
COLDP
Version

1

6

6

8

22

23

31

31

6

8

31

33

6

8

31

36

Table of Contents

coldp.COLDP

• Class

• Methods

• Constants

• Internal methods

• Index and search

coldp.NameBundle

• Class

• Methods

• Index and search

coldp.IdentifierPolicy

• Class

• Methods

• Index and search

Usage

2

file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/index.html

coldp

Python tools for working with taxonomic checklists organised as Catalogue of Life Data Package

(COLDP) format

3

Overview

coldp is a Python package to facilitate creation, manipulation, editing and serialisation of

taxonomic checklists in the COL Data Package (COLDP) format.

The package includes three classes:

coldp.COLDP - A COLDP package loaded as a set of Pandas dataframes

coldp.NameBundle - A helper class to simplify addition of taxon names with sets of associated

synonyms to a COLDP instance

coldp.IdentifierPolicy - An internal class to manage ID values in COLDP dataframes

The main COLDP class instantiates a COLDP package in memory as a set of Pandas dataframes. An

instance may be initialised from the contents of a folder containing a set of COLDP-compliant CSV

or tab-delimited data files or alternatively can be initialised as an empty instance in memory. The

class includes many methods for inserting new data, editing existing records and querying the

contents of the package. The instance can then be saved as a set of CSV files in a named folder .

The NameBundle class brings together a scientific name and its synonyms so that these can be

added together and the COLDP package can automatically manage their relationships

NameBundle objects are normally created using the coldp.COLDP.start_name_bundle() method.

At minimum a NameBundle is initialised with a dictionary holding a set of COLDP name record

values. The scientific name represented by this dictionary should be the accepted name for a

species or other taxon. Synonyms may then be added to the NameBundle.

Once all names are included, the NameBundle can be added to the COLDP object via the

coldp.COLDP.add_names() method. This adds name, taxon and synonym records for the set of

names supplied. COLDP options may expand the set of added synonyms to include variant

formats or may trigger the addition of one or taxa that are implicit in the accepted name.

The COLDP object will automatically manage record identifiers and the basionymID for any name

records that are combinations of another name in the set.

•

•

•

4 Overview

https://github.com/CatalogueOfLife/coldp

Installation

Install the latest version from PyPI.

pip install py-coldp

5 Installation

Classes

coldp.COLDP

Class

COLDP. __init__ (name , folder = '.' , code = 'ICZN' , default_taxon_record = None ,

insert_species_for_trinomials = False , create_subspecies_for_infrasubspecifics = False ,

create_synonyms_without_subgenus = False , basionyms_from_synonyms = False ,

classification_from_parents = False , allow_repeated_binomials = False ,

create_taxa_for_not_established = False , issues_to_stdout = False , context = None)

Class to manage a set of Pandas dataframes for CSV tables in Catalogue of Life Data

Package.

Parameters :

name – The name for the COLDP package. If a folder of

this name exists inside the folder specied by the folder

parameter, this COLDP instance will be initialised with the

contents of any COLDP-compliant CSV or TSV files in the

named folder.

folder – Name of folder that may contain the named

COLDP source folder from which source files should be

read (name specified via the name parameter) and that is

the default folder in which a COLDP folder will be written

when the COLDP instance is saved. This is not the folder in

which the CSV files are written. It is the folder which will

contain the subfolder holding CSV files.

code – ICZN or ICBN to indicate the nomenclatural code

for name formatting. ICZN is the default.

default_taxon_record – Any values in the dictionary are

automatically used as default values in taxon records

added to the COLDP instance. In other words, the

dictionary becomes the base into which other taxon

record properties are then inserted.

•

•

•

•

6 Classes

insert_species_for_trinomials – If true, insert species

(taxon and name) if trinomials are provided without the

associated species. This can be convenient when mapping

source data that only lists infraspecific taxa for species

with subspecies, varieties or forms.

create_subspecies_for_infrasubspecifics – If true,

automatically add a trinomial at subspecific rank as a

synonym whenever an infrasubspecific name is added.

This may be useful if the resulting dataset is intended to

provide easy mapping of strings to taxon concepts, since

versions of the trinomial lacking the rank marker will

often be found in source data.

create_synonyms_without_subgenus – If true,

automatically add a binomial or trinomial without an

included subgenus name as a synonym whenever a name

including a subgenus is added. This may be useful if the

resulting dataset is intended to provide easy mapping of

strings to taxon concepts, since versions of lacking the

subgeneric component will often be found in source data.

basionyms_from_synonyms – If true, basionym

associations are automatically created from synonyms

within a loaded COLDP dataset. If an accepted name

includes parentheses around the authorship, and if a

name with the same epithet and authorship but no

parentheses is included in the synonyms, the ID value for

the synonym will be used for the basionymID element in

the accepted name. This is normally a housekeeping step

when first loading a new COLDP dataset. This option is

only used when the dataset is first loaded. Addition of

basionym relationships is automatic for names added as

part of the same NameBundle.

classification_from_parents – If true, insert names for

higher ranks into relevant elements in each taxon record

based on the parent and higher ancestry for the taxon.

allow_repeated_binomials – If true, omit checks rejecting

the addition of the same binomial more than once to the

COLDP name dataframe.

create_taxa_for_not_established – If true, generate taxon

records even if the associated name is flagged as not

•

•

•

•

•

•

•

7 Classes

established (i.e. not satisfying the relevant nomenclatural

code)

issues_to_stdout – If true, print any issue messages (see

issue()) to stdout as well as inserting then in the issue

dataframe.

context – Value to be used in labeling issue records (see

issue()). This value is more normally set using

set_context() .

A COLDP object is initialised with a source/destination folder, COLDP package name and

other options.

If a subfolder exists with the supplied name in the supplied folder, it will be initialised with

data from any CSV/TSV files it contains with any of the following base names: name, taxon,

synonym, reference, distribution, speciesinteraction, namerelation, typematerial or

nameusage, and with a file extension recognised via csv_extensions . File names are case

insensitive.

Files with the base name nameusage are loaded only if the name, taxon or synonym file is

absent, in which case the contents of the nameusage file are mapped internally to the more

normalised COLDP format with separate name + taxon + synonym tables.

If no folder exists with the supplied name, an empty instance is created. Pandas dataframes

are created as required for the COLDP data types as data are inserted into the instance.

The start_name_bundle() method produces a NameBundle object for preparing an

accepted name and associated synonyms to pass to the add_names() method which creates

name, taxon and synonym records as a set of cross-referenced objects.

Other data is added using the add_names() , add_name_relation() , add_typematerial() ,

add_distribution() , add_species_interaction() and modify_taxon() methods.

The save() method writes the data back to the same or another folder.

Methods

Control behaviour

COLDP. set_options (** options)

Set options controlling COLDP instance from keyword arguments

Parameters :

•

•

8 Classes

options – Set of boolean options for controlling the

behaviour of the COLDP package - see COLDP for boolean

options that can be set.

Convenience method for setting options via keyword arguments after the COLDP instance

has been created.

COLDP. set_default_taxon_record (default_taxon_record)

Set default values for properties in taxon records created by this COLDP instance

Parameters :

default_taxon_record – Any values in the dictionary are

automatically used as default values in taxon records added

to the COLDP instance. In other words, the dictionary

becomes the base into which other taxon record properties

are then inserted.

Convenience method for setting default taxon record after the COLDP instance has been

created.

COLDP. set_context (context)

Set a string label for annotating issues in the COLDP issue table

Parameters :

context – String to label any issues associated with data

changes from the current point forward

The COLDP class automatically logs errors and issues to an issues dataframe. This dataframe

is included among the CSV output files when a COLDP instance is saved.

Each row in the issue table indicates a possible problem with data added to the instance.

The context variable provides an external mechanism for the user to label these issues as

they occur. For example, if the user is processing a spreadsheet of species names, they can

call set_context with a string identifying the row from the source spreadsheet. This value

will be included in the context column in the issue.csv output.

Add or modify records

COLDP. start_name_bundle (accepted , incertae_sedis = False , sic = False)

Return a NameBundle object based on the supplied accepted name and referencing this

COLDP instance

9 Classes

Parameters :

accepted – Dictionary containing COLDP Name record for

accepted name

incertae_sedis – If True, the associated COLDP Taxon

Record will be flagged as incertae sedis

sic – If True, issues will not be reported if the name is not

properly code-compliant

Returns :

NameBundle instance initialised with supplied parameters

This is the normal way to construct a new NameBundle object.

COLDP. add_names (bundle , parent = None)

Ensure one or more names are included in names dataframe and update taxa and

synonyms dataframes as necessary

Parameters :

bundle – NameBundle object with set of associated taxon

names

parent – ID for taxon record for which the accepted taxon

in this bundle is to be added as a child

The supplied NameBundle object includes an accepted name record (as a dictionary of

COLDP name properties) and a list, which may be empty, of synonym name records in the

same format. add_names() ensures that name records exist for all these names in the

names dataframe, that a taxon record exists for the accepted taxon name, and that

synonym records exist for this taxon record for all supplied synonyms.

Depending on the options supplied for the COLDP object, additional synonyms may be

created to represent subspecies-rank versions of infrasubspecific trinomials and subgenus-

free versions of combinations including a subgenus name.

If a matching name already exists in the COLDP instance, no new name will normally be

added. Instead, the name record in the bundle will be updated with the ID (and basionymID

where applicable) from the existing name. This allows for additional synonyms to be added

to an existing taxon. The behaviour can be over-ridden with the allow_repeated_binomials

option, in which case any number of matching names can be added.

•

•

•

•

•

10 Classes

If the insert_species_for_trinomials option is set, a new species will be created if

required before adding the trinomial as its child. In this case the bundle will contain the id

for the species taxon as a species_taxon_id property.

Name records in the bundle are all updated with existing or new IDs and basionymIDs,

which are inferred automatically for zoological names by associating combinations with and

without parentheses around the authorship.

Upon completion, the bundle also contains an accepted_taxon_id property which includes

the string ID for the taxon.

If parent is None, the new taxon record is created without a parent, i.e. becomes a root

node in the classification.

COLDP. add_references (reference_list)

Ensure one or more references are included in references dataframe

Parameters :

reference_list – List of dictionaries - each dictionary

contains values keyed by terms from reference_headings

Returns :

Updated reference_list with IDs for references in this

COLDP instance

Find existing ID values for each supplied reference, based on identity of: author, title, issued,

containerTitle, volume, issue, page and citation. Add ID from the appropriate reference

dictionary in references. If none found, set ID to next unused index and add to references.

The list is returned updated with current ID values so these can be used for referenceID

values in other classes.

COLDP. add_type_material (type_material)

Add COLDP TypeMaterial record to COLDP instance

Parameters :

type_material – COLDP TypeMaterial record represented as

dictionary of properties

Returns :

TypeMaterial record returned unchanged

11 Classes

The nameID value must match the ID value for an existing name record.

This method returns the record unchanged (for consistency with other add records which

may alter the provided record).

COLDP. add_distribution (distribution)

Add COLDP Distribution record to COLDP instance

Parameters :

distribution – COLDP Distribution record represented as

dictionary of properties

Returns :

Distribution record returned unchanged

The taxonID value must match the ID value for an existing taxon record.

This method returns the record unchanged (for consistency with other add records which

may alter the provided record).

COLDP. add_species_interaction (interaction)

Add COLDP SpeciesInteraction record to COLDP instance

Parameters :

interaction – COLDP SpeciesInteraction record represented

as dictionary of properties

Returns :

SpeciesInteraction record returned unchanged

The taxonID value must match the ID value for an existing taxon record.

This method returns the record unchanged (for consistency with other add records which

may alter the provided record).

COLDP. add_name_relation (name_relation)

Add COLDP NameRelation record to COLDP instance

Parameters :

12 Classes

name_relation – COLDP NameRelation record represented as

dictionary of properties

Returns :

NameRelation record returned unchanged

The nameID and relatedNameID values must match the ID values for existing name records.

This method returns the record unchanged (for consistency with other add records which

may alter the provided record).

COLDP. add_synonym (synonym)

Add COLDP Synonym record to COLDP instance

Parameters :

synonym – COLDP Synonym record represented as dictionary

of properties

Returns :

Synonym record returned unchanged

The taxonID value must match the ID value for an existing taxon record and the nameID

value must match the ID value for an existing name record.

This method returns the record unchanged (for consistency with other add records which

may alter the provided record).

COLDP. modify_name (name_id , properties)

Add or modify properties on a COLDP Name record

Parameters :

taxon_id – String ID for a Name record

properties – Dictionary of COLDP Name properties to be

set for the identified record

If a name record exists with the given ID, set all properties in the dictionary.

COLDP. modify_taxon (taxon_id , properties)

Add or modify properties on a COLDP Taxon record

•

•

13 Classes

Parameters :

taxon_id – String ID for a Taxon record

properties – Dictionary of COLDP Taxon properties to be

set for the identified record

If a taxon record exists with the given ID, set all properties in the dictionary.

Save

COLDP. save (destination = None , name = None)

Write dataframes as COLDP CSV files

Parameters :

destination – Path to folder in which package should be

saved. Defaults to destination supplied to constructor,

which defaults to “.”

name – Name for COLDP package (subfolder name).

Defaults to name supplied to constructor, which defaults

to None. If no name provided, save will fail.

If necessary creates subfolder with name name in destination , and then writes CSV file

representations for all DataFrames in the folder. Empty columns are dropped. Any numpy

NAN elements are replaced with an empty string.

Find or get records

COLDP. find_taxon (scientificName , authorship , rank)

Get COLDP Taxon record (as Pandas dataframe) with accepted name matching supplied

scientificName, authorship and rank values

Parameters :

scientificName – Scientific name in canonical format

authorship – Authorship string

rank – Rank name string

Returns :

•

•

•

•

•

•

•

14 Classes

COLDP Taxon record matching supplied parameters

Logs a warning issue if multiple taxon records exist for a matching name and returns the

first such match. Returns None if no match.

COLDP. find_name_record (name)

Return record from names DataFrame matching key fields (scientificName, authorship and

rank) in supplied record

Parameters :

name – Dictionary containing Name properties

Returns :

Dictionary containing matching record if found

Locates any existing record in the names DataFrame that matches the supplied

scientificName, authorship and rank and returns it as a COLDP Name properties dictionary,

or None if no match is found.

COLDP. find_names (properties , to_dict = False)

Get all COLDP Name records matching all the supplied properties

Parameters :

properties – Dictionary of property values to serve as filter

to_dict – True if records should be converted from Pandas

format to dictionary records, False (default) otherwise.

Returns :

Set of COLDP Name records either as DataFrame or list of

dictionaries

Returns all matching records as Pandas DataFrame or list of dictionaries. If no matches,

None is returned.

COLDP. find_name (scientificName , authorship , rank)

Return record from names DataFrame matching supplied scientificName, authorship and

rank

•

•

15 Classes

Parameters :

scientificName – Scientific name in canonical format

authorship – Authorship string

rank – Rank name string

Returns :

Dictionary containing matching record if found

Locates any existing record in the names DataFrame that matches the supplied

scientificName, authorship and rank and returns it as a COLDP Name properties dictionary,

or None if no match is found.

If authorship is None, returns a name based only on scientificName and rank.

COLDP. find_distribution (distribution)

Locate existing COLDP distribution record exactly matching all major fields in

distribution

Parameters :

distribution – Dictionary of COLDP distribution properties

representing a record to be found

Returns :

DataFrame with one COLDP distribution record if found, else

None

Only returns a record that exactly matches the values supplied in distribution for all of

taxonID, area, gazetteer, status, referenceID.

COLDP. get_name (id)

Return record from names DataFrame with supplied ID

•

•

•

16 Classes

Parameters :

id – String ID for COLDP Name record

Returns :

Pandas DataFrame containing matching record if found

Locates any existing record in the names DataFrame with the supplied ID, or None if no

match is found. If multiple matches are found, logs an issue and returns the first.

COLDP. get_reference (id)

Get reference record as dictionary from ID string

Parameters :

id – ID string for requested COLDP reference record

Returns :

Dictionary of COLDP reference properties for requested ID

Returns None if no matching reference. If multiple records exist with the given id, a warning

is logged and the first match is returned.

COLDP. get_taxon (id)

Return a COLDP Taxon record matching the supplied ID

Parameters :

id – String ID value

Returns :

Dictionary representation of COLDP Taxon record

Logs a warning if more than one match and returns the first such match.

COLDP. get_synonyms (taxonID , to_dict = False)

Get all COLDP Synonym records for the supplied taxon ID

Parameters :

taxonID – String taxonID value •

17 Classes

to_dict – True if records should be converted from Pandas

format to dictionary records, False (default) otherwise.

Returns :

Set of COLDP Synonym records for taxon either as

DataFrame or list of dictionaries

Returns all matching records as Pandas DataFrame or list of dictionaries. If no matches,

None is returned.

COLDP. get_synonymy (nameID , to_dict = False)

Get accepted COLDP Name record and all synonym COLDP Name records for the supplied

name ID

Parameters :

taxonID – String nameID value

to_dict – True if records should be converted from Pandas

format to dictionary records, False (default) otherwise

Returns :

Tuple containing COLDP Name record for accepted name and

a DataFrame or list of dictionaries representing all synonym

Name records

Maps the name indicated by the provided nameID to the accepted taxon and returns its

name and the names for all synonyms for the taxon. These may all be returned either as

Pandas DataFrames or in dictionary representations.

COLDP. get_children (taxonID , to_dict = False)

Get all child taxa for the COLDP Taxon associated with the supplied taxonID

Parameters :

taxonID – String ID for COLDP Taxon record

to_dict – True if records should be converted from Pandas

format to dictionary records, False (default) otherwise.

Returns :

•

•

•

•

•

18 Classes

Set of COLDP Taxon records for children of identified taxon

either as DataFrame or list of dictionaries

Returns all matching records as Pandas DataFrame or list of dictionaries. If no matches,

None is returned.

Tidy package

COLDP. fix_basionyms (names , synonyms)

Update dataframe of name records so that subsequent combination names refer to the

original basionym record where present

Parameters :

names – Dataframe containing COLDP name records to be

updated

synonyms – Dataframe containing COLDP synonym

records corresponding to the name records in names

For any name record in names if the name is a subsequent zoological combination (with

parentheses around authorship), find any other record in names that matches the

authorship, year and epithet but lacks parentheses and update the basionymID property of

the name to refer to this second record’s ID. synonyms is used to assist with selection of the

correct match in cases where more than one possible record is found.

The parameters are the two relevant DataFrames from the same COLDP instance.

COLDP. fix_classification ()

Tidy and fill in higher classification for taxon records based on hierarchy

Recursively fixes classification elements for whole taxa dataframe

COLDP. sort_taxa ()

Sort taxa dataframe so that all taxon records are sequenced hierarchically and

alphabetically.

Following this method, the taxon table is sorted so that any taxa without parents are sorted

alphabetically by scientific nameand each is followed immediately by its children and their

descendents also sorted alphabetically. The result is a tree with siblings ordered

alphabetically.

Existing ID values for all records are unchanged.

•

•

19 Classes

This is a convenience method to simplify review of the data in a spreadsheet or editor tool.

It also simplifies import of the data into a database since there are no forward references to

parent taxa.

COLDP. sort_names ()

Sort name records to match order of records in taxa dataframe and with accepted names

and synonyms sorted alphabetically

Records are sorted first in the current order of the taxon table and then alphabetically

within the set of names for each taxon.

Existing ID values for all records are unchanged.

This method is most useful following a call to sort_taxa() .

COLDP. reset_ids (name = None , prefix = None)

Reset all IDs for one or more COLDP data tables to consecutive values in the order of the

table records

Parameters :

name – Table to be modified. One of name, taxon,

reference or synonym. If name is None, all four are

processed

prefix – Optional prefix string to be prepended before

consecutive integer record ids

Resets all ids for one or all of the four supported classes to consecutive id values, with an

optional string prefix which defaults to "s_" in the case of synonym records and is

otherwise empty.

Also modifies corresponding foreign ID references in other tables so they continue to

resolve correctly using the id_mappings dictionary.

If no table name is specified, all four are processed.

Utilities

COLDP. get_text_tree (taxonID , indent = ' ' , initial_prefix = '' , synonym_prefix = ' = ')

Generate formatted text tree for specified taxon and its descendents

Parameters :

taxonID – String ID for taxon to be formatted

•

•

•

20 Classes

indent – Indent string to be added one or more times

before each nested row, defaults to two spaces

initial_prefix – Optional prefix string for all rows (preceeds

indentation), defaults to empty string

synonym_prefix – Prefix to appear before synonymised

names, defaults to an equal sign with spaces on either

side

Returns :

Multiline string representation of taxonomic hierarchy

The tree view shows the name, authorship and rank for the selected taxon. Synonyms

follow, one to a row at the same indent level but preceded by a space and an asterisk. Then

each child follows, indented two more spaces per level, with its own synonyms and children

following.

COLDP. get_available_column_headings ()

Return dictionary mapping table names to lists of supported columns

Returns :

Dictionary containing copies of internal heading lists

Returns copies to avoid corrupting the lists used in this class

COLDP. get_identifier_policy (table_name , default_prefix = None , required = True , volatile =

False)

Find or create IdentifierPolicy associated with named table

Parameters :

table_name – Name of COLDP dataframe for which policy

is required

default_prefix – String prefix to use before numeric ID

values if existing ID values are not consistently positive

integer values

required – Flag to indicate whether the table must have ID

values - if False, the IdentifierPolicy will return None

unless existing already contains ID values

•

•

•

•

•

•

21 Classes

volatile – Flag to indicate if external code may modify ID

values while the current COLDP instance is active - if False,

the policy and future values will be determined on

initialisation, otherwise the policy will be reviewed for

each new ID value

Returns :

IdentifierPolicy object or None if no policy is required for

the table

Creates new IdentifierPolicy instance if this is the first invocation for the given table.

Policies take into account any existing ID values for the table.

Access to DataFrames

COLDP. table_by_name (name)

Return dataframe for named COLDP data class

Parameters :

name – Name of data frame to return (one of: name, taxon,

synonym, reference, type_material, distribution,

species_interaction, name_relation)

Returns :

Requested dataframe or None if no such table exists

Returns dataframe if one exists for supplied name.

Constants

coldp. csv_extensions

Dictionary mapping supported CSV/TSV file extensions to the expected delimiter.

Supported extensions are .csv for comma-separated data files and .tsv or .txt for tab-

delimited data files.

coldp. id_mappings

•

22 Classes

Dictionary mapping table names (name, taxon, reference or synonym) to a dictionary that

maps another table name to the properties in the second table that reference ID values

from the first table.

For example, id_mappings maps the key “name” to a dictionary that includes the key

“namerelation” with a list containing “nameID” and “relatedNameID” as its value.

This is a map of the foreign-key relationships that need to be validated and preserved

between the COLDP data tables.

coldp. name_from_nameusage

Dictionary mapping names of columns in COLDP Name records to the corresponding column

names in COLDP NameUsage records

coldp. taxon_from_nameusage

Dictionary mapping names of columns in COLDP Taxon records to the corresponding column

names in COLDP NameUsage records

coldp. synonym_from_nameusage

Dictionary mapping names of columns in COLDP Synonym records to the corresponding

column names in COLDP NameUsage records

Internal methods

COLDP. initialise_dataframe (foldername , name , default_headings)

Load or create a dataframe for one of the COLDP record types

Parameters :

foldername – Path string for COLDP folder potentially

containing serialised dataframe

name – Base name for COLDP class (name, taxon, etc.) for

which the dataframe is requested

default_headings – Column headings to use if returning a

new empty dataframe

Returns :

Dataframe for requested COLDP data class

Checks for a file in the COLDP folder with a supported extension (.csv, .tsv, .txt) and a name

matching one of the COLDP record types (name, taxon, synonym, reference, distribution,

typematerial or speciesinteraction). If this exists, it is loaded as a Pandas dataframe.

•

•

•

23 Classes

If it is not found but the name is one of name, taxon or synonym and a file with the name

nameusage does exist, the relevant columns will be loaded from the nameusage file.

If no matching file is found, returns an empty dataframe.

COLDP. extract_table (df , headings , mappings)

Extract a set of columns from a dataframe using a dictionary that maps source columns

names to target column names

Parameters :

df – Dataframe from which columns are to be extracted/

mapped

headings – List of column headings for destination

dataframe

mappings – Dictionary mapping destination column

names to source column names

Returns :

New Dataframe based on supplied mappings

This method is used to extract and rename a subset of columns from a COLDP NameUsage

table.

COLDP. insert_taxon (name , parentID , incertae_sedis = False)

Insert COLDP Taxon record as child of identified parent - creates or moves record as

necessary

Parameters :

name – COLDP Name record to be used as accepted name

for new taxon

parentID – String identifier for parent taxon

Returns :

Dictionary containing taxon record

If a taxon record already exists for the name, any parenthood change is made as required

and the record is returned as a dictionary. Otherwise a new record is created and returned.

Default values are taken from the default_taxon_record dictionary.

•

•

•

•

•

24 Classes

COLDP. insert_synonym (taxon_id , name_id)

Add basic COLDP Synonym record to COLDP instance

Parameters :

taxon_id – String ID for taxon for which synonym is being

registered

name_id – String ID for name which is being registered as

a synonym

Ensures that a synonym record exists in the COLDP instance for the given taxon and name.

COLDP. find_reference (reference)

Locate existing COLDP reference record exactly matching all major fields in reference

Parameters :

reference – Dictionary of COLDP reference properties

representing a record to be found

Returns :

DataFrame with one COLDP reference record if found, else

None

Only returns a record that exactly matches the values supplied in reference for all of

author, title, issued, containerTitle, volume, issue, page and citation.

COLDP. fix_classification_recursive (taxa , ranks , parent = None)

Recursively complete classification elements (higher taxon IDs) in taxon records descended

from a given parent or for all taxon records in the COLDP instance at the highest included

rank

Parameters :

taxa – Dataframe containing COLDP taxon records

ranks – DataFrame containing at least nameID, rank and

scientificName for all names in COLDP instance (can be

the complete table of COLDP names)

parent – Taxon record for which children should be

updated, or None if all top-level taxa should be updated

•

•

•

•

•

25 Classes

If taxa is None, select all top-level taxa from the dataframe (i.e. all without a parentID) and

process these recursively.

If a parent is supplied, copy classification properties (kingdom, phylum, subphylum, class,

subclass, order, suborder, superfamily, family, subfamily, tribe, subtribe, genus, subgenus,

section, species) from the parent record, set any rank-specific column matching the rank of

the parent to the name of the parent taxon, and then copy these rank values into all taxon

records that are immediate descendents of the parent. This will ensure that the higher

classification for all children matches this parent. Then call this method recursively for all

children.

COLDP. sort_taxa_recursive (df , ids , id)

Internal method for recursive sorting of taxon records by parent and name

Parameters :

df – Taxa dataframe to be sorted

ids – Alternative list of IDs and preferred positions (as

strings)

id – Taxon ID for current taxon

Returns :

ids with additional values for current taxon and its

descendents

Appends next taxon ID to the list along with a value guaranteed to be higher than the one

added on the previous execution of this method. Recursively add IDs for children.

COLDP. prepare_bundle (bundle)

Add extra names to NameBundle if required based on current options

Parameters :

bundle – NameBundle to be processed

If insert_species_for_trinomials is True, ensure that the implied binomial exists for any

new trinomials.

If create_subspecies_for_infrasubspecifics is True, add a subspecies-rank synonym to

the bundle for each infrasubspecific name.

If create_synonyms_without_subgenus is True, add a subgenus-free synonym to the bundle

for each name containing a subgenus.

•

•

•

26 Classes

COLDP. validate_record (record_type , record)

Verify whether all ID values used as forign keys in record correspond with existing records

in the relevant tables

Parameters :

record_type – Name for the data class to which this

record should below

record – Dictionary of COLDP properties for the record

Uses the id_mappings dictionary to identify which properties should be foreign keys. If

these are present in the current record, check that the supplied value is indeed an ID from

the relevant table.

COLDP. identify_name (name)

Ensure COLDP Name record is present and return a copy containing the current ID and

basionymID

Parameters :

name – Dictionary containing COLDP Name properties

Returns :

Currently stored version of the name record in question

If a COLDP Name record for this name already exists (based on find_name_record()),

return the existing name, unless this is a species name and the allow_repeated_binomials

option has been set, in which case a new record will be created.

If the name is missing, create a new record with the next unused ID value and return the

record with the ID.

COLDP. same_basionym (a , b)

Validates whether two name records share the same basionym (i.e. are different

combinations for the same original name) :param

_sphinx_paramlinks_coldp.COLDP.same_basionym.a: Dictionary with parameters

representing a COLDP Name record :param

_sphinx_paramlinks_coldp.COLDP.same_basionym.b: Dictionary with parameters

representing a COLDP Name record :return: True if the parenthensis-free authorship and

lowest-ranked epithets match, False otherwise.

COLDP. remove_gender (epithet)

Return epithet stripped on all likely gender-specific endings

•

•

27 Classes

Parameters :

epithet – String zoological epithet

Returns :

Epithet stripped of any possible Greek or Latin gender

endings

Removes “a”, “us”, “um”, “is”, “e”, “os” or “on” as an ending.

COLDP. get_original_authorship (authorship)

Return authorship string without enclosing parentheses

Parameters :

authorship – Authorship string

Returns :

Authorship stripped of enclosing parentheses

Relevant only for zoological names

COLDP. epithet_and_authorship_match (name , epithet , authorship)

Check whether a name record matches the supplied epithet and authorship

Parameters :

name – Dictionary containing COLDP Name record

epithet – Specific or infraspecific epithet

authorship – Authorship string

Returns :

True if the epithet matches the lowest-ranked epithet and

authorship matches the authorship in the name record

Comparison ignores epithet gender endings.

COLDP. set_basionymid (name , basionymid)

Set basionymID on Name record in names DataFrame

•

•

•

28 Classes

Parameters :

name – Name record as dictionary of COLDP properties

basionymid – String ID of associated basionyn record

COLDP. fix_basionymid (name , synonyms)

Update name so its basionymID references the original combination in a list of synonyms

Parameters :

name – Dictionary containing COLDP Name record for

which basionymID is to be fixed

synonyms – List of COLDP Name records that may contain

basionym

Returns :

Returns name following any updates.

COLDP. construct_species_rank_name (g , sg , s , ss , marker)

Consistently construct a species or infraspecific name from the included epithets and

optional rank marker

Parameters :

g – Genus name

sg – Subgenus name

s – Specific epithet

ss – Infraspecific epithet

marker – Rank marker (e.g. “var.”) or rank name (“variety”)

Returns :

Complete scientific name string (no italics or authorship)

Convenience method for composing a scientific name with option subgenus, infraspecific

epithet and rank marker. A variety of markers are handled and mapped to one of “var.”,

“subvar.”, “f.” and “ab.”.

•

•

•

•

•

•

•

•

•

29 Classes

COLDP. construct_authorship (a , y , is_basionym)

Consistently construct a scientific name authorship from the included author names and

year with parentheses where required

Parameters :

a – Author string

y – Publication year as string

is_basionym – Boolean to indicate whether this is the

original combination (basionym) or a subsequent

combination that requires parentheses

Returns :

Tuple including 1) formatted authorship string and 2)

publication year as a separate string

Convenience method for composing an authorship string. Includes parentheses if

is_basionym is True.

If the year includes more than one part (e.g. “1832 [1831-1838]”), the first part (“1832”) is

used for the year in the authorship string and the second part (“[1831-1838]”) is returned as

the publication year. Otherwise, the same string is used in both cases.

COLDP. is_species_group (name)

Check whether name is in the species group (species or lower rank)

Parameters :

name – Dictionary representing a COLDP Name record

Returns :

True if the name is in the species group, False otherwise

Simply checks if the name includes a specificEpithet value. Any name passed to this method

should include atomic name components and not just a scientificName.

COLDP. is_infrasubspecific (name)

Check whether name is in for a rank below the subspecies

Parameters :

•

•

•

30 Classes

name – Dictionary representing a COLDP Name record

Returns :

True if the name is infraspecific

Simply checks if the supplied rank is one of those below the subspecies.

COLDP. issue (message)

Log issue with data provided through methods

Parameters :

message – Text to be saved as body of issue

Creates a new record in an issues DataFrame that will be included in the COLDP export when

save() is called. This record includes the message and the context string supplied on the

most recent call to set_context() .

If issues_to_stdout is True, the context and message are also output as an error via

logging.

Index and search

Index

Search Page

coldp.NameBundle

Class

NameBundle. __init__ (coldp , accepted , incertae_sedis = False , sic = False)

Wrapper class to manage set of associated names, normally an accepted name and one or

more synonyms. The bundle handles the logic of associated name variations.

Parameters :

coldp – COLDP object to handle logging of any issues and

normalise name records

•

•

•

31 Classes

file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html

accepted – Dictionary mapping COLDP name elements to

values for the accepted name - a name record and a taxon

record will be added to the COLDP package for the

accepted name

incertae_sedis – Flag to indicate if the resulting taxon

record should be marked “incertae sedis”

sic – Flag to indicate if the accepted name should be

processed without reporting issues for invalid format

The minimal usage is to create a new bundle with an accepted name. One or more

synonyms can also be supplied using the add_synonym() method. The bundle is then

submitted to the coldp.COLDP.add_names() method for processing.

NameBundle objects should not be created directly. Use the

coldp.COLDP.start_name_bundle() method instead.

accepted should contain a dictionary with keys that match property names from the COLDP

Name class

Methods

NameBundle. add_synonym (synonym , sic = False)

Register an additional name as a synonym for the accepted name

synonym should contain a dictionary with keys that match property names from the COLDP

Name class

Parameters :

synonym – Dictionary mapping COLDP name elements to

values for the synonymous name - a name record and a

synonym record will be added to the COLDP package for

the synonym

sic – Flag to indicate that the name does not follow

expected formatting rules for a code-compliant name and

that no issues should be logged for this

NameBundle. normalise_name (name , sic = False)

Ensure that a name record dictionary contains all necessary/appropriate elements

•

•

•

•

•

32 Classes

https://github.com/CatalogueOfLife/coldp?tab=readme-ov-file#name
https://github.com/CatalogueOfLife/coldp?tab=readme-ov-file#name
https://github.com/CatalogueOfLife/coldp?tab=readme-ov-file#name
https://github.com/CatalogueOfLife/coldp?tab=readme-ov-file#name

Parameters :

name – Dictionary containing name to be normalised

sic – Flag to indicate that the name does not follow

expected formatting rules for a code-compliant name and

that no issues should be logged for this

Returns :

Name dictionary updated with extra values

NameBundle. derive_name (name , values , sic = False)

Use supplied values to create new name dictionary with missing elements copied from an

existing name dictionary

Parameters :

name – Dictionary containing name on which new name is

to be based

values – Dictionary of values to override values in name

Returns :

Name dictionary with supplied values supplemented from

name

Index and search

Index

Search Page

coldp.IdentifierPolicy

Class

IdentifierPolicy. __init__ (existing , default_prefix , required = True , volatile = False)

•

•

•

•

•

•

33 Classes

file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html

Internal class to manage ID values in COLDP dataframes.

Parameters :

existing – Pandas series containing current ID values for

table - may be empty or None

default_prefix – String prefix to use before numeric ID

values if existing ID values are not consistently positive

integer values

required – Flag to indicate whether the table must have ID

values - if False, the IdentifierPolicy will return None

unless existing already contains ID values

volatile – Flag to indicate if external code may modify ID

values while the current COLDP instance is active - if False,

the policy and future values will be determined on

initialisation, otherwise the policy will be reviewed for

each new ID value

Checks any existing values in the series. If none are present, the next ID value will be 1. If all

values are integer strings, the next value will be the integer string with a value one higher

than the current maximum value. Otherwise ID values will be the concatenation of the prefix

(defaulting to the empty string) and the current length of the ID series. Subsequent values

will increment by one.

If required is False and no current valus exist in the series, the policy will always return

None.

If volatile is True, the policy will be revised on every invocation of next. Otherwise, the

series will only be scanned on initialisation and all policy values will then be fixed.

Methods

IdentifierPolicy. initialise (existing)

Internal method to set or refresh policy

Parameters :

existing – Pandas series containing current ID values for

table - may be empty or None

Returns :

•

•

•

•

34 Classes

Tuple comprising the next integer value for the policy and a

prefix for use if ID values should not be plain integer strings

- one or both values will be None

Provides the variables to determine the next ID value, if any

IdentifierPolicy. next (existing = None)

Return next ID value for series

Parameters :

existing – Pandas series containing current ID values for

table - may be empty or None - only required if volatile is

True

Returns :

Next string ID value for policy or None if no ID is required

Returns the next ID value for use in the Series associated with this IdentifierPolicy.

Recalculates policy if paramref: ~coldp.IdentifierPolicy.__init__.volatile is True.

Index and search

Index

Search Page

•

•

35 Classes

file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html

Usage

Usage

The following example illustrates basic usage. It creates a new COLDP instance for the monotypic

Lepidoptera family Tridentaformidae, including name and taxon records for the family, genus and

species, the original combination for the species, three distribution records for the species, and

references for all elements.

Running the same code a second time leaves the data unchanged since it locates and validates

the existing records.

In this example, each reference is associated with an ID string provided when the records are

created, but all name and taxon ID strings are generated and managed by the COLDP instance.

Adding the synonym to the NameBundle for the species enables the COLDP instance to create the

relevant basionymID reference to the current combination.

The example names include a mixture with parsed name elements or a single scientificName

element. The final names table includes both formats for all names.

The addition of the distribution records shows the pattern for adding other COLDP classes that

reference name (namerelation, typematerial) and taxon (distribution, speciesinteraction) records.

Import COLDP class
from coldp import COLDP

Default properties for all COLDP Taxon records created by COLDP
instance
taxon_defaults = {

"kingdom": "Animalia",
"phylum": "Arthropoda",
"class": "Insecta",
"order": "Lepidoptera",
"status": "established",

}

Create new COLDP instance with name Tridentaformidae
#
This would load an existing COLDP instance from a folder named
Tridentaformidae in the current folder if it already exists
coldp = COLDP("Tridentaformidae", default_taxon_record =

36 Usage

taxon_defaults)

Add four COLDP Reference objects
references = coldp.add_references([

{
"ID": "Braun_1923",
"author": "Braun, A.F.",
"issued": "1923",
"title": "Microlepidoptera: Notes and New Species",
"containerTitle":

"Transactions of the American Entomological Society",
"volume": "49",
"issue": "2",
"page": "115-127",
"link": "https://www.jstor.org/stable/25077087",

},
{

"ID": "Davis_1978",
"author": "Davis, D.R.",
"issued": "1978",
"title":

"Two new genera of North American incurvariine moths (Lepidoptera:
Incurvariidae)",

"containerTitle": "The Pan-Pacific entomologist",
"volume": "54",
"issue": "2",
"page": "147-153",
"link": "https://www.biodiversitylibrary.org/page/56100973",

},
{

"ID": "Pohl_et_al_2019",
"author": "Pohl, G.R., Landry, J.-F., Schmidt, B.C. &

deWaard, J.R.",
"issued": "2019",
"title": "Lepidoptera of Canada",
"containerTitle": "ZooKeys",
"volume": "819",
"page": "463-505",
"link": "https://doi.org/10.3897/zookeys.819.27259",

},
{

"ID": "Regier_et_al_2014",
"author": "Regier, J.C., Mitter, C., Davis, D.R., Harrison,

T.L., Sohn, J.-C., Cummings, M.P., Zwick, A. & Mitter, K.T.",
"issued": "2015",
"title":

"A molecular phylogeny for the oldest (nonditrysian) lineages of
extant Lepidoptera, with implications for classification, comparative
morphology and life-history evolution",

"containerTitle": "Systematic Entomology",
"volume": "40",
"issue": "4",

37 Usage

"page": "671–704",
"link": "https://doi.org/10.1111/syen.12129",

},
])

Add COLDP Name and Taxon records for family and get the ID string
for the
family Taxon record
#
Name provided as a uninomial
bundle = coldp.start_name_bundle({

"rank": "family",
"uninomial": "Tridentaformidae",
"authorship": "Davis, 2014",
"referenceID": "Regier_et_al_2014",
"publishedInPage": "697",

})
coldp.add_names(bundle)
family_id = bundle.accepted_taxon_id

Add COLDP Name and Taxon records for genus as child of the family
and get
the ID string for the genus Taxon record
#
Name provided as a scientificName
bundle = coldp.start_name_bundle({

"rank": "genus",
"scientificName": "Tridentaforma",
"authorship": "Davis, 1978",
"referenceID": "Davis_1978",
"publishedInPage": "150",

})
coldp.add_names(bundle, family_id)
genus_id = bundle.accepted_taxon_id

Add COLDP Name and Taxon records for species as child of the genus
with original combination as a synonym and get the ID string for
the
species Taxon record
#
Accepted name provided as parsed elements. Synonym provided only as
scientificName.
bundle = coldp.start_name_bundle({

"rank": "species",
"genus": "Tridentaforma",
"specificEpithet": "fuscoleuca",
"authorship": "(Braun, 1923)",
"referenceID": "Davis_1978",
"publishedInPage": "150",
"publishedInYear": "1978",

})
bundle.add_synonym({

38 Usage

"rank": "species",
"scientificName": "Lampronia fuscoleuca",
"authorship": "Braun, 1923",
"referenceID": "Braun_1923",
"publishedInPage": "127",

})
coldp.add_names(bundle, genus_id)
species_id = bundle.accepted_taxon_id

Add three distribution records for the species, each with a
reference
for area, referenceID in {"US-CA": "Braun_1923", "CA-AB":
"Pohl_et_al_2019", "CA-BC": "Pohl_et_al_2019"}.items():

distribution = coldp.add_distribution({
"taxonID": species_id,
"area": area,
"gazetteer": "iso",
"status": "native",
"referenceID": referenceID,

})

Save the COLDP instance to a Tridentaformidae subfolder in the
current
folder
coldp.save()

Load the COLDP instance from the curent folder
coldp = COLDP("Tridentaformidae")

Display the classification as a text tee
print(coldp.get_text_tree(family_id))

Show content of dataframes
print(coldp.references)
print(coldp.names)
print(coldp.taxa)
print(coldp.synonyms)
print(coldp.distributions)

Index and search

Index

Search Page

•

•

39 Usage

file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/genindex.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html
file:///D:/GithubProjects/py-coldp/docs/build/simplepdf/search.html

© Copyright 2024, Donald Hobern.
Created using Sphinx 7.3.7.

http://sphinx-doc.org/

	COLDP
	Table of Contents

	coldp
	Overview
	Installation
	Classes
	coldp.COLDP
	Class
	Methods
	Control behaviour
	Add or modify records
	Save
	Find or get records
	Tidy package
	Utilities
	Access to DataFrames

	Constants
	Internal methods
	Index and search

	coldp.NameBundle
	Class
	Methods
	Index and search

	coldp.IdentifierPolicy
	Class
	Methods
	Index and search

	Usage
	Usage
	Index and search

