Audio Test Sequence

1.1 Purpose

The Audio Tests Sequence performs frequency domain measurements of sine tones using the Analog
Input and Analog Output Resources. This example sequence can be executed in a custom Python
sequence script using the measurement libraries written in Python.

Example File Location
“\<venv>\Lib\site-packages\nipcbatt\pcbatt_automation\audio_tests”

1.2 Highlighted Features
e Audio Line Check
o Sends single-tone sine waveform through Analog Output resource, captures it with
Analog input resource and performs Frequency domain measurements to validate
the Audio amplifier path. Hardware Triggers are used to reduce the delay between
generation and capture of signals. Libraries used in the example are
“SignalVoltageGeneration()’ and “FrequencyDomainMeasurement()” .
e Audio Filter Check
o Sends multi-tone sine wave through Analog Ouput resource, captures it with Analog
input resource and extract the detected tones to verify the filter setup of the DUT.
Hardware Triggers are used to reduce the delay between generation and capture of
signals. Libraries used in the example are “SignalVoltageGeneration()’ and
“FrequencyDomainMeasurement()” .
e Turn Off all AO Channels
o Powers down all analog output channels by configuring the output voltage as 0
Volts. Libraries used in the example is “DcVoltageGeneration()”.

Refer this folder for more details on each Measurement library “\<venv>\Lib\site-
packages\nipcbatt\pcbatt_library”.

1.3 Prerequisites
e Python-3.9to03.12
e DAQmx Driver — 2023 Q3 or later

1.4 Setup Diagram

Represents the hardware setup used in this example sequence. Pin Outs of each resource is added
below.

TS_AudioLineln0 TP_AudiolineQut0 AI{RSE)

Analog Output Channels Analog Input Channels

© National Instruments Corporation

1.5 How to run this Example?
Complete the following steps to run the sequence.

1. First, we must configure NI-MAX to reflect the simulated virtual channels which will be used
by the Python script names mentioned in audio_filter_check.py or audio_line_check.py:

a. A hardware configuration file for NI-MAX is required to run this example. The
configuration file contains a set of predefined global channel names which are used by
the nidagmx driver to communicate with the Python scripts.

b. Toimport the “Hardware Config” open NI-MAX.

c. Click on File -> Import_to open the Configuration Import Wizard

| m My System - Measurement & Automation
(File Edit View Tools Help

New]
il Savedl Ctrl+Shift+5

@ Create Report..

‘flﬁ Import.

% Export..

Exit Alt+F4

d. Inthe Configuration Import Wizard window, click on the Browse {(...) button and locate
the Hardware Config.ini file in “\<venv>\Lib\site-
packages\nipcbatt\pcbatt_automation”. Then click on Next -> Import -> Finish

n Configuration Import Wizard ? X

Choose the file to import and the destination system

This wizard imports configuration data for these products:

SNI-DAQmx 22.8
SINI-VISA 22.5

Import from file:

Import to system:

E My System v

< Back Cancel L,
7

e. NI-MAX now holds the same virtual channel name references contained in the examples
provided

© National Instruments Corporation

The audio_filter_check.py and audio_line_check.py files will create log files in the form of a
simple text (.txt) file. The default file path it will use is

“C:\\Windows\\Temp\\power_supply test_with_trigger_results.txt”
“C:\\Windows\\Temp\\power_supply test_without_trigger_results.txt”

If you wish to create this file in a different location on your PC, change the value of the string
variable DEFAULT _FILEPATH.

Open the Python scripts audio_test_main_sequence.py along with audio_filter_check.py
and audio_line_check.py in your IDE or text editor of choice. The following steps are
performed within audio_test_main_sequence.py.

a. Audio Line Check - demonstrates Frequency domain measurements of captured
single tone Analog (Audio) signal generated by Analog Output resource with
Hardware Trigger. Below are the steps included in the test.

i. Initialize Signal Voltage Generation and Frequency Domain Measurement
Libraries by creating the instances of SignalVoltageGeneration() and
FrequencyDomainMeasurement() classes and then using initialize()
methods on each object.

ii. Configure Frequency Domain Measurement to wait for Start Trigger from
Signal Voltage Generation.

iii. Configure the Signal Voltage Generation to start sourcing Sine Tone. Here
the example generates Sine wave of 1kHz with Amplitude of 1V. (in the
backend, Signal Voltage Generation resource sends the Trigger through the
backplane during sourcing starts which in-turns starts the measurement in
Analog Input resource).

iv. Fetch the Voltage waveforms measured and return the Frequency
measurements.

v. Use the close() methods on both instances to close all tasks and release
resources allocation.

Refer the help/comments in the sequence for more details to know more
about trigger configuration.

b. Audio Filter Check - demonstrates Frequency domain measurements of captured
multi tone Analog (Audio) signal generated by Analog Output resource with
Hardware Trigger. Below are the steps included in the test.

i. Initialize Signal Voltage Generation and Frequency Domain Measurement
Libraries by creating the instances of SignalVoltageGeneration() and
FrequencyDomainMeasurement() classes and then using initialize()
methods on each object.

ii. Configure Frequency Domain Measurement to wait for Start Trigger from
Signal Voltage Generation.

iii. Configure the Signal Voltage Generation to start sourcing Sine wave with
multi-tones. Here the example generates Multi tone Sine wave of 1Hz,
100Hz, 1kHz and 10kHz with Amplitude of 1V (in the backend, Signal
Voltage Generation resource sends the Trigger through the backplane

© National Instruments Corporation

during sourcing starts which in-turns starts the measurement in Analog
Input resource)
iv. Fetch the Voltage waveforms measured and return the detected frequency
and amplitude of tones.
v. Use the close() methods on both instances to close all tasks and release
resources allocation.
Refer the help/comments in the sequence for more details to know more
about trigger configuration.
¢. Turn Off all AO Channels — Power downs all Analog output channels by configuring
them to 0 Volts. Below are the steps included in the test. These steps are
accomplished within turn_off_all_ao_channels.py
i. Initialize the DC Voltage Generation library by creating an instance of
DcVoltageGeneration() class and then using Initialize() method.
ii. Configure the DC Voltage Generation to source 0 Volts in specified Analog
Output channels by calling the configure_and_generate() method using the
default parameters.
iii. Use close() instance after setting AO channels to 0 Volts.
3. When the execution completes, review the results on the .txt files generated by the logger
at the specified location.
a. The report has the configurations and Measurement values captured (runs with
simulated instrument by default)
b. Verify the Measurement and data formats returned by the Measurement library

1.5.1 How to enable the Hardware?
Audio Test sequence runs with simulated hardware by default. Once the hardware setup is available,
you can do the below changes to enable running the test with the hardware.

Note : In this example, physical and global virtual channels are used to configure the terminal or pin
to perform the instrument actions. Global Virtual Channels are software entities that encapsulate the
physical channel along with other channel specific information—range, terminal configuration, and
custom scaling. Global Channels can be created in NI-MAX and called in Measurement Libraries

1. Skip the first step which imports simulated virtual channels in MAX as in section 1.5. If
already done, you can simply update the channel names (physical or virtual) in the
initialize() step of each automation sequence to match the hardware
connected/detected in NI-MAX.

Note: Please ensure correct trigger sources as mentioned in the steps below.

2. Follow the below steps for each sequence. Refer “Note to run with Hardware” labels in
the sequence.
i. Audio Line Check

1. Stepinto the “audio_line_check.py” sequence

2. Update the “GEN_CHANNEL” input with Signal Voltage Generation
resource channel in the initialize() method of
SignalVoltageGeneration() also update the “MEAS_CHANNEL” input
with Frequency Domain Measurement resource channel in the
initialize() method of FrequencyDomainMeasurement().

© National Instruments Corporation

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html

3. Open NI-MAX and update the physical Channel linked to the Global
Channels — TS_AudiolLineln0, TP_AudiolLineOut0 (called in the initialize
step of Signal Voltage Generation and Frequency Domain Measurement)

4. Update the “digital_start_trigger _source” based on NI-MAX Hardware in
the “DigitalStartTriggerParameters” configured in the
configure_and_measure() method.

5. Review the Configurations of Analog Output and Analog Input Pins for
the intended use case.

ii. Audio Filter Check

1. Stepinto the “audio_filter_check.py” sequence

2. Update the “GEN_CHANNEL” input with Signal Voltage Generation
resource channel in the initialize() method of
SignalVoltageGeneration() also update the “MEAS_CHANNEL” input
with Frequency Domain Measurement resource channel in the
initialize() method of FrequencyDomainMeasurement().

3. Open NI-MAX and update the physical Channel linked to the Global
Channels — TS_AudiolLineln0, TP_AudiolLineOutO0 (called in the initialize
step of Signal Voltage Generation and Frequency Domain Measurement)
—lIgnore if updated in previous step

4. Update the “digital_start_trigger_source” based on NI-MAX Hardware in
the “DigitalStartTriggerParameters” configured in the
configure_and_measure() method.

5. Review the Configurations of Analog Output and Analog Input Pins for
the intended use case

iii. Turn Off AO Channel

1. Stepinto the “turn_off_all_ao_channels.py” example.

2. Update the physical channels input with Analog Output Channel in the
initialize step of Turn_off_all_ao_channels.

3. Review the Configurations of Analog Output for the intended use case

Review the generate and range settings of Analog Output Pins and Analog input Pins
based on the DUT and Connections before running with Hardware.

© National Instruments Corporation

1.6 Pinouts of PCle-6323

(_/"-\ /—\‘\-\\

AlD(Al0+) |[Ga]a4]|Al8 (A0 PO.30 [1]35]|b&ND

Al GND 67]33] | Al 1 (Al 14) PO.28 2 [36]| D GND

Alg (A1) |[66]32] | Al GND 2 = PO.25 3 |a7|| Po.24
Alz(arz+) |[es]31]]| A0 a2 e 2§ D GND 4|38||Po2a

Al GND 64[30]| Al 3 (Al 34) Qe 2o PO.22 5 |39||Po.at

Al 11 (A13-)|[e3]29] | Al GND £ 2z P0.21 6 |40] | Po.29
AISENSE ||62]28] | Al 4 (Al 4+) g g D GND 7 |41]| Po.20

Al12 (Al 4=)| [61]27] | Al GND 45V 8 [42]| Po.19

Al 5 (a15+) |[60]28] |Al13 (A5 @ D GND 9 |4a]|po.18

Al GND 59 25| | Al 6 (Al 6+) POAT 10| 44| D GND

Al 14 (A16-) || 58] 24| | Al GND ‘\ PO.16 11]45|| Po.26

A7 (A174) |[57]23]| Al 15 (Al 7-) TERMINAL 63 ﬁ TERMINAL 35 1 g 12]46) | Po.27

Al GND 56[22||ADD TERMINAL 34 41 L TERMIMAL1 D GND 13]47|| po.11

A0 GID s5]21]|| A0 1 45V 14]48|| po.1s

AD GND 54|20 | NC D GND 15[48] | po.10

0 GND 53]19]| Po.4 PO.14 16]50]| D GND
PO.O 52| 18| | D GND PO 17]51|| P0.13

P05 51[17]| Po.1 D GND 18]52]| Po.8

0 GND 50| 16| | P0G PO12 19|53 | D GND
PO.2 49]15|| DGND NC 20[54] | AD GND
PO.7 48[14]|+5V AD 3 21(55| | AD GND
P03 47[13]| D GND TERMINAL 1 = - TERMIMAL 34 AD2 22[56] | al GND
PF111/P23 |[46]12] |DGND & Al (Al 23-) | [23] 57| | Al 23 (Al 234
PFI10P22 |[25]11]|PFlop1a TERMINALSS g“TE“M'"*L“ Al GND 24]58 A|30:A|22-;
0 GND 44]10]| PFI 1/P1.1 Al22 (a122+) |[25] 58] | Al GND
PFI2P12 |[43] a||DGND Y Al 29 (A121-) | [26]60] | Al 21 (A1 214)
PRIaP1a |[42]8][+5V Al GND 27| 61] | Al 28 (Al 20-)
PFI4P14 |[41]7]|DGND Al 20 (Al 20+) || 28] 62] | Al SENSE 2
PFI13/P25 (| 40| 6 || PFIS/P15 Al GND 29| 63| | Al 27 (Al 18<)
PF115/P27 |[3a] 5 || PRI 6P16 Al 13 (Al 19+) | [30]64] | Al GND
PFIZ/P17 ||38| 4 || DGND Al 26 (Al 18-) EE Al 18 (Al 18+)
pRiaPzo |[37] a]|PRiaP21 Al GND 32|66 | Al 25 (Al 17-)
D GND 36| 2 || PFI12/P2.4 Al17 (A117+) | [33]67] | Al GND

D GND 35| 1 || PFI14/P2s Al24 (Al18=) | |34]68] | Al 16 (Al 168+)

\‘\J \///
NC = Na Connect NG = Mo Connect
6

© National Instruments Corporation

1.7 Pinouts of cDAQ Modules

1.Analog Input Module (NI-9215)

®
ae+ || o] IS Al0+ D
ato- || [T]IS Al0- D
A= || 2 1S All+ D
an-| | |[31® All- D
an+ || |[4]1® AL+ D
Al- 5 1) Al- D
AT3+ s | IS AT+ D
an- || [IF1ls Al- b
NC Bl NC B
com|| |[o]l COM D
®
—

2. Analog Output Module (NI-9263)

I

COM
AD1
COM

=

1=,

COM

COM
MC
COM

w0

PRELLEAEE D

@[]=[~[a]o]]w]w[-]=]@)

© National Instruments Corporation

1.8 Pinouts of TestScale Modules

1. Analog Input Module (TS-15100)

TS-15100

Alg 2 ——@
Mg 21 @
Allp 22 ———————@
Alll 238 —————@
AL W ——@
All3 25 @
Ml4 26—
AllS 2T ——————@
PFI0 28 ————@
oM 29 —————@
A24 30 o
AIE N ———2
Al 32 —FM—=
AT 3B ———@
Mze 34 2
A7 3 —F—@
Al3d 36—
M3l I ———@

WO = B B W M e

E— 10
11
B—12

& 13
& 14
& 15
B——18
& 17
E—— 18
& 13

Al
all
Al2
Al
Al
AlS
AlE
AT
NC
COM
Al16
AT
Alls
Al19
Alz0
AlZL
A2z
Al23

Al SENSE

2. Analog Output Module (TS-15110)

COM 20 ———————@
NC 21 @
NC 2 —————9

oM 8 —————8
NC 24—
NC 25 @
NC 26 ——————@
NC 2T ——@
NC 28—
NC 28 ———&
NC 30 @
NC 3l ———®

COM 32 ——@
NC 338 ———&
NC 34 @
NC 3§ ——@

COM 36 ——————@
NC 31 ———@

U T I I T N

L T i
@ & =N s W N = O

AQO
NC

NC

AD3

© National Instruments Corporation

1.9 How to create/Modify Global Virtual Channels?

A virtual channel is a collection of settings such as a name, a physical channel, input terminal
connections, the type of measurement or generation, and can include scaling information. A virtual
channel created outside a task is a Global Virtual Channel.Follow the below steps to create Global
Virtual Channel in NI-MAX.

Follow the below steps to create Global Virtual Channel in NI-MAX.

1.
2.

N o v ks

Launch NI-MAX

In NI-MAX, right-click Data Neighbourhood and select Create New

In the Create New window, select NI-DAQmx Global Virtual Channel and click Next. The
DAQ Assistant opens.

Select an 1/0 type, such as analog input

Select the physical channel of Hardware

Type the global virtual channel name. Click Finish

Save your configuration.

Follow the below steps to modify the existing Global Virtual Channel in NI-MAX.

Launch NI-MAX
In NI-MAX, expand Data Neighbourhood > NI-DAQmx Global Virtual Channel

Select the Global Channel to modify. Configuration window opens.

[T\ﬁ Tﬁ'l Configuration
7 ™2 . g
R ™3
| NI-DAQMx Tasks -A Vokage Input Setup
pices and Interfaces ', TP1 & settngs %, Calbraton
ples
ffeware
| Drivers Max 10 o
e Systems Mo -10

Termnal Configuration
RSE
Custom Scaing
No Scale >

4. Click on “Details >>" as highlighted above to view the Physical Channel
5. Right click and Change Physical Channel to update the Physical Channel. Select the Physical

Channel from Hardware as per the connection and Click “Ok”

© National Instruments Corporation

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html

Configuration

Channel Settings

5%
fﬂd!ﬁ?&i&if‘J Order

Change Physical Channel...

6. Save your configuration

10

© National Instruments Corporation

	Audio Test Sequence
	1.1 Purpose
	1.2 Highlighted Features
	1.3 Prerequisites
	1.4 Setup Diagram
	1.5 How to run this Example?
	1.5.1 How to enable the Hardware?

	1.6 Pinouts of PCIe-6323
	1.7 Pinouts of cDAQ Modules
	1.8 Pinouts of TestScale Modules
	1.9 How to create/Modify Global Virtual Channels?

