

1

© National Instruments Corporation

Digital IO Test Sequence

1.1 Purpose
The Digital IO Test Sequence demonstrates the generation and measurement of digital state,

pattern, clock, pulse, PWM signals with Digital Output and Digital Input Resources. This example

sequence can be executed in a custom Python sequence script using the measurement libraries

written in Python.

Example File Location

“<venv>\Lib\site-packages\nipcbatt\pcbatt_automation\digital_io_tests” 

1.2 Highlighted Features
 Digital State Test

o Generates Digital High & Low state using Digital output resources and measures the

digital states in test points using digital input resources. Libraries used in the

example are “StaticDigitalStateGeneration()” and

“StaticDigitalStateMeasurement()”.

 Digital Pattern Test (with trigger)

o Generates Digital Pattern using Digital output resources and measure the same

using digital input resources. Libraries used in the example are

“DynamicDigitalPatternGeneration()” and

“DynamicDigitalPatternMeasurement()”.

 Digital Clock Tests

o Generates Digital Clock and measures the Digital Frequency of the same signal

through counter-based measurements using Core Digital IO Resources. Libraries

used in the example are “DigitalClockGeneration()” and

“DigitalFrequencyMeasurement()”.

 Digital PWM Test

o Generates Digital pulse signal and measures the Digital PWM parameters of the

same signal through counter-based measurements using Core Digital IO Resources.

Libraries used in the example are “DigitalPulseGeneration()” and

“DigitalPwmMeasurement()”.

 Digital Count Event Tests - SW Timed (External Wait)

o Generates Digital pulse signal and counts the number of Digital edges present in the

same signal through counter-based measurements using Core Digital IO Resources.

Digital edge counting is performed at Software timed using an external wait.

Libraries used in this example are “DigitalPulseGeneration()” and

“DigitalEdgeCountMeasurementUsingSoftwareTimer()”.

 Digital Count Event Tests - HW Timed (With Trigger)

o Generates Digital pattern and counts the number of Digital edges present in the

same signal through counter-based measurements using Core Digital IO Resources.

Digital edge counting is performed at Hardware timed using with Trigger to create a

measurement window for fixed duration. Libraries used in this example are

“DynamicDigitalPatternGeneration()” and

“DigitalEdgeCountMeasurementUsingHardwareTimer()”.

2

© National Instruments Corporation

 Turn Off all DO Channels

o Powers down all digital output channels by configuring the output state to LOW.

Libraries used in the example is “StaticDigitalStateGeneration()”.

Refer this folder for more details on each Measurement library “\<venv>\Lib\site-

packages\nipcbatt\pcbatt_library”.

1.3 Prerequisites
 Python – 3.9 to 3.12

 DAQmx Driver – 2023 Q3 or later

1.4 Setup Diagram
Represents the hardware (Simulated) used in this example sequence. Pin Outs of each resource is

added below.

Note:
1. Make sure there is a common GND between different Digital resources involved.

2. In the above block diagram, usage of PFI3 as Input and PFI7 as Output is arbitrary. User can
use any PFI terminals based on their custom use cases.

1.5 How to run this Example?
Complete the following steps to run the sequence.

1. First, we must configure NI-MAX to reflect the simulated virtual channels which will be used

by the Python script names mentioned in digital_clock_test.py or

digital_count_events_hw_timed.py or digital_count_events_sw_timed.py or

digital_pattern_test.py or digital_pwm_test.py or digital_state_test.py :

a. A hardware configuration file for NI-MAX is required to run this example. The

configuration file contains a set of predefined global channel names which are used

by the nidaqmx driver to communicate with the Python scripts.

b. To import the “Hardware Config” open NI-MAX.

3

© National Instruments Corporation

c. Click on File -> Import to open the Configuration Import Wizard

d. In the Configuration Import Wizard window, click on the Browse (...) button and

locate the Hardware Config.ini file in “\<venv>\Lib\site-

packages\nipcbatt\pcbatt_automation”. Then click on Next -> Import -> Finish

e. NI-MAX now holds the same virtual channel name references contained in the

examples provided.

The digital_clock_test.py, digital_count_events_hw_timed.py, digital_count_events_sw_timed.py,

digital_pattern_test.py, digital_pwm_test.py and digital_state_test.py files will create log files in

the form of a simple text (.txt) file. The default file path it will use is:

"C:\\Windows\\Temp\\digital_clock_test_results.txt"

"C:\\Windows\\Temp\\digital_edge_count_hw_timed_test_results.txt"

“C:\\Windows\\Temp\\digital_edge_count_sw_timed_test_results.txt"

"C:\\Windows\\Temp\\digital_pattern_test_results.txt"

4

© National Instruments Corporation

"C:\\Windows\\Temp\\digital_pwm_test_results.txt"

"C:\\Windows\\Temp\\digital_state_test_results.txt"

If you wish to create this file in a different location on your PC, change the value of the string

variable DEFAULT_FILEPATH.

2. Open the Python scripts digital_io_main_sequence.py along with digital_clock_test.py,

digital_count_events_hw_timed.py, digital_count_events_sw_timed.py,

digital_pattern_test.py, digital_pwm_test.py and digital_state_test.py in your IDE or text

editor of choice. The following steps are performed within digital_io_main_sequence.py.

a. Digital State Test - Demonstrates static digital state generation and measurement

using Digital output and input resources. Below are the steps included in the test.

i. Initialize Static Digital State Generation and Static Digital State

Measurement Libraries (Global Channels are inputs) by creating the

instances of StaticDigitalStateGeneration() and

StaticDigitalStateMeasurement() classes and then using initialize() method

on each object.

ii. Configures the Static Digital State Generation and start sourcing Digital State

HIGH.

iii. Static Digital State Measurement reads the Digital State.

iv. Configures the Static Digital State Generation and start sourcing Digital State

LOW

v. Static Digital State Measurement reads the Digital State.

vi. Use the close() methods on both instances to close all tasks and release

resources allocation.

Refer the help/comments in the sequence for more details.

b. Digital Pattern Test (with Trigger) - Demonstrates digital pattern generation and

measurement using Digital input and output resources. Hardware Triggers are used

to reduce the delay between Source and Measure. Below are the steps included in

the test.

i. Initialize Dynamic Digital Pattern Generation and Dynamic Digital Pattern

Measurement Libraries (Global Channels are inputs) by creating the

instances of DynamicDigitalPatternGeneration() and

DynamicDigitalPatternMeasurement() classes and then using initialize()

method on each object.

ii. Configure Dynamic Digital Pattern Measurement to wait for Start Trigger

from Digital Output Resource

iii. Configure the Dynamic Digital Pattern Generation and start producing pulse

train (in the backend, Digital Output resource sends the Trigger in the

backplane once the Source started which in turn starts the measurement in

Digital Input resource)

iv. Fetch the pulse train measured from Digital Input Resource using Dynamic

Digital Pattern Measurement library.

v. Use the close() methods on both instances to close all tasks and release

resources allocation.

5

© National Instruments Corporation

Refer the help/comments in the sequence for more details.

c. Digital Clock Tests - Demonstrates digital clock generation and frequency

measurement through counter-based measurements using Core Digital IO

Resources. Below are the steps included in the test.

i. Initialize Digital Clock Generation and Digital Frequency Measurement

Libraries (Physical Terminal and Counter are inputs) by creating the

instances of DigitalClockGeneration() and DigitalFrequencyMeasurement()

classes and then using initialize() method on each object.

ii. Generates Digital Clock signal of fixed frequency using Digital Clock

Generation Library.

iii. Fetch and measures the frequency of generated Digital clock signal using

Digital Frequency Measurement Library.

iv. Use the close() methods on both instances to close all tasks and release

resources allocation

Refer the help/comments in the sequence for more details.

d. Digital PWM Test - Demonstrates digital pulse generation and PWM measurement

through counter-based measurements using Core Digital IO Resources.

i. Initialize Digital Pulse Generation and Digital PWM Measurment Libraries

(Physical Terminal and Counter are inputs) by creating the instances of

DigitalPulseGeneration() and DigitalPwmMeasurement() classes and then

using initialize() method on each object.

ii. Configure Digital PWM Measurement Library to capture Digital cycles/pulses

using counter.

Note: Digital PWM Measurement Library starts PWM measurements only on

the arrival of first rising edge in the terminal input.

iii. Generated required Digital pulses using Digital Pulse Generation Library.

iv. Fetch and measure the PWM parameters like High Time(s), Low Time(s),

Duty Cycle(%) and Frequency(Hz) from the captured Digital pulse signal.

v. Use the close() methods on both instances to close all tasks and release

resources allocation

 Refer the help/comments in the sequence for more details.

e. Digital Count Event Tests - SW Timed (External Wait) - Demonstrates digital pulse

generation and digital edge count measurement through counter-based

measurements using Core Digital IO Resource. Digital edge counting is performed at

Software timed using an external wait.

i. Initialize Digital Pulse Generation and Digital Edge Count Measurment using

Software Timer Libraries (Physical Terminal, Counter are inputs) by creating

the instances of DigitalPulseGeneration() and

DigitalEdgeCountMeasurementUsingSoftwareTimer() classes and then

using initialize() method on each object.

ii. Arms Digital Edge Count Measurement Library to measure Digital Edges

measured on the terminal input.

iii. Generates fixed number of Digital pulse signals using Digital Pulse

Generation Library

6

© National Instruments Corporation

iv. Add an external software wait for the generation to be completed by Digital

Pulse Generation Library

v. Capture and measure the number of digital pulse edges obtained using

Digital Edge Count Measurement Library.

vi. Use the close() methods on both instances to close all tasks and release

resources allocation

Refer the help/comments in the sequence for more details.

f. Digital Count Event Tests - HW Timed (With Trigger) - Demonstrates digital pattern

generation and digital edge count measurement through counter-based

measurements using Core Digital IO Resources. Digital edge counting is performed at

Hardware timed using with Trigger to create a measurement window for fixed

duration.

i. Initialize Digital Pattern Generation and Digital Edge Count Measurement

Hardware Timer Libraries (Physical Terminal, Counter are inputs) by creating

the instances of DynamicDigitalPatternGeneration() and

DigitalEdgeCountMeasurementUsingHardwareTimer() classes and then

using initialize() method on each object.

ii. Configure Digital Edge Count Measurement Library to measure Digital Edges

for a fixed Measurement window upon Start Trigger.

iii. Generates Digital pulse train signals using Digital Pattern Generation Library

(in the backend, Digital Output resource sends the Trigger in the backplane

once the Source started which in turn starts the measurement in Digital

Input resource)

iv. Capture and measure the number of digital pulse edges obtained using

Digital Edge Count Measurement Library for the fixed measurement

window.

v. Use the close() methods on both instances to close all tasks and release

resources allocation

 Refer the help/comments in the sequence for more details.

g. Turn Off all DO Channels – Power downs all Digital output channels by configuring

them to LOW state. Below are the steps included in the test.

i. Initialize Static Digital State Generation Library by creating the instance of

StaticDigitalStateGeneration() class and then using initialize() method on

each object .

ii. Configure the Static Digital State Generation to source state LOW in

specified Digital Output channels.

iii. Use the close() methods on both instances to close all tasks and release

resources allocation

3. When the execution completes, review the results on the .txt files generated by the logger

at the specified location.

a. The report has the configurations and Measurement values captured (runs with

simulated instrument by default)

b. Verify the Measurement and data formats returned by the Measurement library

7

© National Instruments Corporation

1.5.1 How to run with Hardware?
Digital IO Test sequence runs with simulated hardware by default. Once the hardware setup is

available, you can do the below changes to enable running the test with the hardware.

Note : In this example, physical and global virtual channels are used to configure the terminal or pin

to perform the instrument actions. Global Virtual Channels are software entities that encapsulate

the physical channel along with other channel specific information—range, terminal configuration,

and custom scaling. Global Channels can be created in NI-MAX and called in Measurement Libraries.

1. Skip the first step which imports simulated virtual channels in MAX as in section 1.5. If

already done, you can simply update the channel names (physical or virtual) in the

initialize() step of each automation sequence to match the hardware

connected/detected in NI-MAX.

Note: Please ensure correct trigger sources as mentioned in the steps below.

2. Follow the below steps for each sequence. Refer “Note to run with Hardware” labels in

the sequence.

i. Digital State Test

1. Step into “digital_state_test.py” sequence

2. Update the “GENERATION_CHANNEL” input with Static Digital State

Generation resource channel in the initialize() method of

StaticDigitalStateGeneration() also update the

“MEASUREMENT_CHANNEL” input with Static Digital State

Measurement resource channel in the initialize() method of

StaticDigitalStateMeasurement().

3. Open NI-MAX and update the physical Channel linked to the Global

Channels – TS_Din0, TS_Din1, TP_DOut0, TP_DOut1 (used in the

initialize step of Static Digital State Generation and Measurement)

Note: Sequence should be executed once in Simulation mode to create

the required Global Virtual Channels in NI-MAX to modify.

4. Review the Configurations of Digital Output and Digital Input Pins for the

intended use case

ii. Digital Pattern Test (With Trigger)

1. Step into “digital_pattern_test.py” sequence.

2. Update the “GENERATION_CHANNEL” input with Dynamic Digital

Pattern Generation resource channel in the initialize() method of

DynamicDigitalPatternGeneration() also update the

“MEASUREMENT_CHANNEL” input with Dynamic Digital Pattern

Measurement resource channel in the initialize() method of

DynamicDigitalPatternMeasurement().

3. Open NI-MAX and update the physical Channel linked to the Global

Channels – TS_Din0, TS_Din1, TP_DOut0, TP_DOut1 (used in the

initialize step - ignore if updated in previous steps)

4. Update the Trigger settings in “Dynamic Digital Pattern Measurement -

Configure TP” step – Set Trigger based on HW setup to capture digital

signal as soon as pattern generated using Dynamic Digital Pattern

Generation Library.

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/chans.html

8

© National Instruments Corporation

5. Update parameters in “Generate Port Digital Data” step based on digital

pattern to be generated. This Step can also be replaced entirely with

custom step to generate any custom digital pattern.

6. Verify if the sampling rate at measurement end should be same as the

sampling rate at generation end (Onboard Clock for same Backplane or

external PFI signals)

7. Review the configurations for the intended use case.

iii. Digital Clock Test

1. Step into “digital_clock_test.py” sequence

2. Update the “OUTPUT_TERMINAL” and

“GEN_PHYSICAL_CHANNEL_COUNTER” inputs with Digital Clock

Generation resource channel in the initialize() method of

DigitalClockGeneration() also update the “INPUT_TERMINAL” and

“MEAS_PHYSICAL_CHANNEL_COUNTER” inputs with Digital Frequency

Measurement resource channel in the initialize() method of

DigitalFrequencyMeasurement().

3. Update Digital clock setting in “Digital Clock Generation - Configure and

generate Digital clock” based on the required Digital Clock to generate

for the intended use case.

4. Review the configurations for the intended use case.

iv. Digital PWM Test

1. Step into “digital_pwm_test.py” sequence

2. Update the “OUTPUT_TERMINAL” and

“GEN_PHYSICAL_CHANNEL_COUNTER” inputs with Digital Pulse

Generation resource channel in the initialize() method of

DigitalPulseGeneration() also update the “INPUT_TERMINAL” and

“MEAS_PHYSICAL_CHANNEL_COUNTER” inputs with Digital PWM

Measurement resource channel in the initialize() method of

DigitalPwmMeasurement().

3. Update the cycles to capture in “Digital PWM Measurement –

Configure_Only” step.

4. Update the Digital pulse settings in “Digital Pulse Generation - Generate

Digital pulse signals” step based on the required digital signal to be

generated.

5. Update the cycles to capture in “Digital PWM Measurement –

Measure_Only” step

6. Review the configurations for the intended use case.

v. Digital Count Event Tests - SW Timed (External Wait)

1. Step into “digital_count_events_sw_timed.py” sequence.

2. Update the “OUTPUT_TERMINAL” and

“GEN_PHYSICAL_CHANNEL_COUNTER” inputs with Digital Pulse

Generation resource channel in the initialize() method of

DigitalPulseGeneration() also update the “INPUT_TERMINAL” and

“EDGE_COUNTER” inputs with Digital Edge Count Measurement Using

Software Timer resource channel in the initialize() method of

DigitalEdgeCountMeasurementUsingSoftwareTimer().

9

© National Instruments Corporation

3. Update the Digital pulse settings in “Digital Pulse Generation - Configure

& Generate Digital pulse signals” step based on the required digital

signal to be generated.

4. Review the configurations for the intended use case.

vi. Digital Count Event Tests - HW Timed (With Trigger)

1. Step into “DigitalEdgeCountMeasurementUsingSoftwareTimer.py

sequence.

2. Update the “GENERATION_CHANNEL” input with Dynamic Digital

Pattern Generation resource channel in the initialize() method of

DynamicDigitalPatternGeneration() also update the

“INPUT_TERMINAL”, “EDGE_COUNTER” and “COUNTER_TIMER” inputs

with Digital Edge Count Measurement Using Hardware Timer resource

channel in the initialize() method of

DigitalEdgeCountMeasurementUsingHardwareTimer().

3. Update the Trigger settings in “Digital Edge Count Measurement -

Configure TP” step – Set Trigger based on HW setup to capture digital

edges as soon as pattern generated using Dynamic Digital Pattern

Generation Library.

4. Update parameters in “Generate Port Digital Data” step based on digital

pattern to be generated. This Step can also be replaced entirely with any

other step to generate any custom digital pattern.

5. Review the configurations for the intended use case.

vii. Turn Off DO Channel Sequence

1. Step into the “turn_off_all_do_channels.py” sequence.

2. Update the “Global Channels” input with Digital Output Channels used

in the initialize step of Turn Off All DO Channels sequence.

3. Review the Configurations of Digital Output Pins for the intended use

case.

3. Hardware setup considerations

i. Make sure common ground connection provided between digital input and

output resources.

ii. In digital pattern measurement, make sure to use same sample clock rate in

both digital input and output resources to extract the exact data from the

testpoint.

10

© National Instruments Corporation

1.6 Pinouts of PCIe-6323

11

© National Instruments Corporation

1.7 Pinouts of cDAQ Module

1. Digital Input Output Module (NI-9403)

2. PFI Module (NI-9402)

12

© National Instruments Corporation

3. Digital Output Module (NI-9477)

13

© National Instruments Corporation

1.8 Pinouts of TestScale Modules

1. Digital Input Output Module (TS-15120)

2. Digital Output Module (TS-15110)

14

© National Instruments Corporation

3. Core DIO Module (TS-15050)

15

© National Instruments Corporation

1.9 How to create/Modify Global Virtual Channels?
A virtual channel is a collection of settings such as a name, a physical channel, input terminal
connections, the type of measurement or generation, and can include scaling information. A virtual
channel created outside a task is a Global Virtual Channel.
Follow the below steps to create Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, right-click Data Neighbourhood and select Create New

3. In the Create New window, select NI-DAQmx Global Virtual Channel and click Next. The

DAQ Assistant opens.

4. Select an I/O type, such as analog input

5. Select the physical channel of Hardware

6. Type the global virtual channel name. Click Finish

7. Save your configuration.

Follow the below steps to modify the existing Global Virtual Channel in NI-MAX.

1. Launch NI-MAX

2. In NI-MAX, expand Data Neighbourhood > NI-DAQmx Global Virtual Channel

3. Select the Global Channel to modify. Configuration window opens.

4. Click on “Details >>” as highlighted above to view the Physical Channel

5. Right click and Change Physical Channel to update the Physical Channel. Select the Physical

Channel from Hardware as per the connection and Click “Ok”

6. Save your configuration

https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html
https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/namechantask.html

	Digital IO Test Sequence
	1.1 Purpose
	1.2 Highlighted Features
	1.3 Prerequisites
	1.4 Setup Diagram
	1.5 How to run this Example?
	1.5.1 How to run with Hardware?

	1.6 Pinouts of PCIe-6323
	1.7 Pinouts of cDAQ Module
	1.8 Pinouts of TestScale Modules
	1.9 How to create/Modify Global Virtual Channels?

