
Computer Vision Lab Lab Manual – 08

1 | P a g e

National University of Computer & Emerging Sciences, Karachi

Artificial Intelligence-School of Computing

Fall 2024, Lab Manual – 8

Course Code (AI4002) Course: Computer Vision Lab

Instructor(s): Sohail Ahmed

Objectives:

• RCNN

• YOLO

R-CNN extracts a bunch of regions from the given image using selective search, and then checks if any of these boxes

contains an object. We first extract these regions, and for each region, CNN is used to extract specific features. Finally,

these features are then used to detect objects. Unfortunately, R-CNN becomes rather slow due to these multiple steps

involved in the process.

Fast R-CNN, on the other hand, passes the entire image to ConvNet which generates regions of interest (instead of passing

the extracted regions from the image). Also, instead of using three different models (as we saw in R-CNN), it uses a single

model which extracts features from the regions, classifies them into different classes, and returns the bounding boxes.

All these steps are done simultaneously, thus making it execute faster as compared to R-CNN. Fast R-CNN is, however,

not fast enough when applied on a large dataset as it also uses selective search for extracting the regions.

Computer Vision Lab Lab Manual – 08

2 | P a g e

Faster R-CNN fixes the problem of selective search by replacing it with Region Proposal Network (RPN). We first extract

feature maps from the input image using ConvNet and then pass those maps through a RPN which returns object proposals.

Finally, these maps are classified and the bounding boxes are predicted.

Computer Vision Lab Lab Manual – 08

3 | P a g e

The steps followed by a Faster R-CNN algorithm to detect objects in an image:

1. Take an input image and pass it to the ConvNet which returns feature maps for the image

2. Apply Region Proposal Network (RPN) on these feature maps and get object proposals

3. Apply ROI pooling layer to bring down all the proposals to the same size

4. Finally, pass these proposals to a fully connected layer in order to classify any predict the bounding boxes for the

image

Algorithm Features Prediction

time / image

Limitations

CNN Divides the image into multiple regions and

then classifies each region into various

classes.

– Needs a lot of regions to predict

accurately and hence high computation

time.

R-CNN Uses selective search to generate regions.

Extracts around 2000 regions from each

image.

40-50

seconds

High computation time as each region is

passed to the CNN separately. Also, it

uses three different models for making

predictions.

Fast R-

CNN

Each image is passed only once to the CNN

and feature maps are extracted. Selective

search is used on these maps to generate

predictions. Combines all the three models

used in R-CNN together.

2 seconds Selective search is slow and hence

computation time is still high.

Faster R-

CNN

Replaces the selective search method with

region proposal network (RPN) which makes

the algorithm much faster.

0.2 seconds Object proposal takes time and as there

are different systems working one after

the other, the performance of systems

depends on how the previous system has

performed.

Understanding the Problem Statement

We will be working on a healthcare related dataset and the aim here is to solve a Blood Cell Detection problem. Our task is

to detect all the Red Blood Cells (RBCs), White Blood Cells (WBCs), and Platelets in each image taken via microscopic

image readings. Below is a sample of what our final predictions should look like:

Computer Vision Lab Lab Manual – 08

4 | P a g e

The reason for choosing this dataset is that the density of RBCs, WBCs and Platelets in our blood stream provides a lot of

information about the immune system and hemoglobin. This can help us potentially identify whether a person is healthy or

not, and if any discrepancy is found in their blood, actions can be taken quickly to diagnose that.

Link to BCCD Dataset

Data Exploration

It’s always a good idea to first explore the data we have. This helps us not only unearth hidden patterns, but gain a valuable

overall insight into what we are working with. The three files I have created out of the entire dataset are:

1. train_images: Images that we will be using to train the model. We have the classes and the actual bounding boxes

for each class in this folder.

2. test_images: Images in this folder will be used to make predictions using the trained model. This set is missing the

classes and the bounding boxes for these classes.

3. train.csv: Contains the name, class and bounding box coordinates for each image. There can be multiple rows for

one image as a single image can have more than one object.

Let’s read the .csv file (you can create your own .csv file from the original dataset if you feel like experimenting) and print

out the first few rows. We’ll need to first import the below libraries for this:

importing required libraries

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

from matplotlib import patches

read the csv file using read_csv function of pandas

train = pd.read_csv(‘train.csv’)

train.head()

There are 6 columns in the train file. Let’s understand what each column represents:

• image_names: contains the name of the image

• cell_type: denotes the type of the cell

• xmin: x-coordinate of the bottom left part of the image

• xmax: x-coordinate of the top right part of the image

• ymin: y-coordinate of the bottom left part of the image

• ymax: y-coordinate of the top right part of the image

https://github.com/Shenggan/BCCD_Dataset

Computer Vision Lab Lab Manual – 08

5 | P a g e

reading single image using imread function of matplotlib

image = plt.imread('images/1.jpg')

plt.imshow(image)

Number of unique training images

train['image_names'].nunique()

#So, we have 254 training images.

Number of classes

train['cell_type'].value_counts()

We have three different classes of cells, i.e., RBC, WBC and Platelets. Finally, let’s look at how an image with detected

objects will look like:

fig = plt.figure()

#add axes to the image

ax = fig.add_axes([0,0,1,1])

read and plot the image

image = plt.imread('images/1.jpg')

plt.imshow(image)

iterating over the image for different objects

for _,row in train[train.image_names == "1.jpg"].iterrows():

 xmin = row.xmin

 xmax = row.xmax

 ymin = row.ymin

 ymax = row.ymax

 width = xmax - xmin

 height = ymax - ymin

 # assign different color to different classes of objects

 if row.cell_type == 'RBC':

 edgecolor = 'r'

 ax.annotate('RBC', xy=(xmax-40,ymin+20))

 elif row.cell_type == 'WBC':

Computer Vision Lab Lab Manual – 08

6 | P a g e

 edgecolor = 'b'

 ax.annotate('WBC', xy=(xmax-40,ymin+20))

 elif row.cell_type == 'Platelets':

 edgecolor = 'g'

 ax.annotate('Platelets', xy=(xmax-40,ymin+20))

 # add bounding boxes to the image

 rect = patches.Rectangle((xmin,ymin), width, height, edgecolor = edgecolor, facecolor = 'none')

 ax.add_patch(rect)

This is what a training example looks like. We have the different classes and their corresponding bounding boxes. Let’s

now train our model on these images. We will be using the keras_frcnn library to train our model as well as to get predictions

on the test images.

Implementing Faster R-CNN

Clone this repository: git clone https://github.com/kbardool/keras-frcnn.git

Move the train_images and test_images folder, as well as the train.csv file, to the cloned repository. In order to train the

model on a new dataset, the format of the input should be:

filepath,x1,y1,x2,y2,class_name

where,

• filepath is the path of the training image

• x1 is the xmin coordinate for bounding box

• y1 is the ymin coordinate for bounding box

• x2 is the xmax coordinate for bounding box

• y2 is the ymax coordinate for bounding box

• class_name is the name of the class in that bounding box

https://github.com/kbardool/keras-frcnn.git

Computer Vision Lab Lab Manual – 08

7 | P a g e

We need to convert the .csv format into a .txt file which will have the same format as described above. Make a new

dataframe, fill all the values as per the format into that dataframe, and then save it as a .txt file.

data = pd.DataFrame()

data['format'] = train['image_names']

as the images are in train_images folder, add train_images before the image name

for i in range(data.shape[0]):

 data['format'][i] = 'train_images/' + data['format'][i]

add xmin, ymin, xmax, ymax and class as per the format required

for i in range(data.shape[0]):

 data['format'][i] = data['format'][i] + ',' + str(train['xmin'][i]) + ',' + str(train['ymin'][i]) + ',' + str(train['xmax'][i]) + ',' +

str(train['ymax'][i]) + ',' + train['cell_type'][i]

data.to_csv('annotate.txt', header=None, index=None, sep=' ')

Train our model! We will be using the train_frcnn.py file to train the model.

cd keras-frcnn

python train_frcnn.py -o simple -p annotate.txt

It’s prediction time! Keras_frcnn makes the predictions for the new images and saves them in a new folder. We just have to

make two changes in the test_frcnn.py file to save the images:

Remove the comment from the last line of this file:

cv2.imwrite(‘./results_imgs/{}.png’.format(idx),img)

Add comments on the second last and third last line of this file:

cv2.imshow(‘img’, img)

cv2.waitKey(0)

Let’s make the predictions for the new images:

python test_frcnn.py -p test_images

Computer Vision Lab Lab Manual – 08

8 | P a g e

Lab Task:

Task: Object Detection Using Regional Convolutional Neural Networks (R-CNN)

(Don’t use the mentioned dataset use another one)

Objective:

Implement object detection using a Regional Convolutional Neural Network (R-CNN) on a dataset of your choice. R-CNN

is a classic object detection method that combines region proposal, feature extraction, and object classification to identify

and localize objects within images.

Object detection has become an increasingly popular field in computer vision, with YOLO (You Only Look Once) being one of the

most widely used algorithms. In this blog post, we will explore how to use YOLO and a webcam to get started with a real-time

object detection system.

YOLO was developed by Joseph Redmon and his team at the University of Washington and has become one of the most popular

object detection algorithms used in computer vision applications

Unlike traditional object detection algorithms that require multiple passes over an image, YOLO processes the entire image in a

single pass, making it much faster and more efficient.

YOLO has been used in a variety of applications, including self-driving cars, security systems, and image and video analysis.

YOLO has been implemented in several deep learning frameworks, including Darknet, TensorFlow, and PyTorch. The original

implementation of YOLO was done using the Darknet framework, which was developed by Joseph Redmon.

1. We’ll capture frames from the webcam using OpenCV. This can be done using the VideoCapture function in OpenCV.

import cv2

cap = cv2.VideoCapture(0)

cap.set(3, 640)

cap.set(4, 480)

while True:

 ret, img= cap.read()

 cv2.imshow('Webcam', img)

 if cv2.waitKey(1) == ord('q'):

 break

Computer Vision Lab Lab Manual – 08

9 | P a g e

cap.release()

cv2.destroyAllWindows()

2. We install the ultralytics library that makes working with YOLO very easy and hassle-free.

$ pip install ultralytics

3. The YOLO model is loaded using the ultralytics library and specifies the location of the YOLO weights file in the yolo-

Weights/yolov8n.pt.

from ultralytics import YOLO

model = YOLO("yolo-Weights/yolov8n.pt")

4. We instantiate a classNames variable containing a list of object classes that the YOLO model is trained to detect.

classNames = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat",

 "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat",

 "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",

 "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",

 "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",

 "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli",

 "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed",

 "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone",

 "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",

 "teddy bear", "hair drier", "toothbrush"

]

5. The while loop starts and it reads each frame from the webcam using cap.read(). Then it passes the frame to the YOLO model for object

detection. The results of object detection are stored in the ‘results’ variable.

import cv2

cap = cv2.VideoCapture(0)

cap.set(3, 640)

cap.set(4, 480)

while True:

 ret, img= cap.read()

 results = model(img, stream=True)

 cv2.imshow('Webcam', frame)

 if cv2.waitKey(1) == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

6. For each result, the code extracts the bounding box coordinates of the detected object and draws a rectangle around it using

cv2.rectangle(). It also prints the confidence score and class name of the detected object on the console.

Computer Vision Lab Lab Manual – 08

10 | P a g e

Complete Code:

Lab Task:

1. Use Yolo any version using live web camera detect your lab assets.

