

1

© National Instruments Corporation

Audio Test Sequence

1.1 Purpose
The Audio Tests Sequence performs frequency domain measurements of sine tones using the Analog

Input and Analog Output Resources. This example sequence can be executed in a custom Python

sequence script using the measurement libraries written in Python.

Example File Location

“\<venv>\Lib\site-packages\nipcbatt\pcbatt_automation\audio_tests”

1.2 Highlighted Features

 Audio Line Check

o Sends single-tone sine waveform through Analog Output resource, captures it with

Analog input resource and performs Frequency domain measurements to validate

the Audio amplifier path. Hardware Triggers are used to reduce the delay between

generation and capture of signals. Libraries used in the example are

“SignalVoltageGeneration()” and “FrequencyDomainMeasurement()”.

 Audio Filter Check

o Sends multi-tone sine wave through Analog Ouput resource, captures it with Analog

input resource and extract the detected tones to verify the filter setup of the DUT.

Hardware Triggers are used to reduce the delay between generation and capture of

signals. Libraries used in the example are “SignalVoltageGeneration()” and

“FrequencyDomainMeasurement()”.

 Turn Off all AO Channels

o Powers down all analog output channels by configuring the output voltage as 0

Volts. Libraries used in the example is “DcVoltageGeneration()”.

 Refer this folder for more details on each Measurement library “\<venv>\Lib\site-

packages\nipcbatt\pcbatt_library”.

1.3 Prerequisites
 Python – 3.9 to 3.12

 DAQmx Driver – 2023 Q3 or later

1.4 Setup Diagram
Represents the hardware setup used in this example sequence. Pin Outs of each resource is added

below.

2

© National Instruments Corporation

1.5 How to run this Example?
Complete the following steps to run the sequence.

1. First, we must configure NI-MAX to reflect the simulated virtual channels which will be used

by the Python script names mentioned in audio_filter_check.py or audio_line_check.py:

a. A hardware configuration file for NI-MAX is required to run this example. The

configuration file contains a set of predefined global channel names which are used by

the nidaqmx driver to communicate with the Python scripts.

b. To import the “Hardware Config” open NI-MAX.

c. Click on File -> Import to open the Configuration Import Wizard

d. In the Configuration Import Wizard window, click on the Browse (...) button and locate

the Hardware Config.ini file in “\<venv>\Lib\site-

packages\nipcbatt\pcbatt_automation”. Then click on Next -> Import -> Finish

e. NI-MAX now holds the same virtual channel name references contained in the examples

provided

3

© National Instruments Corporation

The audio_filter_check.py and audio_line_check.py files will create log files in the form of a

simple text (.txt) file. The default file path it will use is

“C:\\Windows\\Temp\\power_supply_test_with_trigger_results.txt”

“C:\\Windows\\Temp\\power_supply_test_without_trigger_results.txt”

If you wish to create this file in a different location on your PC, change the value of the string

variable DEFAULT_FILEPATH.

2. Open the Python scripts audio_test_main_sequence.py along with audio_filter_check.py

and audio_line_check.py in your IDE or text editor of choice. The following steps are

performed within audio_test_main_sequence.py.

a. Audio Line Check - demonstrates Frequency domain measurements of captured

single tone Analog (Audio) signal generated by Analog Output resource with

Hardware Trigger. Below are the steps included in the test.

i. Initialize Signal Voltage Generation and Frequency Domain Measurement

Libraries by creating the instances of SignalVoltageGeneration() and

FrequencyDomainMeasurement() classes and then using initialize()

methods on each object.

ii. Configure Frequency Domain Measurement to wait for Start Trigger from

Signal Voltage Generation.

iii. Configure the Signal Voltage Generation to start sourcing Sine Tone. Here

the example generates Sine wave of 1kHz with Amplitude of 1V. (in the

backend, Signal Voltage Generation resource sends the Trigger through the

backplane during sourcing starts which in-turns starts the measurement in

Analog Input resource).

iv. Fetch the Voltage waveforms measured and return the Frequency

measurements.

v. Use the close() methods on both instances to close all tasks and release

resources allocation.

Refer the help/comments in the sequence for more details to know more

about trigger configuration.

b. Audio Filter Check - demonstrates Frequency domain measurements of captured

multi tone Analog (Audio) signal generated by Analog Output resource with

Hardware Trigger. Below are the steps included in the test.

i. Initialize Signal Voltage Generation and Frequency Domain Measurement

Libraries by creating the instances of SignalVoltageGeneration() and

FrequencyDomainMeasurement() classes and then using initialize()

methods on each object.

ii. Configure Frequency Domain Measurement to wait for Start Trigger from

Signal Voltage Generation.

iii. Configure the Signal Voltage Generation to start sourcing Sine wave with

multi-tones. Here the example generates Multi tone Sine wave of 1Hz,

100Hz, 1kHz and 10kHz with Amplitude of 1V (in the backend, Signal

Voltage Generation resource sends the Trigger through the backplane

4

© National Instruments Corporation

during sourcing starts which in-turns starts the measurement in Analog

Input resource)

iv. Fetch the Voltage waveforms measured and return the detected frequency

and amplitude of tones.

v. Use the close() methods on both instances to close all tasks and release

resources allocation.

Refer the help/comments in the sequence for more details to know more

about trigger configuration.

c. Turn Off all AO Channels – Power downs all Analog output channels by configuring

them to 0 Volts. Below are the steps included in the test. These steps are

accomplished within turn_off_all_ao_channels.py

i. Initialize the DC Voltage Generation library by creating an instance of

DcVoltageGeneration() class and then using Initialize() method.

ii. Configure the DC Voltage Generation to source 0 Volts in specified Analog

Output channels by calling the configure_and_generate() method using the

default parameters.

iii. Use close() instance after setting AO channels to 0 Volts.

3. When the execution completes, review the results on the .txt files generated by the logger

at the specified location.

a. The report has the configurations and Measurement values captured (runs with
simulated instrument by default)

b. Verify the Measurement and data formats returned by the Measurement library

1.5.1 How to enable the Hardware?
Audio Test sequence runs with simulated hardware by default. Once the hardware setup is available,

you can do the below changes to enable running the test with the hardware.

Note : In this example, physical and global virtual channels are used to configure the terminal or pin

to perform the instrument actions. Global Virtual Channels are software entities that encapsulate the

physical channel along with other channel specific information—range, terminal configuration, and

custom scaling. Global Channels can be created in NI-MAX and called in Measurement Libraries

1. Skip the first step which imports simulated virtual channels in MAX as in section 1.5. If

already done, you can simply update the channel names (physical or virtual) in the

initialize() step of each automation sequence to match the hardware

connected/detected in NI-MAX.

Note: Please ensure correct trigger sources as mentioned in the steps below.

2. Follow the below steps for each sequence. Refer “Note to run with Hardware” labels in

the sequence.

i. Audio Line Check

1. Step into the “audio_line_check.py” sequence

2. Update the “GEN_CHANNEL” input with Signal Voltage Generation

resource channel in the initialize() method of

SignalVoltageGeneration() also update the “MEAS_CHANNEL” input

with Frequency Domain Measurement resource channel in the

initialize() method of FrequencyDomainMeasurement().

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html

5

© National Instruments Corporation

3. Open NI-MAX and update the physical Channel linked to the Global

Channels – TS_AudioLineIn0, TP_AudioLineOut0 (called in the initialize

step of Signal Voltage Generation and Frequency Domain Measurement)

4. Update the “digital_start_trigger_source” based on NI-MAX Hardware in

the “DigitalStartTriggerParameters” configured in the

configure_and_measure() method.

5. Review the Configurations of Analog Output and Analog Input Pins for

the intended use case.

ii. Audio Filter Check

1. Step into the “audio_filter_check.py” sequence

2. Update the “GEN_CHANNEL” input with Signal Voltage Generation

resource channel in the initialize() method of

SignalVoltageGeneration() also update the “MEAS_CHANNEL” input

with Frequency Domain Measurement resource channel in the

initialize() method of FrequencyDomainMeasurement().

3. Open NI-MAX and update the physical Channel linked to the Global

Channels – TS_AudioLineIn0, TP_AudioLineOut0 (called in the initialize

step of Signal Voltage Generation and Frequency Domain Measurement)

– Ignore if updated in previous step

4. Update the “digital_start_trigger_source” based on NI-MAX Hardware in

the “DigitalStartTriggerParameters” configured in the

configure_and_measure() method.

5. Review the Configurations of Analog Output and Analog Input Pins for

the intended use case

iii. Turn Off AO Channel

1. Step into the “turn_off_all_ao_channels.py” example.

2. Update the physical channels input with Analog Output Channel in the

initialize step of Turn_off_all_ao_channels.

3. Review the Configurations of Analog Output for the intended use case

3. Review the generate and range settings of Analog Output Pins and Analog input Pins

based on the DUT and Connections before running with Hardware.

6

© National Instruments Corporation

1.6 Pinouts of PCIe-6323

7

© National Instruments Corporation

1.7 Pinouts of cDAQ Modules

1. Analog Input Module (NI-9215)

2. Analog Output Module (NI-9263)

8

© National Instruments Corporation

1.8 Pinouts of TestScale Modules

1. Analog Input Module (TS-15100)

2. Analog Output Module (TS-15110)

9

© National Instruments Corporation

1.9 How to create/Modify Global Virtual Channels?
A virtual channel is a collection of settings such as a name, a physical channel, input terminal

connections, the type of measurement or generation, and can include scaling information. A virtual

channel created outside a task is a Global Virtual Channel.Follow the below steps to create Global

Virtual Channel in NI-MAX.

Follow the below steps to create Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, right-click Data Neighbourhood and select Create New

3. In the Create New window, select NI-DAQmx Global Virtual Channel and click Next. The

DAQ Assistant opens.

4. Select an I/O type, such as analog input

5. Select the physical channel of Hardware

6. Type the global virtual channel name. Click Finish

7. Save your configuration.

Follow the below steps to modify the existing Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, expand Data Neighbourhood > NI-DAQmx Global Virtual Channel

3. Select the Global Channel to modify. Configuration window opens.

4. Click on “Details >>” as highlighted above to view the Physical Channel

5. Right click and Change Physical Channel to update the Physical Channel. Select the Physical

Channel from Hardware as per the connection and Click “Ok”

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html

10

© National Instruments Corporation

6. Save your configuration

	Audio Test Sequence
	1.1 Purpose
	1.2 Highlighted Features
	1.3 Prerequisites
	1.4 Setup Diagram
	1.5 How to run this Example?
	1.5.1 How to enable the Hardware?

	1.6 Pinouts of PCIe-6323
	1.7 Pinouts of cDAQ Modules
	1.8 Pinouts of TestScale Modules
	1.9 How to create/Modify Global Virtual Channels?

