{% if output == 'pdf' %}

iTP-Seq Report

{{ ", ".join(dataset.samples_with_ref) }}


{{ dataset.data_path }}

iTP-Seq: A scalable profiling method to study context-dependent translation events in vitro. Mélanie Gillard, Thibaud Renault, Axel Innis.

Table of contents

iTP-seq dataset

Amino-acid enrichment per position

Amino-acid enrichment per combination of positions

{% for motif in ['-2:A', 'E:A', 'E:P'] %}

Motif: {{ motif }}

{% endfor %}
{% endif %}

iTP-seq dataset

Statistics of the iTP reads

{{ dataset.infos(html=True) }}

Virtual inverse toeprint gel

{{ plot_to_html(dataset.itoeprint(exposure=5, plot='shades')) }}

Distribution of iTP lengths

{{ plot_to_html(dataset.itp_len_plot()) }}

Distribution of iTP lengths per sample

{% for sample_name, sample in dataset.samples.items() %}

{{ sample_name }}

{{ plot_to_html(sample.itp_len_plot(), figsize=(10, 3)) }}
{% endfor %}

Amino-acid enrichment per position

{% for sample_name, sample in dataset.samples_with_ref.items() %}

{{ sample.name_vs_ref }}

{{ plot_to_html(sample.hmap_pos()) }}
{% endfor %}

Amino-acid enrichment per combination of positions

{% for sample_name, sample in dataset.samples_with_ref.items() %}

{{ sample.name_vs_ref }}

{{ plot_to_html(sample.hmap_grid()) }} {% endfor %}
{% for motif in ['-2:A', 'E:A', 'E:P'] %}

Motif: {{ motif }}

{% for sample_name, sample in dataset.samples_with_ref.items() %}

{{ sample.name_vs_ref }}

p-value

{{ plot_to_html(sample.volcano(motif, query='head:100', query_color='k'), format='png') }}

adjusted p-value

{{ plot_to_html(sample.volcano(motif, y='log10padj', query='head:100', query_color='k'), format='png') }}
{% endfor %} {% endfor %}