
Computer Vision Lab Lab Manual – 04

1 | P a g e

National University of Computer & Emerging Sciences, Karachi

Artificial Intelligence-School of Computing

Fall 2024, Lab Manual - 03

Course Code (AI4002) Course: Computer Vision Lab

Instructor(s): Sohail Ahmed

Objectives:

1. Understand the concept of Linear & non-linear filtering and its applications in image processing.

2. Explore 1-D and 2-D sampling techniques and their significance in image representation.

3. Learn about Fourier transformations in 2-D and their role in image analysis.

1. Linear Filtering

Linear filtering is a fundamental concept in digital image processing that involves modifying an image by applying

a linear operation called a filter or kernel. These filters are used to enhance or suppress certain features in an image,

such as noise reduction, edge detection, and image sharpening. Linear filtering works by convolving the image with

the filter kernel, which involves sliding the kernel over the image and computing a weighted sum of pixel values at

each position.

Some key aspects of linear filtering in digital image processing:

Filter Kernel: A filter kernel is a small matrix, usually square, that defines the weights to be applied to the pixels

in the image during convolution. The size of the kernel determines the extent of the neighborhood around each pixel

that is considered during the filtering process. Common filter sizes include 3x3 and 5x5.

Convolution Operation: To apply a filter to an image, you slide the kernel over the entire image. At each position,

you perform a point-wise multiplication between the kernel and the corresponding pixel values in the image and

then sum up the results. This sum becomes the new value of the pixel at the center of the kernel.

Filter Types

• Smoothing Filters: These filters are used to reduce noise and blur an image. Common smoothing filters

include the Gaussian filter and the mean filter.

• Edge Detection Filters: These filters highlight edges and boundaries in an image. Examples include the Sobel

and Prewitt filters.

• Sharpening Filters: Sharpening filters enhance edges and fine details in an image. The Laplacian filter is an

example.

• Custom Filters: You can create custom filters with specific weightings to achieve desired image processing

effects.

• Border Handling: Handling image borders during convolution is important. There are different methods,

such as zero-padding (setting border pixels to zero), mirror padding, or using only the valid part of the

convolution result.

Computer Vision Lab Lab Manual – 04

2 | P a g e

• Filtering in Frequency Domain: Convolution in the spatial domain can be computationally expensive,

especially for large images and kernels. In some cases, it is more efficient to perform filtering in the frequency

domain using techniques like the Fourier Transform.

• Filtering Libraries: Various programming languages and libraries provide functions for applying linear

filters to images. Popular choices include OpenCV (Python), MATLAB, and image processing libraries in

languages like C++ and Java.

Applications: Linear filtering is widely used in image enhancement, computer vision, medical image processing,

and various other fields to extract valuable information from images or prepare them for further analysis.

2. Smoothing Filters

Smoothing linear filters in digital image processing are used to reduce noise, blur an image, and eliminate fine

details. These filters work by averaging or weighting the pixel values in the neighborhood of each pixel to create a

smoother and less noisy image.

1. Mean Filter (Box Filter):

Working Mechanism: The mean filter replaces each pixel's value with the average of the pixel values in its

neighborhood. It uses a square kernel (usually 3x3 or 5x5) and computes the average of the pixel values

covered by the kernel.

2. Gaussian Filter:

Working Mechanism: The Gaussian filter applies Gaussian smoothing to the image. It uses a Gaussian

kernel, which emphasizes the central pixel and diminishes the influence of distant pixels. This creates a

smoothing effect while preserving edges.

3. Working Mechanism for Different Edge Detection Filters

1. Sobel Filter:

Working Mechanism: The Sobel filter calculates the gradient of an image to detect edges. It uses two 3x3

convolution kernels, one for detecting vertical edges and the other for horizontal edges. The gradient magnitude

is computed as the square root of the sum of squares of the two gradients.

2. Canny Edge Detector:

Working Mechanism: The Canny edge detector involves several steps, including Gaussian smoothing,

gradient calculation, non-maximum suppression, and edge tracking by hysteresis. It identifies edges as regions

where the gradient magnitude is above a certain threshold and connects them to form continuous edges.

3. Laplacian of Gaussian (LoG):

Working Mechanism: The LoG filter first applies Gaussian smoothing to the image to reduce noise and then

calculates the Laplacian (second derivative) of the smoothed image to find areas of rapid intensity change,

which correspond to edges.

Computer Vision Lab Lab Manual – 04

3 | P a g e

Smoothing Filters Edge Detection Filters

import cv2

Load an image

image = cv2.imread('image.jpg')

Apply a 5x5 Mean (Box) Filter

mean_filtered_image = cv2.blur(image, (5, 5))

Apply Gaussian Smoothing

sigma = 1.5 # Adjust the sigma parameter for

smoothing strength

gaussian_filtered_image =

cv2.GaussianBlur(image, (0, 0), sigma)

Display the original and filtered images

cv2.imshow('Original Image', image)

cv2.imshow('Mean Filtered Image',

mean_filtered_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

import cv2

Load an image

image = cv2.imread('image.jpg',

cv2.IMREAD_GRAYSCALE) # Convert to

grayscale for edge detection

Apply Sobel Filter to Detect Edges

sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0,

ksize=5)

sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1,

ksize=5)

Calculate the magnitude of the gradient

edge_image = cv2.magnitude(sobel_x, sobel_y)

Apply Canny Edge Detector

canny_edge_image = cv2.Canny(image, 100, 200) #

Adjust threshold values as needed

Apply Gaussian Smoothing

sigma = 1.5 # Adjust the sigma parameter for

smoothing strength

smoothed_image = cv2.GaussianBlur(image, (0, 0),

sigma)

Apply Laplacian Filter for Edge Detection

laplacian = cv2.Laplacian(smoothed_image,

cv2.CV_64F)

Display the original and edge-detected images

cv2.imshow('Original Image', image)

cv2.imshow('Edge Image (Sobel)',

edge_image.astype(np.uint8))

cv2.waitKey(0)

cv2.destroyAllWindows()

4. Sharpening Liner Filters and their Working Mechanism

Sharpening linear filters in digital image processing are used to enhance the fine details and edges in an image,

making them appear more pronounced and crisp. These filters work by emphasizing the high-frequency components

(such as edges) in the image while reducing the low-frequency components (such as smooth areas).

Computer Vision Lab Lab Manual – 04

4 | P a g e

1. Laplacian Filter:

Working Mechanism: The Laplacian filter enhances edges by highlighting areas where there is a rapid

change in intensity values. It calculates the second derivative of the image, emphasizing regions with abrupt

intensity transitions.

2. Unsharp Masking (High-pass Filter):

Working Mechanism: Unsharp masking enhances details by subtracting a blurred version of the image from

the original image. It accentuates the differences between neighboring pixels, effectively increasing contrast.

The unsharp masking process involves convolving the image with a smoothing (blurring) kernel and then

subtracting the smoothed image from the original image.

3. High-Boost Filtering:

Working Mechanism: High-boost filtering is an extension of unsharp masking. It applies a weighted version

of the Laplacian filter to the original image. The weight factor controls the degree of sharpening.

High-Boost = A * Original - Blurred

Here, "A" is a user-defined constant that determines the strength of sharpening.

4. Gradient-based Filters (Sobel, Prewitt, Scharr):

Working Mechanism: Gradient-based filters, like Sobel, Prewitt, and Scharr, can also be used for sharpening.

By applying these filters, you calculate the gradient of the image, which represents the rate of change of

intensity. Edges are enhanced because they have high gradients.

import cv2

import numpy as np

Load an image

image = cv2.imread('image.jpg')

Laplacian Filter for Sharpening

laplacian = cv2.Laplacian(image, cv2.CV_64F)

sharpened_image_laplacian = cv2.add(image,

laplacian)

sharpened_image_laplacian =

np.clip(sharpened_image_laplacian, 0,

255).astype(np.uint8)

Unsharp Masking (High-pass Filter) for Sharpening

blurred_image = cv2.GaussianBlur(image, (5, 5), 0)

sharpened_image_unsharp = cv2.addWeighted(image,

2, blurred_image, -1, 0)

High-Boost Filtering for Sharpening

A = 2 # Adjust this value for the desired sharpening

strength

The Laplacian filter enhances edges by

calculating the Laplacian of the image.

Unsharp masking subtracts a blurred version of

the image from the original to enhance details.

High-boost filtering allows you to adjust the

sharpening strength using the "A" parameter.

You can adjust the parameters and experiment

with different values of "A" to achieve the desired

sharpening effect.

Computer Vision Lab Lab Manual – 04

5 | P a g e

sharpened_image_high_boost =

cv2.addWeighted(image, A + 1, blurred_image, -A, 0)

Display the original and sharpened images

cv2.imshow('Original Image', image)

cv2.imshow('Laplacian Sharpened Image',

sharpened_image_laplacian)

cv2.imshow('Unsharp Masking Sharpened Image',

sharpened_image_unsharp)

cv2.imshow('High-Boost Sharpened Image',

sharpened_image_high_boost)

cv2.waitKey(0)

cv2.destroyAllWindows()

5. Border Handling Linear filtering

When applying linear filters to images in Python using libraries like OpenCV, you may need to handle the borders

of the image. The border handling methods determine how to handle pixels near the image edges where the filter

kernel extends beyond the image boundaries.

import cv2

import numpy as np

Load an image

image = cv2.imread('image.jpg')

Define a simple 3x3 kernel

kernel = np.array([[0, 1, 0],

 [1, 5, 1],

 [0, 1, 0]], dtype=np.float32) # Example

kernel, you can define your own

Normalize the kernel to ensure the sum of its elements

is 1

kernel /= kernel.sum()

Linear filtering with various border handling methods

filtered_image_replicate = cv2.filter2D(image, -1,

kernel, borderType=cv2.BORDER_REPLICATE)

filtered_image_constant = cv2.filter2D(image, -1,

kernel, borderType=cv2.BORDER_CONSTANT,

borderValue=(0, 0, 0))

filtered_image_wrap = cv2.filter2D(image, -1, kernel,

borderType=cv2.BORDER_WRAP)

filtered_image_reflect = cv2.filter2D(image, -1, kernel,

borderType=cv2.BORDER_REFLECT)

BORDER_REPLICATE: It replicates the border

pixels to extend the image. This method is useful when

you want to maintain the border pixel values.

BORDER_CONSTANT: It pads the image with a

constant value (specified by borderValue). This is

useful when you want to set a specific background

color around the image.

BORDER_WRAP: It wraps the image around as if it's

a torus, allowing the filter to continue from one edge

to the opposite edge.

BORDER_REFLECT: It reflects the border pixels,

which can help reduce artifacts in the filtered image.

Computer Vision Lab Lab Manual – 04

6 | P a g e

Display the results

cv2.imshow('Original Image', image)

cv2.imshow('Filtered (Replicate)',

filtered_image_replicate)

cv2.imshow('Filtered (Constant)',

filtered_image_constant)

cv2.imshow('Filtered (Wrap)', filtered_image_wrap)

cv2.imshow('Filtered (Reflect)', filtered_image_reflect)

cv2.waitKey(0)

cv2.destroyAllWindows()

6. Non-Linear Filtering:

Explanation: Non-linear filters are image processing techniques that use a non-linear mathematical function to

process pixel values. Unlike linear filters (e.g., blurring, sharpening), non-linear filters consider neighboring pixel

values in a non-linear way.

Real-Life Example: Removing salt-and-pepper noise from a photograph is a common real-life application of non-

linear filtering.

1. Median Filter:

The median filter replaces each pixel's value with the median value of the pixel values in its neighborhood.

It's effective for salt-and-pepper noise removal

2. Minimum Filter (Min Filter):

The minimum filter replaces each pixel's value with the minimum value among the pixel values in its

neighborhood.

3. Maximum Filter (Max Filter):

The maximum filter replaces each pixel's value with the maximum value among the pixel values in its

neighborhood.

4. Bilateral Filter:

The bilateral filter is a non-linear filter that smooths an image while preserving edges.

Apply Median Filter

median_filtered_image = cv2.medianBlur(image, 5) # Adjust kernel size as needed

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

Apply Minimum Filter

min_filtered_image = cv2.erode(image, kernel)

Apply Maximum Filter

max_filtered_image = cv2.dilate(image, kernel)

Apply Bilateral Filter

bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)

Computer Vision Lab Lab Manual – 04

7 | P a g e

Characteristic Linear Filters Non-Linear Filters

Linearity Linear filters apply weighted sums of

pixel values. The output at a pixel is a

linear combination of its neighbors.

Examples include mean, Gaussian,

Sobel, etc.

Non-linear filters use non-linear operations on

pixel values, making the output dependent on

pixel ranking or other non-linear criteria.

Examples include median, min, max, bilateral,

etc.

Noise Reduction Effective for reducing Gaussian noise

and blurring an image while preserving

linear structures.

Effective for removing non-Gaussian noise

like salt-and-pepper noise and preserving

details and edges.

Edge Preservation Linear filters may smooth or blur edges

in an image, making them less distinct.

Non-linear filters are better at preserving edges

and details while reducing noise.

Computational

Complexity

Generally computationally less

expensive.

Can be more computationally intensive,

especially with large kernels or adaptive

filtering.

Common Examples Mean filter, Gaussian filter, Sobel filter,

Laplacian filter, etc.

Median filter, Min filter, Max filter, Bilateral

filter, Adaptive median filter, Non-Local

Means (NLM) filter, etc.

Application Commonly used for tasks like basic

smoothing, blurring, and gradient

calculation.

Used for tasks like noise reduction, detail

preservation, and edge enhancement.

Sensitivity to Noise May not be effective against impulse

noise (e.g., salt-and-pepper noise).

Effective against impulse noise and other non-

Gaussian noise types.

Control Parameters Typically controlled by filter size and

kernel weights.

Controlled by filter size and the specific non-

linear operation (e.g., median, min, max).

7. 1-D & 2-D Sampling

1-D (one-dimensional) sampling is the process of capturing discrete samples or data points along a single continuous

signal or function. It involves selecting specific points from a continuous signal at regular intervals. These samples can

be used to represent and analyze the original signal. In essence, 1-D sampling converts a continuous signal into a discrete

form.

Example:

Consider a simple 1-D signal representing temperature measurements recorded every hour throughout a day. The

temperature values are sampled at hourly intervals, resulting in a discrete set of data points. These discrete samples can

be used for various purposes, such as calculating daily average temperature, detecting trends, or generating temperature

graphs.

Applications:

• Audio processing: Sampling audio signals to create digital audio.

• Environmental monitoring: Sampling sensor data like temperature, humidity, or pollution levels.

• Stock market data: Sampling stock prices at specific time intervals for analysis.

Computer Vision Lab Lab Manual – 04

8 | P a g e

2-D Sampling:

2-D (two-dimensional) sampling extends the concept of sampling to 2-D images or grids. It involves selecting

discrete data points (pixels) from a continuous 2-D image at regular intervals. Each data point represents the

intensity or color at that location in the image. 2-D sampling is essential in digital image processing and computer

vision.

Example:

Consider a digital photograph taken with a camera. The camera's sensor samples the incoming light by dividing

the image into a grid of pixels. Each pixel represents the color and intensity of the scene at that specific location.

This discrete grid of pixels forms the digital image.

Applications:

• Digital image processing: Sampling images for manipulation, enhancement, and analysis.

• Computer vision: Extracting features from images for object recognition and tracking.

• Satellite imagery: Sampling Earth's surface to create digital maps.

import numpy as np

import matplotlib.pyplot as plt

Continuous signal (e.g., temperature readings)

continuous_signal = np.array([23.5, 24.0, 23.8, 24.2, 23.7, 24.5, 23.9, 23.6, 24.1, 24.3])

Sampling at hourly intervals

sampled_indices = np.arange(0, len(continuous_signal))

sampled_signal = continuous_signal[sampled_indices]

Create a time axis for plotting

time_axis = np.arange(0, len(continuous_signal))

Plot the continuous signal and sampled points

plt.figure(figsize=(10, 4))

plt.subplot(2, 1, 1)

plt.plot(time_axis, continuous_signal, marker='o', linestyle='-', color='b')

plt.title("Continuous 1-D Signal")

plt.xlabel("Time (hours)")

plt.ylabel("Temperature")

plt.subplot(2, 1, 2)

plt.stem(sampled_indices, sampled_signal, basefmt=" ", markerfmt="ro", linefmt="-r")

plt.title("Sampled 1-D Signal")

plt.xlabel("Sample Index")

plt.ylabel("Temperature")

plt.tight_layout()

plt.show()

Computer Vision Lab Lab Manual – 04

9 | P a g e

8. Fourier Transformation in 2D

The 2D Fourier Transform is a mathematical transformation used in image processing and signal analysis to represent

an image in the frequency domain. It decomposes an image into a sum of sinusoidal functions, each with a specific

frequency and phase. This transformation is valuable for tasks such as filtering, compression, and feature extraction.

Here's how the 2D Fourier Transform works:

Forward 2D Fourier Transform:

• Input Image: Start with an input image, typically represented as a 2D array of pixel values. The image can be

in grayscale or color.

• Spatial Domain: In the spatial domain, the input image represents variations in intensity or color across its two

dimensions (rows and columns). This domain is where we perceive the image visually.

• Frequency Domain: The 2D Fourier Transform converts the image from the spatial domain to the frequency

domain. In the frequency domain, the image is represented as a 2D array of complex numbers, where each

number corresponds to a specific frequency and phase.

• Frequency Components: Each complex number in the frequency domain represents a sinusoidal wave. The

magnitude of the complex number represents the amplitude (strength) of that wave, and the phase represents its

position relative to the origin.

Inverse 2D Fourier Transform:

• Frequency Domain Data: Start with an image in the frequency domain, represented as a 2D array of complex

numbers.

• Inverse Transform: Apply the inverse 2D Fourier Transform to the frequency domain data to convert it back

to the spatial domain.

• Reconstructed Image: The result is a reconstructed image that should closely resemble the original input

image. This reconstructed image can be used for various image processing tasks.

Applications of the 2D Fourier Transform in image processing include:

• Filtering: Filtering an image in the frequency domain allows for operations like smoothing (low-pass filtering)

and edge enhancement (high-pass filtering).

• Compression: Transforming an image into the frequency domain can help reduce redundancy and compress

the image data.

• Feature Extraction: Analyzing the frequency components of an image can aid in feature extraction and pattern

recognition.

• Image Restoration: Dealing with issues like noise and blurriness by manipulating the frequency domain

representation.

• Image Registration: Aligning and matching images by comparing their frequency components.

Computer Vision Lab Lab Manual – 04

10 | P a g e

Computer Vision Lab Lab Manual – 04

11 | P a g e

Forward 2D Fourier Transform

import numpy as np

import cv2

import matplotlib.pyplot as plt

Load the image (grayscale)

image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)

Perform the 2D Fourier Transform

converts the image from the spatial domain to the frequency domain

fourier_transform = np.fft.fft2(image)

shifting the zero frequency components to the center is a common practice in 2D Fourier Transforms to enhance the

interpretability and usefulness of the frequency domain representation, especially for tasks like filtering, analysis, and

visualization

Shift the zero frequency components to the center

We shift the zero frequency components to the center of the spectrum using np.fft.fftshift().

This makes it easier to visualize the spectrum

fourier_transform_shifted = np.fft.fftshift(fourier_transform)

Calculate the magnitude spectrum

magnitude_spectrum = np.log(np.abs(fourier_transform_shifted) + 1) # Avoid log(0) by adding 1

Display the original image and magnitude spectrum

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)

plt.imshow(image, cmap='gray')

plt.title('Original Image')

plt.subplot(1, 2, 2)

plt.imshow(magnitude_spectrum, cmap='gray')

plt.title('Magnitude Spectrum (log-scaled)')

plt.show()

Computer Vision Lab Lab Manual – 04

12 | P a g e

Inverse 2D Fourier Transform:

import numpy as np

import cv2

import matplotlib.pyplot as plt

Create synthetic frequency domain data (e.g., magnitude spectrum)

For this example, we'll create a simple pattern in the frequency domain

Replace this with your actual frequency domain data

frequency_domain_data = np.zeros((256, 256), dtype=float)

frequency_domain_data[100:120, 150:170] = 255.0

Perform the inverse 2D Fourier Transform

spatial_domain_image = np.fft.ifft2(np.fft.ifftshift(frequency_domain_data)).real

Display the reconstructed spatial domain image

plt.figure(figsize=(8, 8))

plt.subplot(1, 2, 1)

plt.imshow(frequency_domain_data, cmap='gray')

plt.title('Frequency Domain Data')

plt.subplot(1, 2, 2)

plt.imshow(spatial_domain_image, cmap='gray')

plt.title('Reconstructed Image')

plt.show()

9. Implementation of 2D Fourier Transform in image processing for Different Applications

Low Pass Filtering

import cv2

import numpy as np

import matplotlib.pyplot as plt

Load the image (grayscale)

image = cv2.imread('input_image.jpg',

cv2.IMREAD_GRAYSCALE)

Perform the 2D Fourier Transform

fourier_transform = np.fft.fft2(image)

Shift the zero frequency components to the center

fourier_transform_shifted = np.fft.fftshift(fourier_transform)

Create a low-pass filter mask

rows, cols = image.shape

center_row, center_col = rows // 2, cols // 2

Image Dimensions:

Let the dimensions of the input image be rows (number

of rows) and cols (number of columns).

Center Coordinates:

Calculate the coordinates of the center of the image:

center_row = rows / 2 (assuming integer division, so it

rounds down to the nearest integer)

center_col = cols / 2

Cutoff Frequency:

Define a cutoff frequency, denoted as

cutoff_frequency. This value determines the size of the

low-pass filter and controls the extent of low-

frequency information that will be retained.

Computer Vision Lab Lab Manual – 04

13 | P a g e

cutoff_frequency = 30 # Adjust as needed

mask = np.zeros((rows, cols), dtype=np.uint8)

mask[center_row - cutoff_frequency:center_row +

cutoff_frequency + 1,

 center_col - cutoff_frequency:center_col +

cutoff_frequency + 1] = 1

Apply the mask to the Fourier Transform

filtered_fourier_transform = fourier_transform_shifted * mask

Perform the inverse Fourier Transform

filtered_image =

np.abs(np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform)))

Display the filtered image

plt.imshow(filtered_image, cmap='gray')

plt.title('Low-Pass Filtered Image')

plt.show()

Initialize Mask:

Create an empty mask (filter) with the same

dimensions as the input image. The mask is initially

filled with zeros:

mask is a matrix of size rows x cols, where each

element is initially set to 0.

Define Filter Region:

Set a square region within the mask to 1. This square

region is centered at the image's center and has a size

determined by the cutoff_frequency:

The region defined with 1 values represents the pass

region (low-pass filter), allowing low-frequency

components to pass through.

Pixels outside this square region remain 0, indicating

that high-frequency components are suppressed.

The region is defined as follows:

For the rows: center_row - cutoff_frequency to

center_row + cutoff_frequency

For the columns: center_col - cutoff_frequency to

center_col + cutoff_frequency

Mathematically

For each element (i, j) in the mask:

 if (center_row - cutoff_frequency <= i <= center_row + cutoff_frequency) and

 (center_col - cutoff_frequency <= j <= center_col + cutoff_frequency):

 mask(i, j) = 1

 else:

 mask(i, j) = 0

Image Compression

Load the image (grayscale)

image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)

Perform the 2D Fourier Transform

Set a threshold to retain only significant frequency components

threshold = 1000 # Adjust as needed

filtered_fourier_transform[abs(filtered_fourier_transform) < threshold] = 0

Perform the inverse Fourier Transform to obtain the compressed image

compressed_image = np.abs(np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform)))

Computer Vision Lab Lab Manual – 04

14 | P a g e

Display the compressed image

plt.imshow(compressed_image, cmap='gray')

plt.title('Compressed Image')

plt.show()

Feature Extraction (Magnitude Spectrum)

Calculate the magnitude spectrum

Display the magnitude spectrum

plt.imshow(magnitude_spectrum, cmap='gray')

plt.title('Magnitude Spectrum (log-scaled)')

plt.show()

Image Restoration (Inverse Filtering)

Load the degraded image (grayscale)

degraded_image = cv2.imread('degraded_image.jpg', cv2.IMREAD_GRAYSCALE)

Perform the 2D Fourier Transform for both the original and degraded images

Compute the inverse filter in the frequency domain

epsilon = 1e-6

inverse_filter = np.divide(fourier_transform_original, fourier_transform_degraded + epsilon)

Apply the inverse filter to the degraded image in the frequency domain

restored_image_frequency_domain = fourier_transform_degraded * inverse_filter

Perform the inverse Fourier Transform to obtain the restored image

restored_image = np.abs(np.fft.ifft2(restored_image_frequency_domain))

Display the degraded and restored images

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)

plt.imshow(degraded_image, cmap='gray')

plt.title('Degraded Image')

plt.subplot(1, 2, 2)

plt.imshow(restored_image, cmap='gray')

plt.title('Restored Image')

plt.show()

Computer Vision Lab Lab Manual – 04

15 | P a g e

Image Registration (Phase Correlation)

Load the reference and target images (grayscale)

reference_image = cv2.imread('reference_image.jpg', cv2.IMREAD_GRAYSCALE)

target_image = cv2.imread('target_image.jpg', cv2.IMREAD_GRAYSCALE)

Perform the 2D Fourier Transform for both images

Calculate the cross-power spectrum

cross_power_spectrum = fourier_transform_reference * np.conj(fourier_transform_target)

Calculate phase correlation

phase_correlation = np.fft.ifft2(cross_power_spectrum / (np.abs(cross_power_spectrum) + 1e-6))

Find the peak in the phase correlation to estimate translation

shifted_peak = np.unravel_index(np.argmax(np.abs(phase_correlation)), phase_correlation.shape)

x_shift, y_shift = shifted_peak[1], shifted_peak[0]

Apply translation to align the images

aligned_image = np.roll(target_image, (y_shift, x_shift), axis=(0, 1))

Display the reference and aligned images

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)

plt.imshow(reference_image, cmap='gray')

plt.title('Reference Image')

plt.subplot(1, 2, 2)

plt.imshow(aligned_image, cmap='gray')

plt.title('Aligned Image')

plt.show()

Image registration, particularly using Phase Correlation, is a technique used in image processing to align or match two or

more images, often referred to as the "reference" and "target" images. The primary goal is to find the transformation (e.g.,

translation, rotation, scaling) that aligns the target image with the reference image

• Reference Image and Target Image: You start with two images: the "reference image" and the "target image."

The reference image is considered the fixed or known image, and the target image is the one you want to align with

the reference image.

• 2D Fourier Transform: Both the reference and target images undergo a 2D Fourier Transform (2D FFT)

separately. The 2D FFT converts the images from the spatial domain (pixel values) into the frequency domain. In

the frequency domain, you can analyze the phase and magnitude spectra of the images.

Computer Vision Lab Lab Manual – 04

16 | P a g e

• Phase Correlation: The key concept in Phase Correlation is that the phase of the frequency components in the two

images is used to estimate the relative displacement (translation) between them. This phase information is invariant

to changes in lighting conditions and image contrast, making Phase Correlation robust for image alignment.

• Cross-Power Spectrum: Calculate the cross-power spectrum between the Fourier transforms of the reference and

target images. The cross-power spectrum measures how well the two images are correlated across different

translations. It highlights peaks in the spectrum, which correspond to translation offsets.

• Inverse Fourier Transform: Apply the inverse Fourier Transform (2D IFFT) to the cross-power spectrum to obtain

the phase correlation map in the spatial domain. The phase correlation map will have a peak at the location

corresponding to the translation between the reference and target images.

• Peak Detection: Find the peak in the phase correlation map. The peak's location (usually the coordinates of the

maximum value) indicates the translation offset needed to align the target image with the reference image.

• Alignment: Apply the calculated translation offset to the target image to align it with the reference image. Common

transformations include translation, rotation, and scaling.

• Output: The aligned target image is the registered result, aligned with the reference image.

10. Hybrid Images (Computational Photography)

Hybrid images are a fascinating concept in image processing and computer vision that combines two different images,

one with high spatial frequencies (fine details) and another with low spatial frequencies (coarse features), to create a

single image that appears different at different viewing distances. The primary idea behind hybrid images is that human

vision has different sensitivity to spatial frequencies at various distances. Here's how they work:

High-Pass and Low-Pass Filtering: Two input images are prepared: one contains high-frequency components (fine

details), and the other contains low-frequency components (coarse features). High-pass filtering extracts the fine details

from the first image, and low-pass filtering extracts the coarse features from the second image. These filters can be

Gaussian filters or other frequency-domain filters.

Combining Images: The filtered high-frequency image and the filtered low-frequency image are combined pixel-wise.

The pixel values of the resulting image are calculated by adding the corresponding pixel values from both filtered

images. The resulting image contains both coarse and fine details.

Visual Perception: The human visual system perceives images differently depending on viewing distance. When you

look at a hybrid image from a distance, you primarily perceive the low-frequency components, making it appear as one

image. As you get closer to the image, the high-frequency components become more noticeable, revealing the details

present in the high-pass filtered image.

Visual Illusion: Hybrid images create a visual illusion where the image's interpretation changes with viewing distance.

This effect can be used for various creative and scientific purposes, such as art, perception studies, and image recognition

experiments.

Computer Vision Lab Lab Manual – 04

17 | P a g e

Common examples of hybrid images include faces that appear to switch between two different people when viewed

from different distances or images that appear as both animals and everyday objects, depending on the viewing distance.

Hybrid images highlight the importance of understanding the human visual system's sensitivity to different spatial

frequencies and its impact on perception. They provide insights into how we perceive images and can be used for artistic

and scientific purposes to explore visual perception phenomena. (https://manavm3.web.illinois.edu/cs445/proj1/)

https://manavm3.web.illinois.edu/cs445/proj1/

Computer Vision Lab Lab Manual – 04

18 | P a g e

import cv2

import numpy as np

import matplotlib.pyplot as plt

Load the two images

einstein_image = cv2.imread('ents.jpg')

einstein_image = cv2.resize(einstein_image, (300,300))

newton_image = cv2.imread('ntn.jpg')

newton_image = cv2.resize(newton_image,(300,300))

Convert the images to grayscale

einstein_gray = cv2.cvtColor(einstein_image, cv2.COLOR_BGR2GRAY)

newton_gray = cv2.cvtColor(newton_image, cv2.COLOR_BGR2GRAY)

Apply Gaussian blur to Einstein (low-pass filter)

einstein_low_pass = cv2.GaussianBlur(einstein_gray, (25, 25), 0)

Subtract the low-pass image from Newton (high-pass filter)

#newton_high_pass = newton_gray - einstein_low_pass

#newton_high_pass = cv2.Laplacian(newton_gray, cv2.CV_64F, (3,3))

Add the low-pass Einstein and high-pass Newton to create the hybrid image

Perform 2D Fourier Transform

fourier_transform = np.fft.fft2(newton_gray)

Shift zero frequency components to the center

fourier_transform_shifted = np.fft.fftshift(fourier_transform)

Define the size of the high-pass filter kernel (e.g., a Laplacian kernel)

kernel_size = 5

Create a high-pass filter mask

rows, cols = newton_gray.shape

center_row, center_col = rows // 2, cols // 2

mask = np.ones((rows, cols), dtype=np.uint8)

mask[center_row - kernel_size:center_row + kernel_size + 1,

 center_col - kernel_size:center_col + kernel_size + 1] = 0

Computer Vision Lab Lab Manual – 04

19 | P a g e

Apply the mask to the Fourier Transform

filtered_fourier_transform = fourier_transform_shifted * mask

Perform the inverse Fourier Transform to obtain the high-pass image

high_pass_image = np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform)).real

hybrid_image = einstein_low_pass + high_pass_image

Display the original images and the hybrid image

plt.figure(figsize=(12, 6))

plt.subplot(1, 3, 1)

plt.imshow(einstein_low_pass, cmap='gray')

plt.title('Einstein (Low-Frequency)')

plt.subplot(1, 3, 2)

plt.imshow(newton_high_pass, cmap='gray')

plt.title('Newton (High-Frequency)')

plt.subplot(1, 3, 3)

plt.imshow(hybrid_image, cmap='gray')

plt.title('Hybrid Image')

plt.tight_layout()

plt.show()

Tasks

1. Complete the above codes where the lines are missing.

2. Linear Filtering:

• Implement a Gaussian blur filter using convolution for image smoothing.

• Apply a Sobel filter to perform edge detection on a grayscale image.

• Perform image sharpening using the Laplacian filter.

Computer Vision Lab Lab Manual – 04

20 | P a g e

• Implement a mean filter for noise reduction in an image.

3. Non-Linear Filtering:

• Develop a median filter for removing salt-and-pepper noise from an image.

• Apply a max filter to perform dilation on a binary image.

• Implement a min filter to perform erosion on a binary image.

• Create a bilateral filter for edge-preserving smoothing.

• Implement an adaptive median filter for noise reduction while preserving edges.

4. Fourier Transformations:

• Calculate the 1D Fourier Transform of a signal and visualize its magnitude and phase spectra.

• Apply a 2D Fourier Transform to an image and display its magnitude spectrum.

• Implement a high-pass filter in the frequency domain to emphasize edges in an image.

• Perform image compression using the Fourier Transformation

5. Hybrid Images:

• Create a hybrid image from two input images with different spatial frequencies.

• Experiment with different combinations of high-pass and low-pass filters for hybrid image creation.

• Generate a hybrid image that exhibits a strong visual illusion when viewed from different distances.

• Investigate how changing the filter parameters affects the perception of a hybrid image.

• Analyze the trade-offs between high and low-frequency components in hybrid images for various

applications.

