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CHAPTER
ONE

1.1 Introduction

OVERVIEW AND TUTORIAL

The 1sqgfit module is designed to facilitate least-squares fitting of noisy data by multi-dimensional, nonlinear func-
tions of arbitrarily many parameters, each with a (Bayesian) prior. 1sgfit makes heavy use of another module,
gvar (distributed separately), which provides tools that simplify the analysis of error propagation, and also the cre-
ation of complicated multi-dimensional Gaussian distributions. This technology also allows 1sgfit to calculate
exact derivatives of fit functions from the fit functions themselves, using automatic differentiation, thereby avoiding
the need to code these by hand (the fitters use the derivatives). The power of the gvar module, particularly for corre-
lated distributions, enables a variety of unusual fitting strategies, as we illustrate below; it is a feature that distinguishes

1sqgfit from standard fitting packages.

The following (complete) code illustrates basic usage of I1sgfit:

import numpy as np

import gva

r as gv

import lsqgfit
y = | # data for the dependent variable
'datal' gv.gvar([l1.376, 2.010], [[ 0.0047, 0.011, [ 0.01, 0.05611),
'data2' gv.gvar ([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.013611),
'b/a’ gv.gvar (2.0, 0.5)
}
x = { # independent variable
'datal' np.array([0.1, 1.0]),
'data?2' np.array([0.1, 0.5])
}
prior = {}
prior['a'] = gv.gvar(0.5, 0.5)
prior['b'] = gv.gvar (0.5, 0.5)
def fcn(x, p): # fit function of x and parameters p
ans = {}
for k in ['datal', 'data2']:
ans[k] = gv.exp(pl['a']l] + x[k] = p['b"'])
ans['b/a']l = pl['b'] / pl'a'l
return ans
# do the fit
fit = lsgfit.nonlinear_fit (data=(x, y), prior=prior, fcn=fcn, debug=True)

print (fit.format (maxline=True))

p = fit.p
outputs =

dict (a=pl['a

"1,

b=p['b"'])

# print standard summary of fit

# best-fit values for parameters
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outputs['b/a']l = p['b']/pl['a']
inputs = dict(y=y, prior=prior)
print (gv.fmt_values (outputs)) # tabulate outputs

print (gv.fmt_errorbudget (outputs, inputs)) # print error budget for outputs

This code fits the function f (x,a,b)= exp(at+tb*x) (see fcn (x,p)) to two sets of data, labeled datal
and data2, by varying parameters a and b until f (x["datal’],a,b) and £ (x[’'data2’],a,b) equal
y[’datal’] and y [’ data2’ ], respectively, to within the ys’ errors.

The means and covariance matrices for the ys are specified in the gv.gvar (. ..) s used to create them: thus, for
example,

>>> print (y['datal'])
[1.376(69) 2.01(24)]

>>> print (y['datal'][0].mean, "+-", y['datal']l[0].sdev)
1.376 +- 0.068556546004
>>> print (gv.evalcov(y['datal'])) # covariance matrix
[[ 0.0047 0.01 ]

[ 0.01 0.056 11

shows the means, standard deviations and covariance matrix for the data in the first data set (0.0685565 is the square
root of the 0.0047 in the covariance matrix).

The dictionary prior gives a priori estimates for the two parameters, a and b: each is assumed to be 0.540.5 before
fitting. The parameters p [k ] in the fit function fcn (x, p) are stored in a dictionary having the same keys and
layout as prior (since prior specifies the fit parameters for the fitter).

In addition to the datal and data2 data sets, there is an extra piece of input data, y [’ b/a’ ], which indicates that
b/a is 240.5. The fit function for this data is simply the ratio b/a (represented by p [ b’ ] /p [’ a’ ] in fit function
fen (x, p) ). The fit function returns a dictionary having the same keys and layout as the input data y.

The output from the code sample above is:

Least Square Fit:

chi2/dof [dof] = 0.17 [5] Q = 0.97 logGBF = 0.65538
Parameters:
a 0.253 (32) [ 0.50 (50) 1
b 0.449 (65) [ 0.50 (50) 1
Fit
key y[key] f(p) [key]
b/a 2.00 (50) 1.78 (30)
datal 0 1.376 (69) 1.347 (46)
1 2.01 (24) 2.02 (le)
data2 0 1.329 (69) 1.347 (46)
1 1.58 (12) 1.612 (82)
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 8/0.0)
Values:

a: 0.253(32)
b/a: 1.78(30)
b: 0.449(65)

o)

Partial % Errors:

4 Chapter 1. Overview and Tutorial
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% 12.75 16.72 14.30
prior: 0.92 1.58 1.88
total: 12.78 16.80 14.42

The best-fit values for a and b are 0.253(32) and 0.449(65), respectively; and the best-fit result for b/a is 1.78(30),
which, because of correlations, is slightly more accurate than might be expected from the separate errors for a and b.
The error budget for each of these three quantities is tabulated at the end and shows that the bulk of the error in each
case comes from uncertainties in the y data, with only small contributions from uncertainties in the priors prior.
The fit results corresponding to each piece of input data are also tabulated (Fit: .. .); the agreement is excellent,
as expected given that the chi x =2 per degree of freedom is only 0.17.

Note that the constraint in y on b/a in this example is much tighter than the constraints on a and b separately. This
suggests a variation on the previous code, where the tight restriction on b/ a is built into the prior rather than y:

as before

y = { # data for the dependent variable
'datal' : gv.gvar([l1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.05611),
'data2' : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.013611)
}
x = { # independent variable
'datal' : np.array([0.1, 1.01),
'data2' : np.array([0.1, 0.5])
}
prior = {}
prior['a']l] = gv.gvar (0.5, 0.5)
prior['b'] = prior['a'l % gv.gvar(2.0, 0.5)
def fcn(x, p): # fit function of x and parameters plk]
ans = {}

for k in ['datal', 'data2']:
ans[k] = gv.exp(p['a']l + x[k]lxp['b'])
return ans

as before

Here the dependent data y no longer has an entry for b/ a, and neither do results from the fit function; but the prior for
b is now 240.5 times the prior for a, thereby introducing a correlation that limits the ratio b/a to be 2+0.5 in the fit.
This code gives almost identical results to the first one — very slightly less accurate, since there is slightly less input
data. We can often move information from the y data to the prior or back since both are forms of input information.

There are several things worth noting from this example:

* The input data (y) is expressed in terms of Gaussian random variables — quantities with means and a covariance
matrix. These are represented by objects of type gvar .GVar in the code; module gvar has a variety of tools
for creating and manipulating Gaussian random variables (also see below).

» The input data is stored in a dictionary (y) whose values can be gvar .GVars or arrays of gvar.GVars. The
use of a dictionary allows for far greater flexibility than, say, an array. The fit function (fcn (x, p)) has to
return a dictionary with the same layout as that of y (that is, with the same keys and where the value for each key
has the same shape as the corresponding value in y). 1sgfit allows y to be an array instead of a dictionary,
which might be preferable for simple fits (but usually not otherwise).

» The independent data (x) can be anything; it is simply passed through the fit code to the fit function fcn (x, p) .
It can also be omitted altogether, in which case the fit function depends only upon the parameters: fcn (p) .

* The fit parameters (p in fcn (x, p) ) are also stored in a dictionary whose values are gvar .GVars or arrays
of gvar.GVars. Again this allows for great flexibility. The layout of the parameter dictionary is copied from

1.1. Introduction 5
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that of the prior (prior). Again p can be a single array instead of a dictionary, if that simplifies the code.

* The best-fit values of the fit parameters (fit.p[k]) are also gvar.GVars and these capture statistical cor-
relations between different parameters that are indicated by the fit. These output parameters can be combined
in arithmetic expressions, using standard operators and standard functions, to obtain derived quantities. These
operations take account of and track statistical correlations.

e Function gvar. fmt_errorbudget () is a useful tool for assessing the origins (inputs) of the statistical
errors obtained in various final results (outputs). It is particularly useful for analyzing the impact of the a
priori uncertainties encoded in the prior (prior).

e Parameter debug=True is setin Isqgfit.nonlinear_fit. Thisis a good idea, particularly in the early
stages of a project, because it causes the code to check for various common errors and give more intelligible
error messages than would otherwise arise. This parameter can be dropped once code development is over.

* The priors for the fit parameters specify Gaussian distributions, characterized by the means and standard de-
viations given gv.gvar (...). Some other distributions become available if argument extend=Tzrue is
included in the call to 1sgfit.nonlinear._ fit. The distribution for parameter a, for example, can then be
switched to a log-normal distribution by replacing prior[’a’ ]=gv.gvar (0.5, 0.5) with:

prior['log(a)'] = gv.log(gv.gvar(0.5,0.5))

in the code. This change would be desirable if we knew a priori that parameter a is positive since this is
guaranteed with a log-normal distribution. Only the prior need be changed. (In particular, the fit function
fen (x, p) need not be changed.)

What follows is a tutorial that demonstrates in greater detail how to use these modules in a selection of variations on
the data fitting problem. As above, code for the examples is specified completely (with one exception) and so can be
copied into a file, and run as is. It can also be modified, allowing for experimentation.

Another way to learn about the modules is to examine the case studies that follow this section. Each focuses on a
single problem, again with the full code and data to allow for experimentation.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2; or add

from __ future  import print_function

at the start of your file.

1.2 Gaussian Random Variables and Error Propagation

The inputs and outputs of a nonlinear least squares analysis are probability distributions, and these distributions will
be Gaussian provided the input data are sufficiently accurate. 1sgfit assumes this to be the case. (It also provides
tests for non-Gaussian behavior, together with methods for dealing with such behavior. See: Non-Gaussian Behavior;
Testing Fits.)

One of the most distinctive features of 1.sgfit is that it is built around a class, gvar.GVar, of objects that can be
used to represent arbitrarily complicated Gaussian distributions — that is, they represent Gaussian random variables
that specify the means and covariance matrix of the probability distributions. The input data for a fit are represented
by a collection of gvar.GVars that specify both the values and possible errors in the input values. The result of a fit
is a collection of gvar .GVars specifying the best-fit values for the fit parameters and the estimated uncertainties in
those values.

gvar.GVars are defined in the gvar module. There are five important things to know about them (see the gvar
documentation for more details):

1. gvar.GVars are created by gvar.gvar (), individually or in groups: for example,

6 Chapter 1. Overview and Tutorial
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>>> import gvar as gv
>>> print (gv.gvar (1.0, 0.1), gv.gvar('1.0 +- 0.2"), gv.gvar('1.0(4)"))
1.00(¢(10) 1.00(20) 1.00¢(40)

>>> print (gv.gvar([1.0, 1.0, 1.0], [0.1, 0.2, 0.411))
[1.00(10) 1.00(20) 1.00¢(41)]

>>> print (gv.gvar(['1.0(1)"', '1.0(2)', '"1.00(41)"'1))
[1.00(10) 1.00(20) 1.00¢(41)]

>>> print (gv.gvar(dict (a='1.0(1)"', b=["1.0(2)", '1.0(4)'1)))
{'a': 1.00(10),'b': array([1.00(20), 1.00(40)], dtype=object)}

gvar uses the compact notation 1.234(22) to represent 1.2344-0.022 — the digits in parentheses indicate the
uncertainty in the rightmost corresponding digits quoted for the mean value. Very large (or small) numbers use
a notation like 1.234(22)e+10.

2. gvar.GVars describe not only means and standard deviations, but also statistical correlations between differ-
ent objects. For example, the gvar . GVars created by
>>> import gvar as gv
>>> a, b = gv.gvar([1l, 1], [[0.01, 0.01], [0.01, 0.01000111)
>>> print (a, b)
1.00(10) 1.00(10)
both have means of 1 and standard deviations equal to or very close to 0. 1, but the ratio b/a has a standard
deviation that is 100x smaller:
>>> print (b / a)
1.0000(10)
This is because the covariance matrix specified for a and b when they were created has large, positive off-
diagonal elements:
>>> print (gv.evalcov([a, bl)) # covariance matrix
[[ 0.01 0.01 ]
[ 0.01 0.01000171]
These off-diagonal elements imply that a and b are strongly correlated, which means that b/a or b—a will have
much smaller uncertainties than a or b separately. The correlation coefficient for a and b is 0.99995:
>>> print (gv.evalcorr([a, bl)) # correlation matrix
[[ 1. 0.99995]
[ 0.99995 1. 11
3. gvar.GVars can be used in arithmetic expressions or as arguments to pure-Python functions. The results are
also gvar.GVars. Covariances are propagated through these expressions following the usual rules, (automat-
ically) preserving information about correlations. For example, the gvar.GVars a and b above could have
been created using the following code:
>>> a = gv.gvar(l, 0.1)
>>> b = a + gv.gvar (0, 0.001)
>>> print (a, b)
1.00(10) 1.00¢(10)
>>> print (b / a)
1.0000(10)
>>> print (gv.evalcov([a, bl))
1.2. Gaussian Random Variables and Error Propagation 7
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[[ 0.01 0.01 ]
[ 0.01 0.01000171]

The correlation is obvious from this code: b is equal to a plus a very small correction. From these variables we
can create new variables that are also highly correlated:

>>> x = gv.log(l + a »*x 2)
>>> y = b % gv.cosh(a / 2)
>>> print (x, y, y / X)

0.69(10) 1.13(14) 1.627(34)

>>> print gv.evalcov([x, y]l)
[[ 0.01 0.01388174]
[ 0.01388174 0.01927153]]

The gvar module defines versions of the standard Python functions (sin, cos, ...) that work with
gvar.GVars. Most any numeric pure-Python function will work with them as well. Numeric functions
that are compiled in C or other low-level languages generally do not work with gvar.GVars; they should
be replaced by equivalent pure-Python functions if they are needed for gvar . GVar-valued arguments. See the
gvar documentation for more information.

The fact that correlation information is preserved automatically through arbitrarily complicated arithmetic is
what makes gvar . GVars particularly useful. This is accomplished using automatic differentiation to compute
the derivatives of any derived gvar .GVar with respect to the primary gvar.GVars (those defined using
gvar.gvar ()) from which it was created. As a result, for example, we need not provide derivatives of fit
functions for 1sgfit (which are needed for the fit) since they are computed implicitly by the fitter from the
fit function itself. Also it becomes trivial to build correlations into the priors used in fits, and to analyze the
propagation of errors through complicated functions of the parameters after the fit.

4. The uncertainties in derived gvar .GVars come from the uncertainties in the primary gvar.GVars from
which they were created. It is easy to create an “error budget” that decomposes the uncertainty in a derived
gvar.GVar into components coming from each of the primary gvar.GVars involved in its creation. For

example,
>>> a = gv.gvar('1.0(1)")
>>> b = gv.gvar('0.9(2)")
>>> x = gv.log(l + a »*x 2)
>>> y = b x gv.cosh(a / 2)
>>> outputs = dict (x=x, y=Vy)
>>> print (gv.fmt_values (outputs))
Values:
y: 1.01(23)
x: 0.69(10)
>>> inputs = dict (a=a, b=b)

>>> print (gv.fmt_errorbudget (outputs=outputs, inputs=inputs))

<)

Partial % Errors:

% X

a 2.31 14.43

b 22.22 0.00
total 22.34 14.43

The error budget shows that most of v ‘s 22.34% uncertainty comes from b, with just 2.3% coming from a. The
total uncertainty is the sum in quadrature of the two separate uncertainties. The uncertainty in x is entirely from
a, of course.

5. Storing gvar.GVars in a file for later use is somewhat complicated because one generally wants to hold onto

8 Chapter 1. Overview and Tutorial
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their correlations as well as their mean values and standard deviations. One easy way to do this is to put all of
the gvar.GVars to be saved into a single dictionary object of type gvar .BufferDict, and then to save the
gvar.BufferDict using Python’s pickle module: for example, using the variables defined above,

>>> import pickle

>>> buffer = gv.BufferDict (a=a, b=b, x=x, y=y)

>>> print (buffer)

{'a': 1.00(10),"'b"': 1.00(10),"'x": 0.69(10),"'y"': 1.13(14)}

>>> pickle.dump (buffer, open('outputfile.p', 'wb'))

This creates a file named ' outputfile.p’ containing the gvar.GVars. Loading the file into a Python
code later recovers the gvar .Buf ferDict with correlations intact:

>>> pbuffer = pickle.load(open('outputfile.p', 'rb'))
>>> print (buffer)
{'a': 1.00(10),"'b': 1.00(10),"'x': 0.69(10),"'y': 1.13(14)}

>>> print (buffer['y'] / buffer['x'])
1.627(34)

gvar.BufferDicts were created specifically to handle gvar .GVars, although they can be quite useful
with other data types as well. The values in a pickled gvar .BufferDict can be individual gvar.GVars or
arbitrary numpy arrays of gvar .GVars. See the gvar documentation for more information.

There is considerably more information about gvar . GVars in the documentation for module gvar.

1.3 Basic Fits

A fit analysis typically requires three types of input:
1. fit data x, y (or possibly just v);

2. afunction y = f (x,p) relating values of y to to values of x and a set of fit parameters p; if there is no x,
theny = f(p);

3. some a priori idea about the fit parameters’ values (possibly quite imprecise — for example, that a particular
parameter is of order 1).

The point of the fit is to improve our knowledge of the parameter values, beyond our a priori impressions, by analyzing
the fit data. We now show how to do this using the 1 sgf it module for a more realistic problem, one that is familiar
from numerical simulations of quantum chromodynamics (QCD).

We need code for each of the three fit inputs. The fit data in our example is assembled by the following function:

import numpy as np
import gvar as gv

def make_data():
x = np.array([ 5., 6., 7., 8., 9., 10., 12., 14.1)
ymean = np.array (

[ 4.5022829417e-03, 1.8170543788e-03, 7.3618847843e-04,
2.9872730036e-04, 1.2128831367e-04, 4.9256559129e-05,
8.1263644483e-06, 1.3415253536e-06]

)

ycov = np.array (

[[ 2.1537808808e-09, 8.8161794696e-10, 3.6237356558e-10,
1.4921344875e-10, 6.1492842463e-11, 2.5353714617e-11,
4.3137593878e-12, 7.3465498888e-13],

1.3. Basic Fits 9
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.8161794696e-10,
.1633547703e-11,
.8059692534e-12,
.6237356558e-10,
.5572230776e-11,
.6008881270e-13,
.4921344875e-10,
.0632830128e-11,
.2087725578e-13,
.1492842463e-11,
.4264622187e-12,
.3576009069e-13,
.5353714617e-11,
.8443245513e-12,
.7551104112e-14,
.3137593878e-12,
.2087725578e-13,
.0403917951e-14,
.3465498888e-13,
.5986403288e-14,
.8976295583e-15,

H O W OO DR OO WR P <IN W oy

)

return x, gv.gvar (ymean,

W N WRFRPRRPRPRERPRJIFPNDEDNDOOOSGOR R WDNDW

.6193461816e-10,
.5481570082e-11,
.0985581496e-131,
.4921610813e-10,
.0608148954e-11,
.3146405310e-131,
.1633547703e-11,
.4264622187e-12,
.5986403288e-141],
.5481570082e-11,
.8496194125e-12,
.3914810594e-141,
.0540958082e-11,
.7369196122e-13,
.0244738582e-141,
.8059692534e-12,
.3576009069e-13,
.8976295583e-15],
.0985581496e-13,
.3914810594e-14,
.5672355835e-16]]

yCcovVv)

.4921610813e-10,
.0540958082e-11,

.1710468826e-11,
.4036448945e-12,

.5572230776e-11,
.8443245513e-12,

.0608148954e-11,
7.7369196122e-13,

.4036448945e-12,
.2498644263e-13,

.6008881270e-13,
.7551104112e-14,

.3146405310e-13,
1.0244738582e-14,

The function call x, y = make_data () returns eight x [1], and the corresponding values y [1] that we will fit.
The y[i] are gvar.GVars (Gaussian random variables — see previous section) built from the mean values in
ymean and the covariance matrix ycov, which shows strong correlations:

# fit data
0.0007362(79)

>>> print (y)

[0.004502 (46) 0.001817(19) 1.342(19)e-06]

>>> print (gv.evalcorr(y)) # correlation matrix

[ 1. 0.99853801 0.99397698 0.83814041]
[ 0.99853801 1. 0.99843828 0.86234032]
[ 0.99397698 0.99843828 1. 0.88605708]
[ 0.83814041 0.86234032 0.88605708 ... 1. 1]

These particular data were generated numerically. They come from a function that is a sum of a very large number of
decaying exponentials,

ali]l] » np.exp(-E[i] * x)

with coefficients a [1] of order 0.54+0.4 and exponents E [1] of order i+1£0.4. The function was evaluated with a
particular set of parameters a[1] and E [1], and then noise was added to create this data. Our challenge is to find
estimates for the values of the parameters a [1] and E [1] that were used to create the data.

Next we need code for the fit function. Here we know that a sum of decaying exponentials is appropriate, and therefore
we define the following Python function:

import numpy as np

def fcn(x, p): # function used to fit x, y data
a =pl'a'] # array of a[i]s
E = pl['E"] # array of E[i]s

return sum(ai * np.exp(-Ei x x) for ai, Ei in zip(a, E))

10 Chapter 1. Overview and Tutorial
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The fit parameters, a [1] and E [1], are stored as arrays in a dictionary, using labels a and E to access them. These
parameters are varied in the fit to find the best-fit values p=fitp for which fcn (x, fitp) most closely approxi-
mates the ys in our fit data. The number of exponentials included in the sum is specified implicitly in this function, by
the lengths of the p [’ a’ ] and p [’ E’ ] arrays. In principle there are infinitely many exponentials; in practice, given
the finite precision of our data, we will need only a few.

Finally we need to define priors that encapsulate our a priori knowledge about the fit-parameter values. In practice
we almost always have a priori knowledge about parameters; it is usually impossible to design a fit function without
some sense of the parameter sizes. Given such knowledge it is important (often essential) to include it in the fit.
This is done by designing priors for the fit, which are probability distributions for each parameter that describe the
a priori uncertainty in that parameter. As discussed in the previous section, we use objects of type gvar.GVar to
describe (Gaussian) probability distributions. Here we know that each a[1] is of order 0.5+£0.4, while E[1] is of
order 1+i+0.4. A prior that represents this information is built using the following code:

import 1lsgfit
import gvar as gv

def make_prior (nexp) : # make priors for fit parameters
prior = gv.BufferDict () # any dictionary works
prior['a'l = [gv.gvar (0.5, 0.4) for i in range (nexp) ]
prior['E'] = [gv.gvar(i+l, 0.4) for i in range (nexp) ]

return prior

where nexp is the number of exponential terms that will be used (and therefore the number of a[1]s and E[1i]s).
With nexp=3, for example, we have:

>>> print (prior

( )
[0.50(40) 0.50 (40

a'l
) 0.50(40)]

>>> print (prior['E'])
[1.00(40), 2.00(40), 3.00(40)]

We habitually use dictionary-like class gvar.BufferDict for the prior because it allows us to save the prior in a
file if we wish (using Python’s pickle module). If saving is unnecessary, gvar .BufferDict can be replaced by
dict () or most any other Python dictionary class.

With fit data, a fit function, and a prior for the fit parameters, we are finally ready to do the fit, which is now easy:

fit = lsgfit.nonlinear_fit (data=(x, y), fcn=f, prior=prior)

Our complete Python program is, therefore:

import lsqgfit
import numpy as np
import gvar as gv

def main () :
x, y = make_data() # collect fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(l, 7):
print('************************************* nexp ="', nexp)
prior = make_prior (nexp)

fit = lsgfit.nonlinear_ fit (data=(x, y), fcn=fcn, prior=prior, pO0=p0)
print (fit) # print the fit results
if nexp > 2:
E = fit.p['E"]
a = fit.p['a']
print ('E1/E0 =', E[1] /
print ('al/a0 ="', afll]l /

# best-fit parameters

E[O], ' E2/E0 ="', E[2] / E[0])
a[0]l, " a2/a0 =', al2] / a

1.3. Basic Fits 11
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if fit.chi2 / fit.dof < 1.:
jolt) fit.pmean
print ()

# starting point for next fit (opt.)

# error budget analysis
outputs = {
'E1/EO0':E[1]/E[O],
'al/a0':a[l]/al0],
}
inputs {'E':fit.prior['E"'], 'a':fit.prior['a'],
print (' Error Budget Analysis')
print (fit.fmt_values (outputs))
print (fit.fmt_errorbudget (outputs, inputs))

'E2/EO0':E[2]/E[O0],
'a2/a0':a[2]/al[0]
vyv:y}

def fcn(x, p): # function used to fit x, y data
a =pl'a'] # array of ali]s
E = p['E'] # array of E[i]s

return sum(ai * np.exp(-Ei % x) for ai, Ei in zip(a, E))

def make_prior (nexp) :

prior gv.BufferDict ()

# make priors for fit parameters
# any dictionary works

prior['a'] = [gv.gvar(0.5, 0.4) for i in range (nexp) ]
prior['E'] = [gv.gvar(i+l, 0.4) for i in range (nexp)]
return prior
def make_datal() : # assemble fit data
x = np.array([ 5., 6., 7., 8., 9., 10., 12., 14.1)
ymean = np.array (

[ 4.5022829417e-03, 1.8170543788e-03, 7.3618847843e-04,
2.9872730036e-04, 1.2128831367e-04, 4.9256559129e-05,
8.1263644483e-06, 1.3415253536e-06]

)

ycov = np.array (
[[ 2.1537808808e-09, .8161794696e-10, 3.6237356558e-10,
.4921344875e-10, .1492842463e-11, 2.5353714617e-11,

.3137593878e-12,
.8161794696e-10,
.1633547703e-11,
.8059692534e-12,
.6237356558e-10,
.5572230776e-11,
.6008881270e-13,
.4921344875e-10,
.0632830128e-11,
.2087725578e-13,
.1492842463e-11,
.4264622187e-12,
.3576009069e-13,
.5353714617e-11,
.8443245513e-12,
.7551104112e-14,
.3137593878e-12,
.2087725578e-13,
.0403917951e-14,
.3465498888e-13,
.5986403288e-14,
.8976295583e-15,

—
O W O N DWW R R INWE oy

.3465498888e-13],
.6193461816e-10,
.5481570082e-11,
.0985581496e-131,
.4921610813e-10,
.0608148954e-11,
.3146405310e-13],
.1633547703e-11,
.4264622187e-12,
.5986403288e-141,
.5481570082e-11,
.8496194125e-12,
.3914810594e-14],
.0540958082e-11,
.7369196122e-13,
.0244738582e-141,
.8059692534e-12,
.3576009069e-13,
.8976295583e-15],
.0985581496e-13,
.3914810594e-14,
.5672355835e-16]]

W N WRFRERPRPRERERPRPJIPRPNDENDOOGRERFRERFRPWNDWJOoOY o

.4921610813e-10,
.0540958082e-11,

.1710468826e-11,
.4036448945e-12,

2.5572230776e-11,
.8443245513e-12,

.0608148954e-11,
.7369196122e-13,

.4036448945e-12,
.2498644263e-13,

.6008881270e-13,
.7551104112e-14,

.3146405310e-13,
.0244738582e-14,

12
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return x, gv.gvar (ymean, ycov)

if name == '_ main__
main ()

We are not sure a priori how many exponentials are needed to fit our data. Consequently we write our code to try
fitting with each of nexp=1, 2, 3. . 6 terms. (The pieces of the code involving pO are optional; they make the more
complicated fits go about 30 times faster since the output from one fit is used as the starting point for the next fit —
see the discussion of the p0 parameter for 1sqfit.nonlinear fit.) Running this code produces the following
output, which is reproduced here in some detail in order to illustrate a variety of features:

R R I b I b b S Sb b I b S b e S b S b b b b I Sb 2h b 2h b b 2h b 4 neXp = 1

Least Square Fit:

chi2/dof [dof] = 1.2e+03 [8] Q=0 logGBF = -4837.2
Parameters:
a0 0.00735 (59) [ 0.50 (40) 1 =
E O 1.1372 (49) [ 1.00 (40) ]
Settings:
svdcut/n = le-12/1 tol = (le-08%,1e-10,1e-10) (itns/time = 11/0.0)
Nk hkhkkhkhkkhkhkhkhhkhkhkhhkhkrhk ok hkhkkhkhkhhhkhkhkhhkkhtk nexp = 2

Least Square Fit:

chi2/dof [dof] = 2.2 [8] Q = 0.024 logGBF = 111.69
Parameters:
a0 0.4024 (40) [ 0.50 (40) ]
1 0.4471 (46) [ 0.50 (40) ]
E O 0.90104 (51) [ 1.00 (40) ]
1 1.8282 (14) [ 2.00 (40) ]
Settings:
svdcut/n = le-12/1 tol = (1le-08%,1e-10,1e-10) (itns/time = 8/0.0)
AR R S R R I I I i I I b b b b b I g nexp = 3
Least Square Fit:
chi2/dof [dof] = 0.63 [8] Q0 =0.76 1ogGBF = 116.29
Parameters:
a 0 0.4019 (40) [ 0.50 (40) ]
1 0.406 (14) [ 0.50 (40) ]
2 0.61 (36) [ 0.50 (40) ]
E O 0.90039 (54) [ 1.00 (40) ]
1 1.8026 (82) [ 2.00 (40) ]
2 2.83 (19) [ 3.00 (40) ]
Settings:
svdcut/n = le-12/1 tol = (1le-08%,1e-10,1e-10) (itns/time = 27/0.0)
E1/E0 = 2.0020(86) E2/E0 = 3.14(21)
al/a0 = 1.011(32) a2/a0 = 1.52(89)
R R B S R B I I I I b e I I b I b b b b b g nexp = 4
Least Square Fit:
chi2/dof [dof] = 0.63 [8] Q0 =0.76 1logGBF = 116.3
Parameters:
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a0 0.4019 (40) [ 0.50
1 0.406 (14) [ 0.50
2 0.61 (36) [ 0.50
3 0.50 (40) [ 0.50
E O 0.90039 (54) [ 1.00
1 1.8026 (82) [ 2.00
2 2.83 (19) [ 3.00
3 4.00 (40) [ 4.00
Settings:
svdcut/n = le-12/1 tol = (le-08%,1e-10
E1/E0 = 2.0020(86) E2/E0 = 3.14(21)
al/a0 = 1.011(32) a2/a0 = 1.52(89)

R R R I S S S S S S S S S S R b b b b b b S S S S S S 4 nexp

Least Square Fit:

chi2/dof [dof] = 0.63 [8] Q = 0.76
Parameters:
a0 0.4019 (40) [ 0.50
1 0.406 (14) [ 0.50
2 0.61 (36) [ 0.50
3 0.50 (40) [ 0.50
4 0.50 (40) [ 0.50
E O 0.90039 (54) [ 1.00
1 1.8026 (82) [ 2.00
2 2.83 (19) [ 3.00
3 4.00 (40) [ 4.00
4 5.00 (40) [ 5.00
Settings:
svdcut/n = le-12/1 tol = (1le-08x,1e-10
E1/E0 = 2.0020(86) E2/E0 = 3.14(21)
al/a0 = 1.011(32) a2/a0 = 1.52(89)

R R I b b I b b b Sb b b b S b e S b e S b b b b I Sb 2h b b b b 2h b 4 neXp

Least Square Fit:

chi2/dof [dof] = 0.63 [8] Q = 0.76
Parameters:
a0 0.4019 (40) [ 0.50
1 0.406 (14) [ 0.50
2 0.61 (36) [ 0.50
3 0.50 (40) [ 0.50
4 0.50 (40) [ 0.50
5 0.50 (40) [ 0.50
E O 0.90039 (54) [ 1.00
1 1.8026 (82) [ 2.00
2 2.83 (19) [ 3.00
3 4.00 (40) [ 4.00
4 5.00 (40) [ 5.00
5 6.00 (40) [ 6.00
Settings:
svdcut/n = le-12/1 tol = (1le-08x,1e-10

[ R I S T S ST NN
O O O O O O O o

,1e-10)

=5

1ogGBF

B DD D D D D D D
O O OO OO oo oo

,1e-10)

-6

10gGBF

B DD D D D D D D D D
e eoNeloNeoNoNoNeoNoNoNoNo

,1e-10)

(itns/time = 9/0.0)
116.3

(itns/time = 4/0.0)
116.3

(itns/time = 2/0.0)

14

Chapter 1. Overview and Tutorial




Isgfit Documentation, Release 9.1.2

E1/E0 = 2.0020(86) E2/E0 = 3.14(21)
al/a0 = 1.011(32) a2/a0 = 1.52(89)
Error Budget Analysis
Values:
E2/EQ0: 3.14(21)
E1/EQ: 2.0020(86)
a2/a0: 1.52(89)
al/a0: 1.011(32)
Partial % Errors:
E2/EQ E1/EQ a2/a0 al/a0
a 5.47 0.07 52.75 0.82
E 3.23 0.12 25.36 1.04
% 2.08 0.40 5.24 2.78
total 6.72 0.43 58.78 3.15

There are several things to notice here:

* Clearly two exponentials (nexp=2) are not sufficient. The chi««2 per degree of freedom (chi2/dof) is
significantly larger than one. The chi x «2 improves substantially for nexp=3 exponentials, and there is essen-
tially no change when further exponentials are added.

» The best-fit values for each parameter are listed for each of the fits, together with the prior values (in brackets,
on the right). Values for each a[i] and E[i] are listed in order, starting at the points indicated by the labels
a and E. Asterisks are printed at the end of the line if the mean best-fit value differs from the prior’s mean by
more than one standard deviation (see nexp=1); the number of asterisks, up to a maximum of 5, indicates how
many standard deviations the difference is. Differences of one or two standard deviations are not uncommon;
larger differences could indicate a problem with the data, prior, or fit function.

Once the fit converges, the best-fit values for the various parameters agree well — that is to within their errors,
approximately — with the exact values, which we know since we made the data. For example, a and E for the
first exponential are 0.402(4) and 0.9004(5), respectively, from the fit, while the exact answers are 0.4 and 0.9;
and we get 0.406(14) and 1.803(8) for the second exponential where the exact values are 0.4 and 1.8.

* Note in the fit with nexp=4 how the mean and standard deviation for the parameters governing the fourth (and
last) exponential are identical to the values in the corresponding priors: 0.50(40) from the fit for a and 4.0(4)
for E. This tells us that our fit data have no information to add to what we knew a priori about these parameters
— there isn’t enough data and what we have isn’t accurate enough.

This situation remains true of further terms as they are added in the nexp=>5 and later fits. This is why the fit
results stop changing once we have nexp=3 exponentials. There is no point in including further exponentials,
beyond the need to verify that the fit has indeed converged. Note that the underlying function from which the
data came had 100 exponential terms.

* The last fit includes nexp=6 exponentials and therefore has 12 parameters. This is in a fit to 8 ys. Old-fashioned
fits, without priors, are impossible when the number of parameters exceeds the number of data points. That is
clearly not the case here, where the number of terms and parameters can be made arbitrarily large, eventually
(after nexp=3 terms) with no effect at all on the results.

The reason is that the prior that we include for each new parameter is, in effect, a new piece of data (equal to
the mean and standard deviation of the a priori expectation for that parameter). Each prior leads to a new term
in the chi 2 function; we are fitting both the data and our a priori expectations for the parameters. So in
the nexp=56 fit, for example, we actually have 20 pieces of data to fit: the 8 ys plus the 12 prior values for the
12 parameters.

The function of priors as fit data becomes obvious if we rewrite our fit function as
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import numpy as np

def fcn(x, p): # function used to fit x, y data
a =pl'a'l] # array of a[i]s
E =pl['E"] # array of E[i]s

return dict (
y=sum(ai » np.exp(-Ei * x) for ai, Ei in zip(a, E)),
a=pl'a'l,
b=p['b"'],
)

and make the following change to the main () function:

prior = make_prior (nexp)
data = (x, dict(y=y, a=prior['a'], b=prior['b']l))
fit = lsgfit.nonlinear_fit (data=data, fcn=fcn, prior=None, pO0=p0)

This gives exactly the same results, but now with the prior explicitly built into the fit function and data.

The effective number of degrees of freedom (do £ in the output above) is the number of pieces of data minus the
number of fit parameters, or 20-12=8 in this last case. With priors for every parameter, the number of degrees
of freedom is always equal to the number of ys, irrespective of how many fit parameters there are.

* The Gaussian Bayes Factor (whose logarithm is 10gGBF in the output) is a measure of the likelihood that the
actual data being fit could have come from a theory with the prior and fit function used in the fit. The larger this
number, the more likely it is that prior/fit-function and data could be related. Here it grows dramatically from
the first fit (nexp=1) but then stops changing after nexp=3. The implication is that this data is much more
likely to have come from a theory with nexp>=3 than one with nexp=1.

e In the code, results for each fit are captured in a Python object fit, which is of type
lsgfit.nonlinear_fit. A summary of the fit information is obtained by printing £it. Also the best-fit
results for each fit parameter can be accessed through fit.p, as is done here to calculate various ratios of
parameters.

The errors in these ratios automatically account for any correlations in the statistical errors for different parame-
ters. This is evident in the ratio al /a0, which would be 1.010(35) if there was no statistical correlation between
our estimates for al and a0, but in fact is 1.010(31) in this fit. The modest (positive) correlation is clear from
the correlation matrix:

>>> print (gv.evalcorr (fit.p['a']l[:2]))
[[ 1. 0.36353303]
[ 0.36353303 1. 11

» After the last fit, the code uses function gvar. fmt_errorbudget to create an error budget. This requires
dictionaries of fit inputs and outputs, and uses the dictionary keys to label columns and rows, respectively, in
the error budget table. The table shows, for example, that the 0.42% uncertainty in E1 /E0 comes mostly from
the fit data (0.40%), with small contributions from the uncertainties in the priors for a and E (0.07% and 0.12%,
respectively). The total uncertainty is the sum in quadrature of these errors. This breakdown suggests that
reducing the errors in y by 25% might reduce the error in E1 /EO to around 0.3% (and it does). The uncertainty
in E2/EQ, on the other hand, comes mostly from the priors and is less likely to improve (it doesn’t).

Finally we inspect the fit’s quality point by point. The input data are compared with results from the fit func-
tion, evaluated with the best-fit parameters, in the following table (obtained in the code by printing the output from
fit.format (maxline=True)):

Fit:

5 0.004502 (46) 0.004506 (46)
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6 0.001817 (19) 0.001819 (19)
7 0.0007362 (79) 0.0007373 (78)
8 0.0002987 (33) 0.0002993 (32)
9 0.0001213 (14) 0.0001216 (13)
10 0.00004926 (57) 0.00004941 (56)
12 8.13(10)e-06 8.160(96)e-06
14 1.342(19)e-06 1.348(17)e-06

The fit is excellent over the entire three orders of magnitude. This information is presented again in the following plot,
which shows the ratio y/ f (x, p), as a function of x, using the best-fit parameters p. The correct result for this ratio,
of course, is one. The smooth variation in the data — smooth compared with the size of the statistical-error bars — is
an indication of the statistical correlations between individual ys.

1.04 4

1.02 ~

1.00 f--=---gr=-=- R T S e R RRRRIATILEEEEY TECERs

y [ f(x.p)

0.98

0.96

This particular plot was made using the matplotlib module, with the following code added to the end of main ()
(outside the loop):

import matplotlib.pyplot as plt

ratio = y / f(x, fit.pmean)

plt.xlim(4, 15)

plt.ylim(0.95, 1.05)

plt.xlabel ('x")

plt.ylabel('y / f(x,p)")

plt.errorbar (x=x, y=gv.mean(ratio), yerr=gv.sdev(ratio), fmt='ob'")
plt.plot([4.0, 21.0], [1.0, 1.0], 'b:")

plt.show ()

1.4 Chained Fits; Large Data Sets

The priors in a fit represent knowledge that we have about the parameters before we do the fit. This knowledge might
come from theoretical considerations or experiment. Or it might come from another fit. Here we look at two examples
that exploit the possibility of chaining fits, where the output of one fit is an input (the prior) to another.

Imagine first that we want to add new information to that extracted from the fit in the previous section. For example,
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we might learn from some other source that the ratio of amplitudes a[1]/a[0] equals 14-1e-5. The challenge is to
combine this new information with information extracted from the fit above without rerunning that fit. (We assume it

is not possible to rerun.)

We can combine the new data with the old fit results by creating a new fit that uses the best-fit parameters, fit .p,
from the old fit as its prior. To try this out, we modify the main () function in the previous section, adding the new fit

at the end:
def main() :
x, y = make_data() # collect fit data
p0 = None # make larger fits go faster (opt.)

for nexp in range(l, 5):
prior = make_prior (nexp)

fit = lsgfit.nonlinear_ fit (data=(x, y), fcn=fcn, prior=prior, pO0=p0)
if fit.chi2 / fit.dof < 1.:
p0 = fit.pmean # starting point for next fit (opt.)

# print nexp=4 fit results

print('-——-—------ original fit")

print (fit)

E = fit.p['E"] # best-fit parameters
a = fit.p['a'l

print ('E1/EO0 =', E[1] / E[O], ' E2/E0 ="', E[2] / E[0])
print ('al/a0 =', a[l] / al0O], " a2/a0 =', af[2] / al0])

# new fit adds new data about a[l] / a[0]

def ratio(p): # new fit function
a =pl'a']
return a[l] / al0]

prior = fit.p # prior = best—-fit parameters from nexp=4 fit
data = gv.gvar(l, le-5) # new data for the ratio

newfit = lsqgfit.nonlinear_fit (data=data, fcn=ratio, prior=prior)

print ('\\n-———————————— new fit to extra information')

print (newfit)

E = newfit.p['E"]

a = newfit.p['a']

print ('E1/EO0 =', E[1] / E[O], ' E2/EO0 =', E[2] / E[O0])
print ('al/a0 ="', all]l / al0]l, " a2/a0 ="', al[2] / al0])

The results of the new fit (to one piece of new data) are at the end of the output:

————————————————————— original fit
Least Square Fit:

chi2/dof [dof] = 0.63 [8] Q0 = 0.76 logGBF = 116.3
Parameters:
a0 0.4019 (40) [ 0.50 (40) ]
1 0.406 (14) [ 0.50 (40) ]
2 0.61 (36) [ 0.50 (40) ]
3 0.50 (40) [ 0.50 (40) ]
E O 0.90039 (54) [ 1.00 (40) ]
1 1.8026 (82) [ 2.00 (40) ]
2 2.83 (19) [ 3.00 (40) ]
3 4.00 (40) [ 4.00 (40) ]
Settings:
svdcut/n = le-12/1 tol = (1le-08x,1e-10,1e-10) (itns/time = 3/0.0)
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E1/E0 = 2.0020(86) E2/E0 = 3.14(21)
al/a0 = 1.011(32) a2/a0 = 1.52(89)
\n-———————————""—-—————— new fit to extra information
Least Square Fit:
chi2/dof [dof] = 0.12 [1] Q =0.73 1ogGBF = 2.4648
Parameters:
a0 0.4018 (40) [ 0.4019 (40) ]
1 0.4018 (40) [ 0.406 (14) ]
2 0.57 (34) [ 0.61 (36) ]
3 0.50 (40) [ 0.50 (40) 1
E O 0.90033 (51) [ 0.90039 (54) ]
1 1.7998 (13) [ 1.8026 (81) ]
2 2.79 (14) [ 2.83 (19) ]
3 4.00 (40) [ 4.00 (40) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 14/0.0)

E1/E0 = 1.9991(12) E2/E0 = 3.10(16)
al/a0 = 1.000000(10) a2/a0 = 1.43(85)

Parameters a[0] and E[0] are essentially unchanged by the new information, but a[1] and E[1] are much more
precise, asisa[1l] /a[0], of course.

It might seem odd that E [1], for example, is changed at all, since the fit function, ratio (p), makes no mention
of it. This is not surprising, however, since ratio (p) does depend upon a[1], and a[1] is strongly correlated
with E[1] through the prior (correlation coefficient of 0.94). It is important to include all parameters from the first
fit as parameters in the new fit, in order to capture the impact of the new information on parameters correlated with
alll/alo0].

Obviously, we can use further fits in order to incorporate additional data. The prior for each new fit is the best-fit
output (fit . p) from the previous fit. The output from the chain’s final fit is the cumulative result of all of these fits.

Note that this particular problem can be done much more simply using a weighted average (1sgfit.wavg()).
Adding the following code onto the end of the main () function above

fit.p['al/a0'] = fit.p['a'][1l] / fit.p['a']l[O0]
new_data = {'al/a0' : gv.gvar(l,le-5)}
new_p = lsgfit.wavg([fit.p, new_datal)

print ('chi2/dof = {:.2f}\n' .format (new_p.chi2 / new_p.dof))
print ('E:', new_p['E"][:4])

print('a:', new_p['a']l[:4])

print('al/a0:', new_p['al/a0'])

gives the following output:

chi2/dof = 0.12

E: [0.90033(51) 1.7998(13) 2.79(14) 4.00(40)]
a: [0.4018(40) 0.4018(40) 0.57(34) 0.50(40)]1
al/a0: 1.000000(10)

Here we do a weighted average of a[1]/a[0] from the original fit (fit.p[’al/a0’ ]) with our new piece of
data (new_data([”al/a0’]). The dictionary new_p returned by Isgfit.wavg () has an entry for every key in
either fit .p or new_data. The weighted average fora[1]/a[0] isinnew_p[’al/a0’]. New values for the
fit parameters, that take account of the new data, are storedinnew_p [’E’ ] andnew_p[’a’]. TheE[i] anda[1i]
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estimates differ from their values in £it . p since those parameters are correlated with a[1] /a [0]. Consequently
when the ratio is shifted by new data, the E[i] and a [1] are shifted as well. The final results in new_p are identical
to what we obtained above.

One place where chained fits can be useful is when there is lots of fit data. Imagine, as a second example, a situation
that involves 10,000 highly correlated y [ 1 ]s. A straight fit would take a very long time because part of the fit process
involves diagonalizing the fit data’s (dense) 10,000x10,000 covariance matrix. Instead we break the data up into
batches of 100 and do chained fits of one batch after another:

# read data from disk

x, y = read_data()

print ('x = [{} {1} {}1".format (x[0], x[11, x[-11))

print ('y = [{} {} ... {}]'.format(y[O0], y([1], y[-11))

print ('corr(y[0],v[9999]) =', gv.evalcorr([y([0], v[-111)I[1,01)
print ()

# fit function and prior
def fcn(x, p):

return p[0] + p[l] * np.exp (- pl[2] * x)
prior = gv.gvar(['0O(1)", 'O(1)', 'O(1)"])

# Nstride fits, each to nfit data points
nfit = 100
Nstride = len(y) // nfit
fit_time = 0.0
for n in range (0, Nstride):
fit = lsgfit.nonlinear_ fit(
data=(x[n::Nstride], yIn::Nstride]), prior=prior, fcn=fcn
)
prior = fit.p
if n in [0, 9]:
print ('xx*x*x*x%% Results from ', (n+l) » nfit, 'data points')
print (fit)
print ('xx*xx%+%x Results from ', Nstride » nfit, 'data points (final)')
print (fit)

In the loop, we fit only 100 data points at a time, but the prior we use is the best-fit result from the fit to the previous
100 data points, and its prior comes from fitting the 100 points before those, and so on for 100 fits in all. The output
from this code is:

x = [0.2 0.200080008001 ... 1.0]
y = [0.836(10) 0.835(10) ... 0.686(10)]
corr(y[0],y[9999]) = 0.990099009901

**x%xxxxx Results from 100 data points
Least Square Fit:

chi2/dof [dof] = 1.1 [100] Q = 0.23 1ogGBF = 523.92
Parameters:
0 0.494 (13) [ 0.0 (1.0) 1
1 0.3939 (75) [ 0.0 (1.0) 1]
2 0.715 (23) [ 0.0 (1.0) ]
Settings:
svdcut/n = 1le-12/0 tol = (1le-08x,1e-10,1e-10) (itns/time = 11/0.1)

*%xxxxx*x Results from 1000 data points
Least Square Fit:
chi2/dof [dof] = 1.1 [100] 0 =10.29 1ogGBF = 544.96
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Parameters:
0 0.491 (10) [ 0.492 (10) ]
1 0.3969 (24) [ 0.3965 (25) 1
2 0.7084 (70) [ 0.7095 (74) 1
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 6/0.0)

**x%xxxx*x Results from 10000 data points (final)
Least Square Fit:

chi2/dof [dof] =1 [100] Q = 0.48 1o0gGBF = 548.63
Parameters:
0 0.488 (10) [ 0.488 (10) 1
1 0.39988 (77) [ 0.39982 (78) ]
2 0.7002 (23) [ 0.7003 (23) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 4/0.4)

It shows the errors on p[1] and p[2] decreasing steadily as more data points are included. The error on p[0],
however, hardly changes at all. This is a consequence of the strong correlation between different v [1]s (and its lack
of x-dependence). The “correct” answers here are 0.5, 0.4 and 0.7.

Chained fits are slower that straight fits with large amounts of wuncorrelated data, provided
lsgfit.nonlinear._fit is informed ahead of time that the data are uncorrelated (by default it checks for
correlations, which can be expensive for lots of data). The fitter is informed by using argument udata instead of
data to specify the fit data:

%, y = read_data()

print ('x = [{} {} {}1'.format (x[0], x[1], x[-11))
print ('y = [{} {} {}1'.format (y[0], y[1], yvI[-11))
print ()

# fit function and prior
def fcn(x, p):

return p[0] + p[l] * np.exp(- pl2] * Xx)
prior = gv.gvar(['0O(1)", 'O(1)", '0(1)"'])

fit = lsgfit.nonlinear_fit (udata=(x, y), prior=prior, fcn=fcn)
print (fit)

Using udata rather than data causes 1sgfit.nonlinear._ fit toignore correlations in the data, whether they
exist or not. Uncorrelated fits are typically much faster when fitting large amounts of data, so it is then possible to fit
much more data (e.g., 1,000,000 or more v [ 1]s is straightforward on a laptop).

1.5 x has Errors

We now consider variations on our basic fit analysis (described in Basic Fits). The first variation concerns what to do
when the independent variables, the xs, have errors, as well as the ys. This is easily handled by turning the xs into fit
parameters, and otherwise dispensing with independent variables.

To illustrate, consider the data assembled by the following make_data function:

import gvar as gv
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def make_datal() :

x = gv.gvar ([
'0.73(50) ", '2.25(50) "', '3.07(50) ", '3.62(50) "', '4.86(50) ",
'6.41(50) ", '6.39(50) "', '7.89(50) ", '9.32(50) "', '9.78(50) ",

'10.83(50) ", '"11.98(50)"', '13.37(50)', '"13.84(50)"', '14.89(50)"
1)
y = gv.gvar ([

'3.85(70) ", '5.5(1.7) ", '14.0(2.6)"', '21.8(3.4) "', '47.0(5.2)"
'79.8(4.6)"', '84.9(4.6)", '95.2(2.2)"', '97.65(79) "', '98.78(55) "
'99.41(25)"', '99.80(12)"', '100.127(77)"', '100.202(73)"', '100.203(71)"
1)

return x,y

The function call x, y = make_data () returns values for the x [1]s and the corresponding vy [i]s, where now
both are gvar.GVars.

We want to fit the y values with a function of the form:

b0 / ((1 + gv.exp(bl - b2 * x)) x*x (1. / b3)).

So we have two sets of parameters for which we need priors: the b [i]s and the x [1]s:

import gvar as gv

def make_prior(x):
prior = gv.BufferDict ()
prior['b'] = gv.gvar(['0(500)", '0(5)', '0O(5)"', '0(5'1])
prior['x'] = x
return prior

The prior values for the x [1] are just the values returned by make_data (). The corresponding fit function is:

import gvar as gv

def fcn(p):
b0, bl, b2, b3 = pl['b']
x = pl'x']
return b0 / ((1. + gv.exp(bl — b2 » x)) % (1. / b3))

where the dependent variables x [1] are no longer arguments of the function, but rather are fit parameter in dictio-
nary p.

The actual fit is now straightforward:

import lsqgfit
%, y = make_data()

prior = make_prior (x)

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn)
print (fit)

This generates the following output:

Least Square Fit:

chi2/dof [dof] = 0.35 [15] Q = 0.99 logGBF = -40.156
Parameters:
b 0 100.238 (60) [ 0 (500) 1
1 3.5 (1.2) [ 0.0 (5.0) ]
2 0.797 (87) [ 0.0 (5.0) ]
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3 0.77 (35) [ 0.0 (5.0) ]
x 0 1.26 (41) [ 0.73 (50) 1 *
1 1.87 (34) [ 2.25 (50) 1]
2 2.84 (28) [ 3.07 (50) ]
3 3.42 (29) [ 3.62 (50) 1]
4 4.72 (32) [ 4.86 (50) ]
5 6.45 (33) [ 6.41 (50) ]
6 6.69 (35) [ 6.39 (50) ]
7 8.15 (36) [ 7.89 (50) 1]
8 9.30 (35) [ 9.32 (50) ]
9 9.91 (37) [ 9.78 (50) 1
10 10.77 (37) [ 10.83 (50) 1
11 11.70 (38) [ 11.98 (50) ]
12 13.34 (406) [ 13.37 (50) 1
13 13.91 (48) [ 13.84 (50) 1
14 14.88 (50) [ 14.89 (50) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 13/0.1)

The fit gives new results for the b [ 1] parameters that are much improved from our prior estimates. Results for many
of the x [1]s are improved as well, by information from the fit data. The following plot shows the fit (dashed line)
compared with the input data for y:

100 eSO
o g
60 -
> _+_
40 -
20 - 4
0 -
T T T T T T T
0.0 25 5.0 7.5 10.0 12.5 15.0

1.6 Correlated Parameters; Gaussian Bayes Factor

gvar.GVar objects allow for complicated priors, including priors that correlate different fit parameters. The follow-
ing fit analysis code illustrates how this is done:

import numpy as np
import gvar as gv
import lsqgfit
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def main() :
x, y = make_data()

prior = make_prior()

fit = lsgfit.nonlinear_fit (prior=prior, data=(x,y), fcn=fcn)

print (fit)

print ('pl/p0 =", fit.p[l] / fit.p[0]1, 'p3/p2 =', fit.p[3] / fit.pl[2])
print ('corr (p0,pl) ="', gv.evalcorr(fit.p[:2]1)[1,0])

def make_datal() :

X = np.array ([
4., 2., 1., 0.5, 0.25, 0.167, 0.125, 0.1, 0.0833, 0.0714, 0.0625
1)

y = gv.gvar ([
'0.198(14)', '0.216(15)"', '0.184(23)"', '0.156(44)', '0.099(49)",
'0.142(40)"', '0.108(32)', '0.065(26)"', '0.044(22)', '0.041(19)",
'0.044 (16) "'
1)

return x, y

def make_prior():
p = gv.gvar(['0O(1)", "O(1)", 'O(L)"', '0(1)'])
pll] = 20 %= p[0] + gv.gvar('0.0(1)") # p[l1] correlated with p[0]
return p

def fcn(x, p):
return (p[0] * (x**2 + pl[l] = x)) / (x++2 + x * p[2] + p[3])

if name == ' _ main__ ':
main ()

Here, again, functions make_data () and make_prior () assemble the fit data and prior, and parameters p [1]
are adjusted by the fitter to make fcn (x[1], p) agree with the data value y [1]. The priors are fairly broad (0£1)
for all of the parameters, except for p [1]. The prior introduces a tight relationship between p [1] and p [0]: it sets
p[11=20+p[0] up to corrections of order 0£0.1. This a priori relationship is built into the prior and restricts the fit.

Running the code gives the following output:

Least Square Fit:

chi2/dof [dof] = 0.61 [11] Q = 0.82 1ogGBF = 19.129
Parameters:
0 0.149 (17) [ 0.0 (1.0) 1
1 2.97 (34) [ 0 (20) 1]
2 1.23 (61) [ 0.0 (1.0) 1 =
3 0.59 (15) [ 0.0 (1.0) 1
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 20/0.1)
pl/p0 = 19.97(67) p3/p2 = 0.48(22)
corr (p0,pl) = 0.957067820817

Note how the ratio p1/p0 is much more accurate than either quantity separately. The prior introduces a strong,
positive correlation between the two parameters that survives the fit: the correlation coefficient is 0.96. Comparing the
fit function with the best-fit parameters (dashed line) with the data shows a good fit:
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If we omit the constraint in the prior,

def make_prior():
p = gv.gvar(['0(1)", "0(20)', 'O(1)', "0(1)'])
return p

we obtain quite different fit results:

Least Square Fit:

chi2/dof [dof] = 0.35 [11] Q = 0.97 1ogGBF = 11.036
Parameters:
0 0.211 (18) [ 0.0 (1.0) 1
1 -0.02 (14) [ 0 (20) ]
2 0.07 (10) [ 0.0 (1.0) 1
3 0.008 (43) [ 0.0 (1.0) 1
Settings:
svdcut/n = le-12/0 tol = (1le-08x,1e-10,1e-10) (itns/time = 30/0.0)
pl/p0 = -0.08(64) p3/p2 = 0.10(62)
corr (p0,pl) = -0.592869884703

Note that the Gaussian Bayes Factor (see 10gGBF in the output) is larger with the correlated prior (LogGBF =
19.1) than it was for the uncorrelated prior (LogGBF = 11.0). Had we been uncertain as to which prior was more
appropriate, this difference says that the data prefers the correlated prior. (More precisely, it says that we would be
exp(19.1-11.0) = 3300 times more likely to get our x, y data from a theory with the correlated prior than
from one with the uncorrelated prior.) This difference is significant despite the fact that the chi « 2 is lower for the
uncorrelated case. chix«*2 tests goodness of fit, but there are usually more ways than one to get a good fit. Some are
more plausible than others, and the Bayes Factor helps sort out which.

The Gaussian Bayes Factor is an approximation to the Bayes Factor which is valid in the limit where all distributions
can be approximated by Gaussians. The Bayes Factor is the probability (density) that the fit data would be generated
randomly from the fit function and priors (the model) used in the fit. Ratios of Bayes Factors from fits with different
models tell us about the relative likelihood of the different models given the data. (Actually the ratio gives the ratio of
probabilities for obtaining the data from the models, as opposed to the probabilities for the models given the data. See
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the discussion in the next section.)

1.7 y has No Error; Marginalization

Occasionally there are fit problems where values for the dependent variable y are known exactly (to machine preci-
sion). This poses a problem for least-squares fitting since the chi« 2 function is infinite when standard deviations
are zero. How does one assign errors to exact ys in order to define a chi % » 2 function that can be usefully minimized?

It is almost always the case in physical applications of this sort that the fit function has in principle an infinite number
of parameters. It is, of course, impossible to extract information about infinitely many parameters from a finite number
of ys. In practice, however, we generally care about only a few of the parameters in the fit function. The goal for a
least-squares fit is to figure out what a finite number of exact ys can tell us about the parameters we want to know.

The key idea here is to use priors to model the part of the fit function that we don’t care about, and to remove that part
of the function from the analysis by subtracting it out from the input data. This is called marginalization.

To illustrate how it is done, we consider data that is generated from an infinite sum of decaying exponentials, like that
in Basic Fits:

import numpy as np

def make_data() :
x = np.array([ 1., 1.
y = np.array ([

2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6])

0.2740471001620033,
0.1241967645280511,
0.0640743982173861,

0.2056894154005132,
0.0986901274726867,
0.052143504367789 ,

0.158389402324004,
0.0792134506060024,
0.042638302245681¢6,

1)

return x, y

Now x,y = make_data () returns nine x [1]s together with the corresponding y [1] s, but where the y [1]s are
exact and so no longer represented by gvar.GVars.

We want to fit these data with a sum of exponentials, as before:

import numpy as np

def fcn(x,p):
a=mpl'a'l # array of alils
E =pl['E"] # array of E[i]s
return np.sum(ai * np.exp(-Eixx) for ai,

Ei in zip(a, E))

We know that the amplitudes a [1] are of order 0.540.5, and that the leading exponent E[0] is 120.1, as are the
differences between subsequent exponents dE [1 ] E[i] - E[i-1]. Thisa priori knowledge is encoded in the
priors:

import numpy as np
import gvar as gv

def make_prior (nexp):

prior = gv.BufferDict ()

prior['a']l] = gv.gvar(nexp * ['0.5(5)"])
dE = gv.gvar(nexp * ['1.0(1)"])
prior['E'] = np.cumsum(dE)

return prior

We use a large number of exponential terms since our y [1]s are exact: we keep 100 terms in all, but our results
are unchanged with any number greater than about 10. Only a small number nexp of these are included in the fit
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function. The 100—-nexp terms left out are subtracted from the y [1] before the fit, using the prior values for the
omitted parameters to evaluate these terms. This gives new fit data ymod [1i]:

prior = make_prior (100)

# the first nexp terms are fit; the remainder go into ymod
fit_prior = gv.BufferDict ()
ymod_prior = gv.BufferDict ()
for k in prior:
fit_prior[k] = prior[:nexp]
ymod_prior[k] = prior[nexp:]

ymod = y - fcn(x, ymod_prior)
fit = lsgfit.nonlinear_fit (data=(x, ymod), prior=fit_prior, fcn=fcn)

By subtracting fcn (x, ymod_prior) from y, we remove the parameters that are in ymod_prior from the data,
and consequently those parameters need not be included in fit function. The fitter uses only the parameters left in
fit_prior.

Our complete code, therefore, is:

import numpy as np
import gvar as gv
import lsqgfit

def main () :
%, y = make_data()
prior = make_prior (100) # 100 exponential terms in all
p0 = None
for nexp in range(l, 6):
# marginalize the last 100 - nexp terms (in ymod_prior)
fit_prior = gv.BufferDict () # part of prior used in fit
ymod_prior = gv.BufferDict () # part of prior absorbed in ymod
for k in prior:
fit_prior([k] = prior[k][:nexp]
ymod_prior[k] = prior[k][nexp:]
ymod = y - fcn(x, ymod_prior) # remove temrs in ymod_prior

# fit modified data with just nexp terms (in fit_prior)

fit = lsgfit.nonlinear_fit (
data=(x, ymod), prior=fit_prior, fcn=fcn, pO0=p0, tol=le-10,
)

# print fit information

Print ("skxkkkkxxxkkkkkkkhk kXXX XAk kkkk kX xxxx k% Nexp =',nexp)
print (fit.format (True))

p0 = fit.pmean

# print summary information and error budget
E = fit.p['E"'] # best—-fit parameters
a = fit.p['a']
outputs = {
'E1/E0':E[1] / E[0], '"E2/EQ0':E[2] / E[O0],
'al/a0'":a[l] / al[0], 'a2/a0':a[2] / al0]
}
inputs = {
'E prior':prior['E'], 'a prior':prior(['a'l,
"svd cut':fit.svdcorrection,

}
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print (fit.fmt_values (outputs))
print (fit.fmt_errorbudget (outputs, inputs))

def fcn(x,p):
a =pl'a"] # array of af[i]s
E =p['E'] # array of E[i]s
return np.sum(ai * np.exp(-Eixx) for ai, Ei in zip(a, E))

def make_prior (nexp):

prior gv.BufferDict ()

prior['a']l] = gv.gvar(nexp * ['0.5(5)"])
dE = gv.gvar(nexp * ['1.0(1)"])
prior['E'] = np.cumsum(dE)

return prior

def make_datal():
X = np.array([ 1., 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6])
y = np.array ([
0.2740471001620033, 0.2056894154005132, 0.158389402324004 ,
0.1241967645280511, 0.0986901274726867, 0.0792134506060024,
0.0640743982173861, 0.052143504367789 , 0.0426383022456816,
1)

return x, y

if name == '__main__ ':
main ()

We loop over nexp, moving parameters from ymod back into the fit as nexp increases. The output from this script
is:

khkhkhk kA khhkhkhhhkhhkdhrdkhkrkdkhkhkkhhkhrkhhkrhhhxkhxt*k neXp = 1

Least Square Fit:

chi2/dof [dof] = 0.19 [9] Q0 = 0.99 10gGBF = 79.803
Parameters:
a0 0.4067 (32) [ 0.50 (50) 1]
EO 0.9030 (16) [ 1.00 (10) ]
Fit
x[k] y [k] f(x[kl,p)
1 0.167 (74) 0.1648 (10)
1.2 0.141 (49) 0.13760 (82)
1.4 0.118 (32) 0.11487 (65)
1.6 0.099 (22) 0.09589 (51)
1.8 0.082 (14) 0.08004 (40)
2 0.0686 (97) 0.06682 (31)
2.2 0.0572 (65) 0.05578 (24)
2.4 0.0476 (44) 0.04656 (19)
2.6 0.0397 (30) 0.03887 (15)
Settings:
svdcut/n = le-12/2 tol = (le-10%,1e-10,1e-10) (itns/time = 11/0.0)
R R R S R R I I I I I I b b I I g neXp = 2
Least Square Fit:
chi2/dof [dof] = 0.19 [9] Q=1 logGBF = 81.799
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Parameters:

e e e

NN
N BN DN OO DN

Settings:
svdcut/n

R I b b b b b Sb b b 2b S b e S b S b b b b I Sb b b 2b 2b b 2h b 4 neXp

0.06331
0.05173
0.04242

le-12/2

Least Square Fit:

chi2/dof

Parameters:

[dof] = 0.

0.
0

0
0.9
1

N PO DN B O

e e e

NN
O BN DN 0O DN

Settings:
svdcut/n

KAKKAA KA A KA A AR A AR A A XA A A A AR A A A A XA A KAk nexp

0.12316
0.09824
0.07902
0.063990
0.052106
0.042622

le-12/3

Least Square Fit:

chi2/dof

Parameters:

[dof] 0.

0.
0
0

N~ O

015 (23) [ 0.50 (50) 1
435 (24) [ 0.50 (50) ]
007 (11) [ 1.00 (10) 1
830 (28) [ 2.00 (14) ]
y[K] £(x[k],p)

(28) 0.2330 (27)

(15) 0.1847 (17)

(81) 0.1474 (10)

(44) 0.11833 (63)

(24) 0.09552 (38)

(13) 0.07749 (23)

(74) 0.06313 (14)

(41) 0.051624 (84)

(23) 0.042351 (50)

tol = (le-10%,1e-10,1e-10)
=3

2 191 Q =10.99 10gGBF
4011 (18) [ 0.50 (50) 1]
426 (28) [ 0.50 (50) ]
.468 (56) [ 0.50 (50) ]
0045 (77) [ 1.00 (10) 1
.822 (27) [ 2.00 (14) ]
2.84 (12) [ 3.00 (17) 1
y [k] f(x[k],p)

(10) 0.2593 (22)

(45) 0.1995 (11)

(20) 0.15576 (54)

(91) 0.12305 (27)

(41) 0.09818 (13)

(19) 0.078988 (62)

(85) 0.063973 (30)

(38) 0.052098 (14)

(17) 0.0426176 (68)

tol = (le-10%,1e-10,1e-10)
=4

21 [9] Q =0.99 1o0gGBF
4009 (10) [ 0.50 (50) ]
424 (22) [ 0.50 (50) ]
.469 (61) [ 0.50 (50) ]

(itns/time = 27/0.0)
83.077
*
(itns/time = 65/0.1)

83.212
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3 0.426 (94) [ 0.50 (50) ]
EO 0.90036 (44) [ 1.00 (10) 1]
1 1.819 (19) [ 2.00 (14) 1 =
2 2.83 (11) [ 3.00 (17) 1
3 3.83 (15) [ 4.00 (20) 1]
Fit
x[k] y [k] f(x[k],p)
1 0.2687 (38) 0.26843 (95)
1.2 0.2039 (14) 0.20376 (39)
1.4 0.15778 (51) 0.15771 (1e6)
1.6 0.12399 (19) 0.123955 (63)
1.8 0.098616 (69) 0.098603 (25)
2 0.079187 (26) 0.079182 (10)
2.2 0.0640650 (96) 0.0640627 (39)
2.4 0.0521401 (36) 0.0521392 (15)
2.6 0.0426371 (13) 0.04263670 (60)
Settings:
svdcut/n = le-12/3 tol = (le-10%,1e-10,1e-10) (itns/time = 143/0.1)
PR R R R S S R R S R I I I I I b b i I I g neXp = 5
Least Square Fit:
chi2/dof [dof] = 0.21 [9] Q = 0.99 1logGBEF = 83.137
Parameters:
a0 0.4009 (10) [ 0.50 (50) ]
1 0.424 (22) [ 0.50 (50) 1
2 0.468 (62) [ 0.50 (50) 1
3 0.42 (11) [ 0.50 (50) ]
4 0.45 (18) [ 0.50 (50) ]
E O 0.90036 (43) [ 1.00 (10) 1
1 1.819 (19) [ 2.00 (14) ] *
2 2.83 (11) [ 3.00 (17) 1
3 3.83 (15) [ 4.00 (20) 1
4 4.83 (18) [ 5.00 (22) ]
Fit
x[k] vy [k] f(x[kl,p)
1 0.2721 (14) 0.27196 (65)
1.2 0.20516 (42) 0.20510 (21)
1.4 0.15824 (13) 0.158219 (69)
1.6 0.124154 (38) 0.124147 (23)
1.8 0.098678 (12) 0.0986752 (78)
2 0.0792099 (36) 0.0792090 (29)
2.2 0.0640734 (11) 0.0640731 (12)
2.4 0.05214320 (33) 0.05214310 (61)
2.6 0.04263821 (10) 0.04263818 (35)
Settings:
svdcut/n = le-12/3 tol = (le-10%,1e-10,1e-10) (itns/time = 246/0.3)
Values:

E2/EO0: 3.15(12)
E1/E0: 2.021(20)
a2/a0: 1.17(15)

30 Chapter 1. Overview and Tutorial



Isgfit Documentation, Release 9.1.2

al/a0: 1.057(52)

o

Partial % Errors:

E2/EO E1/EO a2/ao0 al/a0

E prior 3.86 0.86 12.07 4.50
svd cut 0.04 0.04 0.33 0.16
a prior 0.84 0.47 5.30 1.93
total 3.95 0.98 13.19 4.90

Here we use £it . format (True) to print out a table of x and y (actually ymod) values, together with the value of
the fit function using the best-fit parameters. There are several things to notice:

* Even the nexp=1 fit, where we fit the data with just a single exponential, gives results for the two parameters
that are accurate to 1% or better. The results don’t change much as further terms are shifted from ymod to the
fit function, and stop changing completely by nexp=4.

In fact it is straightforward to prove that best-fit parameter means and standard deviations, as well as chi*x2,
should be exactly the same in such situations provided the fit function is linear in all fit parameters. Here the
fit function is approximately linear, given our small standard deviations, and so results are only approximately
independent of nexp.

* ymod has large uncertainties when nexp is small, because of the uncertainties in the priors used to evaluate
fcen (x, ymod_prior). This is clear from the following plots:

0.25 A
0.20 +
> 0.15 -
0.10 A

0.05 A

0.25 -
nexp = 4
0.20 -
> 0.15 A
0.10 A

0.05 A

1.0 1.5 2.0 2.5

The solid lines in these plot show the exact results, from y in the code. The dashed lines show the fit function
with the best-fit parameters for the nexp terms used in each fit, and the data points show ymod — these last two
agree well, as expected from the excellent chi 2 values. The uncertainties in different ymod [1]s are highly
correlated with each other because they come from the same priors (in ymod_prior). These correlations are
evident in the plots and are essential to this procedure.

¢ Although we motivated this example by the need to deal with ys having no errors, it is straightforward to apply
the same ideas to a situation where the ys have errors. Often in a fit we are interested in only one or two of
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many fit parameters. Getting rid of the uninteresting parameters (by absorbing them into ymod) can greatly
reduce the number of parameters varied by the fit, thereby speeding up the fit. Here we are in effect doing
a 100-exponential fit to our data, but actually fitting with only a handful of parameters (only 2 for nexp=1).
Removing parameters in this way is called marginalization.

1.8 SVD Cuts and Roundoff Error

All of the fits discussed above have (default) SVD cuts of le-12. This has little impact in most of the problems, but
makes a big difference in the problem discussed in the previous section. Had we run that fit, for example, with an SVD
cut of le-19, instead of le-15, we would have obtained the following output:

R R I b S b b I b b S b S b e S b e S b Sb b I Sb b b 2h b Sh 2h b 4 neXp = 5

Least Square Fit:

chi2/dof [dof] = 0.21 [9] Q = 0.99 1ogGBF = 85.355
Parameters:
a0 0.4009 (10) [ 0.50 (50) 1]
1 0.424 (22) [ 0.50 (50) ]
2 0.469 (62) [ 0.50 (50) ]
3 0.42 (11) [ 0.50 (50) ]
4 0.46 (18) [ 0.50 (50) ]
E O 0.90036 (43) [ 1.00 (10) ]
1 1.819 (19) [ 2.00 (14) 1 =
2 2.83 (11) [ 3.00 (17) 1
3 3.83 (15) [ 4.00 (20) ]
4 4.83 (18) [ 5.00 (22) ]
Fit
x[k] y k] f(x[k]l,p)
1 0.2721 (14) 0.272 (30)
1.2 0.20516 (42) 0.205 (26)
1.4 0.15824 (13) 0.158 (19)
1.6 0.124154 (38) 0.124 (13)
1.8 0.098678 (12) 0.0987 (89)
2 0.0792099 (36) 0.0792 (61)
2.2 0.0640734 (11) 0.0641 (43)
2.4 0.05214320 (33) 0.0521 (31)
2.6 0.04263821 (10) 0.0426 (24)
Settings:
svdcut/n = 1le-19/0 tol = (le-10%,1e-10,1e-10) (itns/time = 284/0.3)
Values:
E2/E0: 3(68)
E1/EQ0: 2(11)
az2/a0: 1(54)
al/a0: 1(30)

o)

Partial % Errors:

E2/EQ E1/EQ a2/a0 al/a0
E prior: 1065.47 276.29 2277.85 1406.61
svd cut: 0.00 0.00 0.00 0.00
a prior: 1889.45 490.06 4009.51 2496.57
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total: 2169.15 562.58 4611.37 2865.56

The standard deviations quoted for E1/EQ, etc. are much too large compared with the standard deviations than what
we obtained in the previous section. This is due to roundoff error. The strong correlations between the different
data points (ymod[i] — see the previous section) in this analysis result in a data covariance matrix that is too
ill-conditioned without an SVD cut.

The inverse of the data’s covariance matrix is used in the chix*2 function that is minimized by
lsgfit.nonlinear fit. Given the finite precision of computer hardware, it is impossible to compute this
inverse accurately if the matrix is almost singular, and in such situations the reliability of the fit results is in question.
The eigenvalues of the covariance matrix in this example (for nexp=>5) cover a range of about 18 orders of magnitude
— too large to be handled in normal double precision computation. The smallest eigenvalues and their eigenvectors
are likely to be quite inaccurate.

A standard solution to this common problem in least-squares fitting is to introduce an SVD cut, here called svdcut:

fit = nonlinear_fit (data=(x, ymod), fcn=f, prior=prior, pO0=p0, svdcut=le-12)

This regulates the singularity of the covariance matrix by replacing its smallest eigenvalues with a larger, minimum
eigenvalue. The cost is less precision in the final results since we are decreasing the precision of the input y data. This
is a conservative move, but numerical stability is worth the trade off. The listing shows that 3 eigenvalues are modified
when svdcut=1e-12 (see entry for svdcut /n); no eigenvalues are changed when svdcut=1e-19.

The SVD cut is actually applied to the correlation matrix, which is the covariance matrix rescaled by standard devi-
ations so that all diagonal elements equal 1. Working with the correlation matrix rather than the covariance matrix
helps mitigate problems caused by large scale differences between different variables. Eigenvalues of the correlation
matrix that are smaller than a minimum eigenvalue, equal to svdcut times the largest eigenvalue, are replaced by the
minimum eigenvalue, while leaving their eigenvectors unchanged. This defines a new, less singular correlation matrix
from which a new, less singular covariance matrix is constructed. Larger values of svdcut affect larger numbers of
eigenmodes and increase errors in the final results.

The results shown in the previous section include an error budget, and it has an entry for the error introduced by
the (default) SVD cut (obtained from fit.svdcorrection). The contribution is negligible. It is zero when
svdcut=1e-19, of course, but the instability caused by the ill-conditioned covariance matrix in that case makes it
unacceptable.

The SVD cut is applied separately to each block diagonal sub-matrix of the correlation matrix. This means, among
other things, that errors for uncorrelated data are unaffected by the SVD cut. Applying an SVD cut of le-4, for
example, to the following singular covariance matrix,

[[ 1.0 1.0 0.0 ]
[ 1.0 1.0 0.0 ]
[ 0.0 0.0 1le-201],

gives a new, non-singular matrix

[[ 1.0001 0.9999 0.0 1
[ 0.9999 1.0001 0.0 1
[ 0.0 0.0 le-201]

where only the upper left sub-matrix is different.

lsgfit.nonlinear_ fit uses a default value for svdcut of le-12. This default can be overridden, as shown
above, but for many problems it is a good choice. Roundoff errors become more accute, however, when there are
strong correlations between different parts of the fit data or prior. Then much larger svdcuts may be needed.

The SVD cut is applied to both the data and the prior. It is possible to apply SVD cuts to either of these separately
using gvar.svd () before the fit: for example,
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y = gv.svd(ymod, svdcut=1le-10)
prior = gv.svd(prior, svdcut=le-12)
fit = nonlinear_fit (data=(x, y), fcn=f, prior=prior, svdcut=None)

applies different SVD cuts to the prior and data.

Note that taking svdcut=-1e-12, with a minus sign, causes the problematic modes to be dropped. This is a more
conventional implementation of SVD cuts, but here it results in much less precision than using svdcut=1e-15
(giving, for example, 2.094(94) for E1/EO0, which is almost five times less precise). Dropping modes is equivalent
to setting the corresponding variances to infinity, which is (obviously) much more conservative and less realistic than
setting them equal to the SVD-cutoff variance.

The method Isgfit.nonlinear fit.check_ roundoff () can be used to check for roundoff errors by
adding the line fit.check_roundoff () after the fit. It generates a warning if roundoff looks to be a problem.
This check is done automatically if debug=True is added to the argument list of Isgfit.nonlinear fit.

1.9 y has Unknown Errors

There are situations where the input data y is known to have uncertainties, but where we do not know how big those
uncertainties are. A common approach is to infer these uncertainties from the fluctuations of the data around the
best-fit result.

As an example, consider the following data:

x = np.array([l., 2., 3., 4.1])
y np.array([3.4422, 1.2929, 0.4798, 0.1725])

We want to fit these data with a simple exponential:

pl0] % gv.exp( - pl[l] » x)

where from we know a priorithat p [0] is 10£1 and p[1] is 1£0.1. We assume that the relative uncertainty in y is
x-independent and uncorrelated.

Our strategy is to introduce a relative error for the data and to vary its size to maximize the 10gGBF that results
from a fit to our exponential. The choice that maximizes the Bayes Factor is the one that is favored by the data. This
procedure is called the Empirical Bayes method.

This method is implemented in a driver program

‘fit, z = lsqgfit.empbayes_£fit (z0, fitargs)

which varies parameter z, starting at z0, to maximize £it .1ogGBF where

‘fit = lsgfit.nonlinear_fit (x+xfitargs(z)).

Function fitargs (z) returns a dictionary containing the arguments for nonlinear_fit (). These arguments
are varied as functions of z. The optimal fit (that is, the one for which fit .10gGBF is maximum) and z are returned.

Here we want to vary the relative error assigned to the data values, so we use the following code, where the uncertainty
iny[i]issetequaltody[i] = y[i] * z:

import numpy as np
import gvar as gv
import lsqgfit

# fit data and prior
x = np.array([l., 2., 3., 4.1])
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y np.array ([3.4422, 1.2929, 0.4798, 0.1725])
prior = gv.gvar(['10(1)", '"1.0(1)'])

# fit function
def fcn(x, p):
return p[0] * gv.exp(-p[l] * x)

# find optimal dy
def fitargs(z):
dy =y * z
newy = gv.gvar(y, dy)
return dict (data=(x, newy), fcn=fcn, prior=prior)

fit, z = lsqgfit.empbayes_£fit (0.001, fitargs)
print (fit.format (True))

This code produces the following output:

Least Square Fit:

chi2/dof [dof] = 0.59 [4] Q = 0.67 logGBF = 7.4834
Parameters:
0 9.44 (18) [ 10.0 (1.0) ]
1 0.9978 (68) [ 1.00 (10) ]
Fit
x [k] y k] f(x[k]l,p)
1 3.442 (54) 3.481 (45)
2 1.293 (20) 1.283 (11)
3 0.4798 (75) 0.4731 (40)
4 0.1725 (27) 0.1744 (23)
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 3/0.0)

The variation in the data suggests a relative error of about 1.6% for the input data. The overall fit is excellent.

It is important to appreciate that the outcome of a such a fit depends in detail on the assumptions you make about y ‘s
uncertainties dy. We assume dy/y is x-independent above, but we get a somewhat different answer if instead we
assume that dy is constant. Then fitrargs becomes

def fitargs(z):
dy = np.ones_like(y) * z
newy = gv.gvar(y, dy)
return dict (data=(x, newy), fcn=fcn, prior=prior)

and the output is:

Least Square Fit:

chi2/dof [dof] = 0.67 [4] Q = 0.61 1logGBF = 7.7643
Parameters:
0 9.207 (47) [ 10.0 (1.0) 1
1 0.9834 (42) [ 1.00 (10) 1]
Fit
x[k] y k] f(x[k],p)
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1 3.4422 (66) 3.4435 (66)
2 1.2929 (606) 1.2879 (50)
3 0.4798 (66) 0.4817 (38)
4 0.1725 (66) 0.1802 (22) *
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 3/0.0)

The data suggest an uncertainty of 0.0066 in each y [1]. Results for the fit parameters fit .p[1] are similar in the
two cases, but the error on p [0] is almost four times smaller with constant dy.

There is no way to tell from the data which of these error scenarios for y is correct. 1ogGBEF is slightly larger for the
second fit, despite its larger chi2/dof, but the difference is not significant. There isn’t enough data and it doesn’t
cover a large enough range to distinguish between these two options. Additional information about the data or data
taking is needed to decide.

The Empirical Bayes method for setting dy becomes trivial when there are no priors and when dy is assumed to be
x-independent. Then it is possible to minimize the chi**2 function without knowing dy, since dy factors out. The
optimal dy is just the standard deviation of the fit residuals y [1] - fcn(x[1i],p) with the best-fit parameters p.
This assumption is implicit in most fit routines that fit data without errors (and without priors).

1.10 Tuning Priors with the Empirical Bayes Criterion

Given two choices of prior for a parameter, the one that results in a larger Gaussian Bayes Factor after fitting (see
1ogGBF in fit output or £it . 10gGBF) is the one preferred by the data. We can use this fact to tune a prior or set of
priors in situations where we are uncertain about the correct a priori value: we vary the widths and/or central values of
the priors of interest to maximize 10gGBF. In effect we are using the data to get a feel for what is a reasonable prior.
This procedure for setting priors is again, as in the previous section, an example of the Empirical Bayes method and
can be implemented using function 1 sgfit.empbayes fit ().

The following code illustrates how this is done:

import numpy as np
import gvar as gv
import lsqgfit

y = np.array ([
'0.133426(95) "', '0.20525(15)"', '0.27491(20)"', '0.32521(25)"',
'0.34223(28) "', '0.32394(28)"', '0.27857(27)"
1)

X = np.array([(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7])
(

def fcn(x, p):
return gv.exp (-p[0] — pl[l] * x — p[2] * x**2 — p[3] * x*x%3)

def fitargs(z):
dp = z
prior = gv.gvar([gv.gvar (0, dp) for i in range(4)])
return dict (prior=prior, fcn=fcn, data=(x,y))

fit,z = lsqgfit.empbayes_fit (1.0, fitargs)
print (fit.format (True))

Here the fitter varies parameters p until fcn (x, p) equals the input data y. We don’t know a priori how large the
coefficients p [1] are. In fitargs we assume they are all of order dp = z. Function empbayes_£fit varies z to
maximize £it .1ogGBF. The output is as follows:
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Least Square Fit:

chi2/dof [dof] = 0.81 [7] Q = 0.58 logGBF = 21.274
Parameters:
0 2.5904 (22) [ 0.0 (5.3) 1
1 -6.530 (22) [ 0.0 (5.3) 1 =
2 7.832 (65) [ 0.0 (5.3) 1] *
3 -1.688 (55) [ 0.0 (5.3) 1
Fit
x[k] vy [k] f(x[k]l,p)
0.1 0.133426 (95) 0.133451 (92)
0.2 0.20525 (15) 0.20512 (10)
0.3 0.27491 (20) 0.27509 (14)
0.4 0.32521 (25) 0.32516 (15)
0.5 0.34223 (28) 0.34220 (19)
0.6 0.32394 (28) 0.32392 (18)
0.7 0.27857 (27) 0.27859 (26)
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 1/0.0)

The data suggest that the coefficients are of order 0£5.3. The actual values of the parameters are, of course, consistent
with the Empirical Bayes estimate.

The Bayes factor, exp (fit . 10gGBF), is useful for deciding about fit functions as well as priors. If we repeat the
analysis above but with the following data

x = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7])
(

y = np.array ([
'0.133213(95) "', '0.20245(15)"', '0.26282(19)"', '0.29099(22)"
'0.27589(22) "', '0.22328(19)', '0.15436(14)"

1)

we find that fits with 3 or 4 p [1]s give the following results:

========== fcn(x,p) = exp(-p[0] - p[l] * x = p[2] * x**2)
Least Square Fit:
chi2/dof [dof] = 0.86 [7] Q = 0.53 1logGBF = 27.07
Parameters:
0 2.5911 (12) [ 0.0 (5.3) ]
1 -6.5420 (68) [ 0.0 (5.3) 1 =
2 7.8711 (86) [ 0.0 (5.3) 1 =
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 8/0.0)
========== fcn (x,p) = exp(-p[0] — p[l] » x — p[2] *» x*x*x2 — p[3] * xX*x%3)
Least Square Fit:
chi2/dof [dof] = 0.82 [7] Q = 0.57 1logGBF = 22.617
Parameters:
0 2.5920 (21) [ 0.0 (5.3) 1
1 -6.553 (22) [ 0.0 (5.3) 1 =
2 7.905 (64) [ 0.0 (5.3) 1 =
3 -0.029 (54) [ 0.0 (5.3) 1
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Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 11/0.0)

The two fits are almost equally good, giving almost the same chix«2 values. The first fit, with only 3 p[i]s,
however, has a significantly larger 1ogGBF. This indicates that this data is exp (27.1-22.6) = 90 times more
likely to come from the theory with only 3 p [1]s than from the one with 4. The data much prefer the 3-parameter
theory, and they do, as it turns out, come from such a theory. Note that the value for p [3] in the second case is
consistent with zero, but the errors on the other parameters are much larger if it is included in the fit.

The Empirical Bayes procedure can be abused, because it is possible to make 1 0gGBF arbitrarily large. For example,
setting

prior = gv.gvar ([
'2.5904 +- 2.6e-16', '-6.53012 +- 6.5e-16",
'7.83211 +- 7.8e-16"', '-1.68813 +- 1.7e-16",
1)

in the problem above and then fitting gives 10gGBF=52. 2, which is much larger than the alternatives above. This
“prior” is ridiculous, however: it has means equal to the best-fit results with standard deviations that are 16 orders
of magnitude smaller. This is the kind of prior you get from Empirical Bayes if you vary the means and standard
deviations of all parameters independently.

Bayes Theorem explains what is wrong with such priors. The Bayes Factor is proportional to the probability
P (yImodel) that the fit data would arise given the model (priors plus fit function). When selecting models, we
really want to maximize P (model | y), the probability of the model given the data. These two probabilities are dif-
ferent, but are related by Bayes Theorem: P (model |y) is proportional to P (y |[model) times P (model), where
P (model) is the a priori probability of the model being correct. When we choose a model by maximizing 1ogGBF
(that is, by maximizing P (y |[model) ), we are implicitly assuming that the various models we are considering are
all equally likely candidates — that is, we are assuming that P (model) is approximately constant across the model
space we are exploring. The a priori probability for the prior just above is vanishingly small (because it is ridiculous),
and so comparing its 1ogGBF to the others is nonsensical.

Note that empbayes_fit () allows fitargs (z) to return a dictionary of arguments for the fitter together with a
plausibility for z, which corresponds to 1og (P (model) ) in the discussion above. This allows you steer the
search away from completely implausible solutions.

Empirical Bayes tends to be most useful when varying the width of the prior for a single parameter, or varying the
widths of a group of parameters together. It is also useful for validating (rather than setting) the choice of a prior or
set of priors for a fit, by comparing the optimal choice (according to the data) with choice actually used.

1.11 Positive Parameters; Non-Gaussian Priors

The priors for 1 sgfit.nonlinear_fit are all Gaussian. There are situations, however, where other distributions
would be desirable. One such case is where a parameter is known to be positive, but is close to zero in value (“close”
being defined relative to the a priori uncertainty). For such cases we would like to use non-Gaussian priors that force
positivity — for example, priors that impose log-normal or exponential distributions on the parameter. Ideally the
decision to use such a distribution is made on a parameter- by-parameter basis, when creating the priors, and has no
impact on the definition of the fit function itself.

lsgfit.nonlinear fit supports log-normal distributions when extend=True is set in its argument list. This
argument only affects fits that use dictionaries for their parameters. The prior for a parameter ’ ¢’ is switched from a
Gaussian distribution to a log-normal distribution by replacing parameter ’ ¢’ in the fit prior with a prior for its loga-
rithm, using the key ’ 1og (c) *. This causes 1sgfit.nonlinear._fit touse the logarithm as the fit parameter
(with its Gaussian prior). Parameter dictionaries produced by 1 sgfit.nonlinear._fit will have entries for both
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"¢’ and " log (c) ', so only the prior need be changed to switch distributions. In particular the fit function can be
expressed directly in terms of ’ ¢’ so that it is independent of the distribution chosen for the ’ ¢’ prior.

To illustrate consider a simple problem where an experimental quantity y is known to be positive, but experimental
errors mean that measured values can often be negative:

import gvar as gv
import 1lsgfit

y = gv.gvar ([

-0.17(20) ", '70 03(z20)', '-0.39(20)"', '0.10(20)"', '-0.03(20)",
'0.06(20)', '-0.23(20)"', '-0.23(20)', '-0.15(20)', '-0.01(20)",
-0.12(20)"', '0.05(20)', '-0.09(20)"', '-0.36(20)"', '0.09(20)",
-0.07(20)', '-0.31(20)"', '0.12(20)", '0.11(20)', '0.13(20)"

1)

We want to know the average value a of the ys and so could use the following fitting code:

prior = {'a':gv.gvar('0.02(2)")} # a = average of y's

def fcn(p, N=len(y

)) s
return N » [p['a'

1]
fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn)

print (fit)
print('a ="', fit.p['a'l)

where we are assuming a priori information that suggests the average is around 0.02. The output from this code is:

Least Square Fit:

chi2/dof [dof] = 0.84 [20] Q = 0.67 1ogGBF = 5.3431
Parameters:
a 0.004 (18) [ 0.020 (20) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 4/0.0)

a = 0.004(18)

This is not such a useful result since much of the one-sigma range for a is negative, and yet we know that a must be
postive.

A better analysis uses a log-normal distribution for a:

prior = {}
prior['log(a)'] = gv.log(gv.gvar('0.02(2)")) # log(a) not a

def fcn(p, N=len(y

)) s
return N » [p['a'

1]

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn, extend=True)
print (fit)
print('a ="', fit.p['a'l) # exp(log(a))

The fit parameter is now log (a) rather than a itself, but the code is unchanged except for the definition of the prior
and the addition of extend=True to the Isgfit.nonlinear fit arguments. In particular the fit function is
identical to what we used in the first case since parameter dictionary p has entries for both * a’ and ’ log (a) '

The result from this fit is
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Least Square Fit:

chi2/dof [dof] = 0.85 [20] QO = 0.65 1ogGBF = 5.252
Parameters:
log(a) -4.44 (97) [ =3.9 (1.0) 1
a 0.012 (11) [ 0.020 (20) 1
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 25/0.0)

a = 0.012(11)

which is more compelling. Parameters listed above the dashed line in the parameter table are the actual parameters
used in the fit; those listed below the dashed line are derived from those above the line. The “correct” value for a here
is 0.015 (given the method used to generate the ys).

Setting extend=True in 1sqgfit.nonlinear_fit also allows parameters to be replaced by their square roots
as fit parameters, or by the inverse error function. The latter option is useful here because it allows us to define a prior
distribution for parameter a that is uniform between 0 and 0.04:

prior = {}
prior['erfinv (50xa-1)"'] = gv.gvar('0(1)") / gv.sqrt(2)

def fcn(p, N=len(y)):
a = (1 + p['50*xa-1"'1) / 50
return N *» [a]

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn, extend=True)
print (fit)
print ('a ="', (l+fit.p['50*a-1"1) / 50)

In general, setting a prior prior [’ erfinv (w)’ ] equal to (0+1)/sqrt(2) means that the prior probability for vari-
able w is constant between -1 and 1, and zero elsewhere. Here w=50+a-1, so that the prior distribution for a is
uniform between 0 and 0.04, and zero elsewhere. This again guarantees a positive parameter.

The result from this last fit is:

Least Square Fit:

chi2/dof [dof] = 0.85 [20] Q = 0.65 1ogGBF = 5.2385
Parameters:
erfinv(50a-1) -0.42 (68) [ 0.00 (71) ]
50a-1 -0.44 (64) [ 0.00 (80) 1
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 15/0.0)

a = 0.011(13)

This fit implies that a=0.011 (13) which is almost identical to the result obtained from the log-normal distribution.

Other distributions can be defined using 1sgqfit.add_parameter_distribution (). For example,

import lsqgfit
import gvar as gv

def invf (x):
return 0.02 + 0.02 % gv.tanh(x)
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def f(x): # not used
return gv.arctanh((x - 0.02) / 0.02)

gv.add_parameter_distribution('f', invf)

prior = {}
prior['f(a)']l] = gv.gvar('0.00(75)")

def fcn(p, N=len(y)):
return N » [p['a']l]

fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn, extend=True)
print (fit)
print ('a =', fit.p['a'l)

does a fit with Gaussian parameter £ (a), which forces a to lie between 0 and 0.04. This fit gives a=0.012 (12),
which again agrees well with log-normal fit. The prior 040.75 for f (a) is chosen to make the prior probability
distribution for parameter a almost flat across most (80%) of the interval 0.02+0.02.

1.12 Faster Fitters

Isgfit.nonlinear._fit uses fitters from the Gnu Scientific Library (GSL) and/or from the scipy Python
module to do the actual fitting, depending upon which of these is installed. It is worth trying a different fitter or
fit algorithm if a fit is causing trouble, since different fitters are optimized for different problems. The fitter is selected
using the fitter argumentin Isqgfit.nonlinear._fit. There are currently three fitters available:

fitter="gsl_multifit’ The standard GSL least-squares fitter which is wrapped in Python
class I1sgfit.gsl_multifit. This is the default fitter provided GSL is installed. It of-
fers a wide range of options, including several different algorithms that are selected by setting
lsgfit.nonlinear_fit parameter alg equalto ’ lm’, ' subspace2D’, 'dogleg’, and
so on. See the documentation.

fitter="gsl_vl_multifit’ The GSL fitter from version 1 of the GSL library. This is wrapped
in Python class 1sgfit.gsl_vi_multifit. It was the fitter used in I1sgfit versions earlier
than version 9.0. It supports a few different algorithms (parameter alg) including * Imsder’ and
"lmder’.

fitter='scipy_least_squares’ The standard scipy least-squares fitter, here provided with
an Isgfitinterface by class Isgfit.scipy_least_squares. Thisisthe default fitter when
GSL is not available. It also provides a variety of algorithms (set parameter method), and other
options, such as loss functions for handling outliers. See the scipy documentation.

The default configurations for these fitters are chosen to emphasize robustness rather than speed, and therefore some
of the non-default options can be much faster. Adding

fitter="'gsl _multifit', alg='subspace2D', scaler='more', solver='cholesky'

to Isgfit.nonlinear_fit°‘sargument list, for example, can double or triple the fitter’s speed for large problems.
The more robust choices are important for challenging fits, but straightforward fits can be greatly accelerated by
using different options. The scipy_least_squares fitter can also be much faster than the default. It is worth
experimenting when fits become costly.

Method 1sgfit.nonlinear fit.set () modifies the defaults used by 1sgfit.nonlinear fit. For ex-
ample, we can make the fast option mentioned above the default choice for any subsequent fit by calling:
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lsgfit.nonlinear_fit.set (
fitter="'gsl_multifit’',
alg='subspace2D',
scaler="'more',
solver="cholesky"',
)

Default values for parameters extend, svdcut, debug, maxit, fitter, and tol can be reset, as can any
parameters that are sent to the underlying fitter (e.g., alg, scaler, and solver here). Calling the function with
no arguments returns a dictionary containing the current defaults. nonlinear_fit.set (clear=True) restores
the original defaults.

Isgfit.nonlinear._ fit is easier to use than the underlying fitters because it can handle correlated data, and it
automatically generates Jacobian functions for the fitter, using automatic differentiation. It also is integrated with the
gvar module, which provides powerful tools for error propagation, generating error budgets, and creating potentially
complicated priors for Bayesian fitting. The underlying fitters are available from Isgfit for use in other more
specialized applications.

1.13 Debugging and Troubleshooting

It is a very good idea to set parameter debug=True in Isgfit.nonlinear_fit, atleastin the early stages of a
project. This causes the code to look for common mistakes and report on them with more intelligible error messages.
The code also then checks for significant roundoff errors in the matrix inversion of the covariance matrix.

A common mistake is a mismatch between the format of the data and the format of what comes back from the
fit function. Another mistake is when a fit function fcn (p) returns results containing gvar.GVars when the
parameters p are all just numbers (or arrays of numbers). The only way a gvar .GVar should get into a fit function
is through the parameters; if a fit function requires an extra gvar.GVar, that gvar.GVar should be turned into a
parameter by adding it to the prior.

Error messages that come from inside the GSL routines used by 1sgfit.nonlinear fit are sometimes less than
useful. They are usually due to errors in one of the inputs to the fit (that is, the fit data, the prior, or the fit function).
Again setting debug=True may catch the errors before they land in GSL.

Occasionally 1sgfit.nonlinear fit appears to go crazy, with gigantic chixx2s (e.g., 1e78). This could be
because there is a genuine zero-eigenvalue mode in the covariance matrix of the data or prior. Such a zero mode makes
it impossible to invert the covariance matrix when evaluating chix+2. One fix is to include SVD cuts in the fit by
setting, for example, svdcut=1e-8 in the call to 1sgfit.nonlinear_fit. These cuts will exclude exact or
nearly exact zero modes, while leaving important modes mostly unaffected.

Even if the SVD cuts work in such a case, the question remains as to why one of the covariance matrices has a zero
mode. A common cause is if the same gvar.GVar was used for more than one prior. For example, one might think
that

>>> import gvar as gv
>>> z = gv.gvar(l, 1)
>>> prior = gv.BufferDict (a=z, b=2z)

creates a prior 1£1 for each of parameter a and parameter b. Indeed each parameter separately is of order 1£1, but
in a fit the two parameters would be forced equal to each other because their priors are both set equal to the same
gvar.GVar, z:

>>> print (prior['a'l, prior['b'])
1.0(¢(1.0) 1.0(1.0)

>>> print (prior['a']-prior['b'])
0(0)
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That is, while parameters a and b fluctuate over a range of 1+1, they fluctuate together, in exact lock-step. The
covariance matrix for a and b must therefore be singular, with a zero mode corresponding to the combination a—b; it
is all 1s in this case:

>>> import numpy as np

>>> cov = gv.evalcov (prior.flat) # prior's covariance matrix
>>> print (np.linalg.det (cov)) # determinant 1s zero
0.0

This zero mode upsets nonlinear_fit (). If a and b are meant to fluctuate together then an SVD cut as above will
give correct results (with a and b being forced equal to several decimal places, depending upon the cut). Of course,
simply replacing b by a in the fit function would be even better. If, on the other hand, a and b were not meant to
fluctuate together, the prior should be redefined:

‘>>> prior = gv.BufferDict (a=gv.gvar(l, 1), b=gv.gvar(l, 1))

where now each parameter has its own gvar.GVar. A slightly more succinct way of writing this line is:

‘>>> prior = gv.gvar (gv.BufferDict(a='1(1)", b="1(1)"))
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CHAPTER
TWO

NON-GAUSSIAN BEHAVIOR; TESTING FITS

2.1 Introduction

The various analyses in the Tutorial assume implicitly that every probability distribution relevant to a fit is Gaussian.
The input data and priors are assumed Gaussian. The chix*2 function is assumed to be well approximated by a
Gaussian in the vicinity of its minimum, in order to estimate uncertainties for the best-fit parameters. Functions of
those parameters are assumed to yield results that are described by Gaussian random variables. These assumptions
are usually pretty good for high-statistics data, when standard deviations are small, but can lead to problems with low
statistics.

Here we present three methods for testing these assumptions. Some of these techniques, like the statistical bootstrap
and Bayesian integration, can also be used to analyze non-Gaussian results.

2.2 Bootstrap Error Analysis; Non-Gaussian Output

The bootstrap provides an efficient way to check on a fit’s validity, and also a method for analyzing non-Gaussian
outputs. The strategy is to:

1. make a large number of “bootstrap copies” of the original input data and prior that differ from each other by ran-
dom amounts characteristic of the underlying randomness in the original data and prior (see the documentation
for Isgfit.nonlinear_ fit.bootstrap_iter () for more information);

2. repeat the entire fit analysis for each bootstrap copy of the data and prior, extracting fit results from each;

3. use the variation of the fit results from bootstrap copy to bootstrap copy to determine an approximate probability
distribution (possibly non-Gaussian) for the each result.

To illustrate, we return to our fit in the section on Correlated Parameters;, Gaussian Bayes Factor, where the uncer-
tainties on the final parameters were relatively large. We will use a booststrap analysis to check the error estimates
coming out of that fit. We do this by adding code right after the fit, in the main () function:

import numpy as np
import gvar as gv
import lsqgfit

def main () :
x, y = make_data()

prior = make_prior()

fit = lsgfit.nonlinear_fit (prior=prior, data=(x,y), fcn=fcn)

print (fit)

print ('pl/p0 ="', fit.p[l] / fit.pl[0], 'p3/p2 =', fit.p[3]1 / fit.pl2])
print ('corr (p0,pl) ="', gv.evalcorr(fit.p[:2]1)[1,0])
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# boostrap analysis: collect bootstrap data
print ('\nBootstrap Analysis:')
Nbs = 40 # number of bootstrap copies
output = {'p':[], 'pl/p0':[], 'p3/p2':[1}
for bsfit in fit.bootstrap_iter (Nbs) :
p = bsfit.pmean
output['p'].append (p)
output ['pl/p0'].append(p[l] / p
output ['p3/p2'].append(p[3] / pl2])
# average over bootstrap copies and tabulate results
output = gv.dataset.avg_data (output, bstrap=True)
print (gv.tabulate (output))
print ('corr (p0,pl) ="', gv.evalcorr(output['p']1[:2])[1,0])

def make_datal() :

X = np.array ([
4., 2., 1., 0.5, 0.25, 0.167, 0.125, 0.1, 0.0833, 0.0714, 0.0625
1)

y = gv.gvar ([
'0.198(14)"', '0.216(15)"', '0.184(23)"', '0.156(44)"', '0.099(49)",
'0.142(40) "', '0.108(32)"', '0.065(26)"', '0.044(22)', '0.041(19)",
'0.044 (16) "
1)

return x, y

def make_prior():
p = gv.gvar(['0(1)", 'O(1)', 'O(L)", '0(1)'])
pll] = 20 = p[0] + gv.gvar('0.0(1)") # pl[l] correlated with p[0]
return p

def fcn(x, p):

return (p[0] * (x+*2 + p[l] * x)) / (x*+2 + x * p[2] + p[3])
if _ name_ == '"_ main_ ':
main ()

The bootstrap_iter produces fits bsfit for each of Nbs=40 different bootstrap copies of the input data
(y and the prior). We collect the mean values for the various parameters and functions of parameters from
each fit, ignoring the uncertainties, and then calculate averages and covariance matrices from these results using
gvar.dataset.avg_data().

Most of the bootstrap results agree with the results coming directly from the fit:

Least Square Fit:

chi2/dof [dof] = 0.61 [11] Q = 0.82 1logGBF = 19.129
Parameters:
0 0.149 (17) [ 0.0 (1.0) 1
1 2.97 (34) [ 0 (20) 1]
2 1.23 (61) [ 0.0 (1.0) 1 *
3 0.59 (15) [ 0.0 (1.0) 1
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 20/0.1)
pl/p0 = 19.97(67) p3/p2 = 0.48(22)
corr (p0,pl) = 0.957067820817
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Bootstrap Averages:

key/index value
p 0 0.146 (19)
1 2.91 (29)
2 1.14 (706)
3 0.59 (16)
p3/p2 0.49 (40)
pl/p0 19.86 (80)
corr (p0,pl) = 0.949819729559

In particular, the bootstrap analysis confirms the previous error estimates (to within 10-30%, since Nbs=40) except
for p3/p2, where the error is substantially larger in the bootstrap analysis.

If p3/p2 is important, one might want to look more closely at its distribution. We use the bootstrap to create his-
tograms of the probability distributions of p3/p2 and p1/p01 by adding the following code to the end of themain ()
function:

print ('Histogram Analysis:')

count = {'pl/p0':[1, 'p3/p2':[1}

hist = {
'pl/p0':gv.PDFHistogram (fit.p[1] / fit.p[0]1),
'p3/p2':gv.PDFHistogram (fit.p[3] / fit.p[2]1),
}

# collect bootstrap data

for bsfit in fit.bootstrap_iter (n=1000) :
p = bsfit.pmean
count [ 'pl/p0'] .append (hist['pl/p0'].count (p[1]
count [ 'p3/p2'] .append (hist['p3/p2'].count (p[3]

~ ~
T O
N

# calculate averages and covariances
count = gv.dataset.avg_data (count)

# print histogram statistics and show plots
import matplotlib.pyplot as plt
pltnum = 1
for k in count:
print(k + ':")
print (hist[k] .analyze (count[k]) .stats)
plt.subplot (1, 2, pltnum)
plt.xlabel (k)
hist[k].make_plot (count[k], plot=plt)
if pltnum == 2:
plt.ylabel('")
pltnum += 1
plt.show ()

Here we do 1000 bootstrap copies (rather than 40) to improve the accuracy of the bootstrap results. The output from
this code shows statistical analyses of the histogram data for p1 /p0 and p3/p2:

Histogram Analysis:

pl/p0:
mean = 19.970(23) sdev = 0.722(16) skew = 0.127(75) ex_kurt = -0.01(14)
median = 19.939(28) plus = 0.737(35) minus = 0.654(31)

p3/p2:
mean = 0.5206(76) sdev = 0.2396(64) skew = 0.671(83) ex_kurt = 0.88(18)
median = 0.4894(79) plus = 0.309(18) minus = 0.1492(54)
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The code also displays histograms of the probability distributions, where the dashed lines show the results expected
directly from the fit (that is, in the Gaussian approximation):
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While the distribution for p1/p0 is consistent with the fit results (dashed line) and Gaussian, the distribution for
p3/p2 is significantly skewed, with a much longer tail to the right. The final result for p3/p2 might more accurately
be summarized as 0.48 with errors of +0.31 and -0.15, although the Gaussian estimate of 0.48+0.22 would suffice for
many applications. The skewed distribution for p3/p2 is not particularly surprising given the +50% uncertainty in
the denominator p2.

2.3 Bayesian Integrals

Bayesian expectation values provide an alternative to least-squares fits. These expectation values are integrals over
the fit parameters that are weighted by the probability density function (PDF for the parameters) proportional to
exp (—chix*2/2), where chi*«2 includes contributions from both the data and the priors. They can be used
to calculate mean values of the parameters, their covariances, and the means and covariances of any function of the
parameters. These will agree with the best-fit results of our least-squares fits provided chi* %2 is well approximated
by its quadratic expansion in the parameters — that is, insofar as exp (-chi*x2/2) is well approximated by the
Gaussian distribution in the parameters specified by their best-fit means and covariance matrix (from fit.p).

Here we use lsgfit.BayesIntegrator to evaluate Bayesian expectation values.
lsgfit.BayesIntegrator uses the vegas module for adaptive multi-dimensional integration to evalu-
ate expectation values. It integrates arbitrary functions of the parameters, multiplied by the probability density
function, over the entire parameter space. (Module vegas must be installed for 1sgfit.BayesIntegrator.)

To illustrate 1sgfit.BayesIntegrator, we again revisit the analysis in the section on Correlated Parameters;
Gaussian Bayes Factor. We modify the end of the main () function of our original code to evaluate the means and
covariances of the parameters, and also their probability histograms, using a Bayesian integral:

import matplotlib.pyplot as plt
import numpy as np

import gvar as gv

import lsqgfit

def main() :

y = make_data()

prior = make_prior()

fit = lsgfit.nonlinear_fit (prior=prior,
print (fit)

Xy

data=(x,y), fcn=fcn)

# Bayesian integrator

expval = lsgfit.BayesIntegrator (fit)
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def

# adapt integrator expval to PDF from fit
neval = 1000

nitn = 10

expval (neval=neval, nitn=nitn)

# <g(p)> gives mean and covariance matrix, and counts for histograms
hist = [
gv.PDFHistogram (fit.p[0]), gv.PDFHistogram(fit.pl[1l]),
gv.PDFHistogram (fit.p[2]), gv.PDFHistogram(fit.p[3]),
]
def g(p):
return dict (
mean=p,
outer=np.outer(p, p),
count=[
hist[0].count (p[0]), hist[l].count(pl[l]),
hist[2].count (p[2]), hist[3].count(p[3]),
]I

# evaluate expectation value of g(p)
results = expval (g, neval=neval, nitn=nitn, adapt=False)

# analyze results

print ('\nIterations:"')

print (results.summary () )
print ('Integration Results:')
pmean = results['mean']

pcov = results['outer'] - np.outer (pmean, pmean)
print (' mean (p) ="', pmean)
print (' cov(p) =\n', pcov)

# create GVars from results

p = gv.gvar (gv.mean (pmean), gv.mean (pcov))
print ('\nBayesian Parameters:')

print (gv.tabulate (p))

# show histograms
print ('\nHistogram Statistics:')
count = results['count']
for i in range(4):
# print histogram statistics
print ('p[{}]:"'.format (1))
print (hist[i].analyze (count[i]) .stats)
# make histogram plots
plt.subplot (2, 2, 1 + 1)
plt.xlabel ('p[{}]"'.format (1))
hist[i] .make_plot (count[i], plot=plt)

if i $ 2 !'= 0:
plt.ylabel ("'")
plt.show ()

make_data () :

x = np.array ([
4. , 2. , 1. , 0.5 , 0.25 , 0.167 , 0.125,
0.1 , 0.0833, 0.0714, 0.0625
1)

y = gv.gvar ([

23.

Bayesian Integrals
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'0.198(14)', '0.216(15)', '0.184(23)', '0.156(44)', '0.099(49)",
'0.142(40)", '0.108(32)"', '0.065(26)"', '0.044(22)', '0.041(19)",
'0.044 (16) "

1)

return x, y

def make_prior():
p = gv.gvar(['0O(1)"', "O(1)"', 'O(1)y", '"O(1)'1l)
pll] = 20 %« p[0] + gv.gvar('0.0(1)") # pl[l] correlated with p[0]
return p

def fcn(x, p):
return (p[0] » (x**2 + pl[l] * x)) / (x*+2 + x * p[2] + p[3])
if _ name_ == '__main__ ':
main ()

Here expval is an integrator that is used to evaluate expectation values of arbitrary functions of the fit parameters.
BayesIntegrator uses output (fit) from a least-squares fit to design a vegas integrator optimized for calculat-
ing expectation values. The integrator uses an iterative Monte Carlo algorithm that adapts to the probability density
function after each iteration. See the vegas documentation for much more information.

We first call the integrator without a function. This allows it to adapt to the probability density function from the fit
without the extra overhead of evaluating a function of the parameters. The integrator uses nitn=10 iterations of the
vegas algorithm, with at most neval=1000 evaluations of the probability density function for each iteration.

We then use the optimized integrator to evaluate the expectation value of function g (p) (turning adaptation off with
adapt=False). The expectation value of g (p) is returned in dictionary results.

The results from this script are:

Least Square Fit:

chi2/dof [dof] = 0.61 [11] Q = 0.82 1logGBF = 19.129
Parameters:
0 0.149 (17) [ 0.0 (1.0) 1]
1 2.97 (34) [ 0 (20) 1
2 1.23 (61) [ 0.0 (1.0) 1 *
3 0.59 (15) [ 0.0 (1.0) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 20/0.1)
Iterations:
itn integral average chi2/dof 0
1 1.051(32) 1.051(32) 0.00 1.00
2 1.015(21) 1.033(19) 0.74 0.94
3 1.046(24) 1.037(15) 0.74 0.99
4 1.058(36) 1.042(15) 0.75 1.00
5 1.009(28) 1.036(13) 0.71 1.00
6 0.982(24) 1.027(11) 0.72 1.00
7 1.016(22) 1.025(10) 0.72 1.00
8 1.031(27) 1.0260(97) 0.70 1.00
9 1.122(77) 1.037(12) 0.72 1.00
10 1.023(24) 1.035(11) 0.73 1.00

Integration Results:
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mean (p) = [0.15514(35) 3.1019(71) 1.453(16) 0.6984(34)]
cov(p) =

.000252(11) 0.00488(23) 0.00882(57) 0.001436(88)]1]
.00488(23) 0.1044(47) 0.177(11) 0.0298(18)]

.00882(57) 0.177(11) 0.362(29) 0.0331(37)]

.001436(88) 0.0298(18) 0.0331(37) 0.0345(16)11

O O O O

Bayesian Parameters:

index value
0 0.155 (16)
1 3.10 (32)
2 1.45 (60)
3 0.70 (19)

Histogram Statistics:

pl0] -
mean = 0.15518(33) sdev = 0.01659(29) skew = 0.119(62) ex_kurt = 0.52(40)
median = 0.15471(23) plus = 0.01610(47) minus = 0.01553(24)

pll] -
mean = 3.1056(68) sdev = 0.3382(61) skew = 0.158(48) ex_kurt = 0.15(10)
median = 3.0969(46) plus = 0.3244(97) minus = 0.3157(48)

pl2] -
mean = 1.454(16) sdev = 0.626(20) skew = 0.505(94) ex_kurt = 0.37(17)
median = 1.4082(86) plus = 0.615(17) minus = 0.5520(83)

pl3] -
mean = 0.6717(41) sdev = 0.1956(406) skew = -0.39(10) ex_kurt = 1.54(16)
median = 0.6730(26) plus = 0.2013(67) minus = 0.1537(22)

The iterations table shows results from each of the nitn=10 vegas iterations used to evaluate the expectation values.
Estimates for the integral of the probability density function are listed for each iteration. (Results from the integrator
are approximate, with error estimates.) These are consistent with each other and with the (more accurate) overall
average.

The integration results show that the Bayesian estimates for the means of the parameters are accurate to roughly 1% or
better, which is sufficiently accurate here given the size of the standard deviations. Estimates for the covariance matrix
elements are less accurate, which is typical. This information is converted into gvar . GVars for the parameters and
tabulated under “Bayesian Parameters,” for comparison with the original fit results — the agreement is pretty good.
This is further confirmed by the (posterior) probability distributions for each parameter:
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The means are shifted slightly from the fit results and there is modest skewing, but the differences are not great.

As a second example of Bayesian integration, we return briefly to the problem described in Positive Parameters; Non-
Gaussian Priors: we want the average a of noisy data subject the constraint that the average must be positive. The
constraint is likely to introduce strong distortions in the probability density function (PDF) given that the fit analysis
suggests a value of 0.01140.013. We plot the actual PDF using the following code, beginning with a fit that uses a flat

prior (between 0 and 0.04):

import gvar as gv
import lsqgfit

# data, prior, and fit function

y = gv.gvar ([

-0.17(20)"', '-0. 03(20)' -0.39(20)"', '0.10(20)", '-0.03(20)",
'0.06(20) " -0.23(20)"', '-0.23(20)"', 'fO 15(20)"', '-0.01¢(20)",
-0.12(20)" '0.05( 0)y', '-0.09(20)"', '-0.36(20)"', '0.09(20)",

-0.07(20)" -0.31(20)" '0.12(20)', '0.11(20)"', '0.13(20)"

1)
prior = {}
prior['erfinv (50xa-1)"'] = gv.gvar('0(1)") / gv.sqrt(2)
def fcn(p, N=len(y)):

a = (1L + p['50xa-1"]1) / 50.

return N *» [a]
# least—-squares fit
fit = lsgfit.nonlinear_fit (prior=prior, data=y, fcn=fcn, extend=True)
print (fit)
a = (1L + fit.p['50%xa-1"]1) / 50
print('a =', a)
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# Bayesian analysis: histogram for a
hist = gv.PDFHistogram(a, nbin=16, binwidth=0.5)

def g(p):
a= (1L + p['50%xa-1"1) / 50
return hist.count (a)

expval = lsqgfit.BayesIntegrator (fit)
expval (neval=1009, nitn=10)
count = expval (g, neval=1000, nitn=10, adapt=False)

# print out results and show plot
print ('\nHistogram Analysis:')

print (hist.analyze (count) .stats)

hist.make_plot (count, show=True)

The output from this script is

Least Square Fit:

chi2/dof [dof] = 0.85 [20] Q = 0.65 1logGBF = 5.2385
Parameters:
erfinv(50a-1) -0.42 (68) [ 0.00 (71) 1
50a-1 -0.44 (64) [ 0.00 (80) 1
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 15/0.0)

a = 0.011(13)

Histogram Analysis:
mean = 0.014034(17) sdev = 0.010534(14) skew = 0.6080(13) ex_kurt = -0.6186(24)
median = 0.011854(20) plus = 0.014434(36) minus = 0.008584(17)

and the probability distribution for a looks like
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This distribution is distorted between a=0 and the mean value, but otherwise is fairly similar to the Gaussian result
0.1140.13 (dashed line). A more accurate summary of the result for a would be 0.12 with an error of +0.14 and -0.09,
though again the Gaussian result is not terribly misleading even in this case.

The Bayesian integrals are relatively simple in these example. More complicated problems can require much more
computer time to evaluate the integrals, with hundreds of thousands or millions of integrand evaluations per iteration
(neval). This is particularly true as the number of parameters increases. BayesIntegrator uses information
from the least-squares fit to simplify the integration for vegas by optimizing the integration variables used, but
integrals over tens of variables are intrinsically challenging. BayesIntegrator can be used with MPI to run such
integrals on multiple processors, for a considerable speed-up.

We used Bayesian integrals here to deal with non-Gaussian behavior in fit outputs. The case study Case Study: Outliers
and Bayesian Integrals shows how to use them when the input data is not quite Gaussian.

2.4 Testing Fits with Simulated Data

Ideally we would test a fitting protocol by doing fits of data similar to our actual fit but where we know the correct
values for the fit parameters ahead of the fit. Method 1sgfit.nonlinear_fit.simulated_fit_iter ()
returns an iterator that creates any number of such simulations of the original fit.

A key assumption underlying least-squares fitting is that the fit data y [i] are random samples from a distribu-
tion whose mean is the fit function fcn (x, fitp) evaluated with the best-fit values fitp for the parameters.
simulated_fit_iter iterators generate simulated data by drawing other random samples from the same distri-
bution, assigning them the same covariance matrix as the original data. The simulated data are fit using the same
priors and fitter settings as in the original fit, and the results (an I1sgfit.nonlinear fit object) are returned by
the iterator. Fit results from simulated data should agree, within errors, with the original fit results since the simulated
data are from the same distribution as the original data. There is a problem with the fitting protocol if this is not the
case most of the time.

To illustrate we again examine the fits in the section on Correlated Parameters; Gaussian Bayes Factor: we add three
fit simulations at the end of the main () function:
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import numpy as np
import gvar as gv
import lsqgfit

def main() :
x, y = make_data()
prior = make_prior()
fit = lsgfit.nonlinear_ fit (prior=prior, data=(x,y), f

print (40 = '«' + ' real fit')
print (fit.format (True))

# 3 simulated fits

for sfit in fit.simulated_fit_iter (n=3):
# print simulated fit details
print (40 « '=' + ' simulation')
print (sfit.format (True))

# compare simulated fit results with exact values
diff = sfit.p - sfit.pexact

print ('\nsfit.p - pexact =', diff)

print (gv.fmt_chi2 (gv.chi2 (diff)))

print

def make_datal():

x = np.array ([
4. , 2. , 1. , 0.5 , 0.25 , 0.16
0.1 , 0.0833, 0.0714, 0.0625
1)

y = gv.gvar ([
'0.198(14)"', '0.216(15)"', '0.184(23)', '0.156(44)
'0.142(40) ', '0.108¢(32)"', '0.065(26)"', '0.044(22)
'0.044 (16) "
1)

return x, vy

def make_prior():
p = gv.gvar(['0(1)", 'O(1)', 'O(L)", '0(1)'])
pll] = 20  p[0] + gv.gvar('0.0(1)") # pl[l] co
return p

def fcn(x, p):

return (p[0] * (x*+2 + p[l] % x)) / (x#%x2 + x % p[2]
if _ name_ == ' main_ ':
main ()

cn=fcn)

(pexact=fit.pmean)

7, 0.125,

', '0.099(49)"',

', '0.041(19) ",

rrelated with p[0]

+ pl3])

This code produces the following output, showing how the input data fluctuate from simulation to simulation:

KA KK A A KA A KA A Ah AR A A A A A AR A A A A A A d A AR A A Ak kK real flt

Least Square Fit:

chi2/dof [dof] = 0.61 [11] Q = 0.82 logGBF = 19.1
Parameters:
0 0.149 (17) [ 0.0 (1.0) ]
1 2.97 (34) [ 0 (20) 1
2 1.23 (61) [ 0.0 (1.0) 1 *
3 0.59 (15) [ 0.0 (1.0) ]

29
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Fit
x [k] vy [k] f(x[k],p)
4 0.198 (14) 0.193 (11)
2 0.216 (15) 0.210 (10)
1 0.184 (23) 0.209 (15) «
0.5 0.156 (44) 0.177 (15)
0.25 0.099 (49) 0.124 (13)
0.167 0.142 (40) 0.094 (12)
0.125 0.108 (32) 0.075 (11) =«
0.1 0.065 (26) 0.0629 (96)
0.0833 0.044 (22) 0.0538 (87)
0.0714 0.041 (19) 0.0471 (79)
0.0625 0.044 (1e6) 0.0418 (72)
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 20/0.1)
simulation
Least Square Fit:
chi2/dof [dof] = 1.2 [11)] Q = 0.27 logGBF = 15.278
Parameters:
0 0.134 (14) [ 0.0 (1.0) 1
1 2.68 (29) [ 0 (20) ]
2 0.68 (47) [ 0.0 (1.0) 1
3 0.54 (12) [ 0.0 (1.0) 1
Fit
x[k] y k] f(x[k],p)
4 0.200 (14) 0.186 (12)
2 0.192 (15) 0.212 (10) *
1 0.242 (23) 0.221 (16)
0.5 0.163 (44) 0.187 (18)
0.25 0.089 (49) 0.126 (15)
0.167 0.130 (40) 0.093 (13)
0.125 0.103 (32) 0.073 (11)
0.1 0.046 (206) 0.0599 (96)
0.0833 0.054 (22) 0.0508 (85)
0.0714 0.004 (19) 0.0441 (77) *x
0.0625 0.060 (1lo) 0.0389 (70) *
Settings:
svdcut/n = None/0 tol = (le-08%,1e-10,1e-10) (itns/time = 7/0.0)
sfit.p - pexact = [-0.015(14) -0.29(29) -0.54(47) -0.05(12)]
chi2/dof = 0.34 [4] Q = 0.85
simulation
Least Square Fit:
chi2/dof [dof] = 1.1 [11)] Q = 0.38 logGBF = 17.048
Parameters:
0 0.156 (18) [ 0.0 (1.0) 1
1 3.12 (36) [ 0 (20) 1]
2 1.35 (66) [ 0.0 (1.0) ] *
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3 0.77 (20) [ 0.0 (1.0) 1
Fit
x[k] vy [k] f(x[k],p)
4 0.207 (14) 0.201 (11)
2 0.224 (15) 0.214 (10)
1 0.163 (23) 0.206 (14) «
0.5 0.162 (44) 0.167 (15)
0.25 0.124 (49) 0.113 (14)
0.167 0.111 (40) 0.084 (12)
0.125 0.085 (32) 0.066 (11)
0.1 0.097 (26) 0.0550 (93)
0.0833 0.020 (22) 0.0469 (83)
0.0714 0.043 (19) 0.0409 (75)
0.0625 0.031 (16) 0.0362 (68)
Settings:
svdcut/n = None/O0 tol = (1le-08%,1e-10,1e-10) (itns/time = 23/0.0)
sfit.p — pexact = [0.008(18) 0.15(36) 0.13(66) 0.18(20)]
chi2/dof = 0.22 [4] Q = 0.93
simulation
Least Square Fit:
chi2/dof [dof] = 0.76 [11] Q = 0.68 logGBF = 17.709
Parameters:
0 0.138 (14) [ 0.0 (1.0) 1
1 2.77 (29) [ 0 (20) 1
2 0.72 (46) [ 0.0 (1.0) 1
3 0.53 (11) [ 0.0 (1.0) 1
Fit
x[k] y [k] f(x[k],p)
4 0.196 (14) 0.193 (12)
2 0.218 (15) 0.221 (10)
1 0.240 (23) 0.231 (1le)
0.5 0.157 (44) 0.198 (18)
0.25 0.157 (49) 0.134 (14)
0.167 0.022 (40) 0.099 (12) «
0.125 0.070 (32) 0.078 (11)
0.1 0.090 (206) 0.0644 (96)
0.0833 0.045 (22) 0.0547 (86)
0.0714 0.053 (19) 0.0475 (78)
0.0625 0.059 (1leo) 0.0420 (70) *
Settings:
svdcut/n = None/O0 tol = (le-08%,1e-10,1e-10) (itns/time = 10/0.0)
sfit.p - pexact = [-0.010(14) -0.21(29) -0.51(46) -0.06(11)]
chi2/dof = 0.77 [4] Q = 0.54

The parameters sfit.p produced by the simulated fits agree well with the original fit parameters
pexact=fit.pmean, with good fits in each case. We calculate the chi*«2 for the difference sfit.p -
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pexact in each case; good chi* 2 values validate the parameter values, standard deviations, and correlations.
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CHAPTER
THREE

CASE STUDY: SIMPLE EXTRAPOLATION

In this case study, we examine a simple extrapolation problem. We show first how not to solve this problem. A better
solution follows, together with a discussion of priors and Bayes factors. Finally a very simple, alternative solution,

using marginalization, is described.

3.1 The Problem

Consider a problem where we have five pieces of uncorrelated data for a function y (x) :

.5351 (54
.6762 (67
.9227 (91
.3803 (131
.0145(399

We know that y (x) has a Taylor expansion in x:

y(x) = sum_n=0..inf p[n] x*+*n

The challenge is to extract a reliable estimate for y (0) =p [0] from the data — that is, the challenge is to fit the data

and use the fit to extrapolate the data to x=0.

3.2 A Bad Solution

One approach that is certainly wrong is to fit the data with a power series expansion for y (x) that is truncated after
five terms (n<=4) — there are only five pieces of data and such a fit would have five parameters. This approach gives
the following fit, where the gray band shows the 1-sigma uncertainty in the fit function evaluated with the best-fit

parameters:
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This fit was generated using the following code:

0.6

0.8 1.0

import numpy as np
import gvar as gv
import 1lsgfit

# fit data

y = gv.gvar ([
'0.5351(54) "',
1)

x = np.array([0.1, 0.3,

# fit function

def f(x, p):

.5

'0.6762(67)",

, O.

'0.9227(91) ",

7y

return sum(pn » x *x n for n,

pO0 = np.ones (5.)

fit =

0.957)

'1.3803(131) ",

'4.0145(399)"

pn in enumerate (p))

# starting value for chi++2 minimization

lsgfit.nonlinear_fit (data=(x,

print (fit.format (maxline=True))

v)

14

p0=p0,

fcn=f)

Note that here the function gv.gvar converts the strings ' 0.5351 (54) ’, efc. into gvar.GVars. Running the

code gives the following output:

Least Square Fit

(no prior):

chi2/dof [dof] = 4.3e-24 [0] Q=0 10gGBF = None

Parameters:
0 0.742 (39) [ 1 +- inf ]
1 -3.86 (59) [ 1 +- inf ]
2 21.5 (2.4) [ 1 +- inf ]
3 -39.1 (3.7) [ 1 +- inf ]
4 25.8 (1.9) [ 1 +- inf ]
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Fit
x [k] y [k] f(x[k],p)
0.1 0.5351 (54) 0.5351 (54)
0.3 0.6762 (67) 0.6762 (67)
0.5 0.9227 (91) 0.9227 (91)
0.7 1.380 (13) 1.380 (13)
0.95 4.014 (40) 4.014 (40)
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 11/0.1)

This is a “perfect” fit in that the fit function agrees exactly with the data; the chi««2 for the fit is zero. The 5-
parameter fit gives a fairly precise answer for p[0] (0.74 (4)), but the curve looks oddly stiff. Also some of the
best-fit values for the coefficients are quite large (e.g., p [3]1= -39 (4) ), perhaps unreasonably large.

3.3 A Better Solution — Priors

The problem with a 5-parameter fit is that there is no reason to neglect terms in the expansion of y (x) with n>4.
Whether or not extra terms are important depends entirely on how large we expect the coefficients p [n] for n>4 to be.
The extrapolation problem is impossible without some idea of the size of these parameters; we need extra information.

In this case that extra information is obviously connected to questions of convergence of the Taylor expansion we are
using to model y (x) . Let’s assume we know, from previous work, that the p [n] are of order one. Then we would
need to keep at least 91 terms in the Taylor expansion if we wanted the terms we dropped to be small compared with
the 1% data errors at x=0. 95. So a possible fitting function would be:

y(x; N) = sum_n=0..N p[n] xxxn

with N=90.

Fitting a 91-parameter formula to five pieces of data is also impossible. Here, however, we have extra (prior) informa-
tion: each coefficient is order one, which we make specific by saying that they equal O£1. We include these a priori
estimates for the parameters as extra data that must be fit, together with our original data. So we are actually fitting
9145 pieces of data with 91 parameters.

The prior information is introduced into the fit as a prior:

import numpy as np
import gvar as gv
import lsqgfit

# fit data

y = gv.gvar ([
'0.5351(54)"', '0.6762(67)', '0.9227(91)', '1.3803(131)', '4.0145(399)"
1)

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):
return sum(pn * x ** n for n, pn in enumerate (p))

# 91-parameter prior for the fit
prior = gv.gvar(91 = ['0(1)"'])

fit = lsgfit.nonlinear_fit (data=(x, y), prior=prior, fcn=f)
print (fit.format (maxline=True))
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Note that a starting value pO is not needed when a prior is specified. This code also gives an excellent fit, with a
chix*2 per degree of freedom of 0. 35 (note that the data point at x=0. 95 is off the chart, but agrees with the fit to

within its 1% errors):

;
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The fit code output is:
Least Square Fit:
chi2/dof [dof] 0.35 [5] 0 1logGBEF = -0.45508
Parameters:
0 0.489 (17) [ 0.0 (1.0) 1
1 0.40 (20) [ 0.0 (1.0) 1
2 0.60 (64) [ 0.0 (1.0) 1
3 0.44 (80) [ 0.0 (1.0) 1
4 0.28 (87) [ 0.0 (1.0) 1
5 0.19 (87) [ 0.0 (1.0) 1
6 0.16 (90) [ 0.0 (1.0) 1
7 0.16 (93) [ 0.0 (1.0) 1
8 0.17 (95) [ 0.0 (1.0) 1
9 0.18 (96) [ 0.0 (1.0) 1
10 0.19 (97) [ 0.0 (1.0) 1
11 0.19 (97) [ 0.0 (1.0) 1
12 0.19 (97) [ 0.0 (1.0) 1
13 0.19 (97) [ 0.0 (1.0) 1
14 0.18 (97) [ 0.0 (1.0) 1
15 0.18 (97) [ 0.0 (1.0) 1
16 0.17 (97) [ 0.0 (1.0) 1
17 0.16 (98) [ 0.0 (1.0) 1
18 0.16 (98) [ 0.0 (1.0) 1
19 0.15 (98) [ 0.0 (1.0) 1
20 0.14 (98) [ 0.0 (1.0) 1
21 0.14 (98) [ 0.0 (1.0) 1
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80 0.007 (1.000) [ 0.0 (1.0) 1
81 0.006 (1.000) [ 0.0 (1.0) 1
82 0.006 (1.000) [ 0.0 (1.0) 1]
83 0.006 (1.000) [ 0.0 (1.0) 1
84 0.005 (1.000) [ 0.0 (1.0) 1
85 0.005 (1.000) [ 0.0 (1.0) 1
86 0.005 (1.000) [ 0.0 (1.0) 1]
87 0.005 (1.000) [ 0.0 (1.0) 1
88 0.004 (1.000) [ 0.0 (1.0) 1
89 0.004 (1.000) [ 0.0 (1.0) 1
90 0.004 (1.000) [ 0.0 (1.0) 1
Fit
x [k] y [k] f(x[k],p)
0.1 0.5351 (54) 0.5349 (54)
0.3 0.6762 (67) 0.6768 (65)
0.5 0.9227 (91) 0.9219 (87)
0.7 1.380 (13) 1.381 (13)
0.95 4.014 (40) 4.014 (40)
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10) (itns/time = 8/0.3)

This is a much more plausible fit than than the 5-parameter fit, and gives an extrapolated value of p [0]=0.489 (17).
The original data points were created using a Taylor expansion with random coefficients, but with p [0] set equal to
0.5. So this fit to the five data points (plus 91 a priori values for the p [n] with n<91) gives the correct result.
Increasing the number of terms further would have no effect since the last terms added are having no impact, and so
end up equal to the prior value — the fit data are not sufficiently precise to add new information about these parameters.

3.4 Bayes Factors

We can test our priors for this fit by re-doing the fit with broader and narrower priors. Setting prior =
gv.gvar (91 * ["0(3)’]) gives an excellent fit,

Least Square Fit:

chi2/dof [dof] = 0.039 [5] Q=1 logGBF = -5.0993
Parameters:
0 0.490 (33) [ 0.0 (3.0) 1]
1 0.38 (48) [ 0.0 (3.0) 1
2 0.6 (1.8) [ 0.0 (3.0) 1]
3 0.5 (2.4) [ 0.0 (3.0) 1]
4 0.3 (2.6) [ 0.0 (3.0) 1
5 0.2 (2.6) [ 0.0 (3.0) 1]
6 0.1 (2.7) [ 0.0 (3.0) 1]
7 0.1 (2.8) [ 0.0 (3.0) 1
8 0.2 (2.8) [ 0.0 (3.0) 1]
9 0.2 (2.9) [ 0.0 (3.0) 1]
10 0.2 (2.9) [ 0.0 (3.0) 1
11 0.2 (2.9) [ 0.0 (3.0) 1]
12 0.2 (2.9) [ 0.0 (3.0) 1]
13 0.2 (2.9) [ 0.0 (3.0) 1
14 0.2 (2.9) [ 0.0 (3.0) 1]
15 0.2 (2.9) [ 0.0 (3.0) 1]
16 0.2 (2.9) [ 0.0 (3.0) 1
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75 0.009 (3.000) [ 0.0 (3.0) 1

76 0.009 (3.000) [ 0.0 (3.0) ]

77 0.008 (3.000) [ 0.0 (3.0) ]

78 0.008 (3.000) [ 0.0 (3.0) ]

79 0.007 (3.000) [ 0.0 (3.0) ]

80 0.007 (3.000) [ 0.0 (3.0) ]

81 0.007 (3.000) [ 0.0 (3.0) ]

82 0.006 (3.000) [ 0.0 (3.0) 1]

83 0.006 (3.000) [ 0.0 (3.0) 1

84 0.006 (3.000) [ 0.0 (3.0) ]

85 0.005 (3.000) [ 0.0 (3.0) ]

86 0.005 (3.000) [ 0.0 (3.0) ]

87 0.005 (3.000) [ 0.0 (3.0) ]

88 0.005 (3.000) [ 0.0 (3.0) ]

89 0.004 (3.000) [ 0.0 (3.0) ]

90 0.004 (3.000) [ 0.0 (3.0) ]

Fit
x[k] y [k] f(x[k],p)
0.1 0.5351 (54) 0.5351 (54)
0.3 0.6762 (67) 0.6763 (67)
0.5 0.9227 (91) 0.9226 (91)
0.7 1.380 (13) 1.380 (13)
0.95 4.014 (40) 4.014 (40)
Settings:
svdcut/n = le-12/0 tol = (1le-08,1e-10%,1e-10) (itns/time = 9/0.3)

but with a very small chi2/dof and somewhat larger errors on the best-fit estimates for the parameters. The loga-
rithm of the (Gaussian) Bayes Factor, 10gGBF, can be used to compare fits with different priors. It is the logarithm
of the probability that our data would come from parameters generated at random using the prior. The exponential
of 10gGBF is more than 100 times larger with the original priors of 0 (1) than with priors of 0 (3). This says that
our data is more than 100 times more likely to come from a world with parameters of order one than from one with
parameters of order three. Put another way it says that the size of the fluctuations in the data are more consistent
with coefficients of order one than with coefficients of order three — in the latter case, there would have been larger
fluctuations in the data than are actually seen. The 10gGBF values argue for the original prior.

Narrower priors, prior = gv.gvar (91 = ["70.0(3)’]), give a poor fit, and also a less optimal 1 0gGBF':

Least Square Fit:

chi2/dof [dof] = 3.7 [5] Q = 0.0024 logGBF = -3.3058
Parameters:
0 0.484 (11) [ 0.00 (30) 1] *
1 0.454 (98) [ 0.00 (30) 1 *
2 0.50 (23) [ 0.00 (30) 1 *
3 0.40 (25) [ 0.00 (30) 1] *
4 0.31 (26) [ 0.00 (30) 1 *
5 0.26 (27) [ 0.00 (30) 1
6 0.23 (28) [ 0.00 (30) 1]
7 0.21 (29) [ 0.00 (30) 1
8 0.21 (29) [ 0.00 (30) 1
9 0.20 (29) [ 0.00 (30) 1]
10 0.19 (29) [ 0.00 (30) 1]
11 0.19 (29) [ 0.00 (30) 1
12 0.18 (29) [ 0.00 (30) 1
13 0.17 (29) [ 0.00 (30) 1]
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(le-08%,1e-10,1e-10) (itns/time = 6/0.3)

Setting prior

= gv.gvar (91 «

["0(20)"1]) gives very wide priors and a rather strange looking fit:
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Here fit errors are comparable to the data errors at the data points, as you would expect, but balloon up in between.
This is an example of over-fitting: the data and priors are not sufficiently accurate to fit the number of parameters used.
Specifically the priors are too broad. Again the Bayes Factor signals the problem: 10gGBF = -14.479 here, which
means that our data are roughly a million times (=exp (14) ) more likely to to come from a world with coefficients
of order one than from one with coefficients of order twenty. That is, the broad priors suggest much larger variations
between the leading parameters than is indicated by the data — again, the data are unnaturally regular in a world
described by the very broad prior.

Absent useful a priori information about the parameters, we can sometimes use the data to suggest a plausible width
for a set of priors. We do this by setting the width equal to the value that maximizes 10gGBF. This approach suggests
priors of 0.0 (6) for the fit above, which gives results very similar to the fit with priors of 0 (1) . See Tuning Priors
with the Empirical Bayes Criterion for more details.

The priors are responsible for about half of the final error in our best estimate of p [0] (with priors of 0 (1) ); the rest
comes from the uncertainty in the data. This can be established by creating an error budget using the code

inputs = dict (prior=prior, y=y)
outputs = dict (pO0=£fit.pl[0])
print (gv.fmt_errorbudget (inputs=inputs, outputs=outputs))

which prints the following table:

Partial % Errors:

rO0

y: 2.67
prior: 2.23
total: 3.48

The table shows that the final 3.5% error comes from a 2.7% error due to uncertainties in y and a 2.2% error from
uncertainties in the prior (added in quadrature).
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3.5 Another Solution — Marginalization

There is a second, equivalent way of fitting this data that illustrates the idea of marginalization. We really only care
about parameter p [0] in our fit. This suggests that we remove n>0 terms from the data before we do the fit:

ymod[i] = y[i] - sum_n=1...inf prior[n] % x[1i] *x n

Before the fit, our best estimate for the parameters is from the priors. We use these to create an estimate for the
correction to each data point coming from n>0 terms in y (x) . This new data, ymod [1], should be fit with a new
fitting function, ymod (x) = p[0] — that is, it should be fit to a constant, independent of x [1]. The last three
lines of the code above are easily modified to implement this idea:

import numpy as np
import gvar as gv
import lsqgfit

# fit data
y = gv.gvar ([
'0.5351(54)"', '0.6762(67)', '0.9227(91)', '1.3803(131)', '"4.0145(399)"

1)
x = np.array([0.1, 0.3, 0.5, 0.7, 0.951])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate (p))

# prior for the fit
prior = gv.gvar(91 * ['0(1)"'])

# marginalize all but one parameter (p[0])

priormod = prior[:1] # restrict fit to p[0]
ymod = y - (f(x, prior) - f(x, priormod)) # correct y
fit = lsgfit.nonlinear_fit (data=(x, ymod), prior=priormod, fcn=f)

print (fit.format (maxline=True))

Running this code give:

Least Square Fit:

chi2/dof [dof] = 0.35 [5] Q0 = 0.88 1ogGBF = -0.45508
Parameters:
0 0.489 (17) [ 0.0 (1.0) ]
Fit
x[k] y k] f(x[k],p)
0.1 0.54 (10) 0.489 (17)
0.3 0.68 (31) 0.489 (17)
0.5 0.92 (58) 0.489 (17)
0.7 1.38 (98) 0.489 (17)
0.95 4.0 (3.0) 0.489 (17) =«
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 4/0.0)

Remarkably this one-parameter fit gives results for p [0 ] that are identical (to machine precision) to our 91-parameter
fit above. The 90 parameters for n>0 are said to have been marginalized in this fit. Marginalizing a parameter in this
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way has no effect if the fit function is linear in that parameter. Marginalization has almost no effect for nonlinear fits
as well, provided the fit data have small errors (in which case the parameters are effectively linear). The fit here is:

1.8

1.6

1.4+ ®

ymod(x)

051 + ___________________________________________

0.4 1

0.0 0.2 0.4 0.6 0.8 1.0

The constant is consistent with all of the data in ymod[i],evenatx [1]=0. 95, because ymod [1] has much larger
errors for larger x [ 1] because of the correction terms.

Fitting to a constant is equivalent to doing a weighted average of the data plus the prior, so our fit can be replaced by
an average:

lsgfit.wavg(list (ymod) + list (priormod))

This again gives 0.489 (17) for our final result. Note that the central value for this average is below the central
values for every data point in ymod [1]. This is a consequence of large positive correlations introduced into ymod
when we remove the n>0 terms. These correlations are captured automatically in our code, and are essential —
removing the correlations between different ymods results in a final answer, 0.564 (97), which has a much larger
error.
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CHAPTER
FOUR

CASE STUDY: PENDULUM

This case study shows how to fit a differential equation, using gvar.ode, and how to deal with uncertainty in the
independent variable of a fit (that is, the x in a y versus x fit).

4.1 The Problem

A pendulum is released at time O from angle 1.571(50) (radians). It’s angular position is measured at intervals of
approximately a tenth of second:

t[i] theta(t[i])
0.0 1.571(50)
0.10(1) 1.477(79)
0.20(1) 0.791(79)
0.30(1) -0.046(79)
0.40(1) -0.852(79)
0.50(1) -1.523(79)
0.60(1) -1.647(79)
0.70(1) -1.216(79)
0.80(1) -0.810(79)
0.90(1) 0.185(79)
1.00(1) 0.832(79)

Function theta (t) satisfies a differential equation:

d/dt d/dt theta(t) = -(g/l) sin(theta(t))

where g is the acceleration due to gravity and 1 is the pendulum’s length. The challenge is to use the data to improve
our very approximate a priori estimate 40420 for g/ 1.

4.2 Pendulum Dynamics

We start by designing a data type that solves the differential equation for theta (t):

import numpy as np
import gvar as gv

class Pendulum (object) :
""" Integrator for pendulum motion.

Input parameters are:
g/1 .... where g 1is acceleration due to gravity and 1 the length
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tol .... precision of numerical integration of ODE
def _ _init__ (self, g_l, tol=le-4):
self.g_1 = g_1
self.odeint = gv.ode.Integrator (deriv=self.deriv, tol=tol)

def _ call_(self, thetal, t_array):
"rr Calculate pendulum angle theta for every t in t_array.

Assumes that the pendulum is released at time t=0
from angle thetal with no initial velocity. Returns
an array containing theta (t) for every t in t_array.
mimnm

# initial values

t0 = 0

yvO0 [thetaO, 0.0] # theta and dtheta/dt

# solution (keep only theta; discard dtheta/dt)
y = self.odeint.solution(t0, yO0)
return [y(t) [0] for t in t_array]

def deriv(self, t, y, data=None):
" Calculate [dtheta/dt, d2theta/dt2] from [theta, dtheta/dt]."
theta, dtheta_dt =y
return np.array([dtheta_dt, - self.g_l % gv.sin(theta)])

A Pendulum object is initialized with a value for g/1 and a tolerance for the differential-equation integrator,
gvar.ode.Integrator. Evaluating the object for a given value of theta (0) and t then calculates theta (t);
t is an array. We use gvar . ode here, rather than some other integrator, because it works with gvar . GVars, allow-
ing errors to propagate through the integration.

4.3 Two Types of Input Data

There are two ways to include data in a fit: either as regular data, or as fit parameters with priors. In general dependent
variables are treated as regular data, and independent variables with errors are treated as fit parameters, with priors.
Here the dependent variable is theta (t) and the independent variable is t. The independent variable has uncer-
tainties, so we treat the individual values as fit parameters whose priors equal the initial values t [1]. The value of
theta (t=0) is also independent data, and so becomes a fit parameter since it is uncertain. Our fit code therefore is:

from _ future  import print_function # makes this work for python2 and 3

import collections
import numpy as np
import gvar as gv
import lsqgfit

def main() :

# pendulum data exhibits experimental error in theta and t

t = gv.gvar ([
'o.10(1)', '0.20(1)', '0.30¢(1)', '0.40¢(1)", '0.50(1) ",
'0.60(1) ", 'o.70(1) ", 'o.80(1) "', '0.90(1) ", '1.00¢(1)"
1)

theta = gv.gvar ([
'1.477(79)', '0.791(79)', '-0.046(79)', '-0.852(79)"',
'-1.523(79)"', '-1.647(79)', '-1.216(79)', '-0.810(79)"',
'0.185(79)"', '0.832(79)"

74 Chapter 4. Case Study: Pendulum




Isgfit Documentation, Release 9.1.2

1)

# priors for all fit parameters: g/1, theta(0), and t[i]

prior = collections.OrderedDict ()
prior['g/1l'] = gv.gvar ('40(20)")
prior['theta(0)'] = gv.gvar('1.571(50)")
prior['t'] =t

# fit function: use class Pendulum object to integrate pendulum motion
def fitfcn(p, t=None):
if t is None:
t =pl't']
pendulum = Pendulum(p['g/1'])
return pendulum(p['theta(0)'], t)

# do the fit and print results
fit = lsgfit.nonlinear_fit (data=theta, prior=prior, fcn=fitfcn)
print (fit.format (maxline=True))

The prior is a dictionary containing a priori estimates for every fit parameter. The fit parameters are varied to give the
best fit to both the data and the priors. The fit function uses a Pendulum object to integrate the differential equation
for theta (t), generating values for each value of t [ 1] given a value for theta (0) . The function returns an array
that has the same shape as array theta.

The fit is excellent with a chi %2 per degree of freedom of 0.7:
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The red band in the figure shows the best fit to the data, with the error bars on the fit. The output from this fit is:

Least Square Fit:
chi2/dof [dof] = 0.7 [10] Q= 0.73 1ogGBF = 6.359

Parameters:
g/l 39.82 (87) [ 40 (20) 1]
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theta (0) 1.595 (32) [ 1.571 (50) 1]
t 0 0.0960 (91) [ 0.100 (10) ]
1 0.2014 (74) [ 0.200 (10) 1]
2 0.3003 (67) [ 0.300 (10) ]
3 0.3982 (76) [ 0.400 (10) ]
4 0.5043 (93) [ 0.500 (10) ]
5 0.600 (10) [ 0.600 (10) ]
6 0.7079 (89) [ 0.700 (10) ]
7 0.7958 (79) [ 0.800 (10) 1]
8 0.9039 (78) [ 0.900 (10) ]
9 0.9929 (83) [ 1.000 (10) ]
Fit
key y[key] f(p) [key]
0 1.477 (79) 1.412 (42)
1 0.791 (79) 0.802 (56)
2 -0.046 (79) -0.044 (60)
3 -0.852 (79) -0.867 (56)
4 -1.523 (79) -1.446 (42)
5 -1.647 (79) -1.594 (32)
6 -1.216 (79) -1.323 (49) =
7 -0.810 (79) -0.776 (61)
8 0.185 (79) 0.158 (66)
9 0.832 (79) 0.894 (63)
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 7/0.1)

The final result for g/1 is 39.8(9), which is accurate to about 2%. Note that the fit generates (slightly) improved
estimates for several of the t values and for theta (0).
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CHAPTER
FIVE

CASE STUDY: OUTLIERS AND BAYESIAN INTEGRALS

In this case study, we analyze a fit with outliers in the data that distort the least-squares solution. We show one
approach to dealing with the outliers that requires using Bayesian integrals in place of least-squares fitting, to fit the
data while also modeling the outliers.

This case study is adapted from an example by Jake Vanderplas on his Python blog.

5.1 The Problem

We want to extrapolate a set of data values y to x=0 fitting a linear fit function (fit fcn (x, p)) to the data:

import matplotlib.pyplot as plt
import numpy as np

import gvar as gv
import lsqgfit

def main() :
# least—-squares fit to the data
x = np.array ([
0.2, 0.4, 0.6, 0.8, 1.,
1.2, 1.4, 1.6, 1.8, 2.,
2.2, 2.4, 2.6, 2.8, 3.,
3.2, 3.4, 3.6, 3.8
1)
y = gv.gvar ([
'0.38(20)', '2.89(20)', '0.85(20)"', '0.59(20)', '2.88(20)"',
'1.44(20)", '0.73(20)"', '1.23(20)"', '1.68(20)', '1.36(20)",
'1.51(20)", '"1.73(20)', '2.16(20)', '1.85(20)', '2.00(20)",
'2.11(20)"', '2.75(20)"', '0.86(20)"', '2.73(20)"
1)
fit = lsgfit.nonlinear_fit (data=(x, y), prior=make_prior(), fcn=fitfcn)
print (fit)

# plot data
plt.errorbar(x, gv.mean(y), gv.sdev(y), fmt='o', c='b")

# plot fit function +- 1 sigma

xline = np.linspace(x[0], x[-1], 100)
yline = fitfcn(xline, fit.p)

plt.plot (xline, gv.mean(yline), 'k—-")

yp = gv.mean(yline) + gv.sdev(yline)

ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline,yp,ym,color="0.8")
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plt.xlabel ('x")
plt.ylabel ('y")
plt.show ()

def fitfcn(x, p):
c =pl'e'l
return c[0] + c[l] * x

def make_prior():
prior = gv.BufferDict (c=gv.gvar(['0(5)", '0(5)"'1))
return prior

if name == '_ _main :
main ()

The fit is not good, with a chi*x 2 per degree of freedom that is much larger than one, despite rather broad priors for
the intercept and slope:

Least Square Fit:

chi2/dof [dof] = 13 [19] Q = 1.2e-40 logGBF = -117.45
Parameters:
c 0 1.149 (95) [ 0.0 (5.0) 1
1 0.261 (42) [ 0.0 (5.0) 1
Settings:
svdcut/n = le-12/0 tol = (1le-08,1e-10%,1e-10) (itns/time = 4/0.1)

The problem is evident if we plot the data:
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At least three of the data points are outliers: they disagree with other nearby points by several standard deviations.
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These outliers have a big impact on the fit (dashed line, with the gray band showing the £ 1-sigma region). In particular
they pull the x=0 intercept (fit.p [’ c’ ] [0]) up above one, while the rest of the data suggest an intercept of 0.5 or
less.

5.2 A Solution

There are many ad hoc prescriptions for handling outliers. In the best of situations one would have an explanation for
the outliers and seek to model them accordingly. For example, we might know that some fraction w of the time our
detector malfunctions, resulting in much larger measurement errors than usual. This model can be represented by a
more complicated probability density function (PDF) for the data that consists of a linear combination of the normal
PDF with another PDF that is similar but with much larger errors. The relative weights assigned to these two terms
would be 1-w and w, respectively.

A modified data prior of this sort is incompatible with the least-squares code in 1 sgfit. Here we will incorporate it
by replacing the least-squares analysis with a Bayesian integral, where the normal PDF is replaced a modified PDF of
the sort described above. The complete code for this analysis is as follows:

import matplotlib.pyplot as plt
import numpy as np

import gvar as gv
import lsqgfit

def main() :

### 1) least-squares fit to the data
x = np.array ([
0.2, 0.4, 0.6, 0.8, 1.,
1.2, 1.4, 1.6, 1.8, 2.,
2.2, 2.4, 2.6, 2.8, 3.,
3.2, 3.4, 3.6, 3.8
1)
y = gv.gvar ([
'0.38(20) "', '2.89(20)"', '0.85(20)"', '0.59(20)"', '2.88(20)",
'1.44(20)', '0.73(20)"', '1.23(20)"', '1.68(20)', '1.36(20)"',
'1.51(20)", '1.73(20)', '2.16(20)', '1.85(20)', '2.00(20)",
'2.11(20)", '2.75(20)"', '0.86(20)"', '2.73(20)"
1)
prior = make_prior()
fit = lsgfit.nonlinear_fit (data=(x, y), prior=prior, fcn=fitfcn, extend=True)
print (fit)

# plot data

plt.errorbar(x, gv.mean(y),

# plot fit function

gv.sdev(y),

fmt="'0",

Czlbl)

xline =
yline =
plt.plot (xline,

np.linspace (x[0], x[-1],
fitfcn(xline, fit.p)
gv.mean (yline),

100)

k')

yp = gv.mean(yline) + gv.sdev(yline)

ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline, yp, ym, color='0.8")
plt.xlabel ('x")

plt.ylabel ('y")

plt.savefig('case-outliersl.png', bbox_inches="'tight')

# plt.show()

5.2. A Solution
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### 2) Bayesian integral with modified PDF
# modified probability density function
mod_pdf = ModifiedPDF (data=(x, y), fcn=fitfcn, prior=prior)

# integrator for expectation values with modified PDF
expval = lsqgfit.BayesIntegrator (fit, pdf=mod_pdf)

# adapt integrator to pdf
expval (neval=1000, nitn=15)

# evaluate expectation value of g(p)

def g(p):
w=0.5+ 0.5 % p['2w-1"]
c =pl'c']

return dict (w=[w, wx%2], mean=c, outer=np.outer(c,c))

results = expval (g, neval=1000, nitn=15, adapt=False)
print (results.summary())

# parameters c[i]

mean = results['mean']
cov = results['outer'] - np.outer (mean, mean)
c = mean + gv.gvar (np.zeros (mean.shape), gv.mean (cov))
print ('c ="', ¢)
print (
'corr(c) ="',
np.array2string(gv.evalcorr(c), prefix=10 » ' "),
'\n',

)

# parameter w

wmean, w2mean = results['w']

wsdev = gv.mean (results['w'][1l] — wmean *x 2) xx 0.5
w = wmean + gv.gvar (np.zeros (np.shape (wmean)), wsdev)
print ('w ="', w)

# add new fit to plot

yline = fitfcn(xline, dict (c=c))
plt.plot (xline, gv.mean(yline), 'r—-")
yp = gv.mean(yline) + gv.sdev(yline)

ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline, yp, ym, color='r', alpha=0.2)
plt.show ()

class ModifiedPDF:

mmn

"mnm Modified PDF to account for measurement failure.

def _ init__ (self, data, fcn, prior):
self.x, self.y = data
self.fcn = fcn
self.prior = prior

def _ _call_(self, p):
w = 0.5+ 0.5 % p['2w—1"]
y_fx = self.y - self.fcn(self.x, p)
data_pdfl = self.gaussian_pdf(y_fx, 1.)
data_pdf2 = self.gaussian_pdf(y_£fx, 10.)
prior_pdf = self.gaussian_pdf (
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p.buf[:len(self.prior.buf)] - self.prior.buf
)
return np.prod((l. - w) * data_pdfl + w » data_pdf2) * np.prod(prior_pdf)
@staticmethod
def gaussian_pdf(x, f=1.):
xmean = gv.mean (x)
xvar = gv.var(x) * £ xx 2

return gv.exp(-xmean *x 2 / 2. /xvar) / gv.sqgrt(2 * np.pi % xvar)

def fitfcn(x, p):
c =pl'c']
return c[0] + c[l] * x

def make_prior():
prior = gv.BufferDict (c=gv.gvar (['0(5
prior['erfinv (2w-1)"'] = gv.gvar ('0 (1)
return prior

14

(]
*

if name == '_ main :
main ()

Here class Modi £ iedPDF implements the modified PDF. As usual the PDF for the parameters (in__call__)isthe
product of a PDF for the data times a PDF for the priors. The data PDF is more complicated than usual, however, as it
consists of two Gaussian distributions: one, data_pdf1, with the nominal data errors, and the other, data_pdf2,
with errors that are ten times larger. Parameter w determines the relative weight of each data PDF.

The Bayesian integrals are estimated using 1sqfit.BayesIntegrator expval, whichis created from the least-
squares fit output (£it). It is used to evaluate expectation values of arbitrary functions of the fit variables. Normally
it would use the standard PDF from the least-squares fit, but we replace that PDF here with an instance (mod_pdf) of
class ModifiedPDF.

We have modified make_prior () to introduce 2w—1 as a new fit parameter. The inverse error function of this
parameter has a Gaussian prior (0+1)/sqrt(2), which makes 2w—1 uniformly distributed across the interval from -1 to
1 (and therefore w uniformly distributed between O and 1). This parameter has no role in the initial least-squares fit.

We first call expval with no function, to allow the integrator to adapt to the modified PDF. We then use the integrator,
now with adaptation turned off (adapt=False), to evaluate the expectation value of function g (p). The output
dictionary results contains expectation values of the corresponding entries in the dictionary returned g (p) . These
data allow us to calculate means, standard deviations and correlation matrices for the fit parameters.

The results from this code are as follows:

Least Square Fit:

chi2/dof [dof] = 13 [19] Q = 1.2e-40 logGBF = -117.45
Parameters:
c 0 1.149 (95) [ 0.0 (5.0) 1
1 0.261 (42) [ 0.0 (5.0) 1
erfinv (2w-1) -2e-16 +- 0.71 [ 0.00 (71) 1
2w—1 -2e-16 +- 0.8 [ 0.00 (80) ]
Settings:
svdcut/n = le-12/0 tol = (le-08,1e-10%,1e-10) (itns/time = 4/0.0)
itn integral average chi2/dof o}
1 6.82(11)e-11 6.82(11)e-11 0.00 1.00

5.2. A Solution 81




Isgfit Documentation, Release 9.1.2

2 7.04(11)e-11 6.930(78)e-11 1.10 0.36

3 6.775(76)e-11 6.878(58)e-11 0.97 0.49

4 6.651(97)e-11 6.821(50)e-11 1.04 0.40

5 6.74(10)e-11 6.806(45)e-11 0.95 0.55

6 6.740(79)e-11 6.795(39)e-11 0.88 0.69

7 6.763(87)e-11 6.790(36)e-11 0.93 0.63

8 7.085(92)e-11 6.827(34)e-11 0.96 0.56

9 6.873(68)e-11 6.832(31)e-11 0.95 0.59

10 6.853(75)e-11 6.834(29)e-11 0.95 0.61

11 6.79(11)e-11 6.830(28)e-11 0.89 0.76

12 6.833(94)e-11 6.830(27)e-11 0.92 0.71

13 6.806(81)e711 6.828(26)e-11 0.93 0.67

14 6.67(10)e-11 6.817(25)e-11 0.94 0.66

15 6.725(93)e—11 6.811(24)e-11 0.90 0.77

c = [0.28(14) 0.622(58)]

corr(c) = [[ 1. -0.90056919]
[-0.90056919 1. 1]

w = 0.26(11)

10gBF = -23.4099(35)

The table after the fit shows results for the normalization of the modified PDF from each of the nitn=15 iterations
of the vegas algorithm used to estimate the integrals. The logarithm of the normalization (LogBF) is -23.4, which
is much larger than the value -117.5 of 10gGBF from the least-squares fit. This means that the data much prefer the
modified prior (by a factor of exp (-23.4 + 117.4) orabout 10*.).

The new fit parameters are much more reasonable. In particular the intercept is 0.28(14) rather than the 1.15(10) from
the least-squares fit. This is much better suited to the data (see the dashed line in red):
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Note, from the correlation matrix, that the intercept and slope are anti-correlated, as one might guess for this fit. The
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analysis also gives us an estimate for the failure rate w=0.26 (11) of our detectors — they fail about a quarter of the
time.

5.3 A Variation

Vanderplas in his version of this problem assigns a separate w to each data point. This is a slightly different model for
the failure that leads to outliers. It is easily implemented here by changing the prior so that 2w—1 (and its inverse error
function) is an array:

def make_prior():
prior = gv.BufferDict (c=gv.gvar(['0(5)"', '0(5)"
) "]

1)
)/

)
prior['erfinv(2w-1)"'] = gv.gvar(l9 » ['0(1 2 *+x 0.5

return prior

The Bayesian integral then has 21 parameters, rather than the 3 parameters before. The code still takes only 5-6 secs
to run (on a 2014 laptop).

The final results are quite similar to the other model:

c = [0.30(16) 0.609(68)]
corr(c) = [[ 1. -0.90919302]
[-0.90919302 1. 11
w = [0.37(25) 0.67(23) 0.40(27) 0.35(27) 0.65(24) 0.49(30) 0.50(29) 0.35(25)
0.44(27) 0.41(27) 0.37(26) 0.37(26) 0.41(27) 0.37(25) 0.38(26) 0.38(25)
0.49(29) 0.65(25) 0.38(27)]

10gBF = -24.164(63)

Note that the logarithm of the Bayes Factor 10gBF is slighly lower for this model than before. It is also less accurately
determined (20x), because 21-parameter integrals are considerably more difficult than 3-parameter integrals. More
precision can be obtained by increasing neval, but the current precision is more than adequate.

Only three of the w[i] values listed in the output are more than two standard deviations away from zero. Not
surprisingly, these correspond to the unambiguous outliers.

The outliers in this case are pretty obvious; one is tempted to simply drop them. It is clearly better, however, to
understand why they have occurred and to quantify the effect if possible, as above. Dropping outliers would be much
more difficult if they were, say, three times closer to the rest of the data. The least-squares fit would still be poor
(chix =2 per degree of freedom of 3) and its intercept a bit too high (0.6(1)). Using the modified PDF, on the other
hand, would give results very similar to what we obtained above: for example, the intercept would be 0.35(17).
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CHAPTER
SIX

LSQFIT - NONLINEAR LEAST SQUARES FITTING

6.1 Introduction

This package contains tools for nonlinear least-squares curve fitting of data. In general a fit has four inputs:

1. The dependent data vy that is to be fit — typically y is a Python dictionary in an I1sgfit analysis. Its values
vy [k] are either gvar .GVars or arrays (any shape or dimension) of gvar .GVars that specify the values of
the dependent variables and their errors.

2. A collection x of independent data — x can have any structure and contain any data, or it can be omitted.

3. Afit function f (x, p) whose parameters p are adjusted by the fit until £ (x, p) equals y to within ys errors
— parameters p “ are usually specified by a dictionary whose values p [ k] are individual parameters or (numpy)
arrays of parameters. The fit function is assumed independent of x (thatis, £ (p)) if x = False (orif x is
omitted from the input data).

4. Initial estimates or priors for each parameter in p — priors are usually specified using a dictionary prior
whose values prior [k] are gvar.GVars or arrays of gvar .GVars that give initial estimates (values and
errors) for parameters p [k].

A typical code sequence has the structure:

collect x, y, prior

def f(x, p):
compute fit to y[k], for all k in y, using x, p
return dictionary containing the fit values for the ylk]s

fit = lsgfit.nonlinear_fit (data=(x, y), prior=prior, fcn=f)
print (fit) # variable fit is of type nonlinear_ fit

The parameters p [k ] are varied until the chix 2 for the fit is minimized.

The best-fit values for the parameters are recovered after fitting using, for example, p=fit .p. Then the p [k] are
gvar.GVars or arrays of gvar.GVars that give best-fit estimates and fit uncertainties in those estimates. The
print (fit) statement prints a summary of the fit results.

The dependent variable y above could be an array instead of a dictionary, which is less flexible in general but possibly
more convenient in simpler fits. Then the approximate y returned by fit function f (x, p) must be an array with the
same shape as the dependent variable. The prior prior could also be represented by an array instead of a dictionary.

By default priors are Gaussian/normal distributions, represented by gvar.GVars. Setting nonlinear fit pa-
rameter extend=True allows for log-normal and sqrt-normal distributions as well. The latter are indicated by
replacing the prior (in a dictionary prior) with key c, for example, by a prior for the parameter’s logarithm or
square root, with key 1log (c) or sgrt (c), respectively. nonlinear fit adds parameter c to the parameter
dictionary, deriving its value from parameter Log (c) or sqrt (c). The fit function can be expressed directly in
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terms of parameter c and so is the same no matter which distribution is used for c. Note that a sqrt-normal dis-
tribution with zero mean is equivalent to an exponential distribution. Additional distributions can be added using
gvar.add_parameter_distribution().

The 1sgfit tutorial contains extended explanations and examples. The first appendix in the paper at
http://arxiv.org/abs/arXiv:1406.2279 provides conceptual background on the techniques used in this module for fits
and, especially, error budgets.

6.2 nonlinear_fit Objects

class 1sgfit.nonlinear_f£it (data, fcn, prior=None, pO=None, extend=False, svdcut=Ie-12, de-

bug=False, tol=1e-8, maxit=1000, fitter="gsl_multifit’, **fitterargs)
Nonlinear least-squares fit.

Isgfit.nonlinear._fit fitsa(nonlinear) function f (x, p) todatay by varying parameters p, and stores
the results: for example,

fit = nonlinear_fit (data=(x, y), fcn=f, prior=prior) # do fit
print (fit) # print fit results

The best-fit values for the parameters are in £it . p, while the chi « » 2, the number of degrees of freedom, the
logarithm of Gaussian Bayes Factor, the number of iterations (or function evaluations), and the cpu time needed
for the fit are in fit.chi2, fit.dof, fit.logGBF, fit.nit, and fit.time, respectively. Results
for individual parameters in £it . p are of type gvar .GVar, and therefore carry information about errors and
correlations with other parameters. The fit data and prior can be recovered using fit . x (equals False if there
isno x), fit.y, and fit.prior; the data and prior are corrected for the SVD cut, if there is one (that is,
their covariance matrices have been modified in accordance with the SVD cut).

Parameters

* data (dict, array or tuple) — Data to be fit by 1sgfit.nonlinear fit can have any
of the following forms:

data = x, y xisthe independent data that is passed to the fit function with the fit
parameters: fcn (x, p).yisadictionary (or array) of gvar .GVars that encode
the means and covariance matrix for the data that is to be fit being fit. The fit function
must return a result having the same layout as y.

data = y vy is a dictionary (or array) of gvar .GVars that encode the means and
covariance matrix for the data being fit. There is no independent data so the fit
function depends only upon the fit parameters: fit (p). The fit function must
return a result having the same layout as y.

data = x, ymean, ycov x is the independent data that is passed to the fit func-
tion with the fit parameters: fcn (x, p). ymean is an array containing the mean
values of the fit data. ycov is an array containing the covariance matrix of the
fit data; ycov.shape equals 2+«ymean. shape. The fit function must return an
array having the same shape as ymean.

data = x, ymean, ysdev x is the independent data that is passed to the fit
function with the fit parameters: fcn (x, p). ymean is an array containing the
mean values of the fit data. ysdev is an array containing the standard deviations
of the fit data; ysdev. shape equals ymean. shape. The data are assumed to be
uncorrelated. The fit function must return an array having the same shape as ymean.

Setting x=False in the first, third or fourth of these formats implies that the fit function
depends only on the fit parameters: that is, fcn (p) instead of fcn (x, p). (This is not
assumed if x=None.)
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* fcn (callable) — The function to be fit to data. It is either a function of the indepen-
dent data x and the fit parameters p (fcn (x, p) ), or a function of just the fit parameters
(fcn (p) ) when there is no x data or x=False. The parameters are tuned in the fit until
the function returns values that agree with the y data to within the ys’ errors. The function’s
return value must have the same layout as the y data (a dictionary or an array). The fit pa-
rameters p are either: 1) a dictionary where each p [k] is a single parameter or an array of
parameters (any shape); or, 2) a single array of parameters. The layout of the parameters is
the same as that of prior prior if it is specified; otherwise, it is inferred from of the starting
value pO for the fit.

* prior (dict, array, str, gvar.GVar or None) — A dictionary (or array) containing a priori
estimates for all parameters p used by fit function fcn (x, p) (or £cn (p)). Fit param-
eters p are stored in a dictionary (or array) with the same keys and structure (or shape) as
prior. The default value is None; prior must be defined if p0 is None.

* p0 (dict, array, float or None) — Starting values for fit parameters in fit.
lsgfit.nonlinear_fit adjusts pO to make it consistent in shape and structure with
prior when the latter is specified: elements missing from p0 are filled in using prior,
and elements in pO that are not in prior are discarded. If pO is a string, it is taken as a
file name and 1sgfit.nonlinear_fit attempts to read starting values from that file;
best-fit parameter values are written out to the same file after the fit (for priming future fits).
If p0 is None or the attempt to read the file fails, starting values are extracted from prior.
The default value is None; p0 must be defined if prior is None.

* svdcut (float or None) — If svdcut is nonzero (but not None), SVD cuts are applied to
every block-diagonal sub-matrix of the covariance matrix for the data y and prior (if there
is a prior). The blocks are first rescaled so that all diagonal elements equal 1 — that is, the
blocks are replaced by the correlation matrices for the corresponding subsets of variables.
Then, if svdcut > 0, eigenvalues of the rescaled matrices that are smaller than svdcut
times the maximum eigenvalue are replaced by svdcut times the maximum eigenvalue.
This makes the covariance matrix less singular and less susceptible to roundoff error. When
svdcut < 0, eigenvalues smaller than | svdcut | times the maximum eigenvalue are
discarded and the corresponding components in y and prior are zeroed out. Default is
le-12.

* extend (bool) — Log-normal and sqrt-normal distributions can be used for fit priors
when extend=True, provided the parameters are specified by a dictionary (as op-
posed to an array). To use such a distribution for a parameter ’ ¢’ in the fit prior,
replace prior [’ c’] with a prior specifying its logarithm or square root, designated
by prior[’log(c)’] or prior[’sqgrt (c)’], respectively. The dictionaries con-
taining parameters generated by Isgfit.nonlinear_fit will have entries for both
"¢’ and "log(c)’ or 'sqgrt(c)’, so only the prior need be changed to switch
to log-normal/sqrt-normal distributions. Setting extend=False (the default) restricts
all parameters to Gaussian distributions. Additional distributions can be added using
gvar.add_parameter_distribution().

* udata (dict, array or tuple) — Same as data but instructs the fitter to ignore correlations
between different pieces of data. This speeds up the fit, particularly for large amounts of
data, but ignores potentially valuable information if the data actually are correlated. Only
one of data or udata should be specified. (Default is None.)

e fitter (str or None) — Fitter code. Options if GSL is installed include:
"gsl_multifit’ (default) and "gsl_vl_multifit’ (original fitter). Options
if scipy is installed include: ’scipy_least_squares’ (default if GSL not
installed). gsl_multifit has many options, providing extensive user control.
scipy_least_squares can be used for fits where the parameters are bounded.
(Bounded parameters can also be implemented, for any of the fitters, using non-Gaussian
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priors — see the tutorial.)

* tol (float or tuple) — Assigning tol=(xtol, gtol, ftol) causes the fit to stop
searching for a minimum when any of

1. xtol >=relative change in parameters between iterations
2. gtol >=relative size of gradient of chi %2 function
3. ftol >=relative change in chi**2 between iterations

is satisfied. See the fitter documentation for detailed definitions of these stopping conditions.
Typically one sets xtol=1/10++d where d is the number of digits of precision desired
in the result, while gtol<<1 and ftol<<1. Setting tol=eps where eps is a number
is equivalent to setting tol=(eps, 1le-10,1e-10). Setting tol=(epsl,eps2) is
equivalent to setting tol= (epsl,eps2,le-10). Defaultis tol=1e-8. (Note: the
ftol option is disabled in some versions of the GSL library.)

* maxit (inf) — Maximum number of algorithm iterations (or function evaluations for some
fitters) in search for minimum; default is 1000.

* debug (bool) — Set to True for extra debugging of the fit function and a check for roundoff
errors. (Default is False.)

» fitterargs (dict) — Dictionary of additional arguments passed through to the underlying
fitter. Different fitters offer different parameters; see the documentation for each.

Objects of type 1sgfit.nonlinear._fit have the following attributes:
chi2
float

The minimum chi+«2 for the fit. fit.chi2 / fit.dof is usually of order one in good fits; values
much less than one suggest that the actual standard deviations in the input data and/or priors are smaller
than the standard deviations used in the fit.

cov
array

Covariance matrix of the best-fit parameters from the fit.

dof
int
Number of degrees of freedom in the fit, which equals the number of pieces of data being fit when priors

are specified for the fit parameters. Without priors, it is the number of pieces of data minus the number of
fit parameters.

error
Str

Error message generated by the underlying fitter when an error occurs. None otherwise.

fitter_results
Results returned by the underlying fitter. Refer to the appropriate fitter’s documentation for details.

1logGBF
float or None

The logarithm of the probability (density) of obtaining the fit data by randomly sampling the parameter
model (priors plus fit function) used in the fit — that is, it is P (data|model). This quantity is useful
for comparing fits of the same data to different models, with different priors and/or fit functions. The
model with the largest value of £it.1ogGBF is the one preferred by the data. The exponential of the
difference in £it.logGBF between two models is the ratio of probabilities (Bayes factor) for those
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models. Differences in £it.1logGBF smaller than 1 are not very significant. Gaussian statistics are
assumed when computing fit .1ogGBF.

P
dict, array or gvar.GVar
Best-fit parameters from fit. Depending upon what was used for the prior (or p0), it is either:
a dictionary (gvar.BufferDict) of gvar.GVars and/or arrays of gvar.GVars; or an array
(numpy .ndarray) of gvar.GvVars. fit.p represents a multi-dimensional Gaussian distribution
which, in Bayesian terminology, is the posterior probability distribution of the fit parameters.
pmean
dict, array or float
Means of the best-fit parameters from fit.
psdev
dict, array or float
Standard deviations of the best-fit parameters from fit.
palt
dict, array or gvar.GVar
Same as fit.p except that the errors are computed directly from £it .cov. This is faster but means
that no information about correlations with the input data is retained (unlike in £it .p); and, therefore,
fit.palt cannot be used to generate error budgets. fit.p and fit.palt give the same means and
normally give the same errors for each parameter. They differ only when the input data’s covariance matrix
is too singular to invert accurately (because of roundoff error), in which case an SVD cut is advisable.
PO
dict, array or float
The parameter values used to start the fit. This will differ from the input p0 if the latter was incomplete.
prior
dict, array, gvar.GVar or None
Prior used in the fit. This may differ from the input prior if an SVD cut is used. It is either a dictionary
(gvar.BufferDict) or an array (numpy . ndarray), depending upon the input. Equals None if no
prior was specified.
Q

float or None

The probability that the chi* =2 from the fit could have been larger, by chance, assuming the best-fit
model is correct. Good fits have Q values larger than 0.1 or so. Also called the p-value of the fit.

stopping criterion
int

Criterion used to stop fit:
0: didn’t converge
1: xtol >=relative change in parameters between iterations
2: gtol >=relative size of gradient of chi 2
3: ftol >=relative change in chi«*2 between iterations

svdcorrection
gvar.GVar

Sum of all SVD corrections, if any, added to the fit data y or the prior prior.
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svdn
int
Number of eigenmodes modified (and/or deleted) by the SVD cut.

time
float
CPU time (in secs) taken by fit.

tol
tuple

Tolerance used in fit. This differs from the input tolerance if the latter was incompletely specified.

obj

The first field in the input data. This is sometimes the independent variable (as in ‘y vs x’ plot), but may
be anything. It is set equal to False if the x field is omitted from the input data. (This also means that
the fit function has no x argument: so £ (p) rather than f (x, p).)

dict, array or gvar.GVar

Fit data used in the fit. This may differ from the input data if an SVD cut is used. It is either a dictionary
(gvar.BufferDict) or an array (numpy . ndarray), depending upon the input.

nblocks
dict

nblocks[s] equals the number of block-diagonal sub-matrices of the y—prior covariance matrix that
are size s-by-s. This is sometimes useful for debugging.

The global defaults used by Isgfit.nonlinear fit can be changed by changing entries in dictionary
lsgfit.nonlinear_fit.DEFAULTS for keys ‘extend’, ‘svdcut’, ‘debug’, tol, ‘maxit’, and ‘fitter’. Ad-
ditional defaults can be added to that dictionary to be are passed through Isqgfit.nonlinear_ fit to the
underlying fitter (via dictionary fitterargs).

Additional methods are provided for printing out detailed information about the fit, testing fits with simulated
data, doing bootstrap analyses of the fit errors, dumping (for later use) and loading parameter values, and check-
ing for roundoff errors in the final error estimates:

format (maxline=0, pstyle="v’)
Formats fit output details into a string for printing.

The output tabulates the chi 2 per degree of freedom of the fit (chi2/dof), the number of degrees of
freedom, the logarithm of the Gaussian Bayes Factor for the fit (1 0gGBF), and the number of fit- algorithm
iterations needed by the fit. Optionally, it will also list the best-fit values for the fit parameters together
with the prior for each (in [ ] on each line). Lines for parameters that deviate from their prior by more than
one (prior) standard deviation are marked with asterisks, with the number of asterisks equal to the number
of standard deviations (up to five). format can also list all of the data and the corresponding values from
the fit, again with asterisks on lines where there is a significant discrepancy. At the end it lists the SVD cut,
the number of eigenmodes modified by the SVD cut, the tolerances used in the fit, and the time in seconds
needed to do the fit. The tolerance used to terminate the fit is marked with an asterisk.

Parameters

* maxline (integer or bool) — Maximum number of data points for which fit results and
input data are tabulated. max1ine<0 implies that only chi2, Q, 1ogGBF, and itns
are tabulated; no parameter values are included. Setting maxline=True prints all data
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points; setting it equal None or False is the same as setting it equal to —1. Default is
maxline=0.

* pstyle (‘w’, v’, or ‘m’) — Style used for parameter list. Supported values are ‘vv’ for
very verbose, ‘v’ for verbose, and ‘m’ for minimal. When ‘m’ is set, only parameters
whose values differ from their prior values are listed. Setting pstyle=None implies no
parameters are listed.

Returns String containing detailed information about fit.

fmt_errorbudget (outputs, inputs, ndecimal=2, percent=True)
Tabulate error budget for outputs [ko] due to inputs [ki].

For each output outputs[ko], fmt_errorbudget computes the contributions to outputs[ko] ‘s
standard deviation coming from the gvar .GVars collected in inputs [ki]. This is done for each key
combination (ko, ki) and the results are tabulated with columns and rows labeled by ko and k i, respec-
tively. If a gvar.GVar in inputs [ki] is correlated with other gvar .GVars, the contribution from
the others is included in the ki contribution as well (since contributions from correlated gvar .GVars
cannot be distinguished). The table is returned as a string.

Parameters
* outputs — Dictionary of gvar . GVars for which an error budget is computed.

e inputs - Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists
of gvar.GVars and/or arrays/dictionaries of gvar.GVars. fmt_errorbudget
tabulates the parts of the standard deviations of each outputs[ko] due to each
inputs[ki].

* ndecimal (int)— Number of decimal places displayed in table.

* percent (boolean) — Tabulate % errors if percent is True; otherwise tabulate the
errors themselves.

* colwidth (positive integer or None) — Width of each column. This is set automatically,
to accommodate label widths, if colwidth=None (default).

* verify (boolean) — If True, a warning is issued if: 1) different inputs are correlated
(and therefore double count errors); or 2) the sum (in quadrature) of partial errors is not
equal to the total error to within 0.1% of the error (and the error budget is incomplete or
overcomplete). No checking is done if verify==False (default).

Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

fmt_values (outputs, ndecimal=None)
Tabulate gvar.GVars in outputs.

Parameters
* outputs — A dictionary of gvar.GVar objects.
* ndecimal (int or None) — Format values v using v. fmt (ndecimal).

Returns A table (str) containing values and standard deviations for variables in outputs,
labeled by the keys in outputs.

simulated_fit_iter (n=None, pexact=None, **kargs)
Iterator that returns simulation copies of a fit.

Fit reliability can be tested using simulated data which replaces the mean values in self .y with random
numbers drawn from a distribution whose mean equals self.fcn (pexact) and whose covariance
matrix is the same as self.y‘s. Simulated data is very similar to the original fit data, self.y, but
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corresponds to a world where the correct values for the parameters (i.e., averaged over many simulated
data sets) are given by pexact. pexact is usually taken equal to £it . pmean.

Each iteration of the iterator creates new simulated data, with different random numbers, and fits it, return-
ing the the 1sgfit.nonlinear_fit thatresults. The simulated data has the same covariance matrix
as fit.y. Typical usage is:

fit = nonlinear_fit(...)

for sfit in fit.simulated_fit_iter (n=3):
verify that sfit.p agrees with pexact=fit.pmean within errors

Only a few iterations are needed to get a sense of the fit’s reliability since we know the correct answer in
each case. The simulated fit’s output results should agree with pexact (=fit .pmean here) within the
simulated fit’s errors.

Simulated fits can also be used to estimate biases in the fit’s output parameters or functions of them,
should non-Gaussian behavior arise. This is possible, again, because we know the correct value for every
parameter before we do the fit. Again only a few iterations may be needed for reliable estimates.

The (possibly non-Gaussian) probability distributions for parameters, or functions of them, can be ex-
plored in more detail by setting option boot st rap=True and collecting results from a large number
of simulated fits. With bootstrap=True, the means of the priors are also varied from fit to fit, as in
a bootstrap simulation; the new prior means are chosen at random from the prior distribution. Variations
in the best-fit parameters (or functions of them) from fit to fit define the probability distributions for those
quantities. For example, one would use the following code to analyze the distribution of function g (p) of
the fit parameters:

fit = nonlinear_fit(...)

glist = []
for sfit in fit.simulated_fit_iter (n=100, bootstrap=True):
glist.append(g(sfit.pmean))

analyze samples glist[i] from g(p) distribution

This code generates n=100 samples glist [i] from the probability distribution of g (p) . If everything
is Gaussian, the mean and standard deviation of glist [i] should agree with g (fit.p) .mean and
g(fit.p) .sdev.

The only difference between simulated fits with boot st rap=True and bootstrap=False (the de-
fault) is that the prior means are varied. It is essential that they be varied in a bootstrap analysis since one
wants to capture the impact of the priors on the final distributions, but it is not necessary and probably not
desirable when simply testing a fit’s reliability.

Parameters
* n (integer or None) — Maximum number of iterations (equals infinity if None).

* pexact (None or array or dictionary of numbers) — Fit-parameter values for the under-
lying distribution used to generate simulated data; replaced by self.pmean if is None
(default).

* bootstrap (bool) — Vary prior means if True; otherwise vary only the means in
self .y (default).

Returns An iterator that returns 1sgfit.nonlinear._fits for different simulated data.
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Note that additional keywords can be added to overwrite keyword arguments in
lsgfit.nonlinear_fit.

bootstrap_iter (n=None, datalist=None)
Iterator that returns bootstrap copies of a fit.

A bootstrap analysis involves three steps: 1) make a large number of “bootstrap copies” of the original input
data and prior that differ from each other by random amounts characteristic of the underlying randomness
in the original data; 2) repeat the entire fit analysis for each bootstrap copy of the data, extracting fit results
from each; and 3) use the variation of the fit results from bootstrap copy to bootstrap copy to determine
an approximate probability distribution (possibly non-gaussian) for the fit parameters and/or functions of
them: the results from each bootstrap fit are samples from that distribution.

Bootstrap copies of the data for step 2 are provided in datalist. If datalist is None, they are
generated instead from the means and covariance matrix of the fit data (assuming gaussian statistics). The
maximum number of bootstrap copies considered is specified by n (None implies no limit).

Variations in the best-fit parameters (or functions of them) from bootstrap fit to bootstrap fit define the
probability distributions for those quantities. For example, one could use the following code to analyze the
distribution of function g (p) of the fit parameters:

fit = nonlinear_fit(...)

glist = []

for sfit in fit.bootstrapped_fit_iter(
n=100, datalist=datalist, bootstrap=True
)t
glist.append(g(sfit.pmean))

analyze samples glist[i] from g(p) distribution

This code generates n=100 samples glist [1] from the probability distribution of g (p) . If everything
is Gaussian, the mean and standard deviation of glist [1] should agree with g (fit.p) .mean and
g(fit.p) .sdev.

Parameters

* n (integer) — Maximum number of iterations if n is not None; otherwise there is no max-
imum.

* datalist (sequence or iterator or None) — Collection of bootstrap data sets for fitter.

Returns Iterator that returns an 1sgfit.nonlinear fit objectcontaining results from the
fit to the next data set in datalist

dump_p (filename)
Dump parameter values (fit .p) into file filename.
fit.dump_p (filename) saves the  best-fit  parameter  values (fit.p)  from
a nonlinear_fit called fit. These  values are recovered wusing p =
nonlinear_fit.load _parameters (filename) where p‘s layout is the same as that of
fit.p.

dump_pmean (filename)
Dump parameter means (fit . pmean) into file filename.

fit.dump_pmean (filename) saves the means of the best-fit parameter values
(fit.pmean) from a nonlinear_fit called £it. These values are recovered using p0 =

6.2. nonlinear_fit Objects 93




Isgfit Documentation, Release 9.1.2

nonlinear_fit.load_parameters (filename) where p0°‘slayoutisthe sameas fit .pmean.
The saved values can be used to initialize a later fit (nonlinear_fit parameter pO0).

static load_parameters (filename)
Load parameters stored in file filename.

p = nonlinear_fit.load_p (filename) is used to recover the values of fit parameters dumped
using fit.dump_p (filename) (or fit.dump_pmean (filename)) where fit is of type
Isgfit.nonlinear._fit. The layout of the returned parameters p is the same as that of fit.p
(or fit .pmean).

check_ roundoff (rrol=0.25, atol=1e-6)
Check for roundoff errors in fit.p.

Compares standard deviations from fit.p and fit.palt to see if they agree to within relative tolerance rtol
and absolute tolerance atol. Generates a warning if they do not (in which case an SVD cut might be
advisable).

static set (clear=False, **defaults)
Set default parameters for I sqfit.nonlinear_fit.

Use to set default values for parameters: extend, svdcut, debug, tol, maxit, and fitter. Can
also set parameters specific to the fitter specified by the £itter argument.

Sample usage:

import lsqgfit

old_defaults = lsgfit.nonlinear_fit.set(
fitter='gsl multifit', alg='subspace2D', solver='cholesky',
tol=1e-10, debug=True,
)

nonlinear_fit.set () without arguments returns a dictionary containing the current defaults.

Parameters
* clear (bool) — If True remove earlier settings, restoring the original de-
faults, before adding new defaults. The default value is clear=False.

nonlinear_fit.set (clear=True) restores the original defaults.
* defaults (dict) — Dictionary containing new defaults.

Returns A dictionary containing the old defaults, before they were updated. These can be re-
stored using nonlinear_fit.set (old_defaults) where old_defaults is the
dictionary containint the old defaults.

6.3 Functions

lsgfit .empbayes_fit (20, fitargs, **minargs)

Return fit and z corresponding to the fit 1sqfit.nonlinear_fit (x+xfitargs(z)) that maximizes
1ogGBF.

This function maximizes the logarithm of the Bayes Factor from fit
lsgfit.nonlinear_fit (xxfitargs(z)) by varying z, starting at z0. The fit is redone for
each value of z that is tried, in order to determine 1 0gGBF.

The Bayes Factor is proportional to the probability that the data came from the model (fit function and priors)
used in the fit. empbayes_fit () finds the model or data that maximizes this probability.
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One application is illustrated by the following code:

import numpy as np
import gvar as gv
import lsqgfit

# fit data
x = np.array([1., 2., 3., 4.1)
y = np.array([3.4422, 1.2929, 0.4798, 0.1725])

# prior
prior = gv.gvar(['10(1)"', "1.0(1)"'])

# fit function
def fcn(x, p):
return p[0] * gv.exp( - pl[l] * x)

# find optimal dy
def fitargs(z):
dy = v * 2
newy = gv.gvar(y, dy)
return dict (data=(x, newy), fcn=fcn, prior=prior)

fit, z = lsqgfit.empbayes_fit (0.1, fitargs)
print fit.format (True)

Here we want to fit data y with fit function £cn but we don’t know the uncertainties in our y values. We assume
that the relative errors are x-independent and uncorrelated. We add the error dy that maximizes the Bayes
Factor, as this is the most likely choice. This fit gives the following output:

Least Square Fit:

chi2/dof [dof] = 0.58 [4] Q = 0.67 1ogGBF = 7.4834
Parameters:
0 9.44 (18) [ 10.0 (1.0) 1]
1 0.9979 (69) [ 1.00 (10) ]
Fit
x[k] vy [k] f(x[kl,p)
1 3.442 (54) 3.481 (45)
2 1.293 (20) 1.283 (11)
3 0.4798 (75) 0.4731 (41)
4 0.1725 (27) 0.1744 (23)
Settings:
svdcut/n = 1e-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 3/0.0)

We have, in effect, used the variation in the data relative to the best fit curve to estimate that the uncertainty in
each data point is of order 1.6%.

Parameters
* z0 (number, array or dict) — Starting point for search.

» fitargs (callable) — Function of z that returns a dictionary args containing the
lsgfit.nonlinear_fit arguments corresponding to z. z should have the same lay-
out (number, array or dictionary) as z0. fitargs (z) can instead return a tuple (args,
plausibility), where args is again the dictionary for 1 sgfit.nonlinear_fit.
plausibility is the logarithm of the a priori probabilitiy that z is sensible. When
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plausibilityisprovided, Isgfit.empbayes_ fit () maximizesthe sum 1ogGBF
+ plausibility. Specifying plausibility is a way of steering selections away
from completely implausible values for z.

* minargs (dict) -  Optional argument dictionary, passed on to
lsgfit.gsl_multiminex (or Isqgfit.scipy_multiminex), which finds
the minimum.

Returns A tuple containing the best fit (object of type 1 sgfit.nonlinear_fit) and the opti-
mal value for parameter z.

lsqgfit.wavg (dataseq, prior=None, fast=False, **fitterargs)

Weighted average of gvar . GVars or arrays/dicts of gvar.GVars.

The weighted average of several gvar .GVars is what one obtains from a least-squares fit of the collection of
gvar.GVars to the one-parameter fit function

def f(p):
return N x [p[0]]

where N is the number of gvar . GVars. The average is the best-fit value for p [0]. gvar . GVars with smaller
standard deviations carry more weight than those with larger standard deviations. The averages computed by
wavg take account of correlations between the gvar .Gvars.

If prior is not None, it is added to the list of data used in the average. Thus wavg([x2, %3],
prior=x1) isthe same as wavg ( [x1, x2, x3]).

Typical usage is

xl = gvar.gvar(...)
x2 = gvar.gvar(...)
x3 = gvar.gvar(...)
xavg = wavg([xl, x2, x3]) # weighted average of x1, x2 and x3

where the result xavg is a gvar . GVar containing the weighted average.

The individual gvar . GVars in the last example can be replaced by multidimensional distributions, represented
by arrays of gvar.GVars or dictionaries of gvar .GVars (or arrays of gvar . GVars). For example,

x1l = [gvar.gvar(...), gvar.gvar(...)]
x2 = [gvar.gvar(...), gvar.gvar(...)]
x3 = [gvar.gvar(...), gvar.gvar(...)]
xavg = wavg([x1l, x2, x3])

# xavg[i] is wgtd avg of x1[i], x2[1], x3[1]

where each array x1, x2 ... must have the same shape. The result xavg in this case is an array of gvar.GVars,
where the shape of the array is the same as that of x1, etc.

Another example is

x1 = dict (a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x2 = dict (a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x3 = dict (a=[gvar.gvar(...), gvar.gvar(...)])

xavg = wavg([xl, x2, x3])

# xavg['a'][i] is wgtd avg of x1['a'][i], x2['a'][i], x3['a'][i]
# xavg['b'] is gtd avg of x1['b'], x2['b']

where different dictionaries can have (some) different keys. Here the result xavg is a gvar.BufferDict®
having the same keys as x1, etc.

Weighted averages can become costly when the number of random samples being averaged is large (100s or
more). In such cases it might be useful to set parameter fast=True. This causes wavg to estimate the
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weighted average by incorporating the random samples one at a time into a running average:

result = prior
for dataseqg_i in dataseq:
result = wavg([result, dataseqg_il], ...)

This method is much faster when len (dataseq) is large, and gives the exact result when there are no corre-
lations between different elements of list dat aseq. The results are approximately correct when dataseq[1i]
and dataseq[ j] are correlated for 1 ! =7.

Parameters

* dataseq (list) — The gvar.GVars to be averaged. dataseq is a one-dimensional
sequence of gvar.GVars, or of arrays of gvar.GVars, or of dictionaries containing
gvar.GVars and/or arrays of gvar.GVars. All dataseg[i] must have the same
shape.

* prior (dict, array or gvar.GVar) — Prior values for the averages, to be included in the
weighted average. Default value is None, in which case prior is ignored.

» fast (bool) — Setting fast=True causes wavg to compute an approximation to the
weighted average that is much faster to calculate when averaging a large number of samples
(100s or more). The default is fast=False.

» fitterargs (dict) - Additional arguments (e.g., svdcut) for the
lsgfit.nonlinear_fit fitter used to do the averaging.

Results returned by gvar .wavg () have the following extra attributes describing the average:
chi2 - chix«2 for weighted average.
dof - Effective number of degrees of freedom.

Q - The probability that the chi**2 could have been larger, by chance, assuming that the data
are all Gaussian and consistent with each other. Values smaller than 0.1 or so suggest that the
data are not Gaussian or are inconsistent with each other. Also called the p-value.

Quality factor Q (or p-value) for fit.
time - Time required to do average.
svdcorrection - The svd corrections made to the data when svdcut is not None.
fit - Fit output from average.

lsgfit.gammaQ ()
Return the normalized incomplete gamma function Q (a, x) = 1-P (&, x).

Q(a, x) = 1/Gamma(a) » \int_x"\infty dt exp(-t) t ** (a-1) = 1 - P(a, x)

Note that gammaQ (ndof/2., chi2/2.) is the probabilty that one could get a chi«*2 larger than chi2
with ndof degrees of freedom even if the model used to construct chi2 is correct.

gvar.add_parameter_distribution ()
Add new parameter distribution for use in fits.

This function adds new distributions for the parameters used in 1 sgfit.nonlinear._fit. For example, the
code

import gvar as gv
gv.add_parameter_distribution('log', gv.exp)

enables the use of log-normal distributions for parameters. The log-normal distribution is invoked for a param-
eter p by including 1log (p) rather than p itself in the fit prior. log-normal, sqrt-normal, and erfinv-normal
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distributions are included by default. (Setting a prior prior[erfinv (w) ] equal to gv.gvar (0 (1)")
/ gv.sqrt (2) means that the prior probability for w is distributed uniformly between -1 and 1, and is zero
elsewhere.)

These distributions are implemented by replacing a fit parameter p by a new fit parameter fcn (p) where fcn
is some function. fcn (p) is assumed to have a Gaussian distribution, and parameter p is recovered using the
inverse function invfcn where p=invfcn (fen (p) ).

Parameters
* name (str) — Distribution’s name.
¢ inv£fen - Inverse of the transformation function.

gvar.del_parameter_distribution ()
Delete parameter distribution name.

gvar.add_parameter_parentheses ()
Return dictionary with proper keys for parameter distributions (legacy code).

This utility function helps fix legacy code that uses parameter keys like 1ogp or sgrtp instead of 1og (p)
or sgrt (p), as now required. This method creates a copy of dictionary p’’ but with keys like
*Ylogp or sgrtp replaced by 1og (p) or sgrt (p). So setting

p = add_parameter_parentheses (p)

fixes the keys in p for log-normal and sqrt-normal parameters.

6.4 Classes for Bayesian Integrals

1sqgfit provides support for doing Bayesian integrals, using results from a least-squares fit to optimize the multi-
dimensional integral. This is useful for severely non-Gaussian situations. Module vegas is used to do the integrals,
using an adaptive Monte Carlo algorithm.

The integrator class is:

class 1sgfit.BayesIntegrator (fit, limit=1el5, scale=1, pdf=None, adapt_to_pdf=True, svdcut=1Ie-

15)
vegas integrator for Bayesian fit integrals.

Parameters
e fit — Fit from nonlinear fit.

* limit (positive float) — Limits the integrations to a finite region of size 1imit times the
standard deviation on either side of the mean. This can be useful if the functions being
integrated misbehave for large parameter values (e.g., numpy . exp overflows for a large
range of arguments). Defaultis 1e15.

* scale (positive float) — The integration variables are rescaled to emphasize parameter val-
ues of order scale times the corresponding standard deviations. The rescaling does not
change the value of the integral but it can reduce uncertainties in the vegas estimates.
Defaultis 1. 0.

» pdf (callable) — Probability density function pdf (p) of the fit parameters to use in place
of the normal PDF associated with the least-squares fit used to create the integrator.

* adapt_to_pdf (bool) — vegas adapts to the PDF if True (default); otherwise it adapts
to £ (p) times the PDF.
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* svdcut (non-negative float or None) — If not None, replace covariance matrix of g with
a new matrix whose small eigenvalues are modified: eigenvalues smaller than svdcut
times the maximum eigenvalue eig_max are replaced by svdcut+reig_max. This can
ameliorate problems caused by roundoff errors when inverting the covariance matrix. It
increases the uncertainty associated with the modified eigenvalues and so is conservative.
Setting svdcut=None or svdcut=0 leaves the covariance matrix unchanged. Default is
le-15.

BayesIntegrator (fit) isavegas integrator that evaluates expectation values for the multi-dimensional
Bayesian distribution associated with nonlinear fit f£it: the probability density function is the exponen-
tial of the chi %2 function (times —1/2), for data and priors, used in the fit. For linear fits, it is equivalent to
vegas.PDFIntegrator (fit.p), since the chix*2 function is quadratic in the fit parameters; but they
can differ significantly for nonlinear fits.

BayesIntegrator integrates over the entire parameter space but first re-expresses the integrals in terms
of variables that diagonalize the covariance matrix of the best-fit parameters £it .p from nonlinear fit
and are centered at the best-fit values. This greatly facilitates the integration using vegas, making integrals
over 10s or more of parameters feasible. (The vegas module must be installed separately in order to use
BayesIntegrator.)

A simple illustration of BayesIntegrator is given by the following code, which we use to evaluate the
mean and standard deviation for s+g where s and g are fit parameters:

import lsqgfit
import gvar as gv
import numpy as np

# least-squares fit

x = np.array([0.1, 1.2, 1.9, 3.5])
y = gv.gvar(['1.2(1.0)"', '2.4(1)", '2.0(1.2)", '5.2(3.2)"'])
prior = gv.gvar(dict(a='0(5)", s='0(2)", g='2(2)"))
def f(x, p):
return p['a'] + p['s'] % x % p['g']
fit = lsgfit.nonlinear_fit (data=(x,y), prior=prior, fcn=f, debug=True)
print (fit)

# Bayesian integral to evaluate expectation value of s*g
def g(p):

sg = pl's"'"] = pl'g"]

return [sg, sgxx2]

expval = lsqgfit.BayesIntegrator (fit, 1limit=20.)

warmup = expval (neval=4000, nitn=10)

results = expval (g, neval=4000, nitn=15, adapt=False)

print (results.summary () )

print ('results =', results, '\n')

sSg, sg2 = results

sg_sdev = (sg2 — sgx*2) ** 0.5

print ('sxg from Bayes integral: mean =', sg, ' sdev =', sg_sdev)
print ('sxg from fit:', fit.p['s']l » fit.pl['g'l)

where the warmup calls to the integrator are used to adapt it to probability density function from the fit, and
then the integrator is used to evaluate the expectation value of g (p), which is returned in array results.
Here neval is the (approximate) number of function calls per iteration of the vegas algorithm and nitn is
the number of iterations. We use the integrator to calculated the expectation value of sxg and (s*g) **2 so
we can compute a mean and standard deviation.

The output from this code shows that the Gaussian approximation for sxg (0.76(66)) is somewhat different
from the result obtained from a Bayesian integral (0.48(54)):
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Least Square Fit:

chi2/dof [dof] = 0.32 [4] Q = 0.87 logGBF = -9.2027
Parameters:
1.61 (90) [ 0.0 (5.0) 1]
s 0.62 (81) [ 0. (2.0) ]
1.2 (1.1) [ 2.0 (2.0) 1]
Settings:
svdcut/n = 1le-15/0 reltol/abstol = 0.0001/0% (itns/time = 10/0.0)
itn integral average chi2/dof (0]
1 1.034(21) 1.034(21) 0.00 1.00
2 1.034(21) 1.034(15) 0.56 0.64
3 1.024(18) 1.030(12) 0.37 0.90
4 1.010(18) 1.0254(98) 0.47 0.89
5 1.005(17) 1.0213(85) 0.55 0.88
6 1.013(19) 1.0199(78) 0.69 0.80
7 0.987(16) 1.0152(70) 0.78 0.72
8 1.002(18) 1.0135(66) 0.90 0.59
9 1.036(20) 1.0160(62) 0.86 0.66
10 1.060(20) 1.0204(60) 0.94 0.55
results = [0.4837(32) 0.5259(47)]
s+*g from Bayes integral: mean = 0.4837(32) sdev = 0.5403(25)

s*g from fit: 0.78(66)

The table shows estimates of the probability density function’s normalization from each of the vegas iterations
used by the integrator to estimate the final results.

In general functions being integrated can return a number, or an array of numbers, or a dictionary whose values
are numbers or arrays of numbers. This allows multiple expectation values to be evaluated simultaneously.

See the documentation with the vegas module for more details on its use, and on the attributes and methods
associated with integrators. The example above sets adapt=False when computing final results. This gives
more reliable error estimates when neval is small. Note that neval may need to be much larger (tens or
hundreds of thousands) for more difficult high-dimension integrals.

__call__ (f=None, pdf=None, adapt_to_pdf=None, **kargs)
Estimate expectation value of function £ (p) .

Uses multi-dimensional integration modules vegas to estimate the expectation value of £ (p) with re-
spect to the probability density function associated with nonlinear. fit fit.

Parameters

» £ (callable) — Function £ (p) to integrate. Integral is the expectation value of the function
with respect to the distribution. The function can return a number, an array of numbers,
or a dictionary whose values are numbers or arrays of numbers. Its argument p has the
same format as self.fit.pmean (that is, either a number, an array, or a dictionary).
Omitting £ (or setting it to None) implies that only the PDF is integrated.

* pdf (callable) — Probability density function pdf (p) of the fit parameters to use in place
of the normal PDF associated with the least-squares fit used to create the integrator. The
PDF need not be normalized; vegas will normalize it. Ignored if pdf=None (the default).

* adapt_to_pdf (bool) — vegas adapts to the PDF if True (default); otherwise it adapts
to f (p) times the PDF.
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All other keyword arguments are passed on to a vegas integrator; see the vegas documentation for
further information.

The results returned are similar to what vegas returns but with an extra attribute: results.norm,
which contains the vegas estimate for the norm of the PDF. This should equal 1 within errors if the PDF
is normalized (and so can serve as a check on the integration in those cases).

A class that describes the Bayesian probability distribution associated with a fit is:

class 1sqgfit .BayesPDF (fit, svdcut=1e-15)
Bayesian probability density function corresponding to nonlinear fit fit.

The probability density function is the exponential of —1 /2 times the chix 2 function (data and priors) used
in fit divided by norm.

Parameters
e fit - Fit from nonlinear fit.

* svdcut (non-negative float or None) — If not None, replace covariance matrix of g with
a new matrix whose small eigenvalues are modified: eigenvalues smaller than svdcut
times the maximum eigenvalue eig_max are replaced by svdcut xeig_max. This can
ameliorate problems caused by roundoff errors when inverting the covariance matrix. It
increases the uncertainty associated with the modified eigenvalues and so is conservative.
Setting svdcut=None or svdcut=0 leaves the covariance matrix unchanged. Default is
le-15.

__call__ (p)
Probability density function evaluated at p.

logpdf (p)
Logarithm of the probability density function evaluated at p.

6.5 1sqgfit .MultiFitter Classes

lsgfit.MultiFitter provides a framework for fitting multiple pieces of data using a set of custom-designed
models, derived from Isgfit.MultiFitterModel, each of which encapsulates a particular fit function. This
framework was developed to support the corrfitter module, but is more general. Instances of model classes
associate specific subsets of the fit data with specific subsets of the fit parameters. This allows fit problems to be
broken down down into more manageable pieces, which are then aggregated by Isgfit.MultiFitter into a
single fit.

A trivial example of a model would be one that encapsulates a linear fit function:

import numpy as np
import lsqgfit

class Linear (lsgfit.MultiFitterModel) :
def _ init_ (self, datatag, x, intercept, slope):

super (Linear, self).__init__ (datatag)
# the independent variable
self.x = np.array (x)
# keys used to find the intercept and slope in a parameter dictionary
self.intercept = intercept
self.slope = slope

def fitfcn(self, p):
if self.slope in p:
return p[self.intercept] + plself.slope] * self.x
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else:
# slope parameter marginalized
return len(self.x) » [plself.intercept]]

def buildprior(self, prior, mopt=None, extend=False):

" Extract the model's parameters from prior. "

newprior = {}

newprior([self.intercept] = prior[self.intercept]

if mopt is None:
# slope parameter marginalized if mopt is not None
newprior[self.slope] = prior[self.slope]

return newprior

def builddata(self, data):
" Extract the model's fit data from data. "
return data[self.datatag]

Imagine four sets of data, each corresponding to x=1, 2, 3, 4, all of which have the same intercept but different
slopes:

data = gv.gvar (dict (
dl=['1.154(10)"', '2.107(1l6)', '3.042(22)"', '3. 978( )'],
d2=['0.692(10)"', '1.196(1l6)', '1.657(22)"', '2 189(29)'1,
d3=['0.107(10)"', '0.030(1l6)', '-0.027(22)"', O 149( 9)'1,
d4=['0.002(10)"', '-0.197(16)"'", '-0.382(22)', '-0.627(29)']1,

))

To find the common intercept, we define a model for each set of data:

models = [
Linear('dl', x=[1,2,3,4], intercept='a', slope= ),
Linear('d2', x=[1,2,3,4], intercept='a', slope*'s2 ),
Linear ('d3', x=[1,2,3,4], intercept='a', slope= "y,
Linear('d4', x=[1,2,3,4], intercept='a', slope:'s4 ),

]

This says that data[’d3’], for example, should be fit with function p[’a’] + p[’s3’'] *
np.array([1,2,3,4]) where p is a dictionary of fit parameters. The models here all share the same
intercept, but have different slopes. Assume that we know a priori that the intercept and slopes are all order one:

prior = gv.gvar(dict(a='0(1)"', s1='0(1)", s2='0(1)", s3="0(1)", s4="0(1)"))

Then we can fit all the data to determine the intercept:

fitter = 1lsgfit.MultiFitter (models=models)
fit = fitter.lsqgfit (data=data, prior=prior)
print (fit)

print ('intercept =', fit.p['a'])

The output from this code is:

Least Square Fit:

chi2/dof [dof] = 0.49 [16] Q = 0.95 1logGBF = 18.793
Parameters:
a 0.2012 (78) [ 0.0 (1.0) ]
sl 0.9485 (53) [ 0.0 (1.0) 1
s2 0.4927 (53) [ 0.0 (1.0) ]
s3 -0.0847 (53) [ 0.0 (1.0) ]
s4 -0.2001 (53) [ 0.0 (1.0) 1
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Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 5/0.0)

intercept = 0.2012(78)

Model class Linear is configured to allow marginalization of the slope parameter, if desired. Calling
fitter.lsqgfit (data=data, prior=prior, mopt=True) moves the slope parameters into the data (by
subtracting m.x * prior[m.slope] from the data for each model m), and does a single-parameter fit for the
intercept:

Least Square Fit:

chi2/dof [dof] = 0.49 [16] Q = 0.95 1ogGBF = 18.793
Parameters:
a 0.2012 (78) [ 0.0 (1.0) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1le-10,1e-10) (itns/time = 4/0.0)

intercept = 0.2012(78)

Marginalization can be useful when fitting large data sets since it reduces the number of fit parameters and simplifies
the fit.

Another variation is to replace the simultaneous fit of the four models by a chained fit, where one model is fit at a time
and its results are fed into the next fit through that fit’s prior. Replacing the fit code by

fitter = lsgfit.MultiFitter (models=models)

fit = fitter.chained_1lsqgfit (data=data, prior=prior)
print (fit.formatall())

print ('slope ="', fit.pl['a'l)

gives the following output:

========== d]
Least Square Fit:
chi2/dof [dof] = 0.32 [4] QO = 0.86 1ogGBF = 2.0969
Parameters:
a 0.213 (16) [ 0.0 (1.0) 1
sl 0.9432 (82) [ 0.0 (1.0) 1
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 5/0.0)
========== d2
Least Square Fit:
chi2/dof [dof] = 0.58 [4] Q = 0.67 1ogGBF = 5.3792
Parameters:
a 0.206 (11) [ 0.213 (l6) ]
s2 0.4904 (64) [ 0.0 (1.0) 1]
sl 0.9462 (64) [ 0.9432 (82) ]
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 5/0.0)
========== d3

Least Square Fit:
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chi2/dof [dof] = 0.66 [4] Q = 0.62 1ogGBF = 5.3767
Parameters:
a 0.1995 (90) [ 0.206 (11) ]
s3 -0.0840 (57) [ 0.0 (1.0) 1]
sl 0.9493 (57) [ 0.9462 (64) ]
s2 0.4934 (57) [ 0.4904 (64) ]
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 4/0.0)
========== d4
Least Square Fit:
chi2/dof [dof] = 0.41 [4] Q0 = 0.81 1ogGBF = 5.9402
Parameters:
a 0.2012 (78) [ 0.1995 (90) ]
s4 -0.2001 (53) [ 0.0 (1.0) ]
sl 0.9485 (53) [ 0.9493 (57) ]
s2 0.4927 (53) [ 0.4934 (57) ]
s3 -0.0847 (53) [ -0.0840 (57) ]
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1le-10,1e-10) (itns/time = 4/0.0)

intercept = 0.2012(78)

Note how the value for s1 improves with each fit despite the fact that it appears only in the first fit function. This
happens because its value is correlated with that of the intercept a, which appears in every fit function.

Chained fits are most useful with very large data sets when it is possible to break the data into smaller, more
manageable chunks. There are a variety of options for organizing the chain of fits that are discussed in the

MultiFitter.chained lsqgfit () documentation.

class 1sgfit .MultiFitter (models, mopt=None, ratio=False, fast=True, extend=False, **fitterargs)
Nonlinear least-squares fitter for a collection of models.

Parameters

models — List of models, derived from modelfitter.MultiFitterModel, to be
fit to the data. Individual models in the list can be replaced by lists of models or tuples of
models; see below.

mopt (object) — Marginalization options. If not None, marginalization is used to reduce the
number of fit parameters. Object mopt is passed to the models when constructing the prior
for a fit; it typically indicates the degree of marginalization (in a model-dependent fashion).
Setting mopt=None implies no marginalization.

ratio (bool) — If True, implement marginalization using ratios: data_marg =
data * fitfcn(prior_marg) / fitfcn(prior). If False (default), im-
plement using differences: data_marg = data + (fitfcn(prior_marg) -
fitfcn(prior)).

fast (bool) — Setting fast=True (default) strips any variable not required by the fit from
the prior. This speeds fits but loses information about correlations between variables in the
fit and those that are not. The information can be restored using 1sgfit .wavgqg after the
fit.

extend (bool) - If True supports log-normal and other non-Gaussian priors. See 1sgfit
documentation for details. Defaultis False.
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* fitname (callable or None) — Individual fits in a chained fit are assigned default names,
constructed from the datatags of the corresponding models, for access and reporting. These
names get unwieldy when lots of models are involved. When fitname is not None (de-
fault), each default name dname is replaced by fitname (dname).

» fitterargs — Additional arguments for the 1 sgfit.nonlinear._ fit,suchastol,
maxit, svdcut, fitter, etc., as needed.

1sqgfit (data=None, prior=None, pdata=None, p0=None, **kargs)
Compute least-squares fit of models to data.

MultiFitter.lsqgfit () fits all of the models together, in a single fit. It returns the
lsqgfit.nonlinear_fit object from the fit.

To see plots of the fit data divided by the fit function with the best-fit parameters use
fit.show_plots()

Plotting requires module matplotlib.
Parameters

* data — Input data. One of data or pdata must be specified but not both. pdata
is obtained from data by collecting the output from m.builddata (data) for each
model m and storing it in a dictionary with key m.datatag.

e pdata - Input data that has been processed by the models using
MultiFitter.process_data() or MultiFitter.process_dataset ().
One of data or pdata must be specified but not both.

* prior — Bayesian prior for fit parameters used by the models.

* p0 — Dictionary , indexed by parameter labels, containing initial values for the parame-
ters in the fit. Setting pO=None implies that initial values are extracted from the prior.
Setting p0="f1ilename" causes the fitter to look in the file with name "filename"
for initial values and to write out best-fit parameter values after the fit (for the next call to
self.lsqgfit ()).

* kargs — Arguments that override parameters specified when the MultiFitter was
created. Can also include additional arguments to be passed through to the 1 sgfit fitter.

chained_1sqfit (data=None, pdata=None, prior=None, p0=None, **kargs)
Compute chained least-squares fit of models to data.

In a chained fit to models [s1, s2, ...], the models are fit one at a time, with the fit output from
one being fed into the prior for the next. This can be much faster than fitting the models together, simul-
taneously. The final result comes from the last fit in the chain, and includes parameters from all of the
models.

The most general chain has the structure [s1, s2, s3 ...] where each sn is one of:
1.a model (derived frommultifitter.MultiFitterModel);
2.atuple (ml, m2, m3) of models, to be fit together in a single fit (i.e., simultaneously);

3alist [pl, p2, p3 ...] where each pn is either a model or a tuple of models (see #2). The
pn are fit separately, and independently of each other (i.e., in parallel). Results from the separate
fits are averaged at the end to provide a single composite result for the collection of fits.

The final result fit returned by MultiFitter.chained_fit () has an extra attribute
fit.chained_fits which is an ordered dictionary containing fit results from each link sn in the
chain, and keyed by the models’ datatags. If any of these involves parallel fits (see #3 above), it will
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have an extra attribute fit .chained_fits[fittag] .sub_fits thatcontains results from the sep-
arate parallel fits. To list results from all the chained and parallel fits, use

print (fit.formatall())

To see plots of the fit data divided by the fit function with the best-fit parameters use
fit.show_plots()

Plotting requires module matplotlib.
Parameters

* data - Input data. One of data or pdata must be specified but not both. pdata
is obtained from data by collecting the output from m.builddata (data) for each
model m and storing it in a dictionary with key m.datatag.

e pdata - Input data that has been processed by the models using
MultiFitter.process_data() or MultiFitter.process_dataset ().
One of data or pdata must be specified but not both.

* prior — Bayesian prior for fit parameters used by the models.

* p0 — Dictionary , indexed by parameter labels, containing initial values for the parame-
ters in the fit. Setting pO=None implies that initial values are extracted from the prior.
Setting p0="filename" causes the fitter to look in the file with name "filename"
for initial values and to write out best-fit parameter values after the fit (for the next call to
self.lsqgfit ()).

* kargs — Arguments that override parameters specified when the MultiFitter was
created. Can also include additional arguments to be passed through to the 1 sgfit fitter.

static process_data (data, models)
Convert data to processed data using models.

Data from dictionary dat a is processed by each model in list mode1s, and the results collected into a new
dictionary pdata forusein MultiFitter.lsgfit () and MultiFitter.chained_lsqgft ().

static process_dataset (dataset, models, **kargs)
Convert dataset to processed data using mode1s.

:class; ‘gvar.dataset.Dataset’ object dataset is processed by each model in list models, and
the results collected into a new dictionary pdata for use in MultiFitter.lsqgfit ()
and MultiFitter.chained_lsqgft (). Assumes that the models have defined method
MultiFitterModel.builddataset ().

static show_plots (firdata, fitval, x=None, save=False)
Show plots of fitdatal[k]/fitval[k] for each key k.

Assumes matplotlib is installed (to make the plots). Plots are shown for one correlator at a time. Press
key n to see the next correlator; press key p to see the previous one; press key g to quit the plot and return
control to the calling program; press a digit to go directly to one of the first ten plots. Zoom, pan and save
using the window controls.

Copies of the plots that are viewed can be saved by setting parameter save=prefix where
prefix is a string used to create file names: the file name for the plot corresponding to key k is
prefix.format (k). It is important that the filename end with a suffix indicating the type of plot
file desired: e.g., prefix="plot—-{}.pdf’.

Isgfit.MultiFitter models are derived from the following class. Methods buildprior, builddata,
fitfcn, and builddataset are not implemented in this base class. They need to be overwritten by the derived
class (except for builddataset which is optional).
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class 1sgfit .MultiFitterModel (datatag, ncg=1)
Base class for MultiFitter models.

Derived classes must define methods fitfcn, buildprior, and builddata, all of which are described
below. In addition they have attributes:

datatag
Isgfit.MultiFitter builds fit data for the correlator by extracting the data labelled by datatag
(eg, a string) from an input data set (eg, a dictionary). This label is stored in the MultiFitterModel
and must be passed to its constructor. It must be a hashable quantity, like a string or number or tuple of
strings and numbers.

ncg
When ncg>1, fit data and functions are coarse-grained by breaking them up into bins of of ncg values
and replacing each bin by its average. This can increase the fitting speed, because their is less data, without
much loss of precision if the data elements within a bin are highly correlated.
Parameters
* datatag — Label used to identify model’s data.
* ncg (int) — Size of bins for coarse graining (default is ncg=1).
buildprior (prior, mopt=None, extend=False)
Extract fit prior from prior.

Returns a dictionary containing the part of dictionary prior that is relevant to this model’s fit. The code
could be as simple as collecting the appropriate pieces: e.g.,

def buildprior(self, prior, mopt=None, extend=False):
mprior = gv.BufferDict ()

model_keys = [...]
for k in model_keys:
mprior[k] = prior[k]

return mprior

where model_keys is a list of keys corresponding to the model’s parameters. Supporting the extend
option requires a slight modification: e.g.,

def buildprior(self, prior, mopt=None, extend=False):
mprior = gv.BufferDict ()

model_keys = [...]
for k in self.get_prior_keys(prior, model_keys, extend):
mprior[k] = prior[k]

return mprior

Marginalization involves omitting some of the fit parameters from the model’s prior. mopt =None implies
no marginalization. Otherwise mopt will typically contain information about what and how much to
marginalize.

Parameters
* prior — Dictionary containing a priori estimates of all fit parameters.

* mopt (object) — Marginalization options. Ignore if None. Otherwise marginalize fit
parameters as specified by mopt. mopt can be any type of Python object; it is used
only in buildprior and is passed through to it unchanged.

* extend (bool) — If True supports log-normal and other non-Gaussian priors. See
1sqgfit documentation for details.
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builddata (data)
Extract fit data corresponding to this model from data set data.

The fit data is returned in a 1-dimensional array; the fitfcn must return arrays of the same length.

Parameters data — Data set containing the fit data for all models. This is typically a dictionary,
whose keys are the datatags of the models.

fitfen (p)
Compute fit function fit for parameters p.

Results are returned in a 1-dimensional array the same length as (and corresponding to) the fit data returned
by self.builddata (data).

If marginalization is supported, £it fcn must work with or without the marginalized parameters.
Parameters p — Dictionary of parameter values.

builddataset (dataset)
Extract fit dataset from gvar.dataset .Dataset dataset.

The code

import gvar as gv

data = gv.dataset.avg_data (m.builddataset (dataset))

that builds data for model m should be functionally equivalent to

import gvar as gv

data = m.builddata(gv.dataset.avg_data (dataset))

This method is optional. It is used only by MultiFitter.process_dataset ().

Parameters dataset — gvar.dataset.Dataset dataset containing the fit data for all
models. This is typically a dictionary, whose keys are the datatags of the models.

static get_prior_keys (prior, keys, extend=False)
Return list of keys in dictionary prior for keys in list keys.

List keys is returned if extend=False. Otherwise the keys returned may differ from those in keys.
For example, a prior that has a key 1og (x) would return that key in place of a key x in list keys. This
support non-Gaussian priors as discussed in the 1 sgf it documentation.

static prior_key ()
Find base key in prior corresponding to k.

lsqgfit.MultiFitter was inspired by an unconventional

6.6 Requirements

1sqgfit relies heavily on the gvar, and numpy modules. Also the fitting and minimization routines are from the
Gnu Scientific Library (GSL) and/or the Python scipy module.
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CHAPTER
SEVEN

GSL ROUTINES

7.1 Fitters

1sqgfit uses routines from the GSL C-library provided it is installed; GSL is the open-source Gnu Scientific Library.
There are two fitters that are available for use by 1sgfit.nonlinear fit.

class 1sgfit.gsl_multifit
GSL fitter for nonlinear least-squares multidimensional fits.

gsl_multifit is a function-class whose constructor does a least-squares fit by minimizing sum_i
f_1i(x)*«2 as a function of vector x.

gsl_multifit is a wrapper for the multifit GSL routine.
Parameters
* x0 (array of floats) — Starting point for minimization.
* n (positive int) — Length of vector returned by the fit function £ (x) .

» £ (array-valued function) — sum_1i £_1i (x) x*2 is minimized by varying parameters x.
The parameters are a 1-d numpy array of either numbers or gvar .GvVars.

* tol (float or tuple) — Assigning tol=(xtol, gtol, ftol) causes the fit to stop
searching for a minimum when any of

xtol >=relative change in parameters between iterations
gtol >=relative size of gradient of chi**2
ftol >=relative change in chix*2 between iterations

is statisfied. See the GSL documentation for detailed definitions of the stopping conditions.
Typically one sets xtol=1/10++d where d is the number of digits of precision desired
in the result, while gtol<<1 and ftol<<1. Setting tol=eps where eps is a number
is equivalent to setting tol= (eps, le-10, 1e-10). Setting tol=(epsl,eps2) is
equivlent to setting tol=(epsl, eps2,1le-10). Defaultis tol=1e-5. (Note: ftol
option is disabled in some versions of the GSL library.)

* maxit (int) — Maximum number of iterations in search for minimum; default is 1000.

* alg (str) — GSL algorithm to use for minimization. The following options are supported
(see GSL documentation for more information):

"1lm’ Levenberg-Marquardt algorithm (default).

"lmaccel’ Levenberg-Marquardt algorithm with geodesic acceleration. Can be
faster than ’ 1m’ but less stable. Stability is controlled by damping parameter
avmax; setting it to zero turns acceleration off.
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" subspace2D’ 2D generalization of dogleg algorithm. This can be substantially
faster than the two / 1m’ algorithms.

"dogleg’ dogleg algorithm.
"ddogleg’ double dogleg algorithm.

* scaler (str) — Scaling method used in minimization. The following options are supported
(see GSL documentation for more information):

"more’ More rescaling, which makes the problem scale invariant. Default.

" levenberg’ Levenberg rescaling, which is not scale invariant but may be more
efficient in certain problems.

"marquardt’ Marquardt rescaling. Probably not as good as the other two options.

* solver (str) — Method use to solve the linear equations for the solution from a given step.
The following options are supported (see GSL documentation for more information):

"gr’ QR decomposition of the Jacobian. Default.

"cholesky’ Cholesky decomposition of the Jacobian. Can be substantially faster
than ’ gr’ but not as reliable for singular Jacobians.

"svd’ SVD decomposition. The most robust for singular situations, but also the
slowest.

» factor_up (float) — Factor by which search region is increased when a search step is
accepted. Values that are too large destablize the search; values that are too small slow
down the search. Default is factor_up=3.

* factor_down (float) — Factor by which search region is decreased when a search step is
rejected. Values that are too large destablize the search; values that are too small slow down
the search. Default is factor_up=2.

* avmax (float) — Damping parameter for geodesic acceleration. It is the maximum allowed
value for the acceleration divided by the velocity. Smaller values imply less acceleration.
Default is avmax=0.75.

lsgfit.gsl_multifit objects have the following attributes.

X

array

Location of the most recently computed (best) fit point.
cov

array

Covariance matrix at the minimum point.
description

str

Short description of internal fitter settings.
£

array

Fit function value f (x) at the minimum in the most recent fit.
J

array

Gradient J_ij = df_1i/dx[j] for most recent fit.
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nit

int

Number of function evaluations used in last fit to find the minimum.

stopping_criterion

int

Criterion used to stop fit:

error

0.didn’t converge

l.xtol >=relative change in parameters between iterations

2.gtol >=relative size of gradient of chix«2

3.ftol >=relative change in chi* 2 between iterations

str or None

None if fit successful; an error message otherwise.

class 1sgfit.gsl_vl_multifit
Fitter for nonlinear least-squares multidimensional fits. (GSL v1.)

gsl_vl_ multifit is a function-class whose constructor does a least-squares fit by minimizing sum_1i
f 1 (x) %2 as a function of vector x.

gsl_vl_multifit is a wrapper for the (older, vl) multifit GSL routine (see nlin.h). This package
was used in earlier versions of 1sgfit (<9.0).

Parameters

x0 (array of floats) — Starting point for minimization.
n (positive int) — Length of vector returned by the fit function £ (x) .

£ (array-valued function) — sum_1i f_1 (x) %2 is minimized by varying parameters x.
The parameters are a 1-d numpy array of either numbers or gvar.GvVars.

tol (float or tuple) — Assigning tol=(xtol, gtol, ftol) causes the fit to stop
searching for a minimum when any of

xtol >=relative change in parameters between iterations
gtol >=relative size of gradient of chi 2
ftol >=relative change in chix %2 between iterations

is statisfied. See the GSL documentation for detailed definitions of the stopping conditions.
Typically one sets xtol=1/10++d where d is the number of digits of precision desired
in the result, while gtol<<1 and ftol<<1. Setting tol=eps where eps is a number
is equivalent to setting tol= (eps, le-10, 1e-10). Setting tol=(epsl,eps2) is
equivlent to setting tol=(epsl,eps2,1le-10). Default is tol=1e-5. (Note: the
ftol option is disabled in some versions of the GSL library.)

maxit (int) — Maximum number of iterations in search for minimum; default is 1000.

alg (str) — GSL algorithm to use for minimization. Two options are currently available:
"lmsder", the scaled LMDER algorithm (default); and " 1mder", the unscaled LMDER
algorithm. With version 2 of the GSL library, another option is "1mniel", which can be
useful when there is much more data than parameters.

7.1. Fitters
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* analyzer — Optional function of x, [...f_i(x)...1, [[..df_ij(x

). .11

which is called after each iteration. This can be used to inspect intermediate steps in the

minimization, if needed.

lsgfit.gsl_vI1_multifit objects have the following attributes.

X
array
Location of the most recently computed (best) fit point.
cov
array
Covariance matrix at the minimum point.
£
callable
Fit function value £ (x) at the minimum in the most recent fit.
J
array
Gradient J_ij = df_i/dx[7j] for most recent fit.
nit

int
Number of function evaluations used in last fit to find the minimum.

stopping_criterion
int

Criterion used to stop fit:
0.didn’t converge
l.xtol >=relative change in parameters between iterations
2.gtol >=relative size of gradient of chix«2
3.ftol >=relative change in chi* 2 between iterations

error
str or None

None if fit successful; an error message otherwise.

7.2 Minimizer

The 1sgfit.empbayes_fit () uses a minimizer from the GSL library to minimize 1o0gGBF.

class 1sqgfit.gsl_multiminex (x0, f, tol=le-4, maxit=1000, step=1, alg="nmsimplex2’,

lyzer=None)
Minimizer for multidimensional functions.

ana-

multiminex is a function-class whose constructor minimizes a multidimensional function £ (x) by varying

vector x. This routine does not use user-supplied information about the gradient of £ (x) .
multiminex is a wrapper for the multimin GSL routine.

Parameters

112
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* x0 (array) — Starting point for minimization search.
* £ (callable) — Function £ (x) to be minimized by varying vector x.

* tol (float) — Minimization stops when x has converged to with tolerance tol; default is
le—-4.

e maxit (int) — Maximum number of iterations in search for minimum; default is 1000.
* step (float) — Initial step size to use in varying components of x; default is 1.

* alg (str) — GSL algorithm to use for minimization. Three options are currently available:
"nmsimplex", Nelder Mead Simplex algorithm; "nmsimplex2", an improved version
of "nmsimplex" (default); and "nmsimplex2rand", a version of "nmsimplex2"
with random shifts in the start position.

* analyzer — Optional function of x, which is called after each iteration. This can be used
to inspect intermediate steps in the minimization, if needed.

lsqgfit.gsl_multiminex objects have the following attributes.

X
array
Location of the minimum.
f
float
Value of function £ (x) at the minimum.
nit
int
Number of iterations required to find the minimum.
error

None or str

None if minimization successful; an error message otherwise.
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CHAPTER
EIGHT

scIpY ROUTINES

8.1 Fitter

Isqgfit uses routines from the open-source scipy Python module provided it is installed. These routines
are used in place of GSL routines if the latter are not installed. There is one fitter available for use by
lsgfit.nonlinear fit.

class 1sgfit.scipy_least_squares (x0, n, f, tol=(1e-08, 1e-08, 1e-08), maxit=1000, **extra_args)
scipy fitter for nonlinear least-squares multidimensional fits.

scipy_leastq is a function-class whose constructor does a least-squares fit by minimizing sum_1
f_1i (x) x*2 as a function of vector x.

scipy_leastsqgis a wrapper for the scipy.optimize.leastsq.
Parameters
* x0 (array of floats) — Starting point for minimization.
* n (positive int) — Length of vector returned by the fit function £ (x) .

* £ (array-valued function) — sum_1i f_1i (x) x*2 is minimized by varying parameters x.
The parameters are a 1-d numpy array of either numbers or gvar .GvVars.

* tol (float or tuple) — Assigning tol=(xtol, gtol, ftol) causes the fit to stop
searching for a minimum when any of

xtol >=relative change in parameters between iterations
gtol >=relative size of gradient of chi 2
ftol >=relative change in chix*2 between iterations

is statisfied. See the scipy.optimize.least_squares documentation detailed def-
initions of the stopping conditions. Typically one sets xtol=1/10++d where d is the
number of digits of precision desired in the result, while gtol<<1 and ftol<<1. Setting
tol=eps where eps is a number is equivalent to setting tol= (eps, le-10,1e-10).
Setting tol=(epsl, eps2) is equivlent to setting tol=(epsl,eps2,1e—-10). De-
faultis tol=1e-5.

* method (str or None) — Minimization algorithm. Options include:

"trf’ Trusted Region Reflective algorithm (default). Best choice with bounded pa-
rameters.

"dogbox’ dogleg algorithm adapted for bounded parameters.

"1lm’ Levenberg-Marquardt algorithm as implemented in MINPACK. Best for
smaller problems. Does not work with bounded parameters (bounds are ignored).
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Setting met hod=None implies the default " trf”’.

e maxit (int) — Maximum number of function evaluations in search for minimum; default is
1000.

Other arguments include: x_jac, loss, tr_solver, f_scale, tr_options, bounds. See the docu-
mentation for scipy.optimize.least_squares for information about these and other options.

lsgfit.scipy_least_squares objects have the following attributes.

X

array

Location of the most recently computed (best) fit point.
cov

array

Covariance matrix at the minimum point.
description

str

Short description of internal fitter settings.
£

array

Fit function value f (x) at the minimum in the most recent fit.
J

array

Gradient J_ij = df_1i/dx[7j] for most recent fit.
nit

int
Number of function evaluations used in last fit to find the minimum.

stopping_criterion
int

Criterion used to stop fit:
0.didn’t converge
l.xtol >=relative change in parameters between iterations
2.gtol >=relative size of gradient of chix«2
3.ftol >=relative change in chix 2 between iterations

error
str or None

None if fit successful; an error message otherwise.

results
dict

Results returned by scipy.optimize.least_squares.
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8.2 Minimizer

The 1sgfit.empbayes_fit () uses a minimizer from the scipy module to minimize 10gGBF.

class 1sgfit.scipy multiminex (x0, f, tol=le-4, maxit=1000, step=1, alg=’nmsimplex2’, ana-
lyzer=None)
scipy minimizer for multidimensional functions.

scipy_multiminex is a function-class whose constructor minimizes a multidimensional function £ (x) by
varying vector x. This routine does not use user-supplied information about the gradient of £ (x) .

scipy_multiminex is a wrapper for the minimize scipy function. It gives access to only part of that
function.

Parameters
* x0 (array of floats) — Starting point for minimization search.
* £ — Function f (x) to be minimized by varying vector x.

* tol (float) — Minimization stops when x has converged to with tolerance to1; default is
le—4.

e maxit (positive int) — Maximum number of iterations in search for minimum; default is
1000.

* analyzer (function) — Optional function of the current x. This can be used to inspect
intermediate steps in the minimization, if needed.

lsgfit.scipy_multiminex objects have the following attributes.

X
array
Location of the minimum.
£
float
Value of function £ (x) at the minimum.
nit
int
Number of iterations required to find the minimum.
error

Noe or str

None if fit successful; an error message otherwise.
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INDICES AND TABLES

* genindex
¢ modindex

¢ search
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PYTHON MODULE INDEX

lsqgfit, 85
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nit (scipy_least_squares attribute), 116
nit (scipy_multiminex attribute), 117
nonlinear_fit (class in Isqfit), 86

P

p (Isqfit.nonlinear_fit attribute), 89

pO (Isqfit.nonlinear_fit attribute), 89

palt (Isqfit.nonlinear_fit attribute), 89

pmean (Isqfit.nonlinear_fit attribute), 89
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process_dataset() (Isqfit. MultiFitter static method), 106
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R

results (scipy_least_squares attribute), 116

S
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