
README.md

sDNA_GH
Authors

• James Parrott
• Crispin Cooper (Cardiff University)

sDNA is a world leading tool for Spatial Design Network Analysis. sDNA_GH is a plug-in
for Grasshopper providing components that run the tools from a local sDNA installation, on
Rhino and Grasshopper geometry and data. Currently requires Windows.

Shenzhen University and Hong Kong University funded the initial and subsequent
development phases respectively. Wedderburn Transport Planning and Alain Chiaradia
worked on defining the idea, and staunchly supported the project along with Cardiff
University. Sara Nalaskowska, Siddharth Khakhar and Fan Zitian, all provided invaluable
help during development and testing. Huge thanks to all.

sDNA_GH functionality

sDNA_GH:

• Reads a network’s polyline Geometry from Rhino or Grasshopper.
• Reads data from any User Text on Rhino objects.
• Writes a network’s links (formed by one or more polylines), and associated data to

shapefiles.
• Initiates an sDNA tool that processes that shapefile, and e.g. carries out a network

preparation or an analysis.
• Reads polyline shapefiles produced by the sDNA tool, and any associated data e.g. the

results from sDNA.
• Parses the selected data field, and normalises and classifies the data, sorting the

polylines if necessary.
• Colours can be allocated to each polyline based on the parsed data, either using a

Colour Gradient component, or automatically.
• Visually represents the results from sDNA by colouring a new layer of polylines, or the

original Rhino shapes.
• Allows easy adding of a native Legend.

User manual.

version = ‘3.0.1’

https://github.com/fiftysevendegreesofrad/sdna_open/releases
https://github.com/fiftysevendegreesofrad/sdna_open/releases


Table of contents

• sDNA_GH
◦ sDNA
◦ sDNA_GH functionality
◦ User manual.

▪ System Requirements.
▪ Software
▪ Hardware

▪ Installation.
▪ Usage.

▪ Components.
▪ Automatic multi-tools.
▪ Running individual tools.
▪ Component Execution Order.

▪ Options.
▪ Adding Component Input and Output Params.
▪ Logging options
▪ Local meta options.
▪ Shared state vs desynchronised components.

▪ Tools.
▪ Common component input and output Params
▪ Support tools
▪ Shapefile tools
▪ Plotting tools
▪ User Text tools
▪ Data tools

▪ sDNA Tools
▪ Analysis tools
▪ Preparation tools
▪ Geometric analysis tools
▪ Calibration tools
▪ Dev tool(s)

▪ Example Grasshopper definitions.
▪ Running sDNA Integral on a random grid read from Rhino.

▪ Selecting and specifying an sDNA Results field.
▪ Reading shapefile data with existing geometry.
▪ Using a Grasshopper Colour gradient component.
▪ Adding a legend with a Legend component.
▪ Customising legend class boundaries and tag names.

▪ Running sDNA Integral on a random grid of Grasshopper geometry
(colouring with the Custom Preview component).

▪ Running sDNA Integral on a network of polylines, approximating a
network of arcs from intersecting circles.

http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna_gh
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna_gh
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna_gh-functionality
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna_gh-functionality
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#user-manual
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#user-manual
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#system-requirements
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#system-requirements
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#software
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#software
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#hardware
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#hardware
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#installation
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#installation
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#usage
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#usage
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#automatic-multi-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#automatic-multi-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-individual-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-individual-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#component-execution-order
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#component-execution-order
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#adding-component-input-and-output-params
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#adding-component-input-and-output-params
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#logging-options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#logging-options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#local-meta-options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#local-meta-options
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#shared-state-vs-desynchronised-components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#shared-state-vs-desynchronised-components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#common-component-input-and-output-params
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#common-component-input-and-output-params
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#support-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#support-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#shapefile-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#shapefile-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#plotting-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#plotting-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#user-text-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#user-text-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#data-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#data-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#sdna-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#analysis-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#analysis-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#preparation-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#preparation-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#geometric-analysis-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#geometric-analysis-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#calibration-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#calibration-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#dev-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#dev-tools
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#example-grasshopper-definitions
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#example-grasshopper-definitions
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-read-from-rhino
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-read-from-rhino
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#selecting-and-specifying-an-sdna-results-field
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#selecting-and-specifying-an-sdna-results-field
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-shapefile-data-with-existing-geometry
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-shapefile-data-with-existing-geometry
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#using-a-grasshopper-colour-gradient-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#using-a-grasshopper-colour-gradient-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#adding-a-legend-with-a-legend-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#adding-a-legend-with-a-legend-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#customising-legend-class-boundaries-and-tag-names
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#customising-legend-class-boundaries-and-tag-names
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-of-grasshopper-geometry-colouring-with-the-custom-preview-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-of-grasshopper-geometry-colouring-with-the-custom-preview-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-of-grasshopper-geometry-colouring-with-the-custom-preview-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-random-grid-of-grasshopper-geometry-colouring-with-the-custom-preview-component
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-network-of-polylines-approximating-a-network-of-arcs-from-intersecting-circles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-network-of-polylines-approximating-a-network-of-arcs-from-intersecting-circles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-network-of-polylines-approximating-a-network-of-arcs-from-intersecting-circles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#running-sdna-integral-on-a-network-of-polylines-approximating-a-network-of-arcs-from-intersecting-circles


▪ Recolouring the arcs instead of polylines.
▪ Writing polylines and data to shapefiles.
▪ Reading in polylines and data from shapefiles.
▪ Writing User Text.
▪ Reading User Text for sDNA (e.g. User weights).
▪ Baking (saving Grasshopper objects to a Rhino document) with User

Text. -->
▪ License.
▪ Copyright.

◦ Contact.
◦ Developer manual.

▪ Dependencies.
▪ 

▪ Build instructions.
▪ To build new sDNA components.

▪ Misc

System Requirements.

Software

1. Windows (8.1, 10, or 11)
2. Python. (Please note non-CPythons, e.g. Iron Python, are not supported, as invalid

shapefiles will be produced).
3. sDNA.
4. Rhino and Grasshopper (tested in Rhino 7)

Hardware

1. 64-bit Intel or AMD processor (Not ARM)
2. No more than 63 CPU Cores.
3. 8 GB memory (RAM) or more is recommended.
4. 1.2 GB disk space.

Installation.

Experimental installation via pip

pip install --target=%APPDATA%\Grasshopper\UserObjects\sdna-gh
sDNA_GH There are few modules in sDNA_GH that can be run outside of Grasshopper, let
alone Rhino. The wheels (bdist releases) contain launcher components, and import the main
sDNA_GH package.
Therefore for most users, installation should target a folder from which Grasshopper will find
the sDNA_GH components, not in a venv or standard CPython installation. The folder above
is the same as for a standard installation.

http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#recolouring-the-arcs-instead-of-polylines
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#recolouring-the-arcs-instead-of-polylines
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#writing-polylines-and-data-to-shapefiles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#writing-polylines-and-data-to-shapefiles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-in-polylines-and-data-from-shapefiles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-in-polylines-and-data-from-shapefiles
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#writing-user-text
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#writing-user-text
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-user-text-for-sdna-eg-user-weights
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#reading-user-text-for-sdna-eg-user-weights
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#baking-saving-grasshopper-objects-to-a-rhino-document-with-user-text---
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#baking-saving-grasshopper-objects-to-a-rhino-document-with-user-text---
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#baking-saving-grasshopper-objects-to-a-rhino-document-with-user-text---
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#baking-saving-grasshopper-objects-to-a-rhino-document-with-user-text---
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#license
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#license
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#copyright
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#copyright
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#contact
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#contact
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#developer-manual
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#developer-manual
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#dependencies
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#dependencies
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#build-instructions
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#build-instructions
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#to-build-new-sdna-components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#to-build-new-sdna-components
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#misc
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/#misc


Experimental installation in CPython 3 components (Rhino 8’s Grasshopper,
also via pip)

#r: sDNA_GH

Standard installation.

1. Ensure you have an installation of Rhino 3D including Grasshopper (versions 6 and 7
are supported).

sDNA_GH provides some functionality without sDNA installed, e.g. Selecting real Rhino
objects, User Text components, reading and writing shapefiles, parsing data, and recolouring
objects. But to use the sDNA components, an installation of sDNA is required.

sDNA dependencies.

sDNA itself may require the 64 bit (x64) Visual Studio redistributable [^0].

Official sDNA installer (and Python).

2. Ensure you have a supported version of Python (CPython, the reference
implementation). Do not run sDNA in non CPythons, as invalid shape files will be
produced. sDNA has been tested with a lot of different CPython versions. But these do
not include the CPython shipped with Rhino 8.

3. sDNA Learn requires numpy. Numpy can be installed by opening a cmd window and
typing: python -m pip install numpy. Optional: If this Python installation is
also used by other processes, to guarantee there are no dependency conflicts, create a
venv to run sDNA in, e.g. firstly by entering: python -m venv
<path_to_sDNA_venv> <path_to_sDNA_venv>\Scripts\pip.exe install
numpy (enter <path_to_sDNA_venv>\Scripts\activate.bat to test the venv
from the command line) and secondly within Grasshopper set python to \Scripts` on a
config component (or in config.toml) in step 13.iii below.

4. To use sDNA with sDNA_GH, ensure you have an installation of sDNA. sDNA+ is
now open source. As above, sDNA may also require a Visual Studio redistributable. If
you chose a non-default installation directory, remember it for step 13.ii.

sDNA_GH

5. Download sdna-gh.zip from (food4rhino)[https://www.food4rhino.com/en/app/
sdnagh] or the sDNA_GH releases page on Github.

6. Ensure sdna-gh.zip is unblocked: Open File Explorer and go to your Downloads
folder (or whichever folder you saved it in). Right click it and select Properties from
the bottom of the menu. Then click on the Unblock check box at the bottom (right of
Security), then click OK or Apply. The check box and Security section should

https://www.rhino3d.com/download/
https://www.rhino3d.com/download/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://sdna.cardiff.ac.uk/sdna/software/download/
https://sdna.cardiff.ac.uk/sdna/software/download/
https://github.com/fiftysevendegreesofrad/sdna_plus
https://github.com/fiftysevendegreesofrad/sdna_plus
https://www.food4rhino.com/en/app/sdnagh%5D
https://www.food4rhino.com/en/app/sdnagh%5D
https://www.food4rhino.com/en/app/sdnagh%5D
https://www.food4rhino.com/en/app/sdnagh%5D
https://github.com/JamesParrott/sDNA_GH/releases
https://github.com/JamesParrott/sDNA_GH/releases


disappear. This should unblock all the files in the zip archive. Please do not
automatically trust and unblock all software downloaded from anywhere on the internet
[^1].

7. Open Rhino and Grasshopper.

8. In Grasshopper’s pull down menus (above the tabs ribbon at the top) click File ->
Special folders -> User Objects Folder. The default in Rhino 7 is
%appdata%\Grasshopper\UserObjects. Note, this is different to the Components
Folder used by many other plug-ins (i.e. not %appdata%
\Grasshopper\Libraries).

9. Copy sdna-gh.zip to this folder (e.g. it should be at %appdata%
\Grasshopper\UserObjects\sdna-gh.zip).

10. Unzip sdna-gh.zip to this location (in Windows 10 right click sdna-gh.zip and
select Extract All ..., then click Extract to use the suggested location). In the
User Objects folder, a new folder called sdna-gh should have been created, itself
containing a subfolder called sDNA_GH (plus license.md and copies of these readme
files). If necessary, rename the outer parent folder (inside the User Objects folder) to
exactly “sdna-gh” (no quotes). E.g. if you previously downloaded an earlier version of
sDNA_GH (or any other file called) sdna-gh.zip, your web browser may have renamed
a second download to sdna-gh(1).zip. In this case, you will need to either rename the
file or the folder created by unzipping it.

11. Restart Rhino and Grasshopper.

12. The sDNA_GH plug in components should now be available under a new “sDNA” tab
in the ribbon amongst the tabs for all the plug-ins you have installed (right of Mesh,
Intersect, Transform and Display etc).

13. To use sDNA with sDNA_GH, if no preferences are specified, sDNA_GH will search
for sDNA and Python installations automatically, using the first one of each it finds. If
you are using sDNA Learn with Python in a venv as recommended, or otherwise to
ensure sDNA_GH uses a particular version of sDNA and the correct Python interpreter,
it is recommended on first usage to: -place a Config component on the canvas (the
component with a gear/cog icon in Extra). -Specify the file path of the sDNA folder
(containing sDNAUISpec.py and runsdnacommand.py) of the sDNA installation
you wish to use in the sDNA_folders input (e.g. C:\Program Files
(x86)\sDNA). -Specify the file path of the sDNA venv’s Python (e.g.
\Scripts\python.exe from step 3), or the path of the chosen Python interpreter’s
main executable in the python input. -Specify any other options you wish to save and
reuse on all projects, if necessary by zooming in, and adding a custom input Param with
each option’s name. -Connect a true Boolean toggle to go. An installation wide user
options file (config.toml) will be created if there isn’t one already. -To save options
to other project specific config.toml files, specify the file path in save_to and
repeat the previous 4 sub steps.



14. If a newer version of sDNA is used in future with tools unknown to sDNA_GH at the
time it was built, if a Config component is placed, and the path of the new sDNA
specified in sDNA_folders, sDNA_GH will attempt to automatically build
components and user objects for the new sDNA tools, and add them to Grasshopper for
you. Set make_new_comps to false to prevent this.

Usage.

Tools.

Each tool has a component that runs that tool. auto_ rules may cause a component to also
run other tools as well.
For example, by default, sDNA components run Write_Shp before, and Read_Shp after, their
sDNA tool.

Common component input and output Params

OK This output is true when a component has executed successfully.

go Set this input to true (e.g. from a boolean toggle component) to run a component’s tool.

file Specifies the path of a file to write to, or that was written to.

Data It is possible to do most tasks in sDNA_GH without ever looking at Data in detail. The
order of the deepest branches must correspond with the order of the Geometric objects. But
for example to specify weights elsewhere than on their corresponding Polylines, it is also
possible to construct Data manually. If so, Data must be a Data Tree 2 branches deep at the
first level: a branch each for keys {0;0} and values {0;1}. The two nodes of this structure
should have a branch for each geometric object (so the nth’s keys and values should have
paths {0;0;n} and {0;1;n}). The lists at these nodes must be of equal length. The mth key and
value of the nth geometric object should be {0;0;n}[m] and {0;1;n}[m] respectively.
Read_Shp supplies a Data Tree in this required format, if the data is read from User Text or
from a Shapefile. Grasshopper’s path tools can be used to adjust compatible Data Trees into
this format.

Geom Accepts a list of geometric objects (Guids of Rhino objects or native Grasshopper
objects). Data trees of objects need to be flattened into lists. To use Rhino objects referenced
from Grasshopper parameter objects (instead of their Grasshopper versions which are often
obscured unless the Rhino shapes are set to Hidden) run the output of the Geometry (Geo) or
Curve (Crv) through a Guid (ID) parameter object first.

gdm An alternative to both Geom and Data. Accepts a Geometry-data-mapping, a list of
nested dictionaries (standard Python objects). The keys are the UUIDs of geometric objects.
The values are also dictionaries, containing key/value pairs for use as User Text.

opts Accepts an options data structure (a nested dictionary of named tuples) from another
sDNA_GH component. Only of use if they are not synced to the global module options.



config The path of a TOML file (e.g. config.toml) to be read in containing sDNA_GH
options settings. Shared between synchronised components.

Support tools

Config (config)

Loads custom user options and configuration files (.toml). Saves options to a .toml file if
go is true. If a .toml file is specified in save_to, it is saved to. Otherwise the default value
of save_to is the installation-wide user options file. One is created if it does not already
exist. This will overwrite existing files.

If not using a config.toml file, then e.g. when using a config component to set true auto_
options, to guarantee your components are setup correctly when reloading a saved .gh file,
this component must run before all your others. To ensure a component runs first, select it
and press Ctrl + B (or from the pull-down menu select Edit -> Arrange -> Put To
Back) before saving the .gh file.

Read_Geom (get_Geom)

Gets real strings of the uuid references to Rhino polylines and degree-1 Nurbs curves for
subsequent sDNA_GH tools. Grasshopper Geom and Curve params create Grasshopper
references to Rhino objects. The actual Rhino uuid is required to read and write User Text on
a Rhino object.

Set selected to true, to only read objects that are selected. Similarly, specify layer to the
name of a layer, to only read objects from that layer.

Note, if sync = True it will remember its previous setting, in which case to go back to
selecting all layers, layer must be set to any value that is not the name of a layer. Similarly,
to go back to selecting everything (not just selected geometry) set selected = false. If
the component has sync = false, an input Params that has had its value set, when
subsequently disconnected will fallback to whatever its previous value was.

Shapefile tools

Write_Shp (write_shapefile)

Writes a DataTree in Data and a list of polylines in Geom to a shapefile. If not specified in
file, a default file name based on the Rhino doc or Grasshopper doc name is used (unless
auto_update_Rhino_doc_path = false). overwrite_shp = true overwrites existing
files, otherwise if it is false Write_Shp creates new automatically named files up to a
maximum of max_new_files (20 by default). WARNING! Shapefiles created with
default names (due to no valid file path being specified in file by the user) will be
deleted by subsequent sDNA tools if strict_no_del = false, overwrite_shp = false,
and del_after_sDNA = true.



To create a projection (.prj) file for the new shapefile, specify the path of an existing .prj file
in prj.

If no Data is supplied, if no read_User_Text component is connected to its input, and if
auto_read_User_Text is true, this tool will first call read_User_Text.

To work with sDNA, data records are only written to the Shapefile (associated with a shape
corresponding to a Rhino / GH polyline) if its field matches the template string specified in
input_key_str. The field name has a maximum of 10 characters long, and is taken from
the {name} value (in the key name if it originated as User Text). To write all data with any
key name (shorter then 11 characters) to the Shapefile, set input_key_str to {name}.

Shapefile data entries (records) only allow a maximum width of 254 Ascii characters, or 254
bytes for Unicode strings. Encodings can require more than one byte per code point. So some
UTF-8 and UTF-16 encoded Unicode strings may only be 120 code points long, or even
shorter.
This is an intrinsic limitation of the shapefile format [https://en.wikipedia.org/wiki/
Shapefile#Data_storage].

Rhino and Grasshopper shapes must support certain methods (to retrieve the points list of
their vertices) to be written to shp files of the following types: PolylineVertices for
POLYLINEs and POLYGONs, PointCoordinates for POINTs, PointCloudPoints for
MULTIPOINT, and MeshVertices for MULTIPATCH. Please note: MULTIPATCHs are not
supported, and POINTs and MULTIPOINTs are experimental and untested.

Write_Shp attempts to coerce data types to set the Shapefile field type and size correctly. The
full coercion order is bool -> int -> (float / Decimal) -> Date -> string (Shapefile field types
L -> N -> F -> D -> C respectively). If attempts at boolean and integer conversion fail, by
default the data is then coerced to a Decimal. The number of significant figures for Decimals
is 12 by default. This can be altered in precision. If decimal is set to false, Write_Shp
coerces the value to a float instead of a Decimal object. The maximum number of decimal
places is max_dp. Dates are attempted to be built using Python’s datetime.date object. If
a datetime.date cannot be built, if yyyy_mm_dd is true, a date must be in yyyy mm dd
format. Otherwise if yyyy_mm_dd is false as it is by default, dd mm yyyy and mm dd yyyy
are also supported. In both cases, the supported separators are one of: -.,:/\ or a single space.

Read_Shp (read_shapefile)

Reads in polylines and associated data records from a shapefile of polylines. Creates new
objects if new_geom = true or no objects corresponding to the shapefile are specified in
Geom. Specify the path of the .shp file to read in file. WARNING! If a valid file path was
not specified in file on a preceding Write_Shp component, and that file was used by
an sDNA tool, Read_Shp deletes sDNA output shapefiles with default names if
strict_no_del = false, overwrite_shp = false, and del_after_read = true. If a list
of existing geometry is provided in Geom that corresponds to (is the same length as) the data
records in the shapefile, and if new_geom = false, only the data is read from the shapefile.
Otherwise the polylines in the shapefile are added as new Rhino Polyline objects if bake =

https://en.wikipedia.org/wiki/Shapefile#Data_storage%5D
https://en.wikipedia.org/wiki/Shapefile#Data_storage%5D
https://en.wikipedia.org/wiki/Shapefile#Data_storage%5D
https://en.wikipedia.org/wiki/Shapefile#Data_storage%5D


true; otherwise as Grasshopper Polyline objects.

If an attempt to add a polyline fails due to Rhino’s validity rules, a degree-1 Nurbs curve is
added instead. If this fails, error handling according to Rhino’s validity rules is carried out, to
inform the user which shape is not valid. A list of the shape numbers, and any known reason
they are invalid (if any) is outputted in invalid, if the user wishes to fix their data.
Alternatively, invalid shapes can simply be skipped by setting ignore_invalid to true (but
in this case data associated with these shapes is lost).

The bounding box output bbox is provided to create a legend frame within
Recolour_Objects (its value is calculated from the shape file). The abbreviations and field
names from an sDNA results field file (if a file with the same name ending in .names.csv
exists) are also read in, and supplied on abbrevs so that a drop-down list may be created,
for easy selection of the data field for subsequent parsing and plotting. If no separate
Recolour_Objects Component is detected connected to the component’s outputs downstream
and auto_plot_data = true, Recolour_Objects is called afterwards.

Plotting tools

Parse_Data (parse_data)

Parse the data in a Data Tree of numerical data (in Data) from a specified field, for
subsequent colouring and plotting. If browsing different results fields, to reset plot_max
and plot_min between different data sets, set sync to false on a Parse_Data component. Be
sure to supply the list of the data’s associated geometric objects (in Geom), as legend tags and
class midpoint values are appended to the outputted Geom and Data lists respectively. Some
classifiers sort the data into ascending order (if supplied, the geometry objects will then be
reordered too, preserving their correspondence). To force a sort, according to field
regardless, set sort_data to true. To make each parsed data point, take the same value as
its class midpoint, set colour_as_class to true. Use this component separately from
Recolour_Objects to calculate colours with a visible Grasshopper Colour Gradient
component. Max and Min bounds can be overridden (in plot_max and plot_min).
WARNING! Parsing is for the purpose of colourisation, e.g. in order to produce the
desired result from Recolour_Objects. Therefore, although the inputted Data is not
changed, the Data outputted almost certainly will be changed, so should be assumed to
be false.
After parsing, the legend tags are the definitive reference for what each colour means, not the
outputted data values. In particular, if colour_as_class = true, the parsed data will take
far fewer distinct values than the number of polylines in a large network. To parse numerical
data that uses a numerical format different to your system’s normal setting (e.g. with a
different radix character: ‘,’ or ‘.’ or thousands separator: ‘,’ or ‘_’), set locale to the
corresponding IETF RFC1766, ISO 3166 Alpha-2 code (e.g. fr, cn, pl).

Field to plot Specify the actual numeric data values to be parsed from all the provided ‘User
Text values’ by setting field to the name of the corresponding ‘User Text key’. Valid
field values for sDNA output shapefiles are in fields.



Bounds The domain this data is parsed against can be customised by setting the options
plot_min, plot_max, shifting it, widening it or narrowing it, e.g. to exclude erroneous
outliers. If plot_min, plot_max are both numbers and plot_min < plot_max, their
values will be used; otherwise the max and min are automatically calculated from the list of
values in the ‘User Text values’ of Data corresponding to the ‘User Text key’ named in
field. To go back to automatic calculation after an override, choose invalid values that
satisfy plot_min >= plot_max. Set exclude to true to exclude data points lower than
plot_min or higher than plot_max from the output altogether (and their corresponding
objects from Geom). If exclude = false the plot_min, plot_max will be applied to
limit the values of outlying data points (cap and collar).

Classes (bins / categories for the legend) Either, specify the number of classes desired in
the legend in num_classes (the default is 7), or specify a list of the actual class boundaries
desired in class_bounds manually. Note these are the inter-class bounds. Use plot_min
for the lower bound of the bottom class and plot_max for the upper bound of the top class.
There should be n-1 inter-class bounds, n classes and n+1 class bounds including the
plot_max and plot_min.

If no valid inter-class boundaries are manually specified in class_bounds, sDNA_GH will
automatically calculate them based on the following methods (each are valid values for
class_spacing):

• quantile - classify ‘spikes’ in the frequency distribution containing more data points
than the normal class size, narrower than a specified width (in max_width). Then
classify the remaining data values according to adjuster. Sorts the data.

• adjuster - Sort the data and place inter class bounds in ascending order so that
classes contain approximately the same number of data points, adjusting the inter-class
boundaries to the closest gap, if one would otherwise be placed between identical data
values.

• linear - space the inter-class boundaries evenly between plot_min and plot_max.
• exponential - space the inter-class boundaries between plot_min and plot_max

but with a skewed spacing determined from an exponential curve (customisable base).
• log - space the inter-class boundaries between plot_min and plot_max but with a

skewed spacing determined from an logarithmic curve (customisable base).
• simple - Uncomplicated quantile classification. Sort the data and divide it into classes

containing approximately the same number of data points. Take no action if this places
an interclass bound between identical values.

• max_deltas - place the inter-class boundaries at the largest gaps between consecutive
data points. Prone to distortion from outlying values. Sorts the data.

If after one of the above classification methods (especially simple), inter-class bounds have
still been placed between indistinguishable data points (closer than tol), sDNA_GH can
simply remove them (meaning there will be one few class for each) if remove_overlaps is
set to true.

Legend class names Three customisable fields are provided in the options for the first,
general and last legend tag names respectively: first_leg_tag_str = 'below



{upper}', gen_leg_tag_str = '{lower} - {upper}', last_leg_tag_str =
'above {lower}'. A formatting string e.g. num_format = '{:.5n}' is applied to all
numbers before displaying in the legend tags - it can be customised to set any desired
number of decimal places or significant figures. If set, all must be valid Python format
strings, with the supported named fields lower, mid_pt and upper, except num_format
which supports a single unnamed field.

Re-normalisation Finally in order to produce a recolouring that has a set number of
identical colours (the same for each member of the same class) it is possible to assign the
value of the midpoint of its class to each parsed data point. The parsed values may then
additionally be renormalised, in order to tinker with the spread of colours against different
colour gradients and other possible colourisations and applications, it is possible to
‘renormalise’ the parsed data points - the default value of re_normaliser is linear (for
no re-normalisation) but exponential or log curves are also supported (with customisable
base as above).

Finally, the errors raised if there are small classes or class overlaps can be suppressed by
setting suppress_small_classes_error or suppress_class_overlap_error to
true respectively.

Recolour_Objects (recolour_objects)

Recolour objects (and legend tags) based on pre-parsed and pre-normalised data, or already
calculated colours (as RGB triples). Recolouring Rhino Geometry can be much slower than
recolouring Grasshopper Geometry (the latter via a custom preview component connected to
Geom and Data). Nonetheless, to recolour Rhino objects from Grasshopper Referenced
Curves (instead of their actual Grasshopper copies, which may be obscured unless the
overlying Rhino geometry is set to Hidden), connect the Referenced Curves to a Guid (ID)
parameter object first.

If unparsed data is inputted, Parse_Data is first called. Custom colour curves are supported
using a 3D quadratic spline between the triples of numbers: rgb_min, rgb_mid and
rgb_max. Otherwise, use the Grasshopper Colour Gradient internally (via Node In Code) by
setting Col_Grad to true and picking a setting from 0 to 7 for Col_Grad_num (0 :
‘EarthlyBrown’, 1 : ‘Forest’, 2 : ‘GreyScale’, 3 : ‘Heat’, 4 : ‘Pink’, 5 : ‘Spectrum’, 6 :
‘Traffic’, 7 : ‘Zebra’). Set line_width to control the width of the line of Rhino geom
objects (the default is 4).

Create a legend by connecting leg_cols, leg_tags and leg_frame to a Grasshopper
Legend component. The coordinates of the corners of the Rectangle provided in leg_frame
may be overridden by specifying leg_extent (xmin, ymin, xmax, ymax); alternatively any
rectangle object can be passed into leg_frame on the GH Legend component itself. Custom
legend tag templates and class boundaries are supported via four format strings
(first_leg_tag_str, gen_leg_tag_str, last_leg_tag_str and num_format) as
per Parse_Data.

To recolour Grasshopper geometry instead of Rhino Geometry (i.e. unbaked objects),

https://docs.python.org/2.7/library/string.html#format-specification-mini-language
https://docs.python.org/2.7/library/string.html#format-specification-mini-language
https://docs.python.org/2.7/library/string.html#format-specification-mini-language
https://docs.python.org/2.7/library/string.html#format-specification-mini-language


connect the Data and Geom outputs to a Grasshopper Custom Preview component (line
widths of GH objects cannot be increased).

User Text tools

Data tools

Read_User_Text (read_User_Text)

Reads all User Text from the list of Rhino objects in Geom - these must be Rhino objects
from Read_Geom (Grasshopper references to Rhino objects, e.g. from a geom Param will
not work). If auto_get_Geom = true and if no Read_Geom component is connected to its
inputs, Read_Geom is first called. If compute_vals = true, values starting and ending in %
referring to a Rhino object’s UUID (e.g.
%<CurveLength("ac4669e5-53a6-4c2b-9080-bbc67129d93e")>%) are computed
using Rhino.RhinoApp.ParseTextField.

Write_User_Text (write_User_Text)

Writes User Text to Rhino objects, using a specified pattern for the keys. Specify the data
tree to write in Data, and the list of Rhino objects to write to in Geom. The format of the
User Text key can be customised in the Python format string output_key_str, accepting
two named fields (e.g. = sDNA output={name} run time={datetime}).

A field specifying an originating Rhino object’s UUID uuid_field will be omitted. If a
key of that name already exists, it will be overwritten if overwrite_UserText is true.
Otherwise a suffix will be appended to it, based on an integer counter and the format string in
dupe_key_suffix, until a unique key name is found, up to a limit of max_new_keys
(overwrite warnings can be suppressed by setting suppress_overwrite_warning to
true).

sDNA Tools

By default, sDNA components run the Write_Shp tool before, and Read_Shp tool after, the
actual sDNA tool of the component, passing in and out the names of the special temporary
shapefiles. To prevent this, e.g. if using separate Write_Shp or Read_Shp components, set
auto_write_Shp or auto_read_Shp to false respectively.

Analysis tools

• sDNA tools run sDNA from the command line, using the Python interpreter in python.
• All sDNA tools try to load an sDNA installation. The first pair of sDNAUISpec.py and

runsdnacommand.py files matching the names in sDNAUISpec and runsdnacommand,
found in a folder in sDNA_paths are loaded (if the corresponding sDNA is not already
loaded). This is used to run the correct sDNA tool in the corresponding /bin sub



folder, and to add Input Params to the sDNA component for each of its sDNA tool’s
inputs.

• By default an sDNA tool component will show all the possible inputs on its input
Params. To show only the essential inputs instead (and make the components a lot
smaller) set show_all = false.

• sDNA tools require a shapefile to be specified in file or input. If Write_User_Text is
run beforehand and a file name is not specified, a default file name will be used.

• if the user Param make_advanced is true, all other unrecognised user params on the
component will be added into the advanced config string.

Auto-run tool rules.

The auto_ options control automatic insertion of extra support tools, into an sDNA
component’s list of tools. These extra tools can allow sDNA components to do anything
between simply being pure wrappers around the sDNA command line interface, to carrying
out an entire workflow from Rhino geometry and User Text, finishing with recolouring the
Rhino Geometry with the sDNA results. Running tools within a single component should be
faster and require less memory, as the Data and Geometry is all kept as the internal data
structure (a gdm) between tools, instead of being transformed into Grasshopper native form
after each component runs, and into Python gdm form again when the next component runs.

If auto_read_User_Text is true, all sDNA components attempt to check, if any
read_User_Text components are already connected to its inputs (upstream). If not, the sDNA
component will insert the read_User_Text tool before all instances of the auto_write_Shp
tool (which is run before each sDNA tool if auto_write_Shp is true, as above). Similarly,
if auto_get_Geom is true, Read_Geom is run before all instances of read_User_Text. So if
all auto_ options are true, an sDNA component will take in geometry from Rhino directly,
write it to a shapefile, run the analysis in sDNA, read in the output shapefile (data and
shapes), parse the data, and recolour the original Rhino polylines. WARNING! If a valid file
path was not specified in file or input on a preceding Write_Shp component, and
that file was used by an sDNA tool, sDNA components will delete input shapefiles with
default names if strict_no_del = false, overwrite_shp = false, and
del_after_sDNA = true.
The sDNA tool descriptions below are copied almost verbatim from the sDNA manual:

sDNA_Integral (sDNAIntegral)

sDNA Integral is the core analysis tool of sDNA. It computes several flow, accessibility,
severance and efficiency measures on networks.

This automatically calls other support tools, handling an entire Rhino geometry workflow
from this one component, additionally running Read_Geom and Write_Shp before the sDNA
tool itself, and then Read_Shp and Recolour_Objects afterwards (unless auto_write_Shp
= false or auto_read_Shp = false respectively). WARNING! All sDNA tools will delete
the shapefile named in input after it has been read in, if del_after_sDNA = true and
strict_no_del = false (as they are by default).

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#skim-matrix
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#skim-matrix
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#integral-analysis
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#integral-analysis


To add or remove existing Geometry before the results file is read in (to control creation of
new geometry objects), set auto_read_Shp = false and connect a Read_Shp component. To
analyse a network of Grasshopper Geometry set auto_get_Geom and
auto_read_User_Text to false. To access the data and geom objects before parsing and
recolouring, auto_plot_data = false (and connect Parse_Data and Recolour_Objects
components). This allows picking a results field from abbrevs to parse without repeating
the whole analysis, and using a Grasshopper Colour Gradient component on the canvas to
generate colours. Connect a Grasshopper Legend component to plot a legend. To recolour
Grasshopper geometry instead of Rhino Geometry (i.e. unbaked objects), connect the Data
and Geom outputs to a Grasshopper Custom Preview component.

To use sDNA’s advanced config options in sDNA_GH, add in an input Param to an sDNA
component with the same name as each advanced config option you wish to include
(omitting a trailing equals sign and leaving the Param unconnected, unless you wish to
provide a value for it); the advanced config string can then be saved to a config.toml file
with an sDNA_GH Config component). Alternatively create an advanced config string
manually. The sDNA tools in that component will gather all user-specified input Params and
construct the advanced config string from them. Alternatively, prepare the and connect it to
advanced. See the readme for the list of supported advanced config options.

Advanced config options for sDNA Integral

Option Default Description
startelev= Name of field to read start elevation from
endelev= Name of field to read end elevation from
metric= angular Metric – angular, euclidean, custom or one of the presets
radius= n List of radii separated by commas
startelev= Name of field to read start elevation from
endelev= Name of field to read end elevation from
origweight= Name of field to read origin weight from
destweight= Name of field to read destination weight from
origweightformula= Expression for origin weight (overrides origweight)
destweightformula= Expression for destination weight (overrides destweight)
weight= Name of field to read weight from. Applies weight field to both origins and
destinations.
zonesums= Expressions to sum over zones (see zone sums below)
lenwt Specifies that weight field is per unit length
custommetric= Specified field name to read custom metric from
xytol= Manual override xy tolerance for fixing endpoint connectivity.
ztol= Manual override z tolerance for fixing endpoint connectivity.
outputgeodesics Output geometry of all pairwise geodesics in analysis (careful – this can
create a lot of data)
outputdestinations Output geometry of all pairwise destinations in analysis (careful – this can
create a lot of data). Useful in combination with origins for creating a map of distance/metric
from a given origin.
outputhulls Output geometry of all convex hulls in analysis
outputnetradii Output geometry of all network radii in analysis

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-integral-and-geometry-tools
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-integral-and-geometry-tools


origins= Only compute selected origins (provide feature IDs as comma separated list). Useful
in conjunction with outputgeodesicsm, outputdestinations, outputhulls, outputnetradii.
destinations= Only compute selected destinations (ditto)
nonetdata Don’t output any network data (used in conjunction with geometry outputs)
pre= Prefix text of your choice to output column names
post= Postfix text of your choice to output column names
nobetweenness Don’t calculate betweenness (saves a lot of time)
nojunctions Don’t calculate junction measures (saves time)
nohull Don’t calculate convex hull measures (saves time)
linkonly Only calculate individual link measures.
outputsums Output sum measures SAD, SCF etc as well as means MAD, MCF etc.
probroutes Output measures of problem routes – routes which exceed the length of the radius
forcecontorigin Force origin link to be handled in continuous space, even in a discrete
analysis. Prevents odd results on very long links.
nqpdn= 1 Custom numerator power for NQPD equation
nqpdd= 1 Custom denominator power for NQPD equation
skipzeroweightorigins Skips calculation of any output measures for origins with zero weight.
Saves a lot of time if many such origins exist.
skipzeroweightdestinations 1 Zero weight destinations are skipped by default. Note this will
exclude them from geometry outputs; if this is not desired behaviour then set
skipzeroweightdestinations=0
skiporiginifzero= Specified field name. If this field is zero, the origin will be skipped. Allows
full customization of skipping origins.
skipfraction= 1 Set to value n, skips calculation for (n-1)/n origins. Effectively the increment
value when looping over origins.
skipmod= 0 Chooses which origins are calculated if skipfraction?1. Effectively the initial
value when looping over origins: every skipfractionth origin is computed starting with the
skipmodth one.
nostrictnetworkcut Don’t constrain geodesics to stay within radius. This will create a lot
more ‘problem routes’. Only alters behaviour of betweenness measures (not closeness).
probrouteaction= ignore Take special action for problem routes that exceed the radius by a
factor greater than probroutethreshold. Can be set to ignore, discard or reroute. Reroute
changes geodesic to shortest Euclidean path. Only alters betweenness output, not closeness.
probroutethreshold= 1.2 Threshold over which probrouteaction is taken. Note this does not
affect computation of probroutes measures, which report on all routes which exceed the
radius length regardless of this setting.
outputdecomposableonly output only measures which are decomposable i.e. can be summed
over different origins (useful for parallelization)
linkcentretype= Angular for angular analysis, Euclidean otherwise Override link centre types
– angular or Euclidean
lineformula= Formula for line metric in hybrid analysis (see below)
juncformula= 0 Formula for junction turn metric in hybrid analysis (see below)
bidir Output betweenness for each direction separately
oneway= Specified field name to read one way data from (see note 1 below)
vertoneway= Specified field name to read vertical one way data from (see note 1 below)
oversample= 1 Number of times to run the analysis; results given are the mean of all runs.



Useful for sampling hybrid metrics with random components.
odmatrix Read OD matrix from input tables (a 2d table must be present)
zonedist= euc Set expression to determine how zone weights are distributed over links in
each zone, or 0 to skip distribution (all lines receive entire zone weight)
intermediates= Set expression for intermediate link filter. Geodesics are discarded unless
they pass through link where expression is nonzero.
disable= Set expression to switch off links (links switched off when expression evaluates
nonzero)
outputskim Output skim matrix file
skimorigzone Origin zone field (must be text) for skim matrix
skimdestzone Destination zone field (must be text) for skim matrix
skimzone Skim matrix zone field for both origin and destination (sets both skimorigzone and
skimdestzone)
bandedradii Divide radius into bands: for each radius only include links outside the previous
radius
datatokeep= List of field names for data to copy to output

sDNA_Skim (sDNASkim)

Skim Matrix outputs a table of inter-zonal mean distance (as defined by whichever sDNA
Metric is chosen), allowing high spatial resolution sDNA models of accessibility to be fed
into existing zone-base transport models.

sDNA_Int_From_OD (sDNAIntegralFromOD)

A simplified version of sDNA Integral geared towards use of an external Origin Destination
matrix. Note that several other tools (including Integral) allow Origin Destination matrix
input as well.

The file must be formatted correctly, see Creating a zone table or matrix file. All geodesic
and destination weights are replaced by values read from the matrix. The matrix is defined
between sets of zones; polylines must contain text fields to indicate their zone.

sDNA_Access_Map (sDNAAccessibilityMap)

This tool may produce an entire copy of the network for each origin, all in the same Data
Tree layer - take care when interpreting plotted data.

Outputs accessibility maps for specific origins, including metric between each origin-
destination, Euclidean path length and absolute diversion (difference between Euclidean path
length and crow flight path length, similar to circuity, notated here as ‘Div’).

The accessibility map tool also allows a list of origin polyline IDs to be supplied (separated
by commas). Leave this parameter blank to output maps for all origins. If outputting “maps”
for multiple origins, these will be output in the same feature class as overlapping polylines. It
may be necessary to split the result by origin link ID in order to display results correctly.

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#skim-matrix
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#skim-matrix
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#integral-from-od-matrix-assignment-model
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#integral-from-od-matrix-assignment-model
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#specific-origin-accessibility-maps
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#specific-origin-accessibility-maps


sDNA Accessibility Map is a different interface applied to sDNA Integral, so will in some
cases accept its advanced config options as well. To use sDNA’s advanced config options in
sDNA_GH, add in an input Param to an sDNA component with the same name as each
advanced config option you wish to include (omitting a trailing equals sign and leaving the
Param unconnected, unless you wish to provide a value for it). The sDNA tools in that
component will gather all user-specified input Params and construct the advanced config
string from them. Alternatively, prepare the advanced config string manually and connect it
to advanced. See the readme for the list of supported advanced config options.

Preparation tools

sDNA_Prepare (sDNAPrepare)

Prepares spatial networks for analysis by checking and optionally repairing various kinds of
error. Note that the functions offered by sDNA prepare are only a small subset of those
needed for preparing networks. A good understanding of Network Preparation is needed, and
other (free) tools can complement sDNA Prepare.

The errors fixed by sDNA Prepare are:

• endpoint near misses (XY and Z tolerance specify how close a near miss)
• duplicate lines
• traffic islands (requires traffic island field set to 0 for no island and 1 for island). Traffic

island lines are straightened; if doing so creates duplicate lines then these are removed.
• split links. Note that fixing split links is no longer necessary as of sDNA 3.0 so this is

not done by default.
• isolated systems.

To use sDNA’s advanced config options in sDNA_GH, add in an input Param to an sDNA
component with the same name as each advanced config option you wish to include
(omitting a trailing equals sign and leaving the Param unconnected, unless you wish to
provide a value for it). The sDNA tools in that component will gather all user-specified input
Params and construct the advanced config string from them. Alternatively, prepare the
advanced config string manually and connect it to advanced. See the readme for the list of
supported advanced config options.

Advanced config options for sDNA Prepare

Option Description startelev= Name of field to read start elevation from endelev= Name of
field to read end elevation from island= Name of field to read traffic island information from.
Anything other than zero will be treated as traffic island islandfieldstozero= Specifies
additional data fields to set to zero when fixing traffic islands (used for e.g. origin or
destination weights) data_unitlength= Specifies numeric data to be preserved by sDNA
prepare (preserves values per unit length, averages when merging links) data_absolute=
Specifies numeric data to be preserved by sDNA prepare (preserves absolute values, sums
when merging links) data_text= Specifies text data to be preserved (merges if identical,

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#prepare-network
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#prepare-network
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-prepare
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-prepare


concatenates with semicolon otherwise) xytol= Manual override xy tolerance for fixing
endpoint connectivity ztol= Manual override z tolerance for fixing endpoint connectivity
merge_if_identical= Specifies data fields which can only be merged if identical, i.e. split
links will not be fixed if they differ (similar to ‘dissolve’ GIS operation)

sDNA_Line_Measures (sDNALineMeasures)

Individual Line Measures. Outputs connectivity, bearing, euclidean, angular and hybrid
metrics for individual polylines. This tool can be useful for checking and debugging spatial
networks. In particular, connectivity output can reveal geometry errors.

Geometric analysis tools

sDNA_Geodesics (sDNAGeodesics)

Outputs the geodesics (shortest paths) used by Integral Analysis. Geodesics can appear
different to the original network so to make sure the changes are visible, ensure the pre
existing network is hidden to avoid obscuring the new one.

The geodesics tool also allows a list of origin and destination polyline IDs to be supplied
(separated by commas). Leave the origin or destination parameter blank to output geodesics
for all origins or destinations. (Caution: this can produce a very large amount of data).

sDNA Geodesics is a different interface applied to sDNA Integral, so will in some cases
accept its advanced config options as well. To use sDNA’s advanced config options in
sDNA_GH, add in an input Param to an sDNA component with the same name as each
advanced config option you wish to include (omitting a trailing equals sign and leaving the
Param unconnected, unless you wish to provide a value for it). The sDNA tools in that
component will gather all user-specified input Params and construct the advanced config
string from them. Alternatively, prepare the advanced config string manually and connect it
to advanced. See the readme for the list of supported advanced config options.

sDNA_Hulls (sDNAHulls)

Outputs the convex hulls of network radii used in Integral Analysis.

The convex hulls tool also allows a list of origin polyline IDs to be supplied (separated by
commas). Leave this parameter blank to output hulls for all origins.

sDNA Convex Hulls is a different interface applied to sDNA Integral, so will in some cases
accept its advanced config options as well. To use sDNA’s advanced config options in
sDNA_GH, add in an input Param to an sDNA component with the same name as each
advanced config option you wish to include (omitting a trailing equals sign and leaving the
Param unconnected, unless you wish to provide a value for it). The sDNA tools in that
component will gather all user-specified input Params and construct the advanced config
string from them. Alternatively, prepare the advanced config string manually and connect it

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#individual-line-measures
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#individual-line-measures
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#geodesics
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#geodesics
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#convex-hulls
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#convex-hulls


to advanced. See the readme for the list of supported advanced config options.

sDNA_Net_Radii (sDNANetRadii)

Outputs the network radii used in Integral Analysis. This tool will return a Data Tree in
Geom of all the sub networks for each origin. The cluster component,
Unpack_Network_Radii in sDNA/Extras can assist plotting and interpreting this.

The network radii tool also allows a list of origin polyline IDs to be supplied (separated by
commas). Leave this parameter blank to output radii for all origins.

sDNA Network Radii is a different interface applied to sDNA Integral, so will in some cases
accept its advanced config options as well. To use sDNA’s advanced config options in
sDNA_GH, add in an input Param to an sDNA component with the same name as each
advanced config option you wish to include (omitting a trailing equals sign and leaving the
Param unconnected, unless you wish to provide a value for it). The sDNA tools in that
component will gather all user-specified input Params and construct the advanced config
string from them. Alternatively, prepare the advanced config string manually and connect it
to advanced. See the readme for the list of supported advanced config options.

Advanced config options for sDNA geometry tools

Calibration tools

sDNA_Learn (sDNALearn)

sDNA Learn selects the best model for predicting a target variable, then computes GEH and
cross-validated R². If an output model file is set, the best model is saved and can be applied
to fresh data using sDNA Predict.

Available methods for finding models are (valid options for algorithm):

• Single best variable - performs bivariate regression of target against all
variables and picks single predictor with best cross-validated fit

• Multiple variables - regularized multivariate lasso regression
• All variables - regularized multivariate ridge regression (may not use all variables,

but will usually use more than lasso regression)

Candidate predictor variables can either be entered as field names separated by commas, or
alternatively as a regular expression. The latter follows Python regex syntax. A wildcard is
expressed as .*, thus, Bt.* would test all Betweenness variables (which in abbreviated form
begin with Bt) for correlation with the target.

Box-Cox transformations can be disabled, and the parameters for cross-validation can be
changed.

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#network-radii
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#network-radii
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-integral-and-geometry-tools
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#advanced-config-options-for-sdna-integral-and-geometry-tools
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#learn
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#learn


Weighting lambda (weightlambda) weights data points by yλ-1, where y is the target
variable. Setting to 1 gives unweighted regression. Setting to around 0.7 can encourage
selection of a model with better GEH statistic, when used with traffic count data. Setting to 0
is somewhat analogous to using a log link function to handle Poisson distributed residuals,
while preserving the model structure as a linear sum of predictors. Depending on what you
read, the literature can treat traffic count data as either normally or Poisson distributed, so
something in between the two is probably safest.

Ridge and Lasso regression can cope with multicollinear predictor variables, as is common
in spatial network models. The techniques can be interpreted as frequentist (adding a penalty
term to prevent overfit); Bayesian (imposing a hyperprior on coefficient values); or a mild
form of entropy maximization (that limits itself in the case of overspecified models). More
generally it’s a machine learning technique that is tuned using cross-validation. The r² values
reported by learn are always cross-validated, giving a built-in test of effectiveness in making
predictions.

Regularization Lambda allows manual input of the minimum and maximum values for
regularization parameter λ in ridge and lasso regression. Enter two values separated by a
comma. If this field is left blank, the software attempts to guess a suitable range, but is not
always correct. If you are familiar with the theory of regularized regression you may wish to
inspect a plot of cross validated r² against λ to see what is going on. The data to do this is
saved with the output model file (if specified), with extension .regcurve.csv.

sDNA_Predict (sDNAPredict)

Predict takes an output model file from sDNA Learn, and applies it to fresh data.

For example, suppose we wish to calibrate a traffic model, using measured traffic flows at a
small number of points on the network:

• First run a Betweenness analysis at a number of radii using Integral Analysis.
• Use a GIS spatial join to join Betweenness variables (the output of Integral) to the

measured traffic flows.
• Run Learn on the joined data to select the best variable for predicting flows (where

measured).
• Run Predict on the output of Integral to estimate traffic flow for all unmeasured

polylines.

Dev tool(s)

Unload_sDNA (Unload_sDNA)

Unload the sDNA_GH Python package and all sDNA modules, by removing them from
Grasshopper Python’s shared cache (sys.modules).

The next sDNA_GH component to run after this one (that’s not also an Unload_sDNA) will

https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#predict
https://sdna-open.readthedocs.io/en/latest/guide_to_individual_tools.html#predict


then reload the sDNA_GH Python package and installation-wide options file (config.toml),
and any specified options including a project specific config.toml, without otherwise having
to restart Rhino to clear Grasshopper’s cache. sDNA tools will also try to load an sDNA
installation.

Self_test (selftest)

Runs the unit tests of the sDNA_GH module and launcher.py.

Not a tool in the same sense as the others (this has no tool function in sDNA). The name
Self_test (and variations to case and spacing) are recognised by the launcher code, not the
main package tools factory. In a component named “Self_test”, the launcher will cache it,
then replace the normal RunScript method in a Grasshopper component class entirely, with a
function (unit_tests_sDNA_GH.run_launcher_tests) that runs all the package’s unit
tests (using the Python unittest module). Unit tests of the functions in the launcher, can also
be added to the launcher code.

sDNA_GH_API_test_xxxx

These components are not formally provided with releases (except inside
src\sDNA_GH\Rhino_8_API_tests.gh - to debug this file add
'CHEETAH_GH_NON_INTERACTIVE' : 'False' to the dict set to the kwarg
extra_env_vars in hatch_build.py). But for developers, launcher components whose
names start with sDNA_GH_API_test_ (defined in launcher.py:APITEST_PREFIX),
named sDNA_GH_API_test_xxxx will run API test “xxxx”. “xxxx” can also be “all” to run
all the API tests.

Advanced Usage.

Automatic multi-tools.

Each sDNA tool has its own Grasshopper component. To run a tool, a true value, e.g. from a
Boolean toggle component, must be connected to its component’s go Input Param [^note].
To group together common work flows, if an auto_ option is set to true, some components
also automatically run other tools before and after they run their own tools (if components
for those tools are not connected to it). For example, this allows an entire sDNA process to
be run on Rhino Geometry from a single sDNA tool component.
When an sDNA_GH component is first placed on the canvas, or a grasshopper file with an
sDNA_GH component on the canvas is first loaded, each component adds in Params for all
its required Input and Output arguments (if the Params are not already present). These added
Params include those of any extra automatically added tools if an auto_ option is true, that
would other wise require separate components. Extra customisation can be carried out by
adding in user specified Params too, that have the correct name of a supported option.
Similarly any Params not being specified can be removed.

[note] The Config component tool always loads its options when placed or its Inputs are



updated for any value of go. On the Unload_sDNA component, unload does the same thing
as go.

Running individual tools.

Multiple sDNA_GH components can be chained together to run in sequence by connecting
the OK Output Param of one component, to the go Input Param of the component(s) to be run
afterwards. A Grasshopper Colour Gradient tool can be connected in between a Parse_Data
component and Recolour_Objects component.

Component Execution Order.

Multiple sDNA_GH tools can be run from a single sDNA_GH component by setting any of
the auto_ options to true: auto_get_Geom, auto_read_User_Text, auto_write_Shp,
auto_read_Shp and auto_plot_data, on a Config component, before placing the
chosen sDNA_GH tool on the canvas (as long as components for those tools are not
connected to it).
Warning! If you did not create a config.toml file (in Installation step 13 above), and if
you rely instead on Config components inside your .gh file itself to set option values,
immediately before saving your .gh file, be sure to select the Config component determining
any auto_ options, and press Ctrl + B (or from the pull-down menu select Edit ->
Arrange -> Put To Back) to to send to the back, any components that should run first
when you reload the .gh file. This ensures the Config component will run before other
sDNA_GH components, which rely on settings controlled by it to configure themselves
correctly.

Options.

sDNA_GH is highly customisable. This customisation is controlled by setting options. To
give an option a value, connect a Grasshopper Param or text panel containing that value, to
the Param with that option name on any sDNA_GH component (except Unload_sDNA). If a
Param is subsequently disconnected, its latest value will be remembered. Some Text Params
can be cleared by connecting an empty Text Panel to them. Any option in a component can
be read by adding an Output Param and renaming it to the name of the option. Options
whose names are all in capitals are read only. Any other option in a component can be
changed by adding an Input Param and renaming it to the name of the option, and connecting
it to the new value. Entire options data structures (opts) may also be passed in from other
sDNA_GH components as well, via normal Grasshopper connections.

Adding Component Input and Output Params.

To add a new Input or Output Param, zoom in on the component until plus and minus
symbols can be seen between the params. Click on the plus symbol where you want the new
Param. Right click the new Param’s name (e.g. x, y or z for an Input Param, or a,b or c for an
Output Param) to rename it to name of the desired option you wish to set.



Logging options

If log_file is not an empty string, a log file is created before Input Params are created on
components, so to have any effect, the options propagate, working_folder, logs_dir
and log_file must be set in an installation wide config.toml file, e.g. by setting those
options and go to true on Config component, and restarting Rhino. Logging levels can be
changed dynamically. Supported values for log_file_level and log_console_level
are: DEBUG, INFO, WARNING, ERROR and CRITICAL. To suppress output from the out
Output param entirely, set log_console_level to CRITICAL. To propagate log messages
higher than the sDNA_GH package’s parent logger (which will most likely result in a lot of
output), set propagate to true.

Options override priority order

1. The component input Param options override options in a project specific options file
(config).

2. A project specific options file (specified in config) overrides options from another
sDNA_GH component (connected in opts).

3. Options from another sDNA_GH component override the installation-wide options file
(e.g. %appdata%\Grasshopper\UserObjects\sdna-
gh\sDNA_GH\config.toml).

4. On start up only (and every time thereafter if sync = false, no_state = true and
read_only = false) the installation-wide options file overrides the sDNA_GH
hard-coded default options in main.py [^note] [note] Dev note: the options in
main.py themselves override every individual tool’s default options in tools.py.

Local meta options.

By default all sDNA_GH components, across all Grasshopper canvases in the same Rhino
process, share (and may change) the same global opts (module options, tool options, and
meta options) in the main.py module. If only one of each tool is needed (and there is only
one version of sDNA), that will suffice for most users.

To give an sDNA_GH component different options to another of the same type using the
shared global options, it must de-synchronise from the global options. De-syncing occurs if a
component’s local meta option sync is false (if read_only is true, it will still read from but
not update the global options). local metas are like any other option, except a) they are
shared using l_metas instead of opts, and b) they are not updated automatically from the
global module options (as this would defeat their entire purpose).

Components referring to the global options share their settings. This means they do not know
if a particular setting in the global options came from a different component sharing with it,
or from itself previously. Shared states mean even a component in isolation has its own
historical state. To use components without any options sharing and a minimum of state, set
sync to false and no_state to true (its default).



Shared state vs desynchronised components.

sDNA_GH has two fundamentally different modes of operation controlled by the Boolean
sync local meta option: synchronised and desynchronised. Local meta options of
components can only be changed directly on each component via user Params, by project
options files (config params) or by the installation wide options file (config.toml). By
default, components are desynchronised (sync = false). A few useful features are available
from synchronised components, but they may behave in unexpected ways, and may even feel
buggy and glitchy. It is recommended to undertake a one off setup process to save your
commonly used custom options in an installation wide options file (config.toml). This is
necessary to run sDNA if sDNA_GH fails to automatically find sDNA or the Python run
time; even if this is successful but takes a while, it is still a good idea. Thereafter all
components can be used as desynchronised:

Synchronisation (Advanced user only)

To set all components to synchronised, set sync = true on a Config component, leave
save_to unconnected, and set go = true. This writes sync = true to the installation wide
options file (config.toml). As long as no higher priority options source (Params, project
specific options files, or local metas from other components) sets sync = false, all
desynchronised components will then resynchronise the next time they run.

Applying synchronisation changes.

Finally, one of three alternatives is necessary to make these changes take effect, as
synchronised components only read the installation wide options file on start up: a) Restart
Rhino, b) Set unload = true on an Unload_sDNA component, set unload = false on
it immediately afterwards, then manually re-initialise each component (double click its name
or icon to see its source code and click OK, or delete it and replace it from the sDNA_GH
ribbon). c) Set the config on each component to be resynchronised to the file path of the
installation wide options file (e.g. %appdata%\Grasshopper\UserObjects\sdna-
gh\sDNA_GH\config.toml - expand %appdata% in a File Explorer).

De-synchronisation.

Components are already desynchronised by default. Global de-synchronisation is only
necessary if you have already synchronised them, e.g.to save options from other components
to a config.toml file, and wish to undo this.

To desynchronise all synchronised components, set sync = false on a Config component,
leave save_to unconnected, and set go = true. This writes sync = false to the sDNA_GH
config.toml.

Apply the synchronisation changes as in the previous subsection.

Desynchronised components (sync = false):



-must have any auto_ options directly set on each of them. A config component cannot be
used for this. -Plot min and plot max will be automatically calculated anew each time, if
viewing multiple results fields. -Input params will be revert to their defaults when
disconnected. -Config components cannot affect the behaviour of desynchronised
components, or save their options to config.toml files.
-If sDNA components are run with auto_write_Shp = false or auto_read_Shp = false,
deletion of temporary files requires opts to be connected between the sDNA component and
write_Shp and read_Shp component. -Read all the defaults in the override order on every
run, so respond dynamically to changes in the installation wide config.toml options file. -
Support multiple project specific .toml files. -Require the .toml file to be set on a config
Input on every desynchronised component that refers to it.

Synchronised components (sync = true):

-are affected by relevant auto_ rules set on a Config component.
-can have their options saved to config.toml files. -only require one project specific
.toml file to be set to a config Input between all of them. -can save automatically created
advanced config strings (the advanced option) to .toml files by sharing them with a config
component, and thence saved to file. -only once read the installation wide config.toml file
user options file, when the first sDNA_GH component is placed (synchronised or
desynchronised).
-in one .gh file are affected by the global options set by other synchronised sDNA_GH
components in previous .gh files opened in the same Rhino session.

The following Inputs and Outputs are never shared (unless connected by the user in
Grasshopper): OK, go, Geom, Data, file, input, output, gdm.

License.

See license.md

Copyright.

Cardiff University 2022

Contact.

grasshopper.sdna@gmail.com

Developer manual.

Dependencies.

IronPyShp (MIT License) v2.3.1, an Iron Python cross-port of Joel Lawhead and Karim

http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/license.md
http://localhost:56447/b2222248-e97f-4c01-abbf-f439f8fbc662/license.md
mailto:grasshopper.sdna@gmail.com
mailto:grasshopper.sdna@gmail.com
https://github.com/JamesParrott/IronPyShp/
https://github.com/JamesParrott/IronPyShp/


Baghat et al’s PyShp.

toml_tools (MIT License) v2.0.0, a Python 2 back-port and Iron Python cross-port of Taneli
Hukkinen’s tomli (behind tomllib in Python 3.11 and later) and tomli_w, with a few small
extras.

mapclassif-Iron (BSD 3-Clause License), a stripped down minimal fork of mapclassify, only
containing a pure Python Fisher-Jenks classifier.

Cheetah_GH (MIT License). A framework that can place, virtually connect, and runs
Grasshopper components to the canvas, in code (e.g. test code). Also runs Grasshopper
definitions from the command line, pipes output from the internal Grasshopper env run using
Cheetah_GH (e.g. unittest) back to the command line, and if few changes are made to the
Grasshopper definition, quit Rhino and return to the command line.

Anteater_GH (MIT License). Fuzz testing helper functions for testing within Grasshopper
and Rhino.

Testing.

Unit tests.

Most of the code in sDNA_GH is coupled with the APIs of sDNA and Rhino and
Grasshopper, and does not carry out calculations of significant complexity (to avoid
unnecessarily slowing the user’s machine).
However the code in data_cruncher.py is a little more complex, and so is important to test. Its
unit tests can be run within Grasshopper by placing a self_test component (with a test tube
icon under Extras).

API Tests.

The API Tests can be run locally from within Rhino by opening
test_cases\Rhino_8_API_tests.gh. They can also be run locally from the cmd
command line by running Cheetah_GH .\src\sDNA_GH\Rhino_8_API_tests.gh
NUM_TESTS 5 (Python >= 3.8 and Cheetah_GH required in the test env). Cheetah_GH will
listen over UDP for ‘stderr’ output from the unittest process Cheetah is also running within
Rhino/ It also attempts to return an error code indicating success or failure of the tests. Test
output is also saved to src\sDNA_GH\sDNA_GH_unit_test_results.log.

If RhinoCompute allows command line access, this could potentially be developed into a
cloud CI pipeline.

Iteration.

When working on the source tree outside of Rhino, if no changes to .\launcher.py have
been made (that would necessitate running .\build_components.bat), then .

https://github.com/JamesParrott/toml_tools
https://github.com/JamesParrott/toml_tools
https://github.com/JamesParrott/mapclassif-Iron/tree/85acb111f6c9271d131fd5dcacb00cb16833352e
https://github.com/JamesParrott/mapclassif-Iron/tree/85acb111f6c9271d131fd5dcacb00cb16833352e
https://github.com/JamesParrott/Cheetah_GH
https://github.com/JamesParrott/Cheetah_GH
https://github.com/JamesParrott/Anteater_GH
https://github.com/JamesParrott/Anteater_GH


\create_install_and_test_release.bat can be run to create a release from the
current source tree (and whatever component launcher files are there from a previous build),
install it, and run the API tests on it.

Other Tests.

Grasshopper is a visual programming language. It has been challenging to run a test
framework within it it from a local command line, let alone a modern CI/CD system. So
unfortunately all other test Grasshopper definitions must be opened manually. They are
included as examples for the end user.

Contributions.

Thankyou for your interest in contributing. If you are considering writing code for inclusion
in the main sDNA_GH project, please reach out to us first. More details below.

Dependencies.

Contributions to toml_tools, IronPyShp, and mapclassif-Iron that satisfy the requirements of
their copyright holders are welcome.
These forks were created after the original release of sDNA_GH. Their copyright is still
owned by the same owners as their parent projects. James maintains these forks. toml_tools
in particular has high test coverage (thanks to tomli and tomli_w’s tests), and new features
are being proposed for TOML, so is particularly suitable for future development.

sDNA_GH

Rhino/Grasshopper Python development is a plentiful source of bugs. Contributions to
sDNA_GH must not fail any regression tests. Unfortunately many other tests (in ‘/
test_cases’, other than the Unit tests and API tests mentioned above) are Grasshopper
definitions that must each be run manually. Automating the remainder of these tests in some
way, e.g. also using Cheetah_GH would be an excellent and most welcome contribution.
Very simple contributions may be accepted on a discretionary basis, e.g. that add entries to
the dictionaries the factories refer to, that would let Read_Shp and Write_Shp support Points
shapefile types. But beware the Contributors may also need to satisfy IP transfer
requirements (t.b.c.) of the copyright holder, for Cardiff University to be able to include
them.

Build instructions.

A Python env is needed with pyproject-build (build) installed, to kick off the whole show.
Build will create a venv for sDNA_GH’s Python deps from PyPi. An an sDNA installation is
also needed, so that the build process knows which sDNA components to build (otherwise
the user must build their own using a Config component). The sDNA env can now be any
venv in which sdna_plus is installed from PyPi. If so, when using sDNA_GH, python needs



to be the venv’s Python for the sDNA Python subprocess to find PyShp.

Build env.

• Install build either as a tool (in its own venv automatically, e.g. via uv tool install
build), or in the currently activated Python environment (best practise is a venv, but
pyproject-build creates venvs itself for its builds by default anyway, so I use a global
Python env on Windows).

• Install sdna_open or sdna_plus. This is solely to get copies of sDNAUIspec.py and
runsdnacommand.py for the builder to know which sDNA tools to build components
for. If sDNA is in a non-standard location, if the sDNA_GH builder cannot find sDNA
automatically (via a non-exhaustive list of hardcoded directories), it will the path of the
parent dir of those two files specifiying in sDNA_paths.

• Make a local clone of sDNA_GH (at the branch and commit a rlease is to be built
from).

Steps.

0. The deps are installed in the build environment, and the path to these deps in the build
environment (sys.path[-1]) is passed by the build hook (hatch_build.py) into
the builder tool running within Rhino and Grasshopper (so to simply run
dev\sDNA_build_components.gh as before, the environment variable
SDNA_GH_BUILD_DEPS must be set).

1. If sDNA_GH has not automatically found the sDNA installation you wish to build
components for, place a Config component (the one with a lightbulb icon) and add its
path to sDNA_paths.

2. In the repository’s root dir, run build_components.bat (if necessary open it and
adjust the paths to your local folders, and the paths in
\dev\sDNA_build_components.gh).

3. For non-Github users, a good quality pdf of this file (README.md) can be created in VS
Code with the extension: print, PD Consulting VS Marketplace Link. This will render
the markdown file in your web browser. Print it to a pdf with the name README.pdf in
the same directory (using Save to Pdf in Mozilla instead of Microsoft Print to Pdf will
preserve the URLs in the links).

4. Manually create Unload_sDNA_GH and Readme.txt components if required (the
latter can use readme_component.gh; the former is in
sDNA_build_components.gh), and the cluster components in
Shp_Data_Tree_component.gh and unpack_network_radii.gh. Copy these to
\sDNA_GH\components\manually_built.

5. Run create_release_sdna-gh.zip.bat.bat to create the zip file for release.
6. Note: The components are only GhPython launchers with different names and different

docstrings. As much code as possible has been shifted into the python package and the
other sDNA_GH Python package files. If no changes to the launcher code have been
made and no new components/tools are required, a new release can simply reuse the

https://pypi.org/project/build/
https://pypi.org/project/build/
https://marketplace.visualstudio.com/items?itemName=pdconsec.vscode-print
https://marketplace.visualstudio.com/items?itemName=pdconsec.vscode-print


.ghuser files from an old release, and the new release’s zip files can be created simply
by re running create_release_sdna-gh.zip.bat.bat.

To build new sDNA components.

sDNA_GH will attempt to automatically build components and user objects for the sDNA
tools in an sDNAUISpec.py, that it doesn’t already have .ghuser GH component / User
Object file for. It will also look for an .png icon file with the same name as the tool Class in
sDNAUISPec in \sDNA_GH\components\icons, and will parse this very file
(README.md) for a tool description, to swap in as the launcher code’s docstring (which will
become the User Object and component descriptions, and its mouse over text). Therefore:

• for each new component: Add a description to %appdata%
\Grasshopper\UserObjects\sdna-gh\sDNA_GH\README.md starting on the line
after (tool Class name) in brackets, ending in two blank lines. Save it to
README.md (overwriting the previous one in the User Objects folder).

• for each new component: Prepare an icon file and save it to %appdata%
\Grasshopper\UserObjects\sdna-gh\sDNA_GH\components\icons. 24x24 is
recommended by the Grasshopper developers, but it seems fairly flexible - see
sDNA_Integral. A format compatible with .Net’s System.Drawing.Bitmap Class is
required. .png has been tested.

• Open a new Grasshopper canvas with sDNA_GH installed.
• Place an sDNA_GH Config component.
• Setup sDNA_GH to use the new version of sDNA by specifying it in sDNA_folders

(following Installation step 13 above).
• Ensure make_new_comps is true.
• If necessary Recompute the sheet - press F5.
• The new user objects for the new components will be automatically created, and added

to the sDNA section of the Grasshopper Plug-ins Ribbon. Copy the relevant .ghuser
file(s) from %appdata%\Grasshopper\UserObjects\, and paste them in
\sDNA_GH\components\automatically_built in the repo. Place copies of the
updated README.md file and new icon files in there too for posterity. If wished, move
the new .ghuser file(s) from %appdata%\Grasshopper\UserObjects\ to
%appdata%\Grasshopper\UserObjects\sdna-
gh\sDNA_GH\components\automatically_built

The supported data types for inputs (forced to lower case) are in
sDNA_ToolWrapper.sDNA_types_to_Params in tools.py:

• fc = Param_FilePath
• ofc = Param_FilePath
• bool = Param_Boolean
• field = Param_String
• text = Param_String
• multiinfile = Param_FilePath
• infile = Param_FilePath



• outfile = Param_FilePath

Misc

To compile C# code to a grasshopper assembly (.gha file): Install Visual Studio 2017
community edition with VB / C# / .Net workflow [https://developer.rhino3d.com/guides/
grasshopper/installing-tools-windows/#fnref:3] Install Rhino & templates as above [https://
developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-
visual/580235] Install .Net v4.8. Change .csproj target to v4.8 [https://stackoverflow.com/
questions/58000123/visual-studio-cant-target-net-framework-4-8]

GHPython for .ghuser: Select GHPython component. Optionally compile to .ghpy. File ->
Create User Object

[^0] The the old builds of sDNA_open require the 64 bit (x64) Visual Studio 2008
redistributable. It is available here or here.

[^1] The entire source code for sDNA_GH is visible on Github. All the source code is also
visible in the download itself as the component launcher and Python package is uncompiled,
except the .ghuser files which each contain the launcher code under a different name, and are
compiled. See the Build Instructions above to build them for yourself from the source code.

https://developer.rhino3d.com/guides/grasshopper/installing-tools-windows/#fnref:3%5D
https://developer.rhino3d.com/guides/grasshopper/installing-tools-windows/#fnref:3%5D
https://developer.rhino3d.com/guides/grasshopper/installing-tools-windows/#fnref:3%5D
https://developer.rhino3d.com/guides/grasshopper/installing-tools-windows/#fnref:3%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://developercommunity.visualstudio.com/t/net-framework-48-sdk-and-targeting-pack-in-visual/580235%5D
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://stackoverflow.com/questions/58000123/visual-studio-cant-target-net-framework-4-8%5D
https://stackoverflow.com/questions/58000123/visual-studio-cant-target-net-framework-4-8%5D
https://stackoverflow.com/questions/58000123/visual-studio-cant-target-net-framework-4-8%5D
https://stackoverflow.com/questions/58000123/visual-studio-cant-target-net-framework-4-8%5D
https://docs.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2008-vc-90-sp1-no-longer-supported
https://docs.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2008-vc-90-sp1-no-longer-supported
https://download.microsoft.com/download/5/D/8/5D8C65CB-C849-4025-8E95-C3966CAFD8AE/vcredist_x64.exe
https://download.microsoft.com/download/5/D/8/5D8C65CB-C849-4025-8E95-C3966CAFD8AE/vcredist_x64.exe
https://github.com/JamesParrott/sDNA_GH/
https://github.com/JamesParrott/sDNA_GH/

