Navigation
index
modules
|
next
|
lsqfit 6.0 documentation
»
lsqfit Documentation
¶
Contents:
Overview and Tutorial
Introduction
Gaussian Random Variables and Error Propagation
Basic Fits
Chained Fits
x
has Error Bars
Correlated Parameters; Gaussian Bayes Factor
Tuning Priors and the Empirical Bayes Criterion
Partial Errors and Error Budgets
y
has No Error Bars
SVD Cuts and Roundoff Error
Bootstrap Error Analysis
Testing Fits with Simulated Data
Positive Parameters
Troubleshooting
Case Study: Simple Extrapolation
The Problem
A Bad Solution
A Better Solution — Priors
Bayes Factors
Another Solution — Marginalization
Case Study: Pendulum
The Problem
Pendulum Dynamics
Two Types of Input Data
gvar
- Gaussian Random Variables
Introduction
Creating Gaussian Variables
gvar.GVar
Arithmetic and Functions
Error Budgets from
gvar.GVar
s
Storing
gvar.GVar
s for Later Use;
gvar.BufferDict
s
Random Number Generators
Limitations
Optimizations
Functions
gvar.GVar
Objects
Other Classes
Requirements
gvar.dataset
- Random Data Sets
Introduction
Functions
Classes
Numerical Analysis Modules in
gvar
Cubic Splines
Ordinary Differential Equations
Power Series
lsqfit
- Nonlinear Least Squares Fitting
Introduction
nonlinear_fit Objects
Functions
Other Classes
Requirements
Indices and tables
¶
Index
Module Index
Search Page
Table Of Contents
lsqfit Documentation
Indices and tables
Next topic
Overview and Tutorial
Quick search
Enter search terms or a module, class or function name.
Navigation
index
modules
|
next
|
lsqfit 6.0 documentation
»