
equal to 38.5%. 

Long-term Growth 

Figure 6: Distribution of log differences (left), and a Lag-plot (right). These plots help to understand how the
data changes over consecutive observations. The histogram show the distribution of these changes using log
returns. The lag-plot depicts the randomness in the data. The time series shows greater randomness as the
points deviate from the dotted line.

The time series has an average growth (log returns) of -0.03 (median equal to
-0.04). The volatility of the returns in terms of standard deviation is 0.51. The
skewness of the log differenced series is equal to -0.23, which is close to zero. This
indicates a symmetric distribution, though there is a slight left skewness. The
excess kurtosis of the log differenced series is equal to -0.3. This value is similar to
that found from data following a Gaussian distribution.

Concerning the symmetry of returns, 45.59% of the log differences are positive.
The average of positive returns is 0.42, while the average of negative returns
(54.41% of all returns) is -0.4. Overall, there are 46 return direction changes
(68.66% of the data points)

In the tails, 5.88% of returns fall beyond 2 standard deviations from the mean.
The largest positive return is 1.08 on September 1990. Conversely, the largest
decline is -1.33 (on June 1995). 
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Preliminary experiments: Modeling the time series of first differences does not
seem to improve forecasting accuracy. Experiments were conducted using a
LightGBM algorithm and evaluated using SMAPE loss function. Using the original
time series led to a 33.46% SMAPE. The scores using the differenced and log
differenced time series are 69.97% and 61.38%, respectively.

Seasonality 
Seasonality represents recurring patterns or cycles that appear at regular intervals in
time series data. These are predictable fluctuations that reflect periodic influences such
as monthly, quarterly, or yearly cycles. Understanding seasonal patterns is crucial for
forecasting, trend analysis, and identifying anomalies. This section examines the
presence, strength, and characteristics of seasonal components in the input time series. 

Seasonal Line Plot (Monthly) 

Figure 7: Seasonal plot of monthly values grouped by year.

The seasonal strength is 0.55. This score ranges from 0 to 1 and values above 0.64
are considered significant. All hypothesis tests carried out (Wang-Smith-Hyndman
and OCSB) indicate that the time series is stationary in yearly seasonality.

Preliminary experiments: Modeling yearly patterns does not improve forecast
accuracy. Different approaches were tested relative to a base model using only
lag-based features (33.46% SMAPE): 

Fourier terms: 34.6% SMAPE

Seasonal differencing: 70.96% SMAPE

Monthly time features: 33.46% SMAPE

We also analyzed Quarterly seasonality. All tests indicate seasonal stationarity in
these frequencies. Including these seasonal components in the forecasting model
led to decreased performance. Statistical analysis of Quarterly data shows no
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evidence of systematic differences across Quarter, with both means (Kruskal-
Wallis test) and variances (Levene's test) being statistically similar.

Variance 
Variance measures how data points spread around the average value in your time
series. This section examines whether the variability remains stable (homoskedastic) or
changes (heteroskedastic) over time. Understanding variance patterns is crucial for
selecting appropriate modeling techniques, which can have a significant impact on
forecasting accuracy. 

Heteroskedasticity Testing 

Figure 8: Time series residuals analysis based on a linear trend model. Difference in the distribution of the
residuals in the first and last thirds of the series, following a Goldfeld-Quand partition.

Statistical evidence was found for the hypothesis that the time series is
heteroskedastic, according to the White, Breusch-Pagan, and Goldfeld-Quandt
tests. The residuals are based on a linear trend model.

Variance in seasonal periods according to Levene's test 
Quarterly groups: no differences in variance

Monthly groups: no differences in variance

Preliminary experiments: Three variance stabilization preprocessing
techniques were tested to improve the forecast accuracy of an auto-regressive
LightGBM (with 33.46% SMAPE using lag-based features):

Log returns: 61.38% SMAPE

Log transformation: 33.54% SMAPE

Box-Cox transformation: 34.73% SMAPE
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