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National University of Computer & Emerging Sciences, Karachi 

Artificial Intelligence-School of Computing 

Fall 2024, Lab Manual - 03 

Course Code (AI4002) Course: Computer Vision Lab 

Instructor(s):   Sohail Ahmed 

Objectives: 

1. Understand the concept of Linear & non-linear filtering and its applications in image processing. 

2. Explore 1-D and 2-D sampling techniques and their significance in image representation. 

3. Learn about Fourier transformations in 2-D and their role in image analysis. 

 

1. Linear Filtering 

Linear filtering is a fundamental concept in digital image processing that involves modifying an image by applying 

a linear operation called a filter or kernel. These filters are used to enhance or suppress certain features in an image, 

such as noise reduction, edge detection, and image sharpening. Linear filtering works by convolving the image with 

the filter kernel, which involves sliding the kernel over the image and computing a weighted sum of pixel values at 

each position. 

 

Some key aspects of linear filtering in digital image processing: 

 

Filter Kernel: A filter kernel is a small matrix, usually square, that defines the weights to be applied to the pixels 

in the image during convolution. The size of the kernel determines the extent of the neighborhood around each pixel 

that is considered during the filtering process. Common filter sizes include 3x3 and 5x5. 

 

Convolution Operation: To apply a filter to an image, you slide the kernel over the entire image. At each position, 

you perform a point-wise multiplication between the kernel and the corresponding pixel values in the image and 

then sum up the results. This sum becomes the new value of the pixel at the center of the kernel. 

 

Filter Types 

 

• Smoothing Filters: These filters are used to reduce noise and blur an image. Common smoothing filters 

include the Gaussian filter and the mean filter. 

• Edge Detection Filters: These filters highlight edges and boundaries in an image. Examples include the Sobel 

and Prewitt filters. 

• Sharpening Filters: Sharpening filters enhance edges and fine details in an image. The Laplacian filter is an 

example. 

• Custom Filters: You can create custom filters with specific weightings to achieve desired image processing 

effects. 

• Border Handling: Handling image borders during convolution is important. There are different methods, 

such as zero-padding (setting border pixels to zero), mirror padding, or using only the valid part of the 

convolution result. 
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• Filtering in Frequency Domain: Convolution in the spatial domain can be computationally expensive, 

especially for large images and kernels. In some cases, it is more efficient to perform filtering in the frequency 

domain using techniques like the Fourier Transform. 

 

• Filtering Libraries: Various programming languages and libraries provide functions for applying linear 

filters to images. Popular choices include OpenCV (Python), MATLAB, and image processing libraries in 

languages like C++ and Java. 

 

Applications: Linear filtering is widely used in image enhancement, computer vision, medical image processing, 

and various other fields to extract valuable information from images or prepare them for further analysis. 

2. Smoothing Filters 

Smoothing linear filters in digital image processing are used to reduce noise, blur an image, and eliminate fine 

details. These filters work by averaging or weighting the pixel values in the neighborhood of each pixel to create a 

smoother and less noisy image.  

1. Mean Filter (Box Filter): 

Working Mechanism: The mean filter replaces each pixel's value with the average of the pixel values in its 

neighborhood. It uses a square kernel (usually 3x3 or 5x5) and computes the average of the pixel values 

covered by the kernel. 

2. Gaussian Filter: 

Working Mechanism: The Gaussian filter applies Gaussian smoothing to the image. It uses a Gaussian 

kernel, which emphasizes the central pixel and diminishes the influence of distant pixels. This creates a 

smoothing effect while preserving edges. 

 

3. Working Mechanism for Different Edge Detection Filters  

 

1. Sobel Filter: 

Working Mechanism: The Sobel filter calculates the gradient of an image to detect edges. It uses two 3x3 

convolution kernels, one for detecting vertical edges and the other for horizontal edges. The gradient magnitude 

is computed as the square root of the sum of squares of the two gradients. 

 

2. Canny Edge Detector: 

Working Mechanism: The Canny edge detector involves several steps, including Gaussian smoothing, 

gradient calculation, non-maximum suppression, and edge tracking by hysteresis. It identifies edges as regions 

where the gradient magnitude is above a certain threshold and connects them to form continuous edges. 

 

3. Laplacian of Gaussian (LoG): 

Working Mechanism: The LoG filter first applies Gaussian smoothing to the image to reduce noise and then 

calculates the Laplacian (second derivative) of the smoothed image to find areas of rapid intensity change, 

which correspond to edges. 
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Smoothing Filters  Edge Detection Filters  

import cv2 

 

# Load an image 

image = cv2.imread('image.jpg') 

 

# Apply a 5x5 Mean (Box) Filter 

mean_filtered_image = cv2.blur(image, (5, 5)) 

 

# Apply Gaussian Smoothing 

sigma = 1.5  # Adjust the sigma parameter for 

smoothing strength 

gaussian_filtered_image = 

cv2.GaussianBlur(image, (0, 0), sigma) 

 

 

# Display the original and filtered images 

cv2.imshow('Original Image', image) 

cv2.imshow('Mean Filtered Image', 

mean_filtered_image) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

import cv2 

 

# Load an image 

image = cv2.imread('image.jpg', 

cv2.IMREAD_GRAYSCALE)  # Convert to 

grayscale for edge detection 

 

# Apply Sobel Filter to Detect Edges 

sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, 

ksize=5) 

sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, 

ksize=5) 

 

# Calculate the magnitude of the gradient 

edge_image = cv2.magnitude(sobel_x, sobel_y) 

 

# Apply Canny Edge Detector 

canny_edge_image = cv2.Canny(image, 100, 200)  # 

Adjust threshold values as needed 

 

 

# Apply Gaussian Smoothing 

sigma = 1.5  # Adjust the sigma parameter for 

smoothing strength 

smoothed_image = cv2.GaussianBlur(image, (0, 0), 

sigma) 

 

# Apply Laplacian Filter for Edge Detection 

laplacian = cv2.Laplacian(smoothed_image, 

cv2.CV_64F) 

 

 

# Display the original and edge-detected images 

cv2.imshow('Original Image', image) 

cv2.imshow('Edge Image (Sobel)', 

edge_image.astype(np.uint8)) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

4. Sharpening Liner Filters and their Working Mechanism   

Sharpening linear filters in digital image processing are used to enhance the fine details and edges in an image, 

making them appear more pronounced and crisp. These filters work by emphasizing the high-frequency components 

(such as edges) in the image while reducing the low-frequency components (such as smooth areas). 
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1. Laplacian Filter: 

Working Mechanism: The Laplacian filter enhances edges by highlighting areas where there is a rapid 

change in intensity values. It calculates the second derivative of the image, emphasizing regions with abrupt 

intensity transitions. 

 

2. Unsharp Masking (High-pass Filter): 

Working Mechanism: Unsharp masking enhances details by subtracting a blurred version of the image from 

the original image. It accentuates the differences between neighboring pixels, effectively increasing contrast. 

The unsharp masking process involves convolving the image with a smoothing (blurring) kernel and then 

subtracting the smoothed image from the original image. 

 

3. High-Boost Filtering: 

Working Mechanism: High-boost filtering is an extension of unsharp masking. It applies a weighted version 

of the Laplacian filter to the original image. The weight factor controls the degree of sharpening. 

High-Boost = A * Original - Blurred 

Here, "A" is a user-defined constant that determines the strength of sharpening. 

 

4. Gradient-based Filters (Sobel, Prewitt, Scharr): 

Working Mechanism: Gradient-based filters, like Sobel, Prewitt, and Scharr, can also be used for sharpening. 

By applying these filters, you calculate the gradient of the image, which represents the rate of change of 

intensity. Edges are enhanced because they have high gradients. 

import cv2 

import numpy as np 

 

# Load an image 

image = cv2.imread('image.jpg') 

 

# Laplacian Filter for Sharpening 

laplacian = cv2.Laplacian(image, cv2.CV_64F) 

sharpened_image_laplacian = cv2.add(image, 

laplacian) 

sharpened_image_laplacian = 

np.clip(sharpened_image_laplacian, 0, 

255).astype(np.uint8) 

 

# Unsharp Masking (High-pass Filter) for Sharpening 

blurred_image = cv2.GaussianBlur(image, (5, 5), 0) 

sharpened_image_unsharp = cv2.addWeighted(image, 

2, blurred_image, -1, 0) 

 

# High-Boost Filtering for Sharpening 

A = 2 # Adjust this value for the desired sharpening 

strength 

 

 

 

 

The Laplacian filter enhances edges by 

calculating the Laplacian of the image. 

Unsharp masking subtracts a blurred version of 

the image from the original to enhance details. 

High-boost filtering allows you to adjust the 

sharpening strength using the "A" parameter. 

You can adjust the parameters and experiment 

with different values of "A" to achieve the desired 

sharpening effect. 
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sharpened_image_high_boost = 

cv2.addWeighted(image, A + 1, blurred_image, -A, 0) 

 

# Display the original and sharpened images 

cv2.imshow('Original Image', image) 

cv2.imshow('Laplacian Sharpened Image', 

sharpened_image_laplacian) 

cv2.imshow('Unsharp Masking Sharpened Image', 

sharpened_image_unsharp) 

cv2.imshow('High-Boost Sharpened Image', 

sharpened_image_high_boost) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

5. Border Handling Linear filtering  

When applying linear filters to images in Python using libraries like OpenCV, you may need to handle the borders 

of the image. The border handling methods determine how to handle pixels near the image edges where the filter 

kernel extends beyond the image boundaries. 

import cv2 

import numpy as np 

 

# Load an image 

image = cv2.imread('image.jpg') 

 

# Define a simple 3x3 kernel 

kernel = np.array([[0, 1, 0], 

                   [1, 5, 1], 

                   [0, 1, 0]], dtype=np.float32)  # Example 

kernel, you can define your own 

 

# Normalize the kernel to ensure the sum of its elements 

is 1 

kernel /= kernel.sum() 

 

# Linear filtering with various border handling methods 

filtered_image_replicate = cv2.filter2D(image, -1, 

kernel, borderType=cv2.BORDER_REPLICATE) 

filtered_image_constant = cv2.filter2D(image, -1, 

kernel, borderType=cv2.BORDER_CONSTANT, 

borderValue=(0, 0, 0)) 

filtered_image_wrap = cv2.filter2D(image, -1, kernel, 

borderType=cv2.BORDER_WRAP) 

filtered_image_reflect = cv2.filter2D(image, -1, kernel, 

borderType=cv2.BORDER_REFLECT) 

BORDER_REPLICATE: It replicates the border 

pixels to extend the image. This method is useful when 

you want to maintain the border pixel values. 

 

BORDER_CONSTANT: It pads the image with a 

constant value (specified by borderValue). This is 

useful when you want to set a specific background 

color around the image. 

 

BORDER_WRAP: It wraps the image around as if it's 

a torus, allowing the filter to continue from one edge 

to the opposite edge. 

 

BORDER_REFLECT: It reflects the border pixels, 

which can help reduce artifacts in the filtered image. 
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# Display the results 

cv2.imshow('Original Image', image) 

cv2.imshow('Filtered (Replicate)', 

filtered_image_replicate) 

cv2.imshow('Filtered (Constant)', 

filtered_image_constant) 

cv2.imshow('Filtered (Wrap)', filtered_image_wrap) 

cv2.imshow('Filtered (Reflect)', filtered_image_reflect) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

6. Non-Linear Filtering: 

Explanation: Non-linear filters are image processing techniques that use a non-linear mathematical function to 

process pixel values. Unlike linear filters (e.g., blurring, sharpening), non-linear filters consider neighboring pixel 

values in a non-linear way. 

Real-Life Example: Removing salt-and-pepper noise from a photograph is a common real-life application of non-

linear filtering. 

 

1. Median Filter: 

The median filter replaces each pixel's value with the median value of the pixel values in its neighborhood. 

It's effective for salt-and-pepper noise removal 

2. Minimum Filter (Min Filter): 

The minimum filter replaces each pixel's value with the minimum value among the pixel values in its 

neighborhood. 

3. Maximum Filter (Max Filter): 

The maximum filter replaces each pixel's value with the maximum value among the pixel values in its 

neighborhood. 

4. Bilateral Filter: 

The bilateral filter is a non-linear filter that smooths an image while preserving edges. 

 

# Apply Median Filter 

median_filtered_image = cv2.medianBlur(image, 5)  # Adjust kernel size as needed 

 

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) 

# Apply Minimum Filter 

min_filtered_image = cv2.erode(image, kernel) 

 

# Apply Maximum Filter 

max_filtered_image = cv2.dilate(image, kernel) 

 

# Apply Bilateral Filter 

bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75) 
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Characteristic       Linear Filters        Non-Linear Filters 

Linearity Linear filters apply weighted sums of 

pixel values. The output at a pixel is a 

linear combination of its neighbors. 

Examples include mean, Gaussian, 

Sobel, etc. 

Non-linear filters use non-linear operations on 

pixel values, making the output dependent on 

pixel ranking or other non-linear criteria. 

Examples include median, min, max, bilateral, 

etc. 

Noise Reduction Effective for reducing Gaussian noise 

and blurring an image while preserving 

linear structures. 

Effective for removing non-Gaussian noise 

like salt-and-pepper noise and preserving 

details and edges. 

Edge Preservation Linear filters may smooth or blur edges 

in an image, making them less distinct. 

Non-linear filters are better at preserving edges 

and details while reducing noise. 

Computational 

Complexity 

Generally computationally less 

expensive. 

Can be more computationally intensive, 

especially with large kernels or adaptive 

filtering. 

Common Examples Mean filter, Gaussian filter, Sobel filter, 

Laplacian filter, etc. 

Median filter, Min filter, Max filter, Bilateral 

filter, Adaptive median filter, Non-Local 

Means (NLM) filter, etc. 

Application Commonly used for tasks like basic 

smoothing, blurring, and gradient 

calculation. 

Used for tasks like noise reduction, detail 

preservation, and edge enhancement. 

Sensitivity to Noise May not be effective against impulse 

noise (e.g., salt-and-pepper noise). 

Effective against impulse noise and other non-

Gaussian noise types. 

Control Parameters Typically controlled by filter size and 

kernel weights. 

Controlled by filter size and the specific non-

linear operation (e.g., median, min, max). 

 

7. 1-D & 2-D Sampling 

 

1-D (one-dimensional) sampling is the process of capturing discrete samples or data points along a single continuous 

signal or function. It involves selecting specific points from a continuous signal at regular intervals. These samples can 

be used to represent and analyze the original signal. In essence, 1-D sampling converts a continuous signal into a discrete 

form. 

 

Example: 

Consider a simple 1-D signal representing temperature measurements recorded every hour throughout a day. The 

temperature values are sampled at hourly intervals, resulting in a discrete set of data points. These discrete samples can 

be used for various purposes, such as calculating daily average temperature, detecting trends, or generating temperature 

graphs. 

 

Applications: 

• Audio processing: Sampling audio signals to create digital audio. 

• Environmental monitoring: Sampling sensor data like temperature, humidity, or pollution levels. 

• Stock market data: Sampling stock prices at specific time intervals for analysis. 
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2-D Sampling: 

2-D (two-dimensional) sampling extends the concept of sampling to 2-D images or grids. It involves selecting 

discrete data points (pixels) from a continuous 2-D image at regular intervals. Each data point represents the 

intensity or color at that location in the image. 2-D sampling is essential in digital image processing and computer 

vision. 

 

Example: 

Consider a digital photograph taken with a camera. The camera's sensor samples the incoming light by dividing 

the image into a grid of pixels. Each pixel represents the color and intensity of the scene at that specific location. 

This discrete grid of pixels forms the digital image. 

 

Applications: 

• Digital image processing: Sampling images for manipulation, enhancement, and analysis. 

• Computer vision: Extracting features from images for object recognition and tracking. 

• Satellite imagery: Sampling Earth's surface to create digital maps. 

 

import numpy as np 

import matplotlib.pyplot as plt 

# Continuous signal (e.g., temperature readings) 

continuous_signal = np.array([23.5, 24.0, 23.8, 24.2, 23.7, 24.5, 23.9, 23.6, 24.1, 24.3]) 

 

# Sampling at hourly intervals 

sampled_indices = np.arange(0, len(continuous_signal)) 

sampled_signal = continuous_signal[sampled_indices] 

 

# Create a time axis for plotting 

time_axis = np.arange(0, len(continuous_signal)) 

 

# Plot the continuous signal and sampled points 

plt.figure(figsize=(10, 4)) 

plt.subplot(2, 1, 1) 

plt.plot(time_axis, continuous_signal, marker='o', linestyle='-', color='b') 

plt.title("Continuous 1-D Signal") 

plt.xlabel("Time (hours)") 

plt.ylabel("Temperature") 

 

plt.subplot(2, 1, 2) 

plt.stem(sampled_indices, sampled_signal, basefmt=" ", markerfmt="ro", linefmt="-r") 

plt.title("Sampled 1-D Signal") 

plt.xlabel("Sample Index") 

plt.ylabel("Temperature") 

 

plt.tight_layout() 

plt.show() 
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8. Fourier Transformation in 2D  

The 2D Fourier Transform is a mathematical transformation used in image processing and signal analysis to represent 

an image in the frequency domain. It decomposes an image into a sum of sinusoidal functions, each with a specific 

frequency and phase. This transformation is valuable for tasks such as filtering, compression, and feature extraction. 

Here's how the 2D Fourier Transform works: 

 

Forward 2D Fourier Transform: 

• Input Image: Start with an input image, typically represented as a 2D array of pixel values. The image can be 

in grayscale or color. 

• Spatial Domain: In the spatial domain, the input image represents variations in intensity or color across its two 

dimensions (rows and columns). This domain is where we perceive the image visually. 

• Frequency Domain: The 2D Fourier Transform converts the image from the spatial domain to the frequency 

domain. In the frequency domain, the image is represented as a 2D array of complex numbers, where each 

number corresponds to a specific frequency and phase. 

• Frequency Components: Each complex number in the frequency domain represents a sinusoidal wave. The 

magnitude of the complex number represents the amplitude (strength) of that wave, and the phase represents its 

position relative to the origin. 

 

Inverse 2D Fourier Transform: 

 

• Frequency Domain Data: Start with an image in the frequency domain, represented as a 2D array of complex 

numbers. 

• Inverse Transform: Apply the inverse 2D Fourier Transform to the frequency domain data to convert it back 

to the spatial domain. 

• Reconstructed Image: The result is a reconstructed image that should closely resemble the original input 

image. This reconstructed image can be used for various image processing tasks. 

 

Applications of the 2D Fourier Transform in image processing include: 

• Filtering: Filtering an image in the frequency domain allows for operations like smoothing (low-pass filtering) 

and edge enhancement (high-pass filtering). 

• Compression: Transforming an image into the frequency domain can help reduce redundancy and compress 

the image data. 

• Feature Extraction: Analyzing the frequency components of an image can aid in feature extraction and pattern 

recognition. 

• Image Restoration: Dealing with issues like noise and blurriness by manipulating the frequency domain 

representation. 

• Image Registration: Aligning and matching images by comparing their frequency components. 
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Forward 2D Fourier Transform 

import numpy as np 

import cv2 

import matplotlib.pyplot as plt 

 

# Load the image (grayscale) 

image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE) 

 

# Perform the 2D Fourier Transform 

# converts the image from the spatial domain to the frequency domain 

fourier_transform = np.fft.fft2(image) 

 

# shifting the zero frequency components to the center is a common practice in 2D Fourier Transforms to enhance the  

# interpretability and usefulness of the frequency domain representation, especially for tasks like filtering, analysis, and 

# visualization 

# Shift the zero frequency components to the center 

# We shift the zero frequency components to the center of the spectrum using np.fft.fftshift().  

# This makes it easier to visualize the spectrum 

 

fourier_transform_shifted = np.fft.fftshift(fourier_transform) 

 

# Calculate the magnitude spectrum 

magnitude_spectrum = np.log(np.abs(fourier_transform_shifted) + 1)  # Avoid log(0) by adding 1 

 

# Display the original image and magnitude spectrum 

plt.figure(figsize=(12, 6)) 

plt.subplot(1, 2, 1) 

plt.imshow(image, cmap='gray') 

plt.title('Original Image') 

 

plt.subplot(1, 2, 2) 

plt.imshow(magnitude_spectrum, cmap='gray') 

plt.title('Magnitude Spectrum (log-scaled)') 

 

plt.show() 
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Inverse 2D Fourier Transform: 

import numpy as np 

import cv2 

import matplotlib.pyplot as plt 

 

# Create synthetic frequency domain data (e.g., magnitude spectrum) 

# For this example, we'll create a simple pattern in the frequency domain 

# Replace this with your actual frequency domain data 

frequency_domain_data = np.zeros((256, 256), dtype=float) 

frequency_domain_data[100:120, 150:170] = 255.0 

 

# Perform the inverse 2D Fourier Transform 

spatial_domain_image = np.fft.ifft2(np.fft.ifftshift(frequency_domain_data)).real 

 

# Display the reconstructed spatial domain image 

plt.figure(figsize=(8, 8)) 

plt.subplot(1, 2, 1) 

plt.imshow(frequency_domain_data, cmap='gray') 

plt.title('Frequency Domain Data') 

 

plt.subplot(1, 2, 2) 

plt.imshow(spatial_domain_image, cmap='gray') 

plt.title('Reconstructed Image') 

plt.show() 

 

9. Implementation of 2D Fourier Transform in image processing for Different Applications  

Low Pass Filtering 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Load the image (grayscale) 

image = cv2.imread('input_image.jpg', 

cv2.IMREAD_GRAYSCALE) 

 

# Perform the 2D Fourier Transform 

fourier_transform = np.fft.fft2(image) 

 

# Shift the zero frequency components to the center 

fourier_transform_shifted = np.fft.fftshift(fourier_transform) 

 

# Create a low-pass filter mask 

rows, cols = image.shape 

center_row, center_col = rows // 2, cols // 2 

 

Image Dimensions: 

Let the dimensions of the input image be rows (number 

of rows) and cols (number of columns). 

 

Center Coordinates: 

Calculate the coordinates of the center of the image: 

center_row = rows / 2 (assuming integer division, so it 

rounds down to the nearest integer) 

center_col = cols / 2 

 

Cutoff Frequency: 

Define a cutoff frequency, denoted as 

cutoff_frequency. This value determines the size of the 

low-pass filter and controls the extent of low-

frequency information that will be retained. 
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cutoff_frequency = 30  # Adjust as needed 

mask = np.zeros((rows, cols), dtype=np.uint8) 

mask[center_row - cutoff_frequency:center_row + 

cutoff_frequency + 1, 

     center_col - cutoff_frequency:center_col + 

cutoff_frequency + 1] = 1 

 

# Apply the mask to the Fourier Transform 

filtered_fourier_transform = fourier_transform_shifted * mask 

 

# Perform the inverse Fourier Transform 

filtered_image = 

np.abs(np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform))) 

 

# Display the filtered image 

plt.imshow(filtered_image, cmap='gray') 

plt.title('Low-Pass Filtered Image') 

plt.show() 

Initialize Mask: 

Create an empty mask (filter) with the same 

dimensions as the input image. The mask is initially 

filled with zeros: 

mask is a matrix of size rows x cols, where each 

element is initially set to 0. 

 

Define Filter Region: 

Set a square region within the mask to 1. This square 

region is centered at the image's center and has a size 

determined by the cutoff_frequency: 

 

The region defined with 1 values represents the pass 

region (low-pass filter), allowing low-frequency 

components to pass through. 

Pixels outside this square region remain 0, indicating 

that high-frequency components are suppressed. 

The region is defined as follows: 

 

For the rows: center_row - cutoff_frequency to 

center_row + cutoff_frequency 

For the columns: center_col - cutoff_frequency to 

center_col + cutoff_frequency 

 

Mathematically 

For each element (i, j) in the mask: 

   if (center_row - cutoff_frequency <= i <= center_row + cutoff_frequency) and 

      (center_col - cutoff_frequency <= j <= center_col + cutoff_frequency): 

      mask(i, j) = 1 

   else: 

      mask(i, j) = 0 

 

 

Image Compression 

# Load the image (grayscale) 

image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE) 

# Perform the 2D Fourier Transform  

------- 

# Set a threshold to retain only significant frequency components 

threshold = 1000  # Adjust as needed 

filtered_fourier_transform[abs(filtered_fourier_transform) < threshold] = 0 

# Perform the inverse Fourier Transform to obtain the compressed image 

compressed_image = np.abs(np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform))) 
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# Display the compressed image 

plt.imshow(compressed_image, cmap='gray') 

plt.title('Compressed Image') 

plt.show() 

 

 

Feature Extraction (Magnitude Spectrum) 

# Calculate the magnitude spectrum 

-------- 

# Display the magnitude spectrum 

plt.imshow(magnitude_spectrum, cmap='gray') 

plt.title('Magnitude Spectrum (log-scaled)') 

plt.show() 

 

Image Restoration (Inverse Filtering) 

# Load the degraded image (grayscale) 

degraded_image = cv2.imread('degraded_image.jpg', cv2.IMREAD_GRAYSCALE) 

 

# Perform the 2D Fourier Transform for both the original and degraded images 

-------- 

------- 

 

# Compute the inverse filter in the frequency domain 

epsilon = 1e-6 

inverse_filter = np.divide(fourier_transform_original, fourier_transform_degraded + epsilon) 

 

# Apply the inverse filter to the degraded image in the frequency domain 

restored_image_frequency_domain = fourier_transform_degraded * inverse_filter 

 

# Perform the inverse Fourier Transform to obtain the restored image 

restored_image = np.abs(np.fft.ifft2(restored_image_frequency_domain)) 

 

# Display the degraded and restored images 

plt.figure(figsize=(12, 6)) 

plt.subplot(1, 2, 1) 

plt.imshow(degraded_image, cmap='gray') 

plt.title('Degraded Image') 

 

plt.subplot(1, 2, 2) 

plt.imshow(restored_image, cmap='gray') 

plt.title('Restored Image') 

plt.show() 
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Image Registration (Phase Correlation) 

# Load the reference and target images (grayscale) 

reference_image = cv2.imread('reference_image.jpg', cv2.IMREAD_GRAYSCALE) 

target_image = cv2.imread('target_image.jpg', cv2.IMREAD_GRAYSCALE) 

 

# Perform the 2D Fourier Transform for both images  

---- 

---- 

 

 

# Calculate the cross-power spectrum 

cross_power_spectrum = fourier_transform_reference * np.conj(fourier_transform_target) 

 

# Calculate phase correlation 

phase_correlation = np.fft.ifft2(cross_power_spectrum / (np.abs(cross_power_spectrum) + 1e-6)) 

 

# Find the peak in the phase correlation to estimate translation 

shifted_peak = np.unravel_index(np.argmax(np.abs(phase_correlation)), phase_correlation.shape) 

x_shift, y_shift = shifted_peak[1], shifted_peak[0] 

 

# Apply translation to align the images 

aligned_image = np.roll(target_image, (y_shift, x_shift), axis=(0, 1)) 

 

# Display the reference and aligned images 

plt.figure(figsize=(12, 6)) 

plt.subplot(1, 2, 1) 

plt.imshow(reference_image, cmap='gray') 

plt.title('Reference Image') 

 

plt.subplot(1, 2, 2) 

plt.imshow(aligned_image, cmap='gray') 

plt.title('Aligned Image') 

plt.show() 

 

Image registration, particularly using Phase Correlation, is a technique used in image processing to align or match two or 

more images, often referred to as the "reference" and "target" images. The primary goal is to find the transformation (e.g., 

translation, rotation, scaling) that aligns the target image with the reference image 

• Reference Image and Target Image: You start with two images: the "reference image" and the "target image." 

The reference image is considered the fixed or known image, and the target image is the one you want to align with 

the reference image. 

 

• 2D Fourier Transform: Both the reference and target images undergo a 2D Fourier Transform (2D FFT) 

separately. The 2D FFT converts the images from the spatial domain (pixel values) into the frequency domain. In 

the frequency domain, you can analyze the phase and magnitude spectra of the images. 
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• Phase Correlation: The key concept in Phase Correlation is that the phase of the frequency components in the two 

images is used to estimate the relative displacement (translation) between them. This phase information is invariant 

to changes in lighting conditions and image contrast, making Phase Correlation robust for image alignment. 

 

• Cross-Power Spectrum: Calculate the cross-power spectrum between the Fourier transforms of the reference and 

target images. The cross-power spectrum measures how well the two images are correlated across different 

translations. It highlights peaks in the spectrum, which correspond to translation offsets. 

 

• Inverse Fourier Transform: Apply the inverse Fourier Transform (2D IFFT) to the cross-power spectrum to obtain 

the phase correlation map in the spatial domain. The phase correlation map will have a peak at the location 

corresponding to the translation between the reference and target images. 

 

• Peak Detection: Find the peak in the phase correlation map. The peak's location (usually the coordinates of the 

maximum value) indicates the translation offset needed to align the target image with the reference image. 

 

• Alignment: Apply the calculated translation offset to the target image to align it with the reference image. Common 

transformations include translation, rotation, and scaling. 

 

• Output: The aligned target image is the registered result, aligned with the reference image. 

 

10. Hybrid Images (Computational Photography) 

Hybrid images are a fascinating concept in image processing and computer vision that combines two different images, 

one with high spatial frequencies (fine details) and another with low spatial frequencies (coarse features), to create a 

single image that appears different at different viewing distances. The primary idea behind hybrid images is that human 

vision has different sensitivity to spatial frequencies at various distances. Here's how they work: 

 

High-Pass and Low-Pass Filtering: Two input images are prepared: one contains high-frequency components (fine 

details), and the other contains low-frequency components (coarse features). High-pass filtering extracts the fine details 

from the first image, and low-pass filtering extracts the coarse features from the second image. These filters can be 

Gaussian filters or other frequency-domain filters. 

 

Combining Images: The filtered high-frequency image and the filtered low-frequency image are combined pixel-wise. 

The pixel values of the resulting image are calculated by adding the corresponding pixel values from both filtered 

images. The resulting image contains both coarse and fine details. 

 

Visual Perception: The human visual system perceives images differently depending on viewing distance. When you 

look at a hybrid image from a distance, you primarily perceive the low-frequency components, making it appear as one 

image. As you get closer to the image, the high-frequency components become more noticeable, revealing the details 

present in the high-pass filtered image. 

 

Visual Illusion: Hybrid images create a visual illusion where the image's interpretation changes with viewing distance. 

This effect can be used for various creative and scientific purposes, such as art, perception studies, and image recognition 

experiments. 
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Common examples of hybrid images include faces that appear to switch between two different people when viewed 

from different distances or images that appear as both animals and everyday objects, depending on the viewing distance. 

 

Hybrid images highlight the importance of understanding the human visual system's sensitivity to different spatial 

frequencies and its impact on perception. They provide insights into how we perceive images and can be used for artistic 

and scientific purposes to explore visual perception phenomena. (https://manavm3.web.illinois.edu/cs445/proj1/)  
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Computer Vision Lab                                                                                                   Lab Manual – 04 

 

18 | P a g e  

 

 

 

 

 

 

 

 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Load the two images 

einstein_image = cv2.imread('ents.jpg') 

einstein_image =  cv2.resize(einstein_image, (300,300)) 

newton_image = cv2.imread('ntn.jpg') 

newton_image = cv2.resize(newton_image,(300,300)) 

 

# Convert the images to grayscale 

einstein_gray = cv2.cvtColor(einstein_image, cv2.COLOR_BGR2GRAY) 

newton_gray = cv2.cvtColor(newton_image, cv2.COLOR_BGR2GRAY) 

 

# Apply Gaussian blur to Einstein (low-pass filter) 

einstein_low_pass = cv2.GaussianBlur(einstein_gray, (25, 25), 0) 

 

# Subtract the low-pass image from Newton (high-pass filter) 

#newton_high_pass = newton_gray - einstein_low_pass 

#newton_high_pass = cv2.Laplacian(newton_gray, cv2.CV_64F, (3,3)) 

# Add the low-pass Einstein and high-pass Newton to create the hybrid image 

# Perform 2D Fourier Transform 

 

fourier_transform = np.fft.fft2(newton_gray) 

 

# Shift zero frequency components to the center 

fourier_transform_shifted = np.fft.fftshift(fourier_transform) 

 

# Define the size of the high-pass filter kernel (e.g., a Laplacian kernel) 

kernel_size = 5 

 

# Create a high-pass filter mask 

rows, cols = newton_gray.shape 

center_row, center_col = rows // 2, cols // 2 

mask = np.ones((rows, cols), dtype=np.uint8) 

mask[center_row - kernel_size:center_row + kernel_size + 1, 

     center_col - kernel_size:center_col + kernel_size + 1] = 0 
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# Apply the mask to the Fourier Transform 

filtered_fourier_transform = fourier_transform_shifted * mask 

 

# Perform the inverse Fourier Transform to obtain the high-pass image 

high_pass_image = np.fft.ifft2(np.fft.ifftshift(filtered_fourier_transform)).real 

 

hybrid_image = einstein_low_pass + high_pass_image 

 

# Display the original images and the hybrid image 

plt.figure(figsize=(12, 6)) 

plt.subplot(1, 3, 1) 

plt.imshow(einstein_low_pass, cmap='gray') 

plt.title('Einstein (Low-Frequency)') 

 

plt.subplot(1, 3, 2) 

plt.imshow(newton_high_pass, cmap='gray') 

plt.title('Newton (High-Frequency)') 

 

plt.subplot(1, 3, 3) 

plt.imshow(hybrid_image, cmap='gray') 

plt.title('Hybrid Image') 

 

plt.tight_layout() 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tasks 

1. Complete the above codes where the lines are missing. 

2. Linear Filtering: 

• Implement a Gaussian blur filter using convolution for image smoothing. 

• Apply a Sobel filter to perform edge detection on a grayscale image. 

• Perform image sharpening using the Laplacian filter. 
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• Implement a mean filter for noise reduction in an image. 

3. Non-Linear Filtering: 

• Develop a median filter for removing salt-and-pepper noise from an image. 

• Apply a max filter to perform dilation on a binary image. 

• Implement a min filter to perform erosion on a binary image. 

• Create a bilateral filter for edge-preserving smoothing. 

• Implement an adaptive median filter for noise reduction while preserving edges. 

4. Fourier Transformations:  

• Calculate the 1D Fourier Transform of a signal and visualize its magnitude and phase spectra. 

• Apply a 2D Fourier Transform to an image and display its magnitude spectrum. 

• Implement a high-pass filter in the frequency domain to emphasize edges in an image. 

• Perform image compression using the Fourier Transformation 

5. Hybrid Images:  

• Create a hybrid image from two input images with different spatial frequencies. 

• Experiment with different combinations of high-pass and low-pass filters for hybrid image creation. 

• Generate a hybrid image that exhibits a strong visual illusion when viewed from different distances. 

• Investigate how changing the filter parameters affects the perception of a hybrid image. 

• Analyze the trade-offs between high and low-frequency components in hybrid images for various 

applications. 

 


