Stan Math Library
2.10.0
reverse mode automatic differentiation
Main Page
Modules
Namespaces
Classes
Files
File List
File Members
stan
math
fwd
scal
fun
log_rising_factorial.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_FWD_SCAL_FUN_LOG_RISING_FACTORIAL_HPP
2
#define STAN_MATH_FWD_SCAL_FUN_LOG_RISING_FACTORIAL_HPP
3
4
#include <
stan/math/fwd/core.hpp
>
5
6
#include <
stan/math/prim/scal/fun/log_rising_factorial.hpp
>
7
#include <boost/math/special_functions/digamma.hpp>
8
9
namespace
stan
{
10
11
namespace
math {
12
13
template
<
typename
T>
14
inline
15
fvar<T>
16
log_rising_factorial
(
const
fvar<T>
& x,
const
fvar<T>
& n) {
17
using
stan::math::log_rising_factorial
;
18
using
boost::math::digamma
;
19
20
return
fvar<T>
(
log_rising_factorial
(x.
val_
, n.
val_
),
21
(
digamma
(x.
val_
+ n.
val_
) * (x.
d_
+ n.
d_
)
22
-
digamma
(x.
val_
) * x.
d_
));
23
}
24
25
template
<
typename
T>
26
inline
27
fvar<T>
28
log_rising_factorial
(
const
fvar<T>
& x,
const
double
n) {
29
using
stan::math::log_rising_factorial
;
30
using
boost::math::digamma
;
31
32
return
fvar<T>
(
log_rising_factorial
(x.
val_
, n),
33
(
digamma
(x.
val_
+ n) -
digamma
(x.
val_
)) * x.
d_
);
34
}
35
36
template
<
typename
T>
37
inline
38
fvar<T>
39
log_rising_factorial
(
const
double
x,
const
fvar<T>
& n) {
40
using
stan::math::log_rising_factorial
;
41
using
boost::math::digamma
;
42
43
return
fvar<T>
(
log_rising_factorial
(x, n.
val_
),
44
(
digamma
(x + n.
val_
) * n.
d_
));
45
}
46
}
47
}
48
#endif
core.hpp
stan::math::fvar::d_
T d_
Definition:
fvar.hpp:15
stan
Definition:
log_sum_exp.hpp:8
stan::math::fvar::val_
T val_
Definition:
fvar.hpp:14
log_rising_factorial.hpp
stan::math::log_rising_factorial
fvar< T > log_rising_factorial(const fvar< T > &x, const fvar< T > &n)
Definition:
log_rising_factorial.hpp:16
stan::math::fvar
Definition:
fvar.hpp:13
stan::math::digamma
fvar< T > digamma(const fvar< T > &x)
Definition:
digamma.hpp:16
[
Stan Home Page
]
© 2011–2016, Stan Development Team.