Module deepsport_utilities.calib

Expand source code
import numpy as np
from shapely.geometry import box, Polygon

from calib3d import Calib as Calib3d
from calib3d import Point3D, Point2D, compute_rotation_matrix # pylint: disable=unused-import
from calib3d.draw import visible_segment

class Calib(Calib3d):
    def visible_edge(self, edge):
        return visible_segment(self, edge[0], edge[1])

    def get_region_visible_corners_2d(self, points_3d: Point3D, approximate_curve_by_N_segments=10):
        """Return a list of corner points defining the 2D boundaries of a specific 3D region on the image space

        Args:
            points_3d ([type]): [description]
            approximate_curve_by_N_segments (int, optional): [description]. Defaults to 10.

        Returns:
            List[Tuple(int, int)]: a list of 2D coordinates of the corner points of a specific 3D region on the image space
        """

        # Construct the polygon defining the boundaries of the 3D region and projects it, considering the lens distorsion (3D straight lines might be curves on the image)
        region_3d_coords = points_3d.close().linspace(approximate_curve_by_N_segments+1)
        region_2d_coords = self.project_3D_to_2D(region_3d_coords)
        any_coord_outside_img_boundaries = np.any(region_2d_coords < 0) or \
                                           np.any(region_2d_coords.x >= self.width) or \
                                           np.any(region_2d_coords.y >= self.height)
        if not any_coord_outside_img_boundaries:
            return region_2d_coords

        # Restrict the 2D region polygon to the image space boundaries
        img_corners = box(minx=0, miny=0, maxx=self.width, maxy=self.height)
        region_corners = Polygon([r.to_int_tuple() for r in region_2d_coords])
        region_polygon_restricted_to_img_space = region_corners.intersection(img_corners)

        if region_polygon_restricted_to_img_space:
            return Point2D(np.array(region_polygon_restricted_to_img_space.exterior.coords).T)
        else:
            return Point2D(np.empty(shape=(2, 0), dtype=float))

def crop_around_center(image, width, height):
    """ Given a NumPy / OpenCV 2 image, crops it to the given width and height,
        around it's centre point
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))

    if width > image_size[0]:
        width = image_size[0]

    if height > image_size[1]:
        height = image_size[1]

    x1 = int(image_center[0] - width * 0.5)
    x2 = int(image_center[0] + width * 0.5)
    y1 = int(image_center[1] - height * 0.5)
    y2 = int(image_center[1] + height * 0.5)

    return image[y1:y2, x1:x2]


class PanoramicStitcher():
    def __init__(self, calibs, output_shape, f=1000, target=None):
        w, h = output_shape
        C = calibs[0].C
        R = compute_rotation_matrix(target, C)
        T = -R@C
        K = np.array([[f, 0, w/2],
                      [0, f, h/2],
                      [0, 0,  1 ]])
        self.camera = Calib(K=K, T=T, R=R, width=w, height=h)
        self.calibs = calibs

        self.width, self.height = w, h = self.camera.width, self.camera.height
        points2D = Point2D(np.stack(np.meshgrid(np.arange(w),np.arange(h))).reshape((2,w*h)))
        points3D = self.camera.project_2D_to_3D(points2D, Z=0)

        def lookuptable(calib, points2D, points3D):
            output_indices = np.where(calib.projects_in(points3D))[0] # indices of output pixels that project to calib
            input_indices = calib.project_3D_to_2D(points3D[:,output_indices]).astype(np.int32) # output pixels that project to calib
            return input_indices, output_indices
        self.lookuptables = [lookuptable(calib, points2D, points3D) for calib in self.calibs]

    def __call__(self, images):
        outputs = np.zeros((len(images), self.height*self.width, 3), dtype=np.uint8)
        for output, image, (input_indices, output_indices) in zip(outputs, images, self.lookuptables):
            output[output_indices] = image[input_indices.y, input_indices.x]
        return np.max(outputs.reshape((-1, self.height, self.width, 3)), axis=0)

Functions

def crop_around_center(image, width, height)

Given a NumPy / OpenCV 2 image, crops it to the given width and height, around it's centre point

Expand source code
def crop_around_center(image, width, height):
    """ Given a NumPy / OpenCV 2 image, crops it to the given width and height,
        around it's centre point
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))

    if width > image_size[0]:
        width = image_size[0]

    if height > image_size[1]:
        height = image_size[1]

    x1 = int(image_center[0] - width * 0.5)
    x2 = int(image_center[0] + width * 0.5)
    y1 = int(image_center[1] - height * 0.5)
    y2 = int(image_center[1] + height * 0.5)

    return image[y1:y2, x1:x2]

Classes

class Calib (*, width: int, height: int, T: numpy.ndarray, R: numpy.ndarray, K: numpy.ndarray, kc=None, **_)

Represents a calibrated camera.

Args

width : int
image width
height : int
image height
T : np.ndarray
translation vector
R : np.ndarray
rotation matrix
K : np.ndarray
camera matrix holding intrinsic parameters
kc : np.ndarray, optional
lens distortion coefficients. Defaults to None.
Expand source code
class Calib(Calib3d):
    def visible_edge(self, edge):
        return visible_segment(self, edge[0], edge[1])

    def get_region_visible_corners_2d(self, points_3d: Point3D, approximate_curve_by_N_segments=10):
        """Return a list of corner points defining the 2D boundaries of a specific 3D region on the image space

        Args:
            points_3d ([type]): [description]
            approximate_curve_by_N_segments (int, optional): [description]. Defaults to 10.

        Returns:
            List[Tuple(int, int)]: a list of 2D coordinates of the corner points of a specific 3D region on the image space
        """

        # Construct the polygon defining the boundaries of the 3D region and projects it, considering the lens distorsion (3D straight lines might be curves on the image)
        region_3d_coords = points_3d.close().linspace(approximate_curve_by_N_segments+1)
        region_2d_coords = self.project_3D_to_2D(region_3d_coords)
        any_coord_outside_img_boundaries = np.any(region_2d_coords < 0) or \
                                           np.any(region_2d_coords.x >= self.width) or \
                                           np.any(region_2d_coords.y >= self.height)
        if not any_coord_outside_img_boundaries:
            return region_2d_coords

        # Restrict the 2D region polygon to the image space boundaries
        img_corners = box(minx=0, miny=0, maxx=self.width, maxy=self.height)
        region_corners = Polygon([r.to_int_tuple() for r in region_2d_coords])
        region_polygon_restricted_to_img_space = region_corners.intersection(img_corners)

        if region_polygon_restricted_to_img_space:
            return Point2D(np.array(region_polygon_restricted_to_img_space.exterior.coords).T)
        else:
            return Point2D(np.empty(shape=(2, 0), dtype=float))

Ancestors

  • calib3d.calib.Calib

Methods

def get_region_visible_corners_2d(self, points_3d: calib3d.points.Point3D, approximate_curve_by_N_segments=10)

Return a list of corner points defining the 2D boundaries of a specific 3D region on the image space

Args

points_3d : [type]
[description]
approximate_curve_by_N_segments : int, optional
[description]. Defaults to 10.

Returns

List[Tuple(int, int)]: a list of 2D coordinates of the corner points of a specific 3D region on the image space

Expand source code
def get_region_visible_corners_2d(self, points_3d: Point3D, approximate_curve_by_N_segments=10):
    """Return a list of corner points defining the 2D boundaries of a specific 3D region on the image space

    Args:
        points_3d ([type]): [description]
        approximate_curve_by_N_segments (int, optional): [description]. Defaults to 10.

    Returns:
        List[Tuple(int, int)]: a list of 2D coordinates of the corner points of a specific 3D region on the image space
    """

    # Construct the polygon defining the boundaries of the 3D region and projects it, considering the lens distorsion (3D straight lines might be curves on the image)
    region_3d_coords = points_3d.close().linspace(approximate_curve_by_N_segments+1)
    region_2d_coords = self.project_3D_to_2D(region_3d_coords)
    any_coord_outside_img_boundaries = np.any(region_2d_coords < 0) or \
                                       np.any(region_2d_coords.x >= self.width) or \
                                       np.any(region_2d_coords.y >= self.height)
    if not any_coord_outside_img_boundaries:
        return region_2d_coords

    # Restrict the 2D region polygon to the image space boundaries
    img_corners = box(minx=0, miny=0, maxx=self.width, maxy=self.height)
    region_corners = Polygon([r.to_int_tuple() for r in region_2d_coords])
    region_polygon_restricted_to_img_space = region_corners.intersection(img_corners)

    if region_polygon_restricted_to_img_space:
        return Point2D(np.array(region_polygon_restricted_to_img_space.exterior.coords).T)
    else:
        return Point2D(np.empty(shape=(2, 0), dtype=float))
def visible_edge(self, edge)
Expand source code
def visible_edge(self, edge):
    return visible_segment(self, edge[0], edge[1])
class PanoramicStitcher (calibs, output_shape, f=1000, target=None)
Expand source code
class PanoramicStitcher():
    def __init__(self, calibs, output_shape, f=1000, target=None):
        w, h = output_shape
        C = calibs[0].C
        R = compute_rotation_matrix(target, C)
        T = -R@C
        K = np.array([[f, 0, w/2],
                      [0, f, h/2],
                      [0, 0,  1 ]])
        self.camera = Calib(K=K, T=T, R=R, width=w, height=h)
        self.calibs = calibs

        self.width, self.height = w, h = self.camera.width, self.camera.height
        points2D = Point2D(np.stack(np.meshgrid(np.arange(w),np.arange(h))).reshape((2,w*h)))
        points3D = self.camera.project_2D_to_3D(points2D, Z=0)

        def lookuptable(calib, points2D, points3D):
            output_indices = np.where(calib.projects_in(points3D))[0] # indices of output pixels that project to calib
            input_indices = calib.project_3D_to_2D(points3D[:,output_indices]).astype(np.int32) # output pixels that project to calib
            return input_indices, output_indices
        self.lookuptables = [lookuptable(calib, points2D, points3D) for calib in self.calibs]

    def __call__(self, images):
        outputs = np.zeros((len(images), self.height*self.width, 3), dtype=np.uint8)
        for output, image, (input_indices, output_indices) in zip(outputs, images, self.lookuptables):
            output[output_indices] = image[input_indices.y, input_indices.x]
        return np.max(outputs.reshape((-1, self.height, self.width, 3)), axis=0)