

PYTHON PCB ASSEMBLY TEST

TOOLKIT

User manual

Python PCB Assembly Test Toolkit - User Manual

 Page 2 of 72
© National Instruments Corporation

Legal Information

Copyright

© 2004–2024 National Instruments Corporation. All rights reserved.

Under the copyright laws, this publication may not be reproduced or transmitted in any form,

electronic or mechanical, including photocopying, recording, storing in an information retrieval

system, or translating, in whole or in part, without the prior written consent of National Instruments

Corporation.

NI respects the intellectual property of others, and we ask our users to do the same. NI software is

protected by copyright and other intellectual property laws. Where NI software may be used to

reproduce software or other materials belonging to others, you may use NI software only to

reproduce materials that you may reproduce in accordance with the terms of any applicable license

or other legal restriction.

End-User License Agreements and Third-Party Legal Notices

You can find end-user license agreements (EULAs) and third-party legal notices in the following

locations after installation:

• Notices are located in the <National Instruments>_Legal Information and <National

Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal

information in installers built with NI products.

Python PCB Assembly Test Toolkit - User Manual

 Page 3 of 72
© National Instruments Corporation

Contents
1 About This Manual ... 5

2 Overview .. 5

3 Software setup ... 5

4 Launch Python PCB Assembly Test Toolkit .. 5

5 Measurement Libraries .. 6

5.1 Structure of Library ... 9

5.2 Physical and Virtual Channels ... 9

5.2.1 Create/Modify Global Virtual Channels ... 9

5.2.2 Calibration .. 10

5.3 Execution Options ... 11

5.4 Limitations .. 12

5.5 Libraries .. 12

5.5.1 Power Supply Source and Measure ... 13

5.5.2 DC-RMS Voltage Measurement.. 15

5.5.3 DC Voltage Generation ... 16

5.5.4 DC-RMS Current Measurement ... 18

5.5.5 Time Domain Measurement .. 20

5.5.6 Frequency Domain Measurement ... 22

5.5.7 Signal Voltage Generation .. 24

5.5.8 Static Digital State Measurement .. 26

5.5.9 Static Digital State Generation ... 27

5.5.10 Dynamic Digital Pattern Measurement .. 28

5.5.11 Dynamic Digital Pattern Generation ... 30

5.5.12 Digital Clock Generation .. 32

5.5.13 Digital Pulse Generation .. 34

5.5.14 Digital Frequency Measurement ... 36

5.5.15 Digital PWM Measurement ... 38

5.5.16 Digital Edge Count Measurement Using Hardware Timer ... 41

5.5.17 Digital Edge Count Measurement Using Software Timer .. 44

5.5.18 Communication .. 47

5.5.19 Synchronization .. 50

5.5.20 Temperature RTD Measurement ... 52

5.5.21 Temperature Thermistor Measurement.. 55

Python PCB Assembly Test Toolkit - User Manual

 Page 4 of 72
© National Instruments Corporation

5.5.22 Temperature Thermocouple Measurement .. 59

6 Automation Test Sequences .. 62

6.1 Execution with Simulated Hardware .. 63

7 Functional Test Demo sequences .. 63

8 Device Synchronization Example ... 66

8.1.1 How to achieve synchronization? .. 66

9 Developing Test Programs ... 66

9.1 Validation examples: .. 67

9.2 Automation Sequences:.. 67

9.3 FT Demo Sequence: .. 67

10 Modify nipcbatt source code and rebuild distribution package ... 68

11 Error Codes and Troubleshooting ... 69

12 Related Documents ... 71

13 References ... 72

Python PCB Assembly Test Toolkit - User Manual

 Page 5 of 72
© National Instruments Corporation

1 About This Manual
This manual contains information about the Python PCB Assembly Test Toolkit, including a brief

overview of each library and automation sequences, how to develop tests using libraries, limitations

and troubleshooting guidelines.

2 Overview
Python PCB Assembly Test Toolkit is a collection of Measurement Library, Automation Sequences,

Validation Examples, Functional Test Demo Sequence along with Documentation for PCB Assembly

electrical functional test.

Python PCB Assembly Test Toolkit is focused on PC based DAQ with support for cDAQ, TestScale and

high level enough to be applicable or scalable for PXI and other instruments with similar functionality

later. Libraries are built in Python, designed, and structured to use readily with sequencers. Example

test sequences built with the libraries are added to demonstrate basic Functional test in Python.

3 Software setup
Please refer to the Getting Started Guide for installation and setup procedures of Python PCB

Assembly Test Toolkit. In the downloaded source code archive, it is available at the location

 “\nipcbatt-1.x\src\docs\Python PCB Assembly Test Toolkit - Getting Started.pdf”.

4 Launch Python PCB Assembly Test Toolkit
Start testing with Python PCB Assembly Test Toolkit with the steps below:

1. Refer to the Getting Started guide to install the Python toolkit from PyPI. To go to the source

folder which includes Library and tests through the installed library, refer to the following

path:

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_library”

Or if have downloaded source code from PyPI website, refer to this path:

“\nipcbatt-1.x\src\nipcbatt\pcbatt_library”

2. Go to the following location to copy the individual and pair examples into your workspace:

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_validation_examples”

Or

“\nipcbatt-1.x\src\nipcbatt\pcbatt_validation_examples”

3. Go to the following location to locate the example automation sequences:

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_automation”

Or

“\nipcbatt-1.x\src\nipcbatt\pcbatt_automation”

4. The FT Demo sequence can be found in the location:

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_ft_demo_test_sequence”

Or

Python PCB Assembly Test Toolkit - User Manual

 Page 6 of 72
© National Instruments Corporation

“\nipcbatt-1.x\src\nipcbatt\pcbatt_ft_demo_test_sequence”

5 Measurement Libraries
Python PCBA Measurement Library is located inside “\nipcbatt-1.x\src\nipcbatt\pcbatt_library”

folder. This folder contains all the measurement libraries and common reusables. Refer the

table below for the list of available libraries.

Measurement Library Overview

power_supply_source_and_measurements

PowerSupplySourceAndMeasure class methods can
be used to initialize, configure, source, measure and
close on user configurable power supply pins. This
library is applicable for TestScale power supply
module (TS-15200).

dc_rms_voltage_measurements DcRmsVoltageMeasurement class methods can be
used to initialize, configure, measure and close on
user configurable Analog input pins. This library is
applicable for PC Based DAQ, TestScale and cDAQ
hardware.

dc_voltage_generations DcVoltageGeneration class methods can be used to
initialize, configure, generate and close on user
configurable Analog output pins for DC voltage
generation. This library is applicable for PC Based
DAQ, TestScale and cDAQ hardware.

dc_rms_current_measurements DcRmsCurrentMeasurement class methods can be
used to initialize, configure, measure and close on
user configurable analog input voltage pins for current
measurements. This library applicable for PC Based
DAQ, TestScale and cDAQ hardware.

time_domain_measurements TimeDomainMeasurement class methods can be used
to initialize, configure, measure and close on user
configurable Analog input pins and derive time
domain measurements for the measured waveforms.
This library is applicable for PC Based DAQ, TestScale
and cDAQ hardware.

frequency_domain_measurements FrequencyDomainMeasurement class methods can be
used to initialize, configure, measure and close on
user configurable Analog input pins and derive
frequency domain measurements for the measured
waveforms. This library is applicable for PC Based
DAQ, TestScale and cDAQ hardware.

signal_voltage_generations SignalVoltageGeneration class method provides
options to generate different waveform voltage
signals tones (single/multi) over a given generation
time(s) on analog output terminals of DAQmx. This
library is applicable for PC Based DAQ, TestScale and
cDAQ hardware.

static_digital_state_measurements StaticDigitalStateMeasurement class method
measures the static digital data on all configured

Python PCB Assembly Test Toolkit - User Manual

 Page 7 of 72
© National Instruments Corporation

digital channel lines in the DAQmx task. This library is
applicable for PC Based DAQ, TestScale and cDAQ
hardware.

static_digital_state_generations StaticDigitalStateGeneration class method generates
the static digital data on all configured digital channel
lines in the DAQmx task. This library is applicable for
PC Based DAQ, TestScale and cDAQ hardware.

dynamic_digital_pattern_measurements

DynamicDigitalPatternMeasurement class methods
helps to take dynamic digital measurements on a
single/multiple digital channel lines or on an entire
port in a digital module. This library is applicable for
PC Based DAQ, TestScale and cDAQ hardware.

dynamic_digital_pattern_generations

DynamicDigitalPatternGeneration class methods can

be used to initialize, configure, generate and close on

user configurable Digital output pins and generate

digital pattern in specified lines. This library is

applicable for PC Based DAQ, TestScale and cDAQ

hardware.

digital_clock_generations DigitalClockGeneration class methods can be used to
initialize, configure, generate and close on user
configurable terminals using counters. This library is
applicable for PC Based DAQ, TestScale and cDAQ
hardware.

digital_pulse_generations DigitalPulseGeneration class methods can be used to
initialize, configure, generate and close on user
configurable terminals using counters This library is
applicable for PC Based DAQ, TestScale and cDAQ
hardware.

digital_frequency_measurements DigitalFrequencyMeasurement class methods can be
used to initialize, configure, measure and close on
user configurable PFI lines using selected counter for
digital frequency measurement. This library is
applicable for PC Based DAQ, TestScale and cDAQ
hardware.

digital_pwm_measurements DigitalPwmMeasurement class methods can be used
to initialize, configure, measure and close on counter
input task assigned with an input terminal. This library
is applicable for PC Based DAQ, TestScale and cDAQ
hardware.

digital_edge_count_measurements DigitalEdgeCountMeasurementUsingHardwareTimer
and
DigitalEdgeCountMeasurementUsingSoftwareTimer
class methods can be used to initialize, configure,
measure and close on user configurable PFI lines using
selected counters for digital events/edges counting.
This library is applicable for PC Based DAQ, TestScale
and cDAQ hardware.

Python PCB Assembly Test Toolkit - User Manual

 Page 8 of 72
© National Instruments Corporation

serial_communications,

i2c_communications,

spi_communications

These libraries contain classes and simple read and
write methods for I2C, SPI and Serial mode of
communications. This library is applicable for USB-
8452 and USB-232.

synchronizations SynchronizationSignalRouting class methods can be
used to route signals between specified source signal
and output terminals for the given DAQmx Task This
library is applicable for PC Based DAQ, TestScale and
cDAQ hardware.

temperature_measurements TemperatureMeasurementUsingRtd class methods
can be used to initialize, configure, measure and close
on user configurable Analog input pins to derive
temperature measurements from RTDs (Resistance
Temperature Detector). This library is applicable C
Series Temperature Input Modules.

TemperatureMeasurementUsingThermistor class
methods can be used to initialize, configure, measure
and close on user configurable Analog input pins to
derive temperature measurements from voltage
excited NTC typed Thermistor devices. This library is
applicable for PC based DAQ devices, TestScale analog
input modules, C Series Voltage Input Modules.

TemperatureMeasurementUsingThermocouple class
methods can be used to initialize, configure, measure
and close on user configurable Analog input pins to
derive temperature measurements from
Thermocouples. This library is applicable for C Series
Temperature Input Modules.

NOTE

Detailed Help on how to use the above measurement libraries can be found in the Libraries

section.

Python PCB Assembly Test Toolkit - User Manual

 Page 9 of 72
© National Instruments Corporation

5.1 Structure of Library
All the measurement libraries mentioned above are present in the nipcbatt folder:

Each library/class has three main methods as below,

Method Overview

initialize() Used to initialize a DAQmx using either physical or global channels
provided to perform the respective task.

configure_and_measure()/
configure_and_ generate()

Configures, Initiates and Measure/Generate for an input/output
task respectively. Also, can return raw data for external custom post
analysis and measurements from embedded
analysis(selectable/optional)

close() Closes the DAQmx tasks and clears resources.

5.2 Physical and Virtual Channels
All Libraries (except power_supply_source_and_measurements) support Global Virtual Channels

created using NI-MAX. User can either provide physical channels from the module directly or use

virtual channels. If both are provided, Virtual channels will take precedence and will be used while

initializing the task.

NOTE

The channel settings of Global Virtual Channels set in NI-MAX will be overwritten using

Configure and Measure.

5.2.1 Create/Modify Global Virtual Channels

A virtual channel is a collection of settings such as a name, a physical channel, input terminal

connections, the type of measurement or generation, and can include scaling information. A virtual

channel created outside a task is a Global Virtual Channel. For detailed definitions and example

codes, refer to Creating a Virtual Channel in NI-DAQmx and Using it in LabVIEW.

Follow the below steps to create Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, right-click Data Neighbourhood and select Create New

3. In the Create New window, select NI-DAQmx Global Virtual Channel and click Next. The DAQ

Assistant opens.

4. Select an I/O type, such as analog input

http://www.ni.com/tutorial/5375/en/

Python PCB Assembly Test Toolkit - User Manual

 Page 10 of 72
© National Instruments Corporation

5. Select the physical channel of Hardware

6. Type the global virtual channel name. Click Finish

7. Save your configuration.

Follow the below steps to modify the existing Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, expand Data Neighbourhood > NI-DAQmx Global Virtual Channel

3. Select the Global Channel to modify. Configuration window opens.

4. Click on “Details >>” as highlighted above to view the Physical Channel

5. Right click and Change Physical Channel to update the Physical Channel. Select the Physical

Channel from Hardware as per the connection and Click “Ok”

6. Save your configuration

5.2.2 Calibration

Calibrate a channel to increase the accuracy of a measurement by compensating for errors due to

cabling, wiring, or sensors. NI MAX provides calibration option for DAQ devices virtual global

channels.

With the use of Virtual global channels, we can calibrate input measurements individually, save the

calibration, edit them later or recalibrate it. It can be useful for sensors calibrations to compensate

sensors errors. To calibrate a virtual global channel, follow the below steps,

1. Open NI MAX

2. Create/Select the Virtual global channel to calibrate under My System»Data

Neighborhood»NI-DAQmx Global Virtual Channels»YourChannelName from

the Configuration view in NI MAX.

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html

Python PCB Assembly Test Toolkit - User Manual

 Page 11 of 72
© National Instruments Corporation

3. Select Configuration»Calibration»Calibrate... in the NI_DAQmx Global Channel view.

4. In Channel Calibration Wizard, enter channel calibration details.

For more details on performing calibration of virtual global channels, refer Performing DAQmx

Channel Calibration in MAX Using Wizard.

5.3 Execution Options
The execution option mechanism allows to use a sequential single thread for synchronization by

triggers.

Configure and Measure can be done in a single or multiple steps. Refer below for three execution

options available in configuration.

Execution Option Overview

CONFIGURE_AND_MEASURE Configures the instrument and performs the measurement

CONFIGURE_ONLY

Sets the configuration to the instrument and initiate but skips the
fetch and measure. This option can be used for synchronization
where the channel can be configured to wait for the trigger to
start the measure

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YIMNCA4&l=en-IN
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YIMNCA4&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 12 of 72
© National Instruments Corporation

MEASURE_ONLY

Fetch the data captured in the instrument and performs the
processing to return the measurements. Please note that
Measure only cannot be repeated without preceding with the
"CONFIGURE_ONLY "

5.4 Limitations
1. MEASURE_ONLY cannot be repeated without preceding with the Configure Only option.

CONFIGURE_ONLY is necessary to initiate a measurement task each time.

2. Limitations of Drivers and Hardware are applicable for Libraries. A Task can control multiple lines

from different DAQ modules, but multiple tasks cannot be initiated for a single DAQ Module.

3. Timed digital input/output restrictions:

a) You cannot use parallel and serial modules together on the same hardware timed task,

unless they are in separate DAQ chassis using multi-chassis device tasks.

b) You cannot use serial modules for triggering.

c) You cannot do both static and timed tasks at the same time on a single serial module.

d) You can only do hardware timing in one direction at a time on a serial module.

5.5 Libraries
Default Values

For ease of use, inputs parameters for the library are set to default values and are configurable by

the user:

- All functions are set to measure or generate over a 0.1s finite timing

- Maximum sampling rate and timings are optimized for resolution, configurable for each

function

- All analog inputs range are defined to +-10V

- All Terminal Configuration Modes are set to RSE (Referenced Single Ended), can be set

individually (each analog input line) to other Terminal Configuration Modes.

- Sample timing engine set to AUTO

- All Triggers Controls are set to Trigger Type: No trigger, Digital Source: Empty, Digital Start

trigger Edge: Rising

- Execution option set to Configure & Measure by default.

- Skip Analysis will be disabled by default.

Python PCB Assembly Test Toolkit - User Manual

 Page 13 of 72
© National Instruments Corporation

5.5.1 Power Supply Source and Measure

Overview

Use the PowerSupplySourceAndMeasure class methods to initialize, configure, source, measure and

close on user configurable power supply pins. Applicable for TestScale hardware.

Validated Hardware

• TS-15200

Instructions

1. Create an instance of the PowerSupplySourceAndMeasure() class using the library.

2. Initialize the DAQmx task by calling the initialize (self, power_channel_name: str) method on

the class instance.

3. Configure settings by calling the configure_and_measure(self, configuration:

PowerSupplySourceAndMeasureConfiguration) method with the following parameters:

a. Configure the measurement_options (MeasurementOptions) property:

• Set execution_option (MeasurementExecutionType) to specify the mode of

execution: Configure & Measure, Configure only, or Measure only.

• Set Measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis.

Note: “Measure Only” cannot be performed without preceding with “Configure Only”.

b. Configure terminal_parameters (PowerSupplySourceAndMeasureTerminalParameters):

• Set parameters to configure the terminal parameters such as voltage setpoint, current

setpoint, power sense mode, idle output behaviour of the channel.

c. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

• Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting

to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Note: Maximum sampling rate for TS-15200 is 10 kS/s. Setting values more than that will

generate and error.

d. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

• Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling.

e. The Output data includes (PowerSupplySourceAndMeasureResultData):

• Voltage and Current Waveforms - Displays the captured voltage and current

waveform during sourcing power supply

Python PCB Assembly Test Toolkit - User Manual

 Page 14 of 72
© National Instruments Corporation

• Power Measurements - Provides the derived post-analysed data from the captured

waveforms.

• Acquisition Time – Calculated acquisition time for the measurement.

4. Finally close the power supply measurement task using the close(self) method

Notes:

o For fast measurements, set the maximum sample rate possible for the given "Sample

Clock Source" input and assign a smaller "Number of Samples" to capture. The

minimum sample size is 2.

o For better accuracy, configure the instrument to read more samples, e.g., 1000

samples.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 15 of 72
© National Instruments Corporation

5.5.2 DC-RMS Voltage Measurement

Overview

Use the DcRmsVoltageMeasurement class methods to initialize, configure, measure, and close on

user-configurable analog input pins. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15100

• NI-9205, NI 9215

• PCIe-6323

Note: This method is compatible with other similar DAQmx supported hardware having basic analog

input resources.

Instructions

1. Create an instance of the DcRmsVoltageMeasurement() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_input_channel_expression: str)

method on the class instance.

3. Configure settings by calling the configure_and_measure(self, configuration:

DcRmsVoltageMeasurementConfiguration) method with the following parameters:

a. Configure the measurement_options (MeasurementOptions) property:

• Set execution_option (MeasurementExecutionType) to specify the mode of
execution: Configure & Measure, Configure only, or Measure only.

• Set Measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis.

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

b. Configure global_channel_parameters (VoltageRangeAndTerminalParameters):

• Set parameters to configure the range and terminal settings for all analog input

voltage channels, excluding channels specified in the specific channel settings.

c. Configure specific_channels_parameters

(list[VoltageMeasurementChannelAndTerminalRangeParameters]):

• Set parameters for specific channels to a particular limit. If Global Virtual Channel

name is provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

provide the Physical Channel name in Specific Channel Parameters. If no channels are

specified, global settings are applied.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

Python PCB Assembly Test Toolkit - User Manual

 Page 16 of 72
© National Instruments Corporation

• Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting

to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Notes:

o The maximum aggregate sampling rate for TS-15100 / NI-9205 / PCIe-6323 is 250 kS/s

values exceeding this limit will generate an error.

o PCIe supports only the Auto Mode of the Timing Engine.

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

• Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling.

f. The output data includes (DcRmsVoltageMeasurementResultData):

• Provide DC-RMS Voltage Measurements derived from post-analysis.

• Provide Average DC Voltage calculated from post-analysis.

4. Finally close the DAQmx task using close(self) method.

Notes:

o For fast measurements, set the maximum sample rate possible for the given "Sample

Clock Source" input and assign a smaller "Number of Samples" to capture. The minimum

sample size is 2.

o For better accuracy, configure the instrument to read more samples, e.g., 1000 samples.

Block Diagram

5.5.3 DC Voltage Generation

Python PCB Assembly Test Toolkit - User Manual

 Page 17 of 72
© National Instruments Corporation

Overview

Use the DcVoltageGeneration class methods to initialize, configure, generate, and close on user-

configurable analog input pins. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15110

• NI-9263

• PCIe-6323

Instructions

1. Create an instance of the DcVoltageGeneration() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_output_channel_expression: str)

3. Configure settings by calling the configure_and_generate(self, configuration:

DcVoltageGenerationConfiguration) method with the following parameters:

a. Configure voltage_generation_range_parameters() property:

• Set the range_min_volts to declare the minimum possible value of the generated

voltage.

• Set the range_max_volts to declare the maximum possible value of the generated

voltage.

b. Configure the output_voltages to set the voltage that must be generated.

4. Finally close the DAQmx task using close(self) method.

Note: Upon completion of the task, it is crucial to set the output voltages of the power supply to

zero. Failure to do so may result in the device continuing to generate the last specified voltage. To

ensure that the output voltage is correctly reset set output_voltages to zero and run the Program.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 18 of 72
© National Instruments Corporation

5.5.4 DC-RMS Current Measurement

Overview

Use the DcRmsCurrentMeasurement class methods to initialize, configure, measure, and close on

user-configurable analog input pins. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15100

• NI-9205, NI 9215

• PCIe-6323

Instructions

1. Create an instance of the DcRmsCurrentMeasurement() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_input_channel_expression: str,

use_specific_channel: bool) method on the class instance.

Note: If Global channel(s) is/are used, it should be declared as “Current”.

3. Configure settings by calling the configure_and_measure(self, configuration:

DcRmsCurrentMeasurementConfiguration) method with the following parameters:

a. Configure the measurement_options (MeasurementOptions) property:

• Set execution_option (MeasurementExecutionType) to specify the mode of execution:

Configure & Measure, Configure only, or Measure only.

• Set measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis.

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

b. Configure global_channel_parameters (VoltageRangeAndTerminalParameters):

• Configure the required analog input channel settings. The channel settings include Max

and Min Current range, Terminal configuration and Shunt resistor value.

c. Configure specific_channels_parameters:

• Set parameters for specific channels to a particular limit. If Global Virtual Channel name

is provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

provide the Physical Channel name in Specific Channel Parameters.

Note: “use_specific_channel " in initialize() has to be declared as True for using Specific

channel settings. For more information refer to the known issues section.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

• Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting to

automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Notes:

Python PCB Assembly Test Toolkit - User Manual

 Page 19 of 72
© National Instruments Corporation

o The maximum aggregate sampling rate for TS-15100 / NI-9205 / PCIe-6323 is 250 kS/s.

Values exceeding this limit will generate an error.

o PCIe supports only the Auto Mode of the Timing Engine.

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

• Set triggers to start measurement on various trigger events. Configure either no trigger or

a digital trigger. If using a digital trigger, provide a suitable digital start trigger source. Set

the digital start trigger edge as Rising or Falling.

f. The Output data includes

• Current Waveforms - Displays the captured DC current waveforms.

• DC-RMS Current Measurements - Provides the derived post-analyzed data from the

captured DC waveforms.

4. Finally close the DAQmx task using close(self) method.

Notes:

o For fast measurements, set the maximum sample rate possible for the given "Sample Clock

Source" input and assign a smaller "Number of Samples" to capture. The minimum sample

size is 2.

o For better resolution, configure the instrument to read more samples e.g., 1000 samples.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 20 of 72
© National Instruments Corporation

5.5.5 Time Domain Measurement

Overview

Use the TimeDomainMeasurement class methods to initialize, configure, measure and close on user

configurable Analog input pins and derive time domain measurements for the measured waveforms.

Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15100

• NI-9205, NI 9215

• PCIe-6323

Instructions

1. Create an instance of the TimeDomainMeasurement() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_input_channel_expression: str)
method on the class instance.

3. Configure settings by calling the configure_and_measure(self, configuration:

TimeDomainMeasurementConfiguration) method with the following parameters:

a. Configure the measurement_options (MeasurementOptions) property:

• Set execution_option (MeasurementExecutionType) to specify the mode of

execution: Configure & Measure, Configure only, or Measure only.

• Set Measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis.

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

b. Configure global_channel_parameters (VoltageRangeAndTerminalParameters):

• Set parameters to configure the range and terminal settings for all analog input

voltage channels, excluding channels specified in the specific channel settings.

c. Configure specific_channels_parameters

(list[VoltageMeasurementChannelAndTerminalRangeParameters]):

• Set parameters for specific channels to a particular limit. If Global Virtual Channel

name is provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

provide the Physical Channel name in Specific Channel Parameters. If no channels

are specified, global settings are applied.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

• Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting

to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Python PCB Assembly Test Toolkit - User Manual

 Page 21 of 72
© National Instruments Corporation

Notes:

o The maximum aggregate sampling rate for TS-15100 / NI-9205 / PCIe-6323 is 250 kS/s

values exceeding this limit will generate an error.

o PCIe supports only the Auto Mode of the Timing Engine.

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

• Set triggers to start measurement on various trigger events. Configure either no trigger

or a digital trigger. If using a digital trigger, provide a suitable digital start trigger source.

Set the digital start trigger edge as Rising or Falling.

f. The output data includes (TimeDomainMeasurementResultData):

• Mean Dc Voltage Values derived from post-analysis.

• Peak-to-peak amplitude voltage calculated from post-analysis.

• Voltage waveforms frequencies calculated from post-analysis.

• Voltage waveform duty cycle calculated from post-analysis.

4. Finally close the DAQmx task using close(self) method.

Notes:

o For fast measurements, set the maximum sample rate possible for the given "Sample Clock

Source" input and assign a smaller "Number of Samples" to capture. The minimum sample

size is 2.

o For better accuracy, configure the instrument to read more samples, e.g., 1000 samples.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 22 of 72
© National Instruments Corporation

5.5.6 Frequency Domain Measurement

Overview

Use the FrequencyDomainMeasurement class methods to initialize, configure, measure and close on

user configurable Analog input pins and derive frequency domain measurements for the measured

waveforms. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15100

• NI-9205, NI 9215

• PCIe-6323

Instructions

1. Create an instance of the FrequencyDomainMeasurement() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_input_channel_expression: str)

method on the class instance.

3. Configure settings by calling the configure_and_measure(self, configuration:

FrequencyDomainMeasurementConfiguration)

a. Configure the measurement_options (MeasurementOptions) property: 

• Set execution_option (MeasurementExecutionType) to specify the mode of

execution: Configure & Measure, Configure only, or Measure only. 

• Set Measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis. 

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

b. Configure global_channel_parameters (VoltageRangeAndTerminalParameters): 

• Set parameters to configure the range and terminal settings for all analog input

voltage channels, excluding channels specified in the specific channel settings. 

c. Configure specific_channels_parameters

(list[VoltageMeasurementChannelAndTerminalRangeParameters]): 

• Set parameters for specific channels to a particular limit. If Global Virtual Channel

name is provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

provide the Physical Channel name in Specific Channel Parameters. If no channels are

specified, global settings are applied.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters): 

• Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting

to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Python PCB Assembly Test Toolkit - User Manual

 Page 23 of 72
© National Instruments Corporation

Notes: 

o The maximum aggregate sampling rate for TS-15100 / NI-9205 / PCIe-6323 is 250

kS/s values exceeding this limit will generate an error.

o PCIe supports only the Auto Mode of the Timing Engine.

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters): 

• Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling. 

f. The output data includes (FrequencyDomainMeasurementResultData): 

• Voltage Waveforms - Displays the captured voltage waveforms. 

• Frequency Domain Measurements - Provides the derived post-analysed data from

the captured Frequency domain waveforms.

4. Finally close the DAQmx task using close(self) method.

Notes:

o For fast measurements, set the maximum sample rate possible for the given "Sample Clock

Source" input and assign a smaller "Number of Samples" to capture. The minimum sample

size is 2. 

o For better accuracy, configure the instrument to read more samples, e.g., 1000 samples. 

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 24 of 72
© National Instruments Corporation

5.5.7 Signal Voltage Generation

Overview

SignalVoltageGeneration class provides options to generate different waveform voltage signals

tones (single/multi) over a given generation time(s) on analog output terminals of DAQmx.

Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15110

• NI-9263

• PCIe-6323

Instructions

1. Create an instance of the class SignalVoltageGeneration() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, analog_output_channel_expression: str)

3. Configure settings by calling the configure_and_generate_sine_waveform() for generating sine

wave or configure_and_generate_square_waveform() for generating square wave or

configure_and_generate_multiple_tones_waveform() for generating sine wave with multiple

tones method with the following parameters: 

a. Configure voltage_generation_range_parameters property:

• Set the range_min_volts to declare the minimum possible value of generated voltage.

• Set the range_max_volts to declare the maximum possible value of generated voltage.
b. Configure the timing_parameters property:

• Set the sample_clock_source parameter to give the source of the sample clock.

• Adjust the sampling_rate_hertz parameter to configure the sampling rate.

• Adjust the generated_signal_duration_seconds parameter to configure the time for

which the signal must be generated.

Note: The maximum aggregate sampling rate for TS-15100 / NI-9205 / PCIe-6323 is 250 kS/s

values exceeding this limit will generate an error.

c. Configure the digital_start_trigger_parameters property:

• Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling.

d. For configure_and_generate_sine_waveform():

• Set the generated_signal_tone_parameters which includes the frequency of the

generated waveform, amplitude of the generated waveform and the phase of the

generated waveform.

• Set the waveform_parameters which includes the offset voltage for the generated

waveform.

e. For configure_and_generate_square_waveform():

Python PCB Assembly Test Toolkit - User Manual

 Page 25 of 72
© National Instruments Corporation

• Set the waveform_parameters which includes the amplitude, duty cycle, frequency,

phase and the voltage offset of the generated waveform.

f. For configure_and_generate_multiple_tones_waveform():

• Use multiple_tones_parameters(ToneParameters) to set the required waveform

parameters.

4. Finally close the DAQmx task using close(self) method.

Notes:

o It is recommended to select the generation time (s) as an integral multiple of the time-period

(1/Frequency (Hz)) such that complete cycles of each tone are generated.

o For Multitone Generation, it is required that the generation time (s) is an integral multiple of

the time-period (1/Frequency (Hz)) of all the tones.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 26 of 72
© National Instruments Corporation

5.5.8 Static Digital State Measurement

Overview

Use the StaticDigitalStateMeasurement class methods to initialize, configure, measure and close on

user configurable Digital input pins. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15120

• NI-9403

• PCIe-6323

Instructions

1. Create an instance of the StaticDigitalStateMeasurement() class using the library.

2. Initialize the DAQmx task by calling the initialize(self, channel_expression: str).

3. The output data includes (StaticDigitalStateMeasurementResultData)

a. Channel Line Identifiers – returns the digital channels lines in the task.

b. Line States – outputs the acquired states of digital lines configured in the DAQmx Task. Each

element in this array maps linearly to a line in the task which is returned in Channel line

identifier array.

4. Finally close the DAQmx task using close(self) method.

Note:

o Digital port is not supported in this Static Digital State Measurement Library, and it returns

an error. Users can either use Dynamic Digital Pattern Measurement Library to support

port-based inputs or specify the ports in line-based format (Ex: DIO/port0/line0:31) with this

current library.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 27 of 72
© National Instruments Corporation

5.5.9 Static Digital State Generation

Overview

Use the StaticDigitalStateGeneration class methods to initialize, configure, generate, and close on

user configurable Digital output pins. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15120

• NI-9403, NI-9477

• PCIe-6323

Instructions

1. Create an instance of the class StaticDigitalStateGeneration() class using the library.

2. Initialize the DAQmx task by calling initialize(self, channel_expression: str).

3. Configure settings by calling the configure_and_generate(self, configuration:

StaticDigitalStateGenerationConfiguration) method with the following parameters:

a. Configure the StaticDigitalStateGenerationConfiguration() to set the data to write. This

represents the digital data to be output. Each element in the list corresponds to a line. The

number of elements in the line must match the number of lines configured to write data.

4. Finally close the DAQmx task using close(self) method.

Note:

o Digital port is not supported in this Static Digital State Generation Library, and it returns an

error. Users can either use Dynamic Digital Pattern Measurement Library to support port-

based inputs or specify the ports in line-based format (Ex: DIO/port0/line0:31) with this

current library.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 28 of 72
© National Instruments Corporation

5.5.10 Dynamic Digital Pattern Measurement

Overview

DynamicDigitalPatternMeasurement class provides options to measure digital patterns through the

specified lines of DAQmx. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050, TS-15120

• NI-9403

• PCIe-6323

Instructions

1. Initialize the DAQmx task by calling initialize(self, channel_expression: str)

2. Configure measurement settings by calling the configure_and_measure(self, configuration:

DynamicDigitalPatternMeasurementConfiguration)

3. Configure the DynamicDigitalPatternMeasurementConfiguration to set the configurations

for pattern measurements.

a. Configure the measurement_options (MeasurementOptions) property:

• Set execution_option (MeasurementExecutionType) to specify the mode of

execution: Configure & Measure, Configure only, or Measure only.

• Set Measurement_analysis_requirement to determine whether post-analysis of the

measured data is required. Select SKIP_ANALYSIS to skip analysis or

PROCEED_TO_ANALYSIS to perform analysis.

b. Configure timing_parameters to set sample clock source, sample rate, number of

samples per channel and active edge.

Note: Maximum sampling rate for TS-15120 is 142 kS/s. Setting values more than that will

generate an error.

c. Configure trigger_parameters to set the trigger type, digital start trigger source and

edge.

d. The Output data includes,

• Measured Digital Pattern - Displays the captured digital voltage waveforms.

• Port Digital Data - Provides the derived post-analyzed port digital data in U32 format

from the captured digital patterns.

4. Finally close the DAQmx task using close(self) method.

Python PCB Assembly Test Toolkit - User Manual

 Page 29 of 72
© National Instruments Corporation

Notes:

o Dynamic Digital Pattern Measurement Library supports both Port and Digital lines from a

single module to measure dynamic digital patterns. But multi-module support is not

applicable on this library and throws errors.

o For Fast measurements, set maximum sample rate possible for the given "Sample Clock

Source" input and assign smaller "Number of Samples" to capture. Min sample size is 2.

o For better resolution, configure the instrument to read more samples e.g., 1000 samples.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 30 of 72
© National Instruments Corporation

5.5.11 Dynamic Digital Pattern Generation

Overview

DynamicDigitalPatternGeneration class provides options to generate digital patterns, an array of

digital samples in the specified IO lines of DAQmx. Applicable for PC based DAQ, TestScale and cDAQ

hardware.

Validated Hardware

• TS-15050, TS-15120

• NI-9403

• PCIe-6323

Instructions

1. Create an instance of the DynamicDigitalPatternGeneration() class using the library.

2. Initialize the DAQmx task by calling initialize(self, channel_expression: str)

3. Configure settings by calling the configure_and_generate(self, configuration:

DynamicDigitalPatternGenerationConfiguration, pulse_signal: np.ndarray)

4. Configure the DynamicDigitalPatternGenerationConfiguration to set the configurations for

pattern generation.

a. Configure timing_parameters to set sample clock source, sample rate, number of

samples per channel and active edge.

 Generation time = Number of Samples/Sample rate

Note: Maximum sampling rate for TS-15120 is 142 kS/s. Setting values more than that will

generate an error.

b. Configure trigger_parameters to set the trigger type, digital start trigger source and

edge.

5. Configure pulse_signal to set the digital pattern to be written.

 Note: DAQmx APIs doesn’t evaluate the size of the port but internally ignores the other bits.

6. The Output data includes,

a. Generation Time: Total generation time in seconds.

7. Finally close the DAQmx task using close(self) method.

Python PCB Assembly Test Toolkit - User Manual

 Page 31 of 72
© National Instruments Corporation

Notes:

o Dynamic Digital Pattern Generation Library supports both Port and Digital lines from a

single module to generate dynamic digital patterns. But Multi-module support is not

applicable on this library and throws errors.

o Triggers are not supported for serial modules (TS-15120 & TS-15130). Refer Timed digital

input/output restrictions to know all the limitations to be considered while performing

hardware timed digital tasks.

Block Diagram

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxdevconsid/digiocseries.html#fnsrc_1
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxdevconsid/digiocseries.html#fnsrc_1

Python PCB Assembly Test Toolkit - User Manual

 Page 32 of 72
© National Instruments Corporation

5.5.12 Digital Clock Generation

Overview

Use the DigitalClockGeneration() class methods to initialize, configure, Generate and close on user

configurable terminals using counters. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050

• NI-9402

• PCIe-6323

Instructions

1. Create an instance of the class DigitalClockGeneration() class using the library.

2. Initialize the DAQmx task by calling initialize(self, channel_expression: str,

output_terminal_name: str)

Notes:

o Only one counter can be used for a task.

o Provide the Output Terminal on which the signal is to be generated. Refer below on the

default terminals of each counter. Users can configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

3. Configure settings by calling configure_and_generate(self, configuration:

DigitalClockGenerationConfiguration) method with the following parameters:

a. Configure the channel_parameters to set the frequency and duty cycle.

b. Configure the clock_timing_parameters to set the clock_duration_seconds which is the

generation time of the clock.

c. The output data DigitalClockGenerationData() includes:

• Actual Timebase

• Actual Clock Frequency

• Actual Clock Duty Cycle

• Actual Clock Duration Seconds

4. Finally close the DAQmx task using close(self) method.

Python PCB Assembly Test Toolkit - User Manual

 Page 33 of 72
© National Instruments Corporation

Notes:

o Multiple counters cannot be initialized in the same task, Use a separate task for each

counter.

o Frequency Generator(FreqOut) is not supported as Generation Time and Duty Cycle

cannot be controlled. Refer here for more details.

o It is recommended to set the generation time (s) as an integral multiple of the time

period (1/Frequency (Hz)) such that complete cycles are generated.

Block Diagram

https://www.ni.com/docs/en-US/bundle/testscale-feature/page/using-frequency-generator.html

Python PCB Assembly Test Toolkit - User Manual

 Page 34 of 72
© National Instruments Corporation

5.5.13 Digital Pulse Generation

Overview

Use the DigitalPulseGeneration class methods to initialize, configure, generate and close on user

configurable terminals using counters. Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050

• NI-9402

• PCIe-6323

Instructions

1. Create an instance of the class DigitalPulseGeneration() class using the library.

2. Initialize the DAQmx task by calling initialize(self, channel_expression: str,

output_terminal_name: str)

Notes:

o Only one counter can be used for a task.

o Provide the Output Terminal on which the signal is to be generated. Refer below on the

default terminals of each counter. Users can configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

3. Configure settings by calling the configure_and_generate(self, configuration:

DigitalPulseGenerationConfiguration) method with the following parameters:

a. Configure the channel_parameters to set the low time, high time and the idle state of

the pulse.

b. Configure the pulse_timing_parameter to set the pulse count that gives the number of

pulses that has to be generated.

c. The output data includes (DigitalPulseGenerationData)

• Actual high time

• Low time

• Generation time of generated digital signal from instrument.

4. Finally close the DAQmx task using close(self) method.

Python PCB Assembly Test Toolkit - User Manual

 Page 35 of 72
© National Instruments Corporation

Notes:

o Multiple counters cannot be initialized in the same task, Use a separate task for each

counter.

o Supported frequency range to generate clock depends on the available Counter

Timebase. The available timebases for TestScale are 80 MHz, 20 MHz, and 100 kHz. For

PCIe, the time-bases are 100 MHz, 20 MHz, and 100 kHz. For cDAQ, the time-bases are

80 MHz, 20 MHz, and 100 kHz and it is selected based on the input configurations to

generate pulse of required frequency.

o Users can choose “Digital Pulse Generation” or “Digital Clock Generation” library based

on the input options to match the requirement.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 36 of 72
© National Instruments Corporation

5.5.14 Digital Frequency Measurement

Overview

Use the DigitalFrequencyMeasurement class methods to initialize, configure, measure and close on

user configurable PFI line using the selected counter for digital frequency measurement. Applicable

for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050

• NI-9402

• PCIe-6323

Instructions

1. Create an instance of the class DigitalFrequencyMeasurement() class using the library.

2. Initialize the DAQmx task by calling initialize(self,channel_expression:

str,input_terminal_name: str)

Notes:

o Only one counter can be used for a task.

o Counter 0 is always paired with Counter 1. Counter 2 is always paired with Counter 3 for

the measurement method used here (Large Range (2 Counters)). Paired counters cannot

be used in different tasks.

o Provide input Terminal on which the signal to be measured. Refer below on the default

terminals of each counters. User can configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

3. Configure settings by calling the configure_and_measure(self, configuration:

DigitalFrequencyMeasurementConfiguration) method with the following parameters:

a. Configure the range_parameters to set the minimum and maximum frequency that can be

read.

b. Configure the counter_channel_configuration_parameters to set the range parameter,

input divisor for frequency measurement and measurement duration.

c. The output data includes:

• Detected frequency

Note: Keep in mind that for very low frequencies, actual time taken for the measurement

will be N times of a single input cycle.

4. Finally close the DAQmx task using close(self) method.

https://www.ni.com/docs/en-US/bundle/testscale-feature/page/large-range-frequencies-two-counters.html

Python PCB Assembly Test Toolkit - User Manual

 Page 37 of 72
© National Instruments Corporation

Notes:

o There cannot be multiple counters in the same task for input operations. Use a separate

task for each counter.

o Large Range (2 counter) measurement method will be used for this measurement. Uses

one counter to divide the frequency of the input signal by Divisor, creating a lower-

frequency signal, more easily measured by the second counter.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 38 of 72
© National Instruments Corporation

5.5.15 Digital PWM Measurement

Overview

Use the DigitalPwmMeasurement class methods to initialize, configure, measure and close on user

configurable PFI line using the selected counter for digital PWM measurement. Applicable for PC

based DAQ, TestScale and cDAQ hardware.

Validated Hardware 

• TS-15050 

• NI-9402

• PCIe-6323 

Instructions

1. Create an instance of the class DigitalPwmMeasurement() class using the library.

2. Initialize the DAQmx task by calling initialize(self, channel_expression: str,

input_terminal_name: str)

Notes:

o Only one counter can be used for a task.

o Global Channel (Counter) input terminal supports only Semi-Period Counter Input global

channels from NI MAX. The example returns error for other invalid global channels.

o Provide Input Terminal on which the signal to be measured. Refer below on the default

terminals of each counter. Users can configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

3. Configure settings by calling the configure_and_measure(self, configuration:

DigitalPwmMeasurementConfiguration) method with the following parameters:

a. Configure the range_parameters to set the semi_period_maximum_value_seconds and

semi_period_minimum_value_seconds. User can determine the Timebase clocks assigned to the

counter by updating the Minimum and Maximum Semi-Period(s) values. For more details on

TestScale Counter Timebase, visit TestScale clock routing, for more information on PCIe Counter

Timebase, visit X Series User Manual - National Instruments (ni.com), for more information on

cDAQ-9189 Timebase, visit cDAQ-9185/9189 User Manual - NI.

Notes:

o Initially the counters are reserved with default timebase (For TestScale, the default

timebase is 80MHz, for PCIe the default timebase is 100MHz, for cDAQ the default

timebase is 80MHz). TestScale, PCIe and cDAQ support three Timebase clocks. The below

https://www.ni.com/docs/en-US/bundle/testscale-feature/page/clock-routing.html
https://docs-be.ni.com/bundle/pcie-pxie-usb-63xx-features/raw/resource/enus/370784k.pdf#page=188&zoom=100,100,350
https://www.ni.com/docs/en-US/bundle/cdaq-9185-9189-features/resource/376610b.pdf

Python PCB Assembly Test Toolkit - User Manual

 Page 39 of 72
© National Instruments Corporation

table shows the relation between different Timebase and PWM Semi-period duration in

TestScale, PCIe and cDAQ.

 Relation between Timebase and semi-period duration

Devices Default Timebase Minimum Semi-Period Maximum Semi-Period

TestScale 80 MHz 25 ns 53.687091 s

PCIe-6323 100MHz 20 ns 42.949672 s

cDAQ-9189 80MHz 25 ns 53.687091 s

Note: “Semi-period” denotes the time between either a rising and falling edge, or a falling and rising

edge in a PWM signal.

b. Configure the timing_parameters to set the

semi_period_counter_wanted_cycles_count.

Note: The Default timeout is set to 10 seconds. If the time elapses before the requested

cycles are captured, the program will return error.

c. Configure the counter_channel_parameters to set the

semi_period_counter_starting_edge.

d. Configure the dpwmm_confguration to set the measurement_options to specify the

mode of execution: Configure & Measure, Configure only, or Measure only.

Notes:

o “Measure only” cannot be performed without preceding with “Configure Only”.

o Execution options can be used to capture the entire signal by setting the channel to wait

for the first rising edge using Configure Only mode before the generation of input signal.

After capturing the cycles, Measure Only mode can be used to read the measured data.

e. The output of DigitalPwmMeasurementResultData returns

• Detected High Time(s)

• Low Time(s)

• Duty Cycle (%)

• Frequency (Hz)

on the terminal. These measurements are averaged results from the captured PWM

cycles. Additionally, output returns the actual no of cycles captured during the

measurement.

4. Finally close the DAQmx task using close(self) method.

Python PCB Assembly Test Toolkit - User Manual

 Page 40 of 72
© National Instruments Corporation

Notes:

o Multiple counters cannot be initialized in the same task, Use a separate task for each

counter.

o NI recommends using Digital Frequency Measurement Library for more accurate PWM

Frequency measurements.

o Low time for a single pulse cannot be determined as it does not have a clear ending. So,

Minimum cycles required for PWM Measurement is 2.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 41 of 72
© National Instruments Corporation

5.5.16 Digital Edge Count Measurement Using Hardware Timer

Overview

Use the DigitalEdgeCountMeasurementUsingHardwareTimer class methods to initialize, configure,

measure and close on user configurable PFI line using the selected counter for Edge Counting.

Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050

• NI-9402

• PCIe-6323

Instructions
1. Create an instance of the DigitalEdgeCountMeasurementUsingHardwareTimer() class using

the library.

2. Initialize the DAQmx task by calling the initialize(self, measurement_channel_expression:

str, measurement_input_terminal_name: str, timer_channel_expression: str) method on

the class instance.

• Two tasks are used for Count Digital Events library. Counter task is used for edge

counting and Timer task is used to control measurement time precisely, used only for

hardware timed wait type.

• For Counter task, provide a counter resource and Input terminal to listen for digital

events / edges. Refer below on the default terminals of each counter. Users can

configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

• For Timer task, provide a counter resource to generate the measurement window

for hardware timed wait type. No external physical connections are required.

Generated pulse will be internally used by Counter task.

• Get both Counter and Timer tasks from DAQmx Tasks.

3. Configure settings by calling the configure_and_measure(self, configuration:

DigitalEdgeCountHardwareTimerConfiguration) method with the following parameters:

a. Configure the decm_confguration to set the measurement_options to specify the mode

of execution: Configure & Measure, Configure only, or Measure only.

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

b. Configure the counter_channel_parameters to set the edge_type. User can set the edge

type either to RISING or to FALLING.

c. Configure the timing_parameters to set the edge_counting_duration which is the time

for which the library will be counting the edges.

Python PCB Assembly Test Toolkit - User Manual

 Page 42 of 72
© National Instruments Corporation

d. Configure the trigger_parameters to set triggers to start measurement on various trigger

events. Configure either no trigger or a digital trigger. If using a digital trigger, provide a

suitable digital start trigger source. Set the digital start trigger edge as Rising or Falling.

e. The Output data (DigitalEdgeCountMeasurementResultData) returns the number of

edge counts at the end of measurement duration.

Note: Refer next section for more details on the configurations.

4. Finally close the DAQmx task using close(self) method.

Notes:

o Measure Only call for software timed wait type will not wait for the specified duration.

Instead, it will return the current counter value immediately.

Hardware Timed Digital Edge Counting

Timer Task is used to control the count measurement time precisely by generating a single pulse of

specified duration which is used to start/stop the counting process. This is very useful in the case of

high frequency inputs where we need the precise measurement time for edge counting.

Without Trigger

Below timing diagram explains the hardware timed digital edge counting. Here, “Counter – Timer” is

used to control the measurement time by generating the pulse signal of “Duration” specified by the

user. “Counter – Edge Counting” is used to count the edges in the input signal.

Configure and Measure call starts the edge counting, wait for the given duration to complete

(counting happens until the timer pulse signal goes low) and measures the counter value at the end.

Python PCB Assembly Test Toolkit - User Manual

 Page 43 of 72
© National Instruments Corporation

With Trigger

Below timing diagram explains the hardware timed digital edge counting in triggered scenario. Here,

the start of the timer (pulse signal generation) is controlled by the user using “Digital Start Trigger

Source”.

Configure Only call configures the trigger, starts the task and waits for the trigger to start the timer

and edge counting. User can now send the trigger and perform any other actions.

Measure Only call waits for the measurement duration to complete and reads the counter value.

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 44 of 72
© National Instruments Corporation

5.5.17 Digital Edge Count Measurement Using Software Timer

Overview

Use the DigitalEdgeCountMeasurementUsingSoftwareTimer class methods to initialize, configure,

measure and close on user configurable PFI line using the selected counter for Edge Counting.

Applicable for PC based DAQ, TestScale and cDAQ hardware.

Validated Hardware

• TS-15050

• NI-9402

• PCIe-6323

Instructions
1. Create an instance of the DigitalEdgeCountMeasurementUsingSoftwareTimer() class using

the library.

2. Initialize the DAQmx task by calling the initialize (self, measurement_channel_expression:

str, measurement_input_terminal_name: str) method on the class instance.

• For Counter task, provide a counter resource and Input terminal to listen for digital

events / edges. Refer below on the default terminals of each counter. Users can

configure different PFI lines as well.

Counter Selected Ctr0 Ctr1 Ctr2 Ctr3

Default Terminal for TestScale PFI3 PFI7 PFI1 PFI5

Default Terminal for cDAQ PFI3 PFI7 PFI1 PFI5

Default Terminal for PCIe PFI12 PFI13 PFI14 PFI15

• Get both Counter and Timer tasks from DAQmx Tasks.

3. Configure settings by calling the configure_and_measure(self, configuration:

DigitalEdgeCountSoftwareTimerConfiguration) method with the following parameters:

• Configure the decm_confguration to set the measurement_options to specify the mode

of execution: Configure & Measure, Configure only, or Measure only.

Note: “Measure only” cannot be performed without preceding with “Configure Only”.

o Configure the counter_channel_parameters to set the edge_type. User can set the

edge type either to RISING or to FALLING.

o Configure the timing_parameters to set the edge_counting_duration which is the

time for which the library will be counting the edges.

o Configure the trigger_parameters to set triggers to start measurement on various

trigger events. Configure no trigger for Software Timer.

o The Output data(DigitalEdgeCountMeasurementResultData) returns the number of

edge counts at the end of measurement duration.

Python PCB Assembly Test Toolkit - User Manual

 Page 45 of 72
© National Instruments Corporation

Note: Refer next section for more details on the configurations.

5. Finally close the DAQmx task using close(self) method.

Note:

o Measure Only call for software timed wait type will not wait for the specified duration.

Instead, it will return the current counter value immediately.

Software Timed Digital Edge Counting

In this method, Counting starts as soon as the task is started. There should be a software wait for the

“Duration” before reading the counter value. This can be done internally or externally which are

explained below.

Internal Wait

Below timing diagram explains the software timed digital edge counting where software wait is

internally added by the methods.

Configure and Measure call starts the edge counting, waits for given duration (software wait) and

measures the counter value at the end. Here the delays produced by the software can affect the

counting process and count might not be precise.

This is very useful in the case of low frequency inputs where we don’t need the precise measurement

time for edge counting and save the extra counter resources by skipping the “Counter-Timer” input

required for hardware timed execution.

External Wait

Below timing diagram explains the software timed digital edge counting where software wait is

externally added by the user. Methods does not wait during measurement.

Configure Only call starts edge counting. User can wait for the required time in the test layer (or

perform any other actions) and call the Measure Only to read count.

Measure Only call reads the current counter value and return the output.

Python PCB Assembly Test Toolkit - User Manual

 Page 46 of 72
© National Instruments Corporation

This is much useful in the case of low frequency inputs where the measurement time is higher.

User can start the task, perform any other tasks and come back to measure later (wait and

measure can also be done in separate thread).

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 47 of 72
© National Instruments Corporation

5.5.18 Communication

Overview

Communication Library can be used to perform data read and write operations through I2C, SPI and

Serial Comm Port. This library is applicable for NI Hardware’s like USB-8452 and USB-232.

Hardware Requirements

• USB-8452

• USB-232

Software Requirements

• NI 845x Driver 2022 or later

• NI Serial Driver 2023 or later

• NI VISA Driver 2023 or later

Instructions

1. Classes ni_845x_i2c_communication_devices and ni_845x_spi_communication_devices in

the communication library can be used for Read/Write operations through I2C, SPI and Serial

Comm Port.

2. Use “I2cReadCommunication()” and “I2cWriteCommunication()” class methods for simple

read and write data operations through I2C protocol communication using NI 845x Device.

a. Initialize the i2c communication library by creating the instances of

I2cReadCommunication() and I2cWriteCommunication()” and using initialize()

method on the objects.

b. Configure the setting to read data by calling the configure_and_read_data(self,

configuration: I2cReadCommunicationConfiguration) method with

device_parameters, communication_parameters and read_parameters.

c. Configure settings to write data by calling the configure_and_write_data(self,

configuration: I2cWriteCommunicationConfiguration) method with

device_parameters, communication_parameters and write_parameters.

d. Use the close() method to close all tasks and release allocated resources.

3. Use “SpiReadCommunication()” and “SpiWriteCommunication()” class methods for simple

read and write data operations through I2C protocol communication using NI 845x Device.

a. Initialize the i2c communication library by creating the instances of

SpiReadCommunication() and SpiWriteCommunication() and using initialize()

method on the objects.

b. Configure settings by calling the configure_and_read_data(self, configuration:

SpiReadCommunicationConfiguration,) method with device_parameters,

communication_parameters and read_parameters.

Python PCB Assembly Test Toolkit - User Manual

 Page 48 of 72
© National Instruments Corporation

c. Configure settings by calling the configure_and_write_data(self, configuration:

SpiWriteCommunicationConfiguration) method with device_parameters,

communication_parameters and write_parameters.

d. Use the close() method to close all tasks and release allocated resources.

4. Use SerialCommunication() class methods for simple read and write data operations through

Serial communication using USB-232 Device.

a. Initialize the DAQmx task by calling the initialize (self, serial_device_name: str)

method on the class instance.

b. Configure and then perform serial communication operations according to specific

configuration using the configure_then_send_command_and_receive_response

(configuration: SerialCommunicationConfiguration) method.

i. Configure settings by using the SerialCommunicationConfiguration(

 communication_parameters: SerialCommunicationParameters,

 command_to_send: str).

c. The Output data includes (SerialCommunicationData) response in the str format.

d. Use the close() method to close all tasks and release allocated resources.

Block Diagram

Refer the following Block diagram applicable for each communication,

a) I2C Communication

b) SPI Communication

Python PCB Assembly Test Toolkit - User Manual

 Page 49 of 72
© National Instruments Corporation

c) Serial Communication

Pinouts of Device

I2C/SPI Interface Device (USB-8452)

For more details refer – NI-845x Hardware and Driver Software Getting Started Guide

References

Below are few other references for communication library,

1. NI 845x Software and Hardware Installing Procedure - https://www.ni.com/docs/en-

US/bundle/ni-845x-software-hardware-installing/resource/371708c.pdf

2. NI 845x Example location -

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000wyG5CAI&l=en-IN

3. NI USB-232 Serial Getting Started Guide - https://www.ni.com/docs/en-US/bundle/ni84xx-

usb-232-485-getting-started/resource/371583h.pdf

4. Set Up Communication with Serial Interface - Set Up Communication with Serial Instruments

in LabVIEW using NI-VISA - NI

https://www.ni.com/docs/en-US/bundle/usb-8452-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ni-845x-hw-dsw-getting-started/resource/371746e.pdf
https://www.ni.com/docs/en-US/bundle/ni-845x-software-hardware-installing/resource/371708c.pdf
https://www.ni.com/docs/en-US/bundle/ni-845x-software-hardware-installing/resource/371708c.pdf
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000wyG5CAI&l=en-IN
https://www.ni.com/docs/en-US/bundle/ni84xx-usb-232-485-getting-started/resource/371583h.pdf
https://www.ni.com/docs/en-US/bundle/ni84xx-usb-232-485-getting-started/resource/371583h.pdf
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x1jtCAA&l=en-IN
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x1jtCAA&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 50 of 72
© National Instruments Corporation

5.5.19 Synchronization

Overview

Use the SynchronizationSignalRouting() class methods to route signals between specified source and

output terminals for the given DAQmx Task.

Validated Hardware

• PCIe-6323

• cDAQ NI 9402

• TS-15050

• TS-15100

• TS-15110

• NI TS-15120

• TS-15130

Instructions

1. Create an instance of any class SignalVoltageGeneration(),

DynamicDigitalPatternGeneration()) to configure source device.

2. Call the initialize(*args) method to initialize the DAQ device for generation using the class

object.

3. Use the Synchronization class methods available in the class to configure settings mentioned

below:

a. route_start_trigger_signal_to_terminal(terminal_name: str) method which is used

to route the start trigger signal to the specified terminal.

b. route_sample_clock_signal_to_terminal(terminal_name: str) method which is used

to route the sample clock signal to the specified terminal.

c. The routes created by these methods are embedded in a task. Once the DAQmx task

is committed, the route is committed to the targeted device. When the task is

cleared, the route is unreserved. This routing method is termed as Task-Based

Routing.

d. Refer to the Device Routes table in Measurement and Automation Explorer to

determine eligible signals for routing for the targeted device.

4. Use the configure_and_measure() and close() methods to configure DAQ settings using the

respective class objects.

Notes:

o Refer “synchronization_tests” sequence for an example demonstrating synchronization using

the library.

o For more details on Signal Routing refer DAQmx Signal Routing concepts

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/taskbasedrouting.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/taskbasedrouting.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/sigrouting.html

Python PCB Assembly Test Toolkit - User Manual

 Page 51 of 72
© National Instruments Corporation

o The source signal and output terminals can be on different devices as long as a connecting

public bus, such as TestScale backplane, connects the devices.

o In PC Based DAQ, external PFI lines can be found on the connector. For more details for each

device, refer to the X Series User Manual.

o In CompactDAQ, you can use and select the PFI lines available at the front panel of some

backplanes or add a NI 9402 BNC high speed digital module in the backplane to route and

select PFI lines for trigger and Sample clock externally. For more details refer digital PFI

section of CompactDAQ backplane user manual.

o In TestScale, certain internal signals can be routed and exposed to external PFI Lines. For

more details refer Digital Routing concepts in TestScale.

o AI or DI Sample Clock and few Triggers can be route to any output PFI terminal. Sample Clock

is an active high pulse by default. For more details, refer AI and DI Timing Signals.

o AO or DO Sample Clock and few Triggers can be route to any output PFI terminal. Sample

Clock is an active high pulse by default. For more details, refer AO and DO Timing Signals.

PCIe-6323 Pinout

Note:

o In PC Based DAQ Devices, for example, as shown in this PCIe-6323 block diagram, PFI 0…15

channels are mapped to P1.0 to P1.7 and P2.0 to P2.7 terminals.

For more details regarding Digital I/O/PFI characteristics, visit PCIe-6323 specifications.

https://www.ni.com/docs/en-US/bundle/pcie-pxie-usb-63xx-features/resource/370784k.pdf?srsltid=AfmBOoqj7Hm8OkiPV9aaFJlxxedQnIsXuzftEUvi97y4e4NrNeQmpfN-
https://www.ni.com/docs/en-US/bundle/ni-9402-specs/page/specs.html?srsltid=AfmBOoqha1Fx5w-f-76frhbN1ScGlVUkhMDe4tCrXqCjXDaXroyCRpDu
https://www.ni.com/docs/en-US/bundle/cdaq-9185-9189-features/resource/376610b.pdf?gad_source=1&gclid=EAIaIQobChMIoqa7qvSDiQMVApaDBx2nsRjpEAAYASAAEgKrxfD_BwE
https://www.ni.com/docs/en-US/bundle/testscale-feature/page/digital-routing.html
https://www.ni.com/docs/en-US/bundle/testscale-feature/page/ai-and-di-timing-signals.html
https://www.ni.com/docs/en-US/bundle/testscale-feature/page/ao-and-do-timing-signals.html
https://www.ni.com/docs/en-US/bundle/pcie-6323-specs/page/specs.html?srsltid=AfmBOoqYMoyaDbY9sZOh3Z0QFYa6vAuqUEL3xgAvQL9ACPKhfX9fa8Sr

Python PCB Assembly Test Toolkit - User Manual

 Page 52 of 72
© National Instruments Corporation

5.5.20 Temperature RTD Measurement

Overview

Use TemperatureMeasurementUsingRtd class methods to initialize, configure, measure and close on

user configurable Analog input pins to derive temperature measurements from RTDs (Resistance

Temperature Detector). This library is applicable on C Series Temperature Input Modules.

Validated Hardware

• NI C Series/cDAQ Temperature Input Module (NI-9217)

Instructions

1. The library requires an internal/external current excitation (Iex) to be applied across the RTD

for temperature measurements. For more info on connections, refer the Block Diagram

section.

2. Create an instance of the TemperatureMeasurementUsingRtd() class using the library.

3. Initialize the DAQmx task by calling the initialize(self, channel_expression: str) method on

the class instance.

Note: Global channel specified in the initialize() can be calibrated in NI MAX to provide more

accurate measurements. For more details refer, Calibration section.

4. Configure settings by calling the configure_and_measure(self, configuration:

TemperatureRtdMeasurementConfiguration) method with the following parameters:

a. Configure the measurement_execution_type (MeasurementExecutionType)
property to specify the mode of execution: Configure & Measure, Configure only, or
Measure only.

b. Configure global_channel_parameters

(TemperatureRtdMeasurementTerminalParameters):

Set parameters to configure the range and terminal settings for all analog input

temperature channels, excluding channels specified in the specific channel settings.

c. Configure specific_channels_parameters

(List[TemperatureRtdMeasurementChannelParameters]):

Set parameters for specific channels individually. If Global Virtual Channel name is

provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

provide the Physical Channel name in Specific Channel Parameters. If no channels are

specified, global settings are applied.

Note: RTD parameters can be configured globally or specifically to each channel.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

Set the timing configuration for sample clock source input, sampling rate, number of

samples, and sample timing engine used for the DAQmx task. Use the "Auto" setting

to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Note: Maximum aggregate sampling rate for NI 9217 is 400 S/s. Setting values more

than that will generate an error.

Python PCB Assembly Test Toolkit - User Manual

 Page 53 of 72
© National Instruments Corporation

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling.

f. The Output data includes (TemperatureMeasurementResultData):

• Temperature Waveforms - Displays the captured Temperature waveforms

for each channel configured in the DAQmx Task.

• Temperature Measurements - Provides the derived post-analyzed data from

the captured Temperature waveforms to output Averaged Temperature in

deg Celsius and Kelvin representations.

• Acquisition Time – Calculated acquisition time for the measurement.

5. Finally close the DAQmx task using close(self) method.

Notes:

o The library only supports external/internal current excitation for RTDs. Voltage excitation is

not supported by this library.

o Any other external source can be used for current excitation in RTD Temperature

Measurements.

o For Fast measurements, set maximum sample rate possible for the given "Sample Clock

Source" input and assign smaller "Number of Samples" to capture. Min sample size is 2.

o For better resolution, configure the instrument to read more samples e.g., 1000 samples.

o NI recommends using 4-wire method for measuring voltage drop across RTD to derive more

accurate temperature measurements. For more details, visit 4 - Wire Resistance.

o Library supports only C-Series Temperature Input devices. For more details on Thermistor

and RTD Measurements, refer Making an RTD or Thermistor Measurement in LabVIEW.

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/measfunds/4wireres.html#:~:text=The%204%2Dwire%20method%20uses,voltage%20developed%20across%20the%20resistance.
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x2FzCAI&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 54 of 72
© National Instruments Corporation

Block Diagram

Python PCB Assembly Test Toolkit - User Manual

 Page 55 of 72
© National Instruments Corporation

5.5.21 Temperature Thermistor Measurement

Overview

Use TemperatureMeasurementUsingThermistor class methods to initialize, configure, measure and

close on user configurable Analog input pins to derive temperature measurements from voltage

excited NTC typed Thermistor devices. This library is applicable for TestScale analog input modules, C

Series Voltage Input Modules, PC based devices with Input channels.

Validated Hardware

• TestScale Analog Input Module (TS-15100)

• C Series/cDAQ Voltage Input Module (NI-9215)

• PC based DAQ (PCIe-6323)

Instructions

1. Library requires an external Voltage excitation (Vex) to be applied across the Thermistor for

temperature measurements. The voltage excitation must be applied to the Thermistor

through a Dropping resistor (R1). For more info on connections, refer the Block Diagram

section.

2. Create an instance of the TemperatureMeasurementUsingThermistor() class using the

library.

3. Initialize the DAQmx task by calling the initialize(self, channel_expression: str) method on

the class instance.

Note: Global channel specified in the initialize() can be calibrated in NI MAX to provide more

accurate measurements. For more details refer, Calibration section.

4. Configure settings by calling the configure_and_measure(self, configuration:

TemperatureThermistorMeasurementConfiguration) method with the following

parameters:

a. Configure the measurement_execution_type (MeasurementExecutionType)

property to specify the mode of execution: Configure & Measure, Configure only, or

Measure only.

b. Configure global_channel_parameters

(TemperatureThermistorRangeAndTerminalParameters):

Set parameters to configure the range and terminal settings for all analog input

temperature channels, excluding channels specified in the specific channel settings.

Note: The library supports both A B C parameter and Beta parameter for Thermistor

Temperature measurements. For more details, refer the Measurement Details

section.

c. Configure specific_channels_parameters

(List[TemperatureThermistorChannelRangeAndTerminalParameters]):

Set parameters for specific channels individually. If Global Virtual Channel name is

provided in initialize(), provide the Virtual Channel name in Specific Channel

Parameters as well. Similarly, if a Physical Channel name is provided in initialize(),

bookmark://_Calibration/

Python PCB Assembly Test Toolkit - User Manual

 Page 56 of 72
© National Instruments Corporation

provide the Physical Channel name in Specific Channel Parameters. If no channels are

specified, global settings are applied.

Note: Thermistor parameters and Voltage excitation settings can be configured globally

or specifically to each channel.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

• Set the timing configuration for sample clock source input, sampling rate,

number of samples, and sample timing engine used for the DAQmx task. Use the

"Auto" setting to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

 Notes:

o The timing engine configurations are the same for both TestScale and cDAQ

chassis. For more details refer cDAQ-91xx and TestScale Chassis Timing Engines.

o PCIe does not support sample timing engine

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

Set triggers to start measurement on various trigger events. Configure either no

trigger or a digital trigger. If using a digital trigger, provide a suitable digital start

trigger source. Set the digital start trigger edge as Rising or Falling.

f. The Output data includes (TemperatureMeasurementResultData):

• Temperature Waveforms - Displays the captured Temperature waveforms for

each channel configured in the DAQmx Task.

• Temperature Measurements - Provides the derived post-analyzed data from the

captured Temperature waveforms to output Averaged Temperature in deg

Celsius and Kelvin representations.

• Acquisition Time – Calculated acquisition time for the measurement.

5. Finally close the DAQmx task using close(self) method.

 Notes:

o The library only supports external voltage excitation for the thermistor temperature

measurements. Current excitation is not supported by this library.

o Any other external source can be used for Voltage excitation in Thermistor

measurements.

o For Fast measurements, set maximum sample rate possible for the given "Sample Clock

Source" input and assign smaller "Number of Samples" to capture. Min sample size is 2.

o For better resolution, configure the instrument to read more samples e.g., 1000 samples.

o NI recommends using remote sensing method in power supply modules for more reliable

voltage excitation values. For more details, visit Remote Sense.

o Library extends support for C-Series, PC based DAQ and TestScale devices.

o For more details on Thermistor and RTD Measurements, refer Making an RTD or

Thermistor Measurement in NI-MAX - NI.

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxdevconsid/timingenginemio.html
https://www.ni.com/docs/en-US/bundle/ni-dcpower/page/ni_dc_power_supplies_help/senseremote.html
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x2FzCAI&l=en-IN
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x2FzCAI&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 57 of 72
© National Instruments Corporation

Block Diagram

For more details regarding specifications, refer to References section.

Measurement Details

Library derives Temperature measurements from Thermistor parameters using different

methodologies. They are,

1. A B C Type

a. Specifies the Steinhart-Hart Equation parameters used to perform temperature

measurements.

b. It includes three parameters – A, B and C. These parameters are provided by the

thermistor manufacturers. Refer the thermistor datasheet to get its respective

values.

c. The parameters are substituted in the below Steinhart-Hart Equation,

Where,

T = Temperature in Kelvins

R = Measured Thermistor Resistance in Ohm

A, B, C = Constants provided by the thermistor manufacturer

Python PCB Assembly Test Toolkit - User Manual

 Page 58 of 72
© National Instruments Corporation

2. Beta Type

a. Characterised with the β (Beta) parameter equation which is essentially Steinhart-

Hart equation where A, B and C constants are substituted with β, T0 and R0. Refer

below,

Substituting the above values in Steinhart-Hart equation gives the Beta parameter equation,

Where,

 T = Temperature in Kelvin

 R = Measured Thermistor Resistance in Ohm

 β = Beta parameter provided by thermistor manufacturers in Kelvin

 R0 = Thermistor Resistance (in Ohm) in temperature T0

 T0 = 298.15 Kelvin (equivalent to 25oC)

Note:

o A B C parameter-based Temperature measurements gives more accurate results

compared to Beta parameter method. Since the parameter “C” constant is substituted to

“Zero” in Steinhart-Hart equation for approximation purposes during Beta parameter

conversions.

For more details, refer Thermistor-Wiki

https://en.wikipedia.org/wiki/Thermistor

Python PCB Assembly Test Toolkit - User Manual

 Page 59 of 72
© National Instruments Corporation

5.5.22 Temperature Thermocouple Measurement

Overview

Use TemperatureMeasurementUsingThermocouple() class methods to initialize, configure, measure

and close on user configurable Analog input pins to derive temperature measurements from

Thermocouples. This library is applicable for C Series Temperature Input Modules.

Validated Hardware

• NI C Series/cDAQ Temperature Input Module (NI-9211)

Instructions

1. Create an instance of the TemperatureMeasurementUsingThermocouple class using the

library.

2. Initialize the DAQmx task by calling the initialize(self, channel_expression: str,

 cold_junction_compensation_channel: str, cold_junction_compensation_source:

nidaqmx.constants.CJCSource) method on the class instance.

Notes:

o The initialize() method requires Cold Junction Compensation details for accurate

Temperature measurement. User can use Built In / Constant / Channel based CJC Inputs.

o To setup external channel based CJC measurements, refer Cold Junction Compensation

(CJC) on DAQ Hardware Without Built in CJC.

o Global channel specified in the Initialize VI can be calibrated in NI MAX to provide more

accurate measurements. For more details refer, Calibration section.

3. Configure settings by calling the configure_and_measure(self, configuration:

TemperatureThermocoupleMeasurementConfiguration) method with the following

parameters:

a. Configure the measurement_execution_type (MeasurementExecutionType)

property to specify the mode of execution: Configure & Measure, Configure only, or

Measure only.

Note: Measure only cannot be repeated without preceding with the "Configure Only".

b. Configure global_channel_parameters

(TemperatureThermocoupleMeasurementTerminalParameters):

Set parameters to configure the range and terminal settings for all analog input

temperature channels, excluding channels specified in the specific channel settings.

Notes:

o CJC Source and CJC Channel are specified for Cold Junction Compensation (CJC).

o Autozero is provided to compensate for internal offsets during temperature

measurements. The compensation in turns increases the accuracy of

measurements.

c. Configure specific_channels_parameters

(List[TemperatureThermocoupleChannelRangeAndTerminalParameters]):

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019PqOSAU&l=en-IN
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019PqOSAU&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 60 of 72
© National Instruments Corporation

• Set parameters for specific channels individually. If Global Virtual Channel

name is provided in initialize(), provide the Virtual Channel name in Specific

Channel Parameters as well. Similarly, if a Physical Channel name is provided

in initialize(), provide the Physical Channel name in Specific Channel

Parameters. If no channels are specified, global settings are applied.

d. Configure sample_clock_timing_parameters (SampleClockTimingParameters):

• Set the timing configuration for sample clock source input, sampling rate,

number of samples, and sample timing engine used for the DAQmx task. Use

the "Auto" setting to automatically select the timing engine.

Acquisition time = Number of Samples / Sampling Rate.

Note: Maximum aggregate sampling rate for NI 9211 is 14 S/s. Setting values more than

that will generate an error.

e. Configure digital_start_trigger_parameters (DigitalStartTriggerParameters):

• Set triggers to start measurement on various trigger events. Configure either

no trigger or a digital trigger.

• If using a digital trigger, provide a suitable digital start trigger source. Set the

digital start trigger edge as Rising or Falling.

f. The Output data includes (TemperatureMeasurementResultData):

• Temperature Waveforms - Displays the captured Temperature waveforms for

each channel configured in the DAQmx Task.

• Temperature Measurements - Provides the derived post-analyzed data from

the captured Temperature waveforms to output Averaged Temperature in

deg Celsius and Kelvin representations.

• Acquisition Time – Calculated acquisition time for the measurement.

4. Finally close the DAQmx task using close(self) method.

Notes:

o For Fast measurements, set maximum sample rate possible for the given "Sample Clock

Source" input and assign smaller "Number of Samples" to capture. Min sample size is 2.

o For better resolution, configure the instrument to read more samples e.g., 10 samples.

Maximum aggregate sampling rate for cDAQ Temperature input modules like NI 9211 is

14 S/s. Hence, requesting more samples to read will increase the measurement

acquisition time.

o Library supports only C-Series Temperature Input devices. NI TestScale Modules are not

supported by this library.

o NI recommends following various signal conditioning requirements for accurate

temperature measurements from Thermocouple devices. For more details refer, Signal

Conditioning Requirements for Thermocouples.

o For more details, on Thermocouple measurements using NI DAQ devices. Refer Taking a

Thermocouple Measurement in LabVIEW.

o Use of Physical channels is recommended for this library as Global virtual channel

properties cannot be overwritten due to lack of setter method in nidaqmx-python.

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/measfunds/sigcontherm.html#:~:text=Thermocouples%20require%20the%20following%20signal,signals%2C%20usually%20measured%20in%20microvolts.
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/measfunds/sigcontherm.html#:~:text=Thermocouples%20require%20the%20following%20signal,signals%2C%20usually%20measured%20in%20microvolts.
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x0VHCAY&l=en-IN
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x0VHCAY&l=en-IN

Python PCB Assembly Test Toolkit - User Manual

 Page 61 of 72
© National Instruments Corporation

Block Diagram

For more details regarding specifications, refer to References section.

Python PCB Assembly Test Toolkit - User Manual

 Page 62 of 72
© National Instruments Corporation

6 Automation Test Sequences
Test Sequences built in Python using Python PCBA measurement library demonstrates basic electrical

functional test which can be reused or modified based on the procedure. Test Sequences are placed

in “\nipcbatt-1.x\src\nipcbatt\pcbatt_automation” folder.

Below are the example tests added,

Test Sequence Overview

power_supply_tests

Power Supply Tests source the Voltage from Power (TS-15200) Module
and measure all Test points in the PCB simultaneously with Analog
Input Module.

led_tests LED Tests demonstrate the measurement of differential voltage across
Anode and Cathode of LED and the validation of PWM signal with
Analog Buffer.

action_button_tests Action Button Tests demonstrate DC-RMS Voltage Measurements by
performing button actions (generating DC Voltages) on specific test
points in PCB simultaneously by using Analog Output and Analog Input
Modules.

digital_io_tests Digital IO Tests demonstrate the generation and measurement of
Digital state, pattern, clock, pulse, PWM signals with Digital Output and
Digital Input Modules.

communication_tests Communication Tests demonstrate data read and write operations
through various communication protocols like I2C, SPI and Serial Port
Interactions by using NI Hardware’s like USB-845x and USB-232. The
Automation sequences for SPI and I2C serve as examples of
communication libraries with generic memory and registers.

audio_tests Audio Tests demonstrate the frequency domain measurements of
audio tones captured from the Audio amplifier path.

microphone_tests Microphone Tests demonstrate Frequency domain measurements of
captured Analog (Audio) signal generated by Analog Output (generates
sine wave tones) module with Hardware Trigger using Analog Output
and Analog Input Modules.

sensor_tests Sensor Tests demonstrate the Temperature measurements captured by
Thermistor, RTD and Thermocouple sensing devices using C Series
Temperature Input Modules (cDAQ-9211, cDAQ-9217) and Analog Input
Modules.

NOTE

Detailed Help on how to use the above test sequences can be found in ReadMe.pdf placed

parallel to the sequences.

Naming Convention: Test sequences follow a naming convention for Virtual Channel names where

Sourcing points in the PCBA Board has “TS_” prefix added and Test points to be measured has “TP_”

prefix added. And when multiple channels are involved, each channel has a common name and

numbering starting with 0. For Example, Digital IO test has input channels – TS_DIn0, TS_DIn1 and

Output channels – TP_DOut0, TP_DOut1

Python PCB Assembly Test Toolkit - User Manual

 Page 63 of 72
© National Instruments Corporation

6.1 Execution with Simulated Hardware
Follow below steps to run the automation sequences using simulated hardware:

• Import NI MAX configuration file to get the simulated hardware. The configuration file is

located at:

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_automation\Hardware Config.ini”
OR

“ \nipcbatt-1.x\src\nipcbatt\pcbatt_automation\Hardware Config.ini”

• Open the validation examples/sequences in any IDE of your choice.

• Run the main sequence file present in folder of any sequence with a VENV having nipcbatt

library installed.

• Results can be obtained from the .txt files created by the logger. Edit the file path in the

sequences to save the results in any location of your choice.

NOTE

To run with hardware, Refer ReadMe.pdf inside respective test folders

7 Functional Test Demo sequences
PCBA FT Demo Test Sequences demonstrates application testing of PCBA DUTs using various

simulated hardware. It is a generic example for any PCBA DUT. It demonstrates how to use the PCBA

Measurement Library, and how to extract test data and compare it against the expected result to

determine the failures.

Demo Sequences can be found at “\nipcbatt-1.x\src\nipcbatt\pcbatt_ft_demo_test_sequence”. This

example sequence can be executed in Python using the Measurement libraries.

Refer below table for detailed test scenario,

Python PCB Assembly Test Toolkit - User Manual

 Page 64 of 72
© National Instruments Corporation

Power Diagnostics

• Sources the supply voltage with a power supply resource and measures the DC Regulator

Test Points simultaneously utilizing analog input. Libraries used in the example are

“Power Supply Source and Measure” and “DC-RMS Voltage Measurement”.

Reset and Self-Test

• Sources static DC state with a digital output resource to perform push reset button

actions. Measures activity on a status LED using digital input resource. This example

includes a 30 second wait for the DUT (timeout) to reboot. Libraries used in the example

are “Static Digital State Generation” and “Static Digital State Measurement”.

Animation and Sound User Input Test

• Sources DC voltage with analog output resource to perform push button actions. Takes

time domain measurements using an analog input resource to measure a tweeter sound

wave of 1 KHz. Uses a digital pattern input resource to acquire an array of LEDs

performing an animation to be analyzed. Software Triggers are used between button

actions and measurement captures. Libraries used in the example are “DC Voltage

Generation”, “Digital Pattern Measurement” and “Time Domain Measurement”.

Audio Filter Test

• Sends a multi tone sine wave through analog output module, captures it with the analog

input module and extracts the detected tones to verify the expected frequency and

amplitude. Hardware triggers are used to reduce the delay between generation and

capture of signals. Libraries used in the example are “Signal Voltage Generation” and

“Frequency Domain Measurement”

PCBA FT DEMO LSL USL Units Timing (s) Test Point V Mode Analysis Value Trigger Procedure/Condition Measurement Library

Power Diagnostics

Start-up Transition max

current
0 1 A 0.1

Simulated_Power/

power
Ref Max Current

Maintain

Existing value

Power On Voltage 6V, 3A, Maintain

Existing Value, Measure TP_ Max

Current (Peak Transition)

Power Supply Source and Measure

Idle Power Consumption 4.5 5.5 W 0.1
Simulated_Power/

power
Ref Idle Watt

Maintain

Existing value

Measure Idle Watt, Power voltage

already On
Power Supply Source and Measure

DC Regulators 4.9 5.2 V 0.1 TP_REG0 Ref
Average DC

Voltage
No Measure Regulator Voltage 5V DC Voltage Measurement

- 3.1 3.4 V - TP_REG1 Ref
Average DC

Voltage
No Measure Regulator Voltage 3.3V -

Reset and Self-Test

Push Reset Button
Digital

Level
0.1 TS_RESET0 Ref No

Switch ON 0.1 sec then Switch OFF

with Digital Output
Static Digital State Generation

Activity LED0 status
Digital

Level

0.1 (30 max until

reboot)
TP_ACT_LED0 Ref No

Wait activity LED On, Timeout

elapsed time <30 sec maximum
Static Digital State Measurement

Animation and Sound User

Input Test

Push Action Button
Digital

Level
0.5 TS_BUTTON0 Ref No

Generate Digital Level for 0.5 sec to

Simulate Button ON/OFF
Digital State Generation

Animation 3 LEDs
Digital

Pattern
0.5 TP_AN_LED0:2 Ref

Custom Array

Sample

Analysis

SW Trigger

after Button

Capture 200 samples, check states

levels (by pointers) from Pattern

animation array

Digital Pattern Measurement

Tone Action Sound Check 990 1010 Hz 0.5 TP_TWEET0 Ref
TDM Voltage

Frequency

SW Trigger

after Button

Measure 1 Khz Frequency on

Tweeter
Time Domain Measurement

Audio Filter Test

Send Multi Tone Audio V 0.1 TS_LINE_IN0 Ref
Send 4 tones: 10 Hz, 100 Hz, 1kHz,

10 Khz, 1V Sine Signal
Signal Voltage Generation

Measure Tones

Frequencies
-10% +10% Hz 0.1 TP_LINE_OUT0 Ref

Detect Tones

Frequencies

HW Trigger

From Signal

generation

Measure 4 Tones: 10 Hz, 100 Hz,

1kHz, 10 Khz
Frequency Domain Mesurement

Measure Tones

Amplitudes
-10% +10% V 0.1 - Ref

Detect Tones

Amplitudes
-

Measure 4 Voltage Amplitudes

(Same Level)
-

To power up and measure Start-up Transition Max Current, Idle power Consumption and DC Regulators

To simulate Push Reset Button ON/OFF condition for 0.1 sec followed by max 30 sec timeout wait for reboot and waiting check Status Activity LED ON

To simulate the push on user action button to generate a sound and a light animation on 3 LEDs

To test if measured Tones Frequency are within +-10% tolerance and Amplitudes Level are the same within +-10% tolerance (Filter Flat)

Python PCB Assembly Test Toolkit - User Manual

 Page 65 of 72
© National Instruments Corporation

Turn Off all AO Channels

• Powers down all analog output channels by configuring the output voltage to 0 Volts.

The library used in the example is “DC Voltage Generation”.

Power Down Supply

• Powers down all power supplies by disabling the output. The library used in the example

is “DC Voltage Generation”

NOTE

Refer “How to enable the hardware?” section in the Help file that comes with Demo

sequence, for how to use it / modify it to apply to real world UUTs.

Python PCB Assembly Test Toolkit - User Manual

 Page 66 of 72
© National Instruments Corporation

8 Device Synchronization Example

Synchronization_tests sequence demonstrates multiple devices synchronization using Generation

and Measurement Library targeting both Analog and Digital IO modules.

Example File Location

“ \nipcbatt-1.x\src\nipcbatt\pcbatt_automation\synchronization_tests”

Note:

Refer ReadMe.pdf inside the above folder to know more about the example and instructions on how

to run the example sequence.

8.1.1 How to achieve synchronization?

To achieve better synchronization between multiple devices and resources, NI Suggests following the

below standards to get optimum results,

1. During multi-device synchronization, make sure the external cables used to route signals like

Sample clock and Start Trigger between systems are length matched. This prevents signal

skew between trigger and clock.

2. Configure the generation and measurement ends to function at same sample clock rate.

Note: Hardware devices will not divide down external sample clock signals and would need

actual sample rate input from the user to provide correct timing details in the measurement

results.

3. During multi-device synchronization for Digital Signals, Generation of Data in System 1 and

Measurement of Data in System 2 are performed with same shared clock signal, there are

chances of incorrect data measurements due to metastability caused by setup and hold time

violation. To prevent such scenario, NI recommends the following configurations,

a) In Measurement end, set the ‘Active Edge’ parameter in Timing settings as ‘Falling

Edge’ and in Generation end, set the same parameter as ‘Rising Edge’. By doing so,

an offset of ½ Sampling Time Period is added to measurement end to prevent setup

and hold violations.

4. For more info on Synchronization, refer Synchronization Explained topic in NI Website.

5. To choose your custom synchronization technique for cDAQ/TestScale Devices, refer

Choosing a CompactDAQ Synchronization Technology topic in NI Website.

9 Developing Test Programs
You can develop a test program in python using the libraries in nipcbatt.

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_library”

For example, to generate a sine waveform and measure a time domain waveform at any test point in

the PCB, you could use the below two libraries:

i. Use Signal Voltage Generation (SVG) library to generate the waveform of your choice by

configuring the Signal Voltage Generation parameters

ii. Then use Time Domain Measurement (TDVM) library to make time domain measurement of

waveform signals by configuring the Time Domain Measurement parameters

https://www.ni.com/en-in/support/documentation/supplemental/10/synchronization-explained.html
https://www.ni.com/en-in/shop/compactdaq/choosing-a-compactdaq-synchronization-technology.html

Python PCB Assembly Test Toolkit - User Manual

 Page 67 of 72
© National Instruments Corporation

Please refer to the validation examples to gain an understanding of the library's functionality and

how to utilize it to develop other examples.

9.1 Validation examples:
Validation examples are created as examples for testing a pair of libraries together, one library for

generation and another for measurement.

Please refer to the validation examples in this location.

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_validation_examples”

Or refer to the location given below if you are using the downloaded source code.

“\nipcbatt-1.x\src\nipcbatt\pcbatt_validation_examples”

9.2 Automation Sequences:
Automation sequences are examples of using libraries for real time scenarios like microphone tests,

LED tests and so on. Automation sequences are tested in simulation mode.

Please refer to the Automation Sequences in this location.

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_automation”

Or refer to the location given below if you are using source code.

 “\nipcbatt-1.x\src\nipcbatt\pcbatt_automation”

Please refer to the documentation Readme.pdf parallel to each automation sequence file for more

details on each sequence.

9.3 FT Demo Sequence:
FT demo sequences is an example for creating a test sequence using libraries with applying test limits

on the results to determine whether the test is a pass or a fail.

Please refer to the FT Demo Sequence in the location.

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_ft_demo_test_sequence”

Or refer to the location given below if you are using source code.

“\nipcbatt-1.x\src\nipcbatt\pcbatt_ft_demo_test_sequence”

Python PCB Assembly Test Toolkit - User Manual

 Page 68 of 72
© National Instruments Corporation

10 Modify nipcbatt source code and rebuild distribution package

This feature allows users to add new functions or modify existing library functions to adapt them to

their specific needs. Refer to Download source code from section 5.2 to download the source code

for the python library. Follow the below steps to create custom builds:

1. Extract the nipcbatt source files present in the downloaded archive “nipcbatt-1.x.tar.gz”:

• nipcbatt-1.x

o src

▪ nipcbatt

o PKG-INFO

o pyproject.toml

o docs

o README.md

o LICENSE

o requirements.txt

o requirements_for_packaging.txt

2. Install requirements_for_packaging.txt dependencies using the following command:

“pip install -r requirements_for_packaging.txt“

Note: It is recommended to create a separate venv with the mentioned requirements and

use it for the build process.

3. Modify source files contained in src folder and rebuild package by running inside folder

containing src this command line:

“python -m build”

Python PCB Assembly Test Toolkit - User Manual

 Page 69 of 72
© National Instruments Corporation

11 Errors and Troubleshooting

Common problems and troubleshooting techniques can be found below.

1. Channel Settings of Virtual Channels lost/not used when running test sequences Problem

The channel settings of virtual channels set using NI-MAX are replaced with different values after

running the test sequences.

Solution

It is expected. Configuration VI will override the channel settings set by NI-MAX or Settings defined in

Hardware Config.ini. Virtual channels are only used to map respective physical channels. All channel

settings should be configured using VIs by the users.

2. Not enough waveform cycles (-20308)

Problem

When executing TDV Meas Configure and Measure, the error below occurs when the measured

waveform is not expected to perform Time Domain analysis.

“The waveform did not cross the mid reference level enough times to perform this measurement.

Check the signal length, reference level and ref level units.”

Solution

To perform time domain analysis (waveform period and duty cycle), more than one full cycle of the

waveform is required so that there will be two points in the waveform which crosses mid reference

level to calculate frequency and Duty cycle.

This error will occur while running the test sequence with simulated hardware or when DC Voltage is

measured instead of waveform.

To skip the time domain analysis, set “Skip Analysis?” to True.

3. Redundant bits in the port data of Pattern Gen library

Problem

There is no error when we place 255 in port data even if we have 4 lines as input in the Core module.

Solution

Here each 8 bit corresponds to a line on the port and DAQmx APIs doesn’t evaluate the size of the

port but internally ignores the other bits.

Redundant line data can be either 0 or 1. Anyway those bits will be masked and will not be applied to

terminals (lines). Refer Help of Port Digital Data control for more details on how to frame the output

data for any requirements.

Python PCB Assembly Test Toolkit - User Manual

 Page 70 of 72
© National Instruments Corporation

12 Known Issues List

1. Frequency Domain Measurements

Frequency Domain Measurement Library returns inaccurate results for lower voltage

readings (below 1.5V).

2. Synchronization

During multi-devices synchronization for Digital Signals, Generation of Data in T1 system and

Measurement of Data in T2 system are performed with same shared clock signal, there are

chances of incorrect data measurements due to metastability caused by setup and hold time

violation.

To prevent such scenario, NI recommends the following configurations. In Measurement

end, set the ‘Active Edge’ parameter in Timing settings as ‘Falling Edge’ and in Generation

end, set the same parameter as ‘Rising Edge’. By doing so, an offset of ½ Sampling Time

Period is added to measurement end to prevent setup and hold violations

3. Digital Pulse Width Measurement

The Digital Pulse Width Measurement library is designed to function solely with the default

timebases of PCIe, cDAQ, and TestScale, specifically adhering to the default maximum and

minimum semi-period values.

For further information on default maximum and minimum values of semi-periods please

refer to “Relation between Timebase and semi-period duration” table.

4. Thermocouple Temperature Measurement

Global virtual channel properties cannot be overwritten due to the absence of setter method

for ai_thrmcpl_cjc_src in nidaqmx-python. So, it runs with default settings of the global

virtual channel which are defined in NI-MAX.

Use of Physical channels is recommended for this library to avoid this issue.

5. DC-RMS Current Measurement

Nidaqmx-python does not allow current min and max range parameters to be overwritten. In

this library, there is an additional parameter present in the initialize() function,

use_specific_channel: bool which allows the library to correctly perform current

measurements while using specific_channel_parameters. This will skip the initialization of

the channels not mentioned in the specific_channel_parameters.

Users should set this parameter to True while using specific channel settings.

Python PCB Assembly Test Toolkit - User Manual

 Page 71 of 72
© National Instruments Corporation

13 Related Documents
• Refer to the getting started pdf for installation procedure in the below location:

▪ “\nipcbatt-1.x\src\docs\Python PCB Assembly Test Toolkit - Getting Started.pdf”.

• Detailed Help on how to use the example test sequences can be found in ReadMe.pdf inside

each Automation Sequences.

• Refer to the schematics of the PCIe setup in the below location:

▪ Location in installed library:

“<venv>\Lib\site-packages\nipcbatt\pcbatt_validation_examples”

▪ Location in downloaded source code from PyPI:

“\nipcbatt-1.x\src\nipcbatt\\pcbatt_validation_examples”

Python PCB Assembly Test Toolkit - User Manual

 Page 72 of 72
© National Instruments Corporation

14 References
• PC Based X series DAQ - X series User manual

• cDAQ AI Module - NI 9205

• cDAQ AI Module - NI 9215

• cDAQ AO Module - NI 9263

• cDAQ RTD Module - NI 9217

• cDAQ TC Module - NI 9211

• cDAQ DIO Module - NI 9402

• cDAQ DIO Module - NI 9403

• cDAQ DO Module - NI 9477

• I2S SPI device - USB-8452

• Serial device - USB-232

• TestScale Help - What is TestScale? - NI

• TestScale Module TS-15050 Overview - TS-15050 Overview - NI

• TestScale Module TS-15050 Specifications - TS-15050 Specifications - NI

• TestScale Module TS-15100 Overview - TS-15100 Overview - NI

• TestScale Module TS-15100 Specifications - TS-15100 Specifications - NI

• TestScale Module TS-15110 Overview - TS-15110 Overview - NI

• TestScale Module TS-15110 Specifications - TS-15110 Specifications - NI

• TestScale Module TS-15120 Overview - TS-15120 Overview - NI

• TestScale Module TS-15120 Specifications - TS-15120 Specifications - NI

• TestScale Module TS-15130 Overview - TS-15130 Overview - NI

• TestScale Module TS-15130 Specifications - TS-15130 Specifications - NI

• TestScale Module TS-15200 Overview - TS-15200 Overview - NI

• TestScale Module TS-15200 Specifications - TS-15200 Specifications - NI

• DAQmx Help - NI-DAQmx Help - NI

https://www.ni.com/docs/en-US/bundle/pcie-pxie-usb-63xx-features/resource/370784k.pdf?srsltid=AfmBOoqj7Hm8OkiPV9aaFJlxxedQnIsXuzftEUvi97y4e4NrNeQmpfN-
https://www.ni.com/docs/en-US/bundle/ni-9205-specs/page/specs.html?srsltid=AfmBOoq4xim3YtIQismBLc8rVVKrpkx5f2WKuQdLUqmh_cRG1jNg7GT5
https://www.ni.com/docs/en-US/bundle/ni-9215-specs/page/specs.html?srsltid=AfmBOoqX0jQCalzOsQPhZ7ZVorKlS71OKBbuhxEggix-aS5WrGa7A9nt
https://www.ni.com/docs/en-US/bundle/ni-9263-specs/page/specs.html?srsltid=AfmBOoopTtnncCJaeP6dDtq45OgekM3X2oxX64XHFtLFlVFPJTn6ofps
https://www.ni.com/docs/en-US/bundle/ni-9217-specs/page/specs.html?srsltid=AfmBOoq7ukSw_PCydigiZ2jLnQk2T4oxl9X7PtKuEKKw7DDZ-LZG4mGh
https://www.ni.com/docs/en-US/bundle/ni-9211-specs/page/specs.html?srsltid=AfmBOoqByFNFFa7RwE73PfqCWZPt9-vN_AoqIfsV0KK5bHQxViJUxv-1
https://www.ni.com/docs/en-US/bundle/ni-9402-specs/page/specs.html?srsltid=AfmBOopn1v3PB9kZYQEXmpWBEkCdDktzQpBg2YbIWakOcCtbCZOIO72W
https://www.ni.com/docs/en-US/bundle/ni-9403-specs/page/specs.html?srsltid=AfmBOopILB4fa_9ygQHvDNMceK4CM8EcUVqXTiGZTUfhHcW0AGJyLQnp
https://www.ni.com/docs/en-US/bundle/ni-9477-specs/page/specs.html?srsltid=AfmBOopELg09FiS9MoUaFUWws9ggYDTGuwVaZfTYY2h9KiU7V19Mmilz
https://www.ni.com/docs/en-US/bundle/usb-8452-specs/page/specs.html?srsltid=AfmBOootDI9Jsg4zUjx3L0KXo337RyX-XTX3QwFwIjTlbAnm5hJMXuyH
https://www.ni.com/docs/en-US/bundle/ni-serial-hardware-specifications/resource/373170f.pdf
https://www.ni.com/docs/en-US/bundle/testscale-feature/page/definition.html
https://www.ni.com/docs/en-US/bundle/ts-15050-feature/page/overview.html
https://www.ni.com/docs/en-US/bundle/ts-15050-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ts-15100-feature/page/GUID-D9F799A3-958B-4464-AD7A-0E660564249A.html
https://www.ni.com/docs/en-US/bundle/ts-15100-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ts-15110-feature/page/intro.html
https://www.ni.com/docs/en-US/bundle/ts-15110-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ts-15120-feature/page/overview.html
https://www.ni.com/docs/en-US/bundle/ts-15120-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ts-15130-feature/page/connecting.html
https://www.ni.com/docs/en-US/bundle/ts-15130-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/ts-15200-feature/page/GUID-E075B3AF-3CC1-4A00-9626-122AB6DBE425.html
https://www.ni.com/docs/en-US/bundle/ts-15200-specs/page/conditions.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/daqhelp/daqhelp.html

	1 About This Manual
	2 Overview
	3 Software setup
	4 Launch Python PCB Assembly Test Toolkit
	5 Measurement Libraries
	5.1 Structure of Library
	5.2 Physical and Virtual Channels
	5.2.1 Create/Modify Global Virtual Channels
	5.2.2 Calibration

	5.3 Execution Options
	5.4 Limitations
	5.5 Libraries
	5.5.1 Power Supply Source and Measure
	5.5.2 DC-RMS Voltage Measurement
	5.5.3 DC Voltage Generation
	5.5.4 DC-RMS Current Measurement
	5.5.5 Time Domain Measurement
	5.5.6 Frequency Domain Measurement
	5.5.7 Signal Voltage Generation
	5.5.8 Static Digital State Measurement
	5.5.9 Static Digital State Generation
	5.5.10 Dynamic Digital Pattern Measurement
	5.5.11 Dynamic Digital Pattern Generation
	5.5.12 Digital Clock Generation
	5.5.13 Digital Pulse Generation
	5.5.14 Digital Frequency Measurement
	5.5.15 Digital PWM Measurement
	Relation between Timebase and semi-period duration

	5.5.16 Digital Edge Count Measurement Using Hardware Timer
	5.5.17 Digital Edge Count Measurement Using Software Timer
	5.5.18 Communication
	5.5.19 Synchronization
	5.5.20 Temperature RTD Measurement
	5.5.21 Temperature Thermistor Measurement
	5.5.22 Temperature Thermocouple Measurement

	6 Automation Test Sequences
	6.1 Execution with Simulated Hardware

	7 Functional Test Demo sequences
	8 Device Synchronization Example
	8.1.1 How to achieve synchronization?

	9 Developing Test Programs
	9.1 Validation examples:
	9.2 Automation Sequences:
	9.3 FT Demo Sequence:

	10 Modif y nipcbatt source code and rebuild distribution package
	11 Errors and Troubleshooting
	12 Known Issues List
	13 Related Documents
	14 References

