

National University of Computer & Emerging Sciences, Karachi

Artificial Intelligence-School of Computing

Fall 2024, Lab Manual - 01

Course Code: Course: Computer Vision Lab

Instructor(s): Sohail Ahmed

Objectives:

1. Introduction to Computer Vision & Computer Vision Applications

2. Essential Libraries for CV

3. Digital Image & Image Coordinates

4. Digital Image Processing System

5. Image Operations

Introduction to Computer Vision

Computer vision is a multidisciplinary field of study and technology that focuses on enabling computers to interpret, analyze, and

understand visual information from the world, much like humans do. It involves the development of algorithms, models, and techniques

that allow computers to extract meaningful information from images or videos, and then make decisions or take actions based on that

information.

Technically, computer vision involves a range of tasks, including image and video processing, feature extraction, pattern recognition,

object detection, tracking, image segmentation, scene understanding, and more. It often utilizes techniques from various domains such

as machine learning, image processing, artificial intelligence, and statistical modeling to interpret visual data and derive useful insights

or actions from it.

In essence, computer vision aims to bridge the gap between the visual information captured by cameras or sensors and the understanding

and decision-making capabilities of computers. This technology finds applications in various fields, including autonomous vehicles,

medical imaging, surveillance, robotics, augmented reality, and many others.

Basic Terminology

1. Image: A 2D array of pixels representing visual information.

2. Pixel: Short for "picture element," it's the smallest unit of an image. Each pixel carries color and intensity information.

3. Resolution: The dimensions of an image, typically expressed in pixels (e.g., 1920x1080).

4. Grayscale: An image where each pixel represents only intensity, typically ranging from 0 (black) to 255 (white).

5. RGB: Stands for Red, Green, Blue. It's a common color representation where each pixel is composed of values for these three

primary colors.

6. Feature: A distinctive part of an image, used for identifying and distinguishing objects.

7. Feature Extraction: The process of identifying and isolating relevant features from an image, often using filters or algorithms.

8. Edge Detection: Identifying boundaries or transitions between different regions in an image.

9. Object Detection: Identifying and localizing specific objects within an image or video frame.

10. Segmentation: Dividing an image into meaningful segments or regions, often used for separating objects from the background.

11. Image Processing: Manipulating and enhancing images to improve their quality or extract useful information.

12. Convolutional Neural Network (CNN): A type of deep learning model designed to process grid-structured data, like images.

CNNs use convolutional layers to automatically learn hierarchical features.

13. Deep Learning: A subset of machine learning that uses neural networks with multiple layers to model and solve complex

tasks.

14. Feature Map: Output maps generated by applying convolutional filters to an image.

15. Object Recognition: Identifying and classifying objects within an image or video.

16. Classification: Assigning a label or category to an input image, such as identifying whether an image contains a cat or a dog.

17. Image Registration: Aligning multiple images of the same scene or object to a common coordinate system.

18. Optical Flow: Estimating the motion of objects between consecutive frames in a video.

19. Tracking: Following the movement of objects across multiple frames in a video.

20. Homography: A transformation that relates two images of the same planar surface.

21. Feature Descriptor: A compact representation of a feature that can be used for matching or recognition.

22. Histogram: A representation of the distribution of pixel intensities in an image.

23. SIFT (Scale-Invariant Feature Transform): An algorithm for detecting and describing local features in images.

24. SURF (Speeded-Up Robust Features): A feature detection and description algorithm similar to SIFT but faster.

25. HOG (Histogram of Oriented Gradients): A feature descriptor used for object detection and recognition.

Applications of Computer Vision

1. Autonomous Vehicles: Computer vision enables self-driving cars to perceive their environment, recognize obstacles,

pedestrians, traffic signs, and lane markings, and make real-time driving decisions.

2. Medical Imaging: Computer vision assists in medical diagnosis through techniques like image segmentation, tumor detection,

and anomaly identification in various medical imaging modalities, including X-rays, MRI, CT scans, and more.

3. Robotics: Robots can use computer vision to navigate and interact with their surroundings, grasp objects, and perform tasks

that require visual understanding.

4. Object Detection and Recognition: Computer vision is used to identify and categorize objects within images or videos,

enabling applications like security surveillance, retail analytics, and inventory management.

5. Facial Recognition: This technology is employed for authentication, security, and human-computer interaction, such as

unlocking devices or verifying identities.

6. Augmented Reality (AR) and Virtual Reality (VR): Computer vision enhances AR and VR experiences by overlaying digital

content onto the real world and enabling interactions with virtual environments.

Essential Libraries for Computer Vision

✓ OpenCV

✓ Scikit-Image

✓ Pillow (PIL Fork)

✓ TorchVision

✓ TensorFlow

✓ Keras

✓ OpenVINO

✓ PyTorch

✓ Hugging Face

✓ Caffe

✓ Detectron2

Reading: https://www.superannotate.com/blog/computer-vision-libraries

https://www.superannotate.com/blog/computer-vision-libraries

Tabular comparison of the libraries for computer vision:

Library Main Focus Framework Language Level of

Abstraction

Communi

ty

Support

Integration with

Deep Learning

Frameworks

OpenCV General CV

tasks

Independent C++, Python High Strong Integration via

Python bindings

Scikit-Image Image

processing

Independent Python Medium Moderate Integration with

NumPy, Matplotlib

Pillow Image

processing

Independent Python Low Moderate Basic integration,

image processing

TorchVision CV for PyTorch PyTorch Python High Strong Native integration

with PyTorch

TensorFlow General ML,

incl. CV

TensorFlow Python High Strong Native integration

with TensorFlow

Keras High-level

neural networks

TensorFlow,

Theano (legacy)

Python High Strong (for

TensorFlo

w

backend)

High-level API, now

part of TensorFlow

OpenVINO CV inference

optimization

Intel C++, Python High Moderate Integration with

various frameworks

PyTorch General ML,

incl. CV

PyTorch Python High Strong Native integration

Hugging Face NLP and CV

models

PyTorch,

TensorFlow

Python High Strong Pretrained models,

NLP focus

Caffe Deep learning

framework

Caffe C++ Medium Moderate Focus on CNNs

Detectron2 Object

detection

PyTorch Python High Strong Specialized in object

detection

Digital Image and Image Coordinates

Digital Image

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f

at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f

are all finite, discrete quantities, we call the image a digital image.

Image Coordinates

Digital Image Processing System

In computer science, digital image processing uses algorithms to perform image processing on digital images to extract some useful

information. Digital image processing has many advantages as compared to analog image processing. Wide range of algorithms can be

applied to input data which can avoid problems such as noise and signal distortion during processing. As we know, images are defined

in two dimensions, so DIP can be modeled in multidimensional systems.

Purpose of Image processing

The main purpose of the DIP is divided into following 5 groups:

1. Visualization: The objects which are not visible, they are observed.

2. Image sharpening and restoration: It is used for better image resolution.

3. Image retrieval: An image of interest can be seen

4. Measurement of pattern: In an image, all the objects are measured.

5. Image Recognition: Each object in an image can be distinguished.

Fundamental Steps of Digital Image Processing:

1. Image Acquisition

Image acquisition is the first step of the fundamental steps of DIP. In this stage, an image is given in the digital form. Generally,

in this stage, pre-processing such as scaling is done.

2. Image Enhancement

Image enhancement is the simplest and most attractive area of DIP. In this stage details which are not known, or we can say

that interesting features of an image is highlighted. Such as brightness, contrast, etc...

3. Image Restoration

Image restoration is the stage in which the appearance of an image is improved.

4. Color Image Processing

Color image processing is a famous area because it has increased the use of digital images on the internet. This includes color

modeling, processing in a digital domain, etc....

5. Wavelets and Multi-Resolution Processing

In this stage, an image is represented in various degrees of resolution. Image is divided into smaller regions for data compression

and for the pyramidal representation.

6. Compression

Compression is a technique which is used for reducing the requirement of storing an image. It is a very important stage because

it is very necessary to compress data for internet use.

Figure 1 Digital Image Processing System

7. Morphological Processing

This stage deals with tools which are used for extracting the components of the image, which is useful in the representation

and description of shape.

8. Segmentation

In this stage, an image is a partitioned into its objects. Segmentation is the most difficult tasks in DIP. It is a process which

takes a lot of time for the successful solution of imaging problems which requires objects to identify individually.

9. Representation and Description

Representation and description follow the output of the segmentation stage. The output is a raw pixel data which has all points

of the region itself. To transform the raw data, representation is the only solution. Whereas description is used for extracting

information's to differentiate one class of objects from another.

10. Object recognition

In this stage, the label is assigned to the object, which is based on descriptors.

11. Knowledge Base

Knowledge is the last stage in DIP. In this stage, important information of the image is located, which limits the searching

processes. The knowledge base is very complex when the image database has a high-resolution satellite.

Basic Image Operations

Reading and Displaying an Image

Grayscale Conversion

import cv2

image = cv2.imread('image.png')

cv2.imshow('Image', image)

Wait for a key press (0 means

indefinitely)

cv2.waitKey(0)

Close all OpenCV windows

cv2.destroyAllWindows()

Description:

This code uses OpenCV to read

an image from a file called

'image.png' and displays it in a

window. cv2.imshow() displays

the image, and cv2.waitKey(0)

waits for a key press before

closing the window.

import cv2

image = cv2.imread('image.jpg')

Convert to grayscale

gray_image = cv2.cvtColor(image,

cv2.COLOR_BGR2GRAY)

cv2.imshow('Grayscale Image',

gray_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

Description: This code converts

the loaded color image to grayscale

using cv2.cvtColor(). The

parameter

cv2.COLOR_BGR2GRAY

specifies the color conversion type.

Resizing an Image

Drawing Shapes on an Image

Image Filtering (Blur)

Cropping an Image

Resize the image

new_size = (300, 200)

resized_image = cv2.resize(image,

new_size)

Description:

This code resizes the image to a new

size of (300, 200) pixels using

cv2.resize().

.

Create a blank image

image = np.zeros((300, 400, 3),

dtype=np.uint8)

Draw a red rectangle

cv2.rectangle(image, (50, 50), (200, 150), (0,

0, 255), -1)

Draw a green circle

cv2.circle(image, (300, 200), 50, (0, 255, 0),

-1)

Description:

This code creates a blank image and

uses cv2.rectangle() and cv2.circle()

to draw a red rectangle and a green

circle on it.

.

Apply Gaussian blur

blurred_image = cv2.GaussianBlur(image,

(5, 5), 0)

Description:

This code applies Gaussian blur to the image

using cv2.GaussianBlur() to reduce noise

and smooth the image. The (5, 5) parameter

is the kernel size, and 0 is the standard

deviation.

import cv2

import numpy as np

image = cv2.imread('image.jpg')

Crop a region of interest (ROI)

roi = image[100:300, 150:350]

cv2.imshow('Cropped Image', roi)

Description:

This code uses NumPy array slicing to

crop a region of interest (ROI) from

the image.

Adding Text to an Image

Analyzing Image Pixel Values with Pandas

import cv2

import numpy as np

#image = np.zeros((300, 800, 3),

dtype=np.uint8)

image = cv2.imread('image.png')

Set the target width and height

target_width = 800

target_height = 600

Resize the image

resized_image = cv2.resize(image,

(target_width, target_height))

Add text

text = "This is Computer Vision Lab"

font = cv2.FONT_HERSHEY_SIMPLEX

cv2.putText(resized_image, text, (50, 150),

font, 1.5, (0, 0, 255), 2)

cv2.imshow('Text on Image',

resized_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

This code adds text to a

blank image using

cv2.putText(). You can

specify the font, text

position, size, color, and

thickness.

.

import cv2

import pandas as pd

image = cv2.imread('image.jpg')

Convert image to DataFrame

image_df = pd.DataFrame(image.reshape(-

1, 3), columns=['B', 'G', 'R'])

Display basic statistics

print("Basic Statistics of Image Pixel

Values:")

print(image_df.describe())

Description:

This code converts the image

pixel values into a Pandas

DataFrame and calculates

basic statistics (mean, std,

min, max, etc.) of the color

channels.

Image Thresholding

Image Rotation

Image Blending (Addition)

import cv2

import pandas as pd

image = cv2.imread('image.jpg')

ret, thresholded_image =

cv2.threshold(image, 150, 255,

cv2.THRESH_BINARY)

cv2.imshow('Threshold Image',

thresholded_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

This code converts a grayscale

image into a binary image using

thresholding. Pixels with values

above 127 become white (255), and

those below become black (0).

import cv2

image = cv2.imread('image.png')

Rotate the image

rotation_matrix =

cv2.getRotationMatrix2D((image.shape[1] /

2, image.shape[0] / 2), 45, 1)

rotated_image = cv2.warpAffine(image,

rotation_matrix, (image.shape[1],

image.shape[0]))

cv2.imshow('Rotated Image',

rotated_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

This code rotates the image by 45

degrees using an affine

transformation.

import cv2

import numpy as np

Load the two images

image1 = cv2.imread('image1.jpg')

image2 = cv2.imread('image2.jpg')

Ensure both images are the same size

image1 = cv2.resize(image1, (image2.shape[1],

image2.shape[0]))

Blend the images using the addition method

blended_image = cv2.add(image1, image2)

#display the image

Description:

This code blends

two images by

linearly

combining them

with specified

weights.

Histogram Equalization

Bitwise Operations

import cv2

image = cv2.imread('image.jpg',

cv2.IMREAD_GRAYSCALE)

Apply histogram equalization

equalized_image = cv2.equalizeHist(image)

cv2.imshow('Equalized Image',

equalized_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

This code enhances the

contrast of a grayscale image

using histogram

equalization..

import cv2

import numpy as np

Load the original image

image = cv2.imread('image.png')

height, width, _ = image.shape

Create a binary mask image (white rectangle on a

black background)

mask = np.zeros((height, width), dtype=np.uint8)

cv2.rectangle(mask, (100, 100), (400, 300), 255, -1)

Perform bitwise operations

bitwise_and = cv2.bitwise_and(image, image,

mask=mask)

bitwise_or = cv2.bitwise_or(image, image,

mask=mask)

bitwise_xor = cv2.bitwise_xor(image, image,

mask=mask)

bitwise_not = cv2.bitwise_not(image, mask=mask)

Display the original image and the results

cv2.imshow('Original Image', image)

cv2.imshow('Mask', mask)

cv2.imshow('Bitwise AND', bitwise_and)

cv2.imshow('Bitwise OR', bitwise_or)

cv2.imshow('Bitwise XOR', bitwise_xor)

cv2.imshow('Bitwise NOT', bitwise_not)

cv2.waitKey(0)

cv2.destroyAllWindows()

Description:

In this code, we first load the original image "image.png". We then

create a binary mask image with a white rectangle on a black

background using np.zeros() and cv2.rectangle(). The mask defines the

region where the bitwise operations will be applied.

The code performs bitwise AND, OR, XOR, and NOT operations on the

original image using the mask. The results are displayed using

cv2.imshow().

We create a binary mask image using np.zeros() with the same

dimensions as the loaded image. This creates a black image with the

same height and width. Then, we draw a white rectangle on this mask

using cv2.rectangle(). The (100, 100) coordinate is the top-left corner of

the rectangle, (400, 300) is the bottom-right corner, and 255 is the color

value for white. The -1 parameter means we want the rectangle to be

filled.

Lab Tasks:

1. Grocery List: Your task is to create a simple program to manage a grocery list. Your program should allow the user to add

items to the list, remove items, and display the current list of items. Write a Python program that implements this grocery list

management system.

2. Student Record System: Your task is to build a simple student record system. Each student is identified by their student ID,

and you need to store their names and corresponding grades. Your program should allow adding students, updating their grades,

and displaying the student records. Write a Python program that implements this student record system using a dictionary.

3. Load an image from file and display it, convert to grayscale, resize it to specific size using OpenCV.

4. Create a blank image and draw basic shapes like rectangles and circles on it using OpenCV.

5. Load an image and apply Gaussian blur, crop at specific region using OpenCV, NumPy array slicing.

6. Load an image and add text to it using OpenCV, repeat this for creating a blank image and add text on that as well.

7. Load a grayscale image and apply binary thresholding to it and the rotate at 600 using OpenCV.

8. Load two images and blend them using OpenCV, and the convert it to grayscale and apply histogram equalization to enhance

contrast.

9. Create binary images and perform bitwise AND, OR, XOR, and NOT operations using OpenCV and NumPy.

10. Load an image and convert its pixel values to a Pandas DataFrame, then analyze basic statistics, also apply a mask to it using

bitwise AND operation.

Note: Use Subplot function where more than one image is required to be displayed/shown.

