Ethereum SLIP-39 Account Generation

Perry Kundert
2021-12-20 10:55:00

Creating Ethereum, Bitcoin and other accounts is complex and fraught
with potential for loss of funds.

A BIP-39 seed recovery phrase helps, but a single lapse in security dooms
the account (and all derived accounts, in fact). If someone finds your recovery
phrase (or you lose it), the accounts derived from that seed are gone.

The SLIP-39 standard allows you to split the seed between 1, 2, or more
groups of several mnemonic recovery phrases. This is better, but creating
such accounts is difficult; presently, only the Trezor supports these, and they
can only be created "manually". Writing down 5 or more sets of 20 words is
difficult, error-prone and time consuming.

The [python-slip39| project exists to assist in the safe creation and docu-
mentation of Ethereumm HD Wallet| seeds and derived accounts, with various
SLIP-39 sharing parameters. It generates the new random wallet seed, and
generates the expected standard Ethereum account(s) (at derivation path
m/44°/60°/0°/0/0 by default) and Bitcoin accounts (at derivation path
m/84°/0°/0°/0/0 by default), with wallet address and QR code (compatible
with Trezor derivations). It produces the required SLIP-39 phrases, and out-
puts a single PDF containing all the required printable cards to document
the seed (and the specified derived accounts).

On an secure (ideally air-gapped) computer, new seeds can safely be
generated and the PDF saved to a USB drive for printing (or directly printed
without the file being saved to disk.). Presently, s1ip39 can output example
ETH, BTC, LTC and DOGE addresses derived from the seed, to illustrate
what accounts are associated with the backed-up seed. Recovery of the seed
to a Trezor is simple, by entering the mnemonics right on the device.

Contents

1 Security with Availability| 2

https://github.com/pjkundert/python-slip39.git
https://wolovim.medium.com/ethereum-201-hd-wallets-11d0c93c87
https://medium.com/myetherwallet/hd-wallets-and-derivation-paths-explained-865a643c7bf2

[I.1 Shamir’s Secret Sharing System (SSSS)[. 3

2 SLIP-39 Account Creation, Recovery and Address Genera- |

[_tionl 4
[2.1 Creating New SLIP-39 Recoverable Seeds| 4
[2.2 Recovery & Re-Creation| 6
2.3 Generation of Addresses| L. 9
2.4 The s1lip39 module API} 11

B __Conversion from BIP-39 to SLIP-39| 13
[3.1 BIP-39 vs. SLIP-39 Incompatibility|. 13
(3.2 BIP-39 vs SLIP-39 Key Derivation Summary| 17

4 Building & Installing| 18
[4.1 The s1ip39 Modul¢| oL 18
[4.2 The s1ip39 GUI 18

[> Dependencies] 19
[>.1 'The python-shamir-mnemonic APIf. 19

1 Security with Availability

For both BIP-39 and SLIP-39, a 128-bit random "seed" is the source of
an unlimited sequence of Ethereum HD Wallet accounts. Anyone who can
obtain this seed gains control of all Ethereum, Bitcoin (and other) accounts
derived from it, so it must be securely stored.

Losing this seed means that all of the HD Wallet accounts are perma-
nently lost. Therefore, it must be backed up reliably, and be readily acces-
sible.

Therefore, we must:

e Ensure that nobody untrustworthy can recover the seed, but

e Store the seed in many places with several (some perhaps untrustwor-
thy) people.

How can we address these conflicting requirements?

1.1 Shamir’s Secret Sharing System (SSSS)

Satoshi Lab’s (Trezor) SLIP-39 uses SSSS to distribute the ability to recover
the key to 1 or more "groups". Collecting the mnemonics from the required
number of groups allows recovery of the seed. For BIP-39, the number of
groups is always 1, and the number of mnemonics required for that group is
always 1.

For SLIP-39, a "group _threshold" of how many groups must bet success-
fully collected to recover the key. Then key is (conceptually) split between 1
or more groups (not really; each group’s data alone gives away no information
about the key).

For example, you might have First, Second, Fam and Frens groups, and
decide that any 2 groups can be combined to recover the key. Each group
has members with varying levels of trust and persistence, so have different
number of Members, and differing numbers Required to recover that group’s

data:
Group Required Members Description
First 1/ 1 Stored at home
Second 1 /1 Stored in office safe
Fam 2/ 4 Distributed to family members
Frens 2 / 6 Distributed to friends and associates

The account owner might store their First and Second group data in their
home and office safes. These are 1/1 groups (1 required, and only 1 member,
so each of these are3 1-card groups.)

If the account needs to be recovered, collecting the First and Second
cards from the home and office safe is sufficient to recover the seed, and
re-generate the HD Wallet accounts.

Only 2 Fam member’s cards must be collected to recover the Fam group’s
data. So, if the HD Wallet owner loses their home and First group card in a
fire, they could get the Second group card from the office safe, and 2 cards
from Fam group members, and recover the wallet.

If catastrophe strikes and the owner dies, and the heirs don’t have access
to either the First (at home) or Second (at the office), they can collect 2 Fam
cards and 2 Frens cards (at the funeral, for example), completing the Fam
and Frens groups’ data, and recover the HD Wallet account. Since Frens are
less likely to persist long term (and are also less likely to know each-other),
we’ll require a lower proportion of them to be collected.

https://github.com/satoshilabs/slips/blob/master/slip-0039.md

2 SLIP-39 Account Creation, Recovery and Address
Generation

Generating a new SLIP-39 encoded seed is easy, with results available as PDF
and text. Any number of accounts can be generated from this seed, and it
can be recovered by collecting the desired groups of recover card phrases.
The default recovery groups are as described above.

2.1 Creating New SLIP-39 Recoverable Seeds

This is what the first page of the output SLIP-39 mnemonic cards PDF looks
like:

Run the following to obtain a PDF file containing index cards with the
default SLIP-39 groups for a new account seed named "Personal"; insert a
USB drive to collect the output, and run:

$ python3 -m pip install slip39 # Install slip39 in Python3

$ cd /Volumes/USBDRIVE/ # Change current directory to USB

$ python3 -m slip39 Personal # Or just run "slip39 Personal"

2021-12-25 11:10:38 slip39 ETH m/44°/60°/0°/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2021-12-25 11:10:38 slip39 Wrote SLIP-39-encoded wallet for ’Personal’ to:\

Personal-2021-12-22+15.45.36-0xb44A2011A99596671d5952CdC22816089f142FB3. pdf

The resultant PDF will be output into the designated file.

This PDF file can be printed on 3x5 index cards, or on regular paper or
card stock and the cards can be cut out (--card credit , business, and
half (page) are also available, as well as custom " (<h>,<w>) ,<margin>").

To get the data printed on the terminal as in this example (so you could
write it down on cards instead), add a -v (to see it logged in a tabular
format), or --text to have it printed to stdout in full lines (ie. for pipelining
to other programs).

2.1.1 s1ip39 Synopsis
The full command-line argument synopsis for s1ip39 is:
s1ip39 --help | sed ’s/~/: /’> # (just so output formatting looks correct)

usage: s1ip39 [-h] [-v] [-q] [-o OUTPUT] [-t THRESHOLD] [-g GROUP] [-f FORMAT]
[-c CRYPTOCURRENCY] [-j JSON] [-s SECRET] [--bits BITS]
[--passphrase PASSPHRASE] [-C CARD] [--paper PAPER] [--no-card]
[--text]
[names ...]

Create and output SLIP39 encoded Ethereum wallet(s) to a PDF file.

qeadax p1 I93eayl L

uoT3ieINp 0z 3Iuanead €1 aseiq 9

spTdex g1 I2sexd Z1 uiope g

9DTTS 81 9SeaIdUT T paieds p

E Abasua [T xsex 01 oTWRIdID ¢

-. Asejuey 91 AFTIUSPT 6 orrIeb g

= *..._m._n FuTey ST weoqas § IRTIF T

dgnpzapauediebdzeogyusgiziebosih 129 0040 0nrean 018
LE6LYS159396ER0L IEBSIP6EIPARISE0RY L LAVZEAD O/ /0S4 PP H1T

(a/z)ueid ‘(prz)ue ‘(1)puodes ‘(1 15 sdnoib y jo Z mm Jenoosy

[euos.ad :10} (p/2)wed 6£dINS

[V] E eTosnu ¥y I03TPa [
v 2ITsap 0z Mmoagaka g1 yeads g9

PUTTq 61 TeaTa g1 I23ybnep g

WOpPSTM 8] 9IBTO9P 1T I93S01

azenbs [T uap1ob 01 oTweIad ¢

abueyoxa 91 AIeurpio ¢ oTTIReb 7

r.-..E asuodsax g7 I2&Ip 8 aeTaI¥ 1

ag vau 019
LEELYS 159396EPD £ AEBSPEEIPABISCORYL LAVZRXO 0/ 0N M09 P¥/W HI3

(a/z)usiy “(g/z)we (1)puoaas ‘(1)isn4 sdnoib ¢ jo Z /m 18acdey

[euosiad 10} (p/1)wed 6£dINS

TTeIaA0 §1 AysTo0S |

381098 07 1eOTI €T JBTaARIL 9
3dTIos g1 9OUSTOTA ZT Auedwod g
jusumoop 8T PTeIsWS T duwox %
ToyooTe LT BUTYSTI 01 paeaq ¢
Butyows 91 oTwsptde 6 orTIeb z
Tnos g1 3saaaey g IeTIy 1

gnpgpediebdzsopunfiziebosigh 129 00010 veM D18
1B6 1Y 1 59396ER0 L SRS IEEEIPARISE0RY L LAVZEAD 0/ 0AOAPPAY HLT

({g/z)usly ‘(p/z)wed '(1)puosss (1)isti4 sdnoib ¢ jo z /m Jenooay
[euosiad :10} (1/1)puodss 6EdINS

g E swreuIasn pI uosess [
v PTqIo3 QT 3Tq £1 STWERISD §
E- ..E USTUTWTP 61 3TaTds ZT 2qTIdssp §
aouasaxd g1 Kanl 171 duwox §
E utejunow /1 A3Tsaqo 01 Jeqoioe ¢
K3et00S 97 oACW § oTTIeb 7
31ds g1 Aousapusl g IeTIF 1

danyon o éw 018

VEE1YS 159I96EPD LAEASIPEEIPABISCORYL LAVZEX 0/0L 009 PE/W HIS

(o/g)usid ‘(p/z)we ‘(1)puoaag ‘(1)isn4 sdnoib ¢ jo Z /m 18a0d8y
leuosiad :10} (L/L)1si1d 6EMITS

SLIP39 Cards PDF (from --secret ffff...ffff)

Figure 1

positional arguments:
names Account names to produce

optional arguments:

-h, --help show this help message and exit
-v, --verbose Display logging information.
-q, --quiet Reduce logging output.

-o OUTPUT, --output OUTPUT
Output PDF to file or ’-’ (stdout); formatting w/ {’,
’>.join(FILENAME_KEYWORDS)} allowed

-t THRESHOLD, --threshold THRESHOLD
Number of groups required for recovery (default: half
of groups, rounded up)

-g GROUP, --group GROUP
A group namel[[<require>/]<size>] (default: <size> = 1,
<require> = half of <size>, rounded up, eg.
’Frens(3/5)°).

-f FORMAT, --format FORMAT
Specify default crypto address formats: legacy,
segwit, bech32; default ETH:legacy, BTC:bech32,
LTC:bech32, DOGE:legacy

-c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
A crypto name and optional derivation path
(?../<range>/<range>’ allowed); defaults:
ETH:m/44°/60°/0°/0/0, BTC:m/84°/0°/0°/0/0,
LTC:m/84°/2°/0°/0/0, DOGE:m/44°/3°/0°/0/0

-j JSON, --json JSON Save an encrypted JSON wallet for each Ethereum
address w/ this password, ’-’ reads it from stdin
(default: Nomne)

-s SECRET, --secret SECRET
Use the supplied 128-, 256- or 512-bit hex value as

the secret seed; ’-’ reads it from stdin (eg. output
from slip39.recover)
--bits BITS Ensure that the seed is of the specified bit length;

128, 256, 512 supported.
--passphrase PASSPHRASE
Encrypt the master secret w/ this passphrase, ’-’
reads it from stdin (default: None/’’)
-C CARD, --card CARD Card size; credit, index, business, half or
> (<h>,<w>) ,<margin>’ (default: index)

--paper PAPER Paper size (default: Letter)
--no-card Disable PDF SLIP-39 mnemonic card output
--text Enable textual SLIP-39 mnemonic output to stdout

2.2 Recovery & Re-Creation

Later, if you need to recover the wallet seed, keep entering SLIP-39 mnemon-
ics into slip39-recovery until the secret is recovered (invalid/duplicate
mnemonics will be ignored):

$ python3 -m slip39.recovery # (or just "slip39-recovery")
Enter 1st SLIP-39 mnemonic: ab c

Enter 2nd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...

Enter 3rd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...
Enter 4th SLIP-39 mnemonic: veteran guilt beard romp dragon island merit burden aluminum worthy ...
2021-12-25 11:03:33 slip39.recovery Recovered SLIP-39 secret; Use: python3 -m slip39 --secret
383597£d63547e7c9525575decd413£7

Finally, re-create the wallet seed, perhaps including an encrypted JSON
wallet file for import of some accounts into a software wallet:

s1ip39 --secret 383597fd63547e7c9525575decd413f7 --json password 2>&1

2022-01-31 15:31:18 sl1ip39 It is recommended to not use ’-s|--secret <hex>’; specify ’-’ to read from inp
2022-01-31 15:31:18 slip39 ETH m/44°/60°/0°/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2022-01-31 15:31:18 slip39 BTC m/84°/0°/0°/0/0 : beclqcupw7k8enymvvsa7w3bjbhqdergtvus3zk8a8s
2022-01-31 15:31:18 slip39 It is recommended to not use ’-j|--json <password>’; specify ’-’ to read from
2022-01-31 15:31:19 slip39 Wrote JSON SLIP39’s encrypted ETH wallet 0xb44A2011A99596671d5952CdC22816089f1
2022-01-31 15:31:19 slip39 Wrote SLIP39-encoded wallet for ’SLIP39’ to: SLIP39-2022-01-31+15.31.18-ETH-0x

2.2.1 slip39.recovery Synopsis

slip39-recovery --help | sed ’s/~/: /’> # (just so output formatting looks correct)
usage: slip39-recovery [-h] [-v] [-q] [-b] [-m MNEMONIC] [-p PASSPHRASE]
Recover and output secret seed from SLIP39 or BIP39 mnemonics

optional arguments:

-h, --help show this help message and exit

-v, --verbose Display logging information.

-q, --quiet Reduce logging output.

-b, --bip39 Recover 512-bit secret seed from BIP-39 mnemonics

-m MNEMONIC, --mnemonic MNEMONIC
Supply another SLIP-39 (or a BIP-39) mnemonic phrase
-p PASSPHRASE, --passphrase PASSPHRASE
Decrypt the master secret w/ this passphrase, ’-’
reads it from stdin (default: None/’’)

If you obtain a threshold number of SLIP-39 mnemonics, you can recover the original
secret seed, and re-generate one or more Ethereum wallets from it.

Enter the mnemonics when prompted and/or via the command line with -m |--mnemonic "...
The master secret seed can then be used to generate a new SLIP-39 encoded wallet:
python3 -m sl1ip39 --secret = "ab04...7f"

BIP-39 wallets can be backed up as SLIP-39 wallets, but only at the cost of 59-word SLIP-39
mnemonics. This is because the *output* 512-bit BIP-39 seed must be stored in SLIP-39 -- not the
input 128-, 160-, 192-, 224-, or 256-bit entropy used to create the original BIP-39 mnemonic
phrase.

2.2.2 Pipelining slip39.recovery | slip39 --secret -

The tools can be used in a pipeline to avoid printing the secret. Here we generate some mnemonics,
sorting them in reverse order so we need more than just the first couple to recover. Observe the
Ethereum wallet address generated.

Then, we recover the master secret seed in hex with s1ip39-recovery, and finally send it to
s1lip39 --secret - to re-generate the same wallet as we originally created.

(python3 -m slip39 --text --no-card -v \
| sort -r \
| python3
| python3

2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31
2022-01-31

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

-m slip39.recovery \

-m

31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:

w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(2

busy
universe
cargo
upgrade
ambition
makeup

Second(1/1): Recover w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens/(

bedroom
grumpy
metric
rainbow
scout
laden

groups First(1), Second(1), Fam(2/4), Frens(2/6

taught
finance
payment
ivory
dominant
damage

sheriff
employer
desert
scramble
genius
garlic

task
infant
mental
mansion
step
fangs

visual
graduate
brother
dictate
liberty
capacity

w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(2

slip39 --secret - --no-card -q) 2>&1

20 slip39 First(1/1): Recover

20 slip39 1st 1 voting 8 aviation 15
20 slip39 2 pajamas 9 exclude 16
20 slip39 3 acrobat 10 nuclear 17
20 slip39 4 romp 11 staff 18
20 slip39 5 column 12 injury 19
20 slip39 6 slap 13 regular 20
20 slip39 7 negative 14 require

20 s1ip39

20 slip39 1st 1 voting 8 justice 15
20 slip39 2 pajamas 9 volume 16
20 slip39 3 beard 10 express 17
20 slip39 4 romp 11 index 18
20 slip39 5 always 12 require 19
20 slip39 6 mortgage 13 premium 20
20 s1ip39 7 dive 14 recover

20 slip39 Fam(2/4): Recover w/ 2 of 4

20 slip39 1st 1 voting 8 expand 15
20 slip39 2 pajamas 9 ladybug 16
20 slip39 3 ceramic 10 ancient 17
20 slip39 4 roster 11 mason 18
20 slip39 5 chew 12 behavior 19
20 slip39 6 video 13 payroll 20
20 slip39 7 energy 14 husband

20 slip39 2nd 1 voting 8 infant 15
20 slip39 2 pajamas 9 dilemma 16
20 slip39 3 ceramic 10 standard 17
20 slip39 4 scared 11 diagnose 18
20 slip39 5 darkness 12 inmate 19
20 slip39 6 purple 13 hearing 20
20 slip39 7 staff 14 earth

20 s1ip39 3rd 1 voting 8 cradle 15
20 slip39 2 pajamas 9 crunch 16
20 slip39 3 ceramic 10 practice 17
20 slip39 4 shadow 11 yelp 18
20 slip39 5 display 12 hobo 19
20 slip39 6 isolate 13 demsity 20
20 slip39 7 group 14 unfold

20 s1ip39 4th 1 voting 8 behavior 15
20 slip39 2 pajamas 9 gravity 16
20 slip39 3 ceramic 10 inside 17
20 slip39 4 sister 11 else 18
20 slip39 5 desire 12 angry 19
20 slip39 6 duke 13 welfare 20
20 slip39 7 voice 14 parcel

20 slip39 Frens(2/6): Recover

20 slip39 1st 1 voting 8 crush 15
20 slip39 2 pajamas 9 hospital 16

pants
olympic

2022-01-31 15:31:20 slip39 3 decision 10 silent 17 smell
2022-01-31 15:31:20 slip39 4 roster 11 exercise 18 scramble
2022-01-31 15:31:20 slip39 5 benefit 12 sled 19 hearing
2022-01-31 15:31:20 slip39 6 firm 13 density 20 lips
2022-01-31 15:31:20 sl1lip39 7 threaten 14 nervous

2022-01-31 15:31:20 s1lip39 2nd 1 voting 8 wavy 15 ladle
2022-01-31 15:31:20 slip39 2 pajamas 9 speak 16 overall
2022-01-31 15:31:20 sl1lip39 3 decision 10 numerous 17 editor
2022-01-31 15:31:20 slip39 4 scared 11 guard 18 climate
2022-01-31 15:31:20 slip39 5 crisis 12 drink 19 year
2022-01-31 15:31:20 slip39 6 general 13 boundary 20 syndrome
2022-01-31 15:31:20 sl1lip39 7 intimate 14 knit

2022-01-31 15:31:20 slip39 3rd 1 voting 8 dictate 15 intimate
2022-01-31 15:31:20 slip39 2 pajamas 9 fatigue 16 nuclear
2022-01-31 15:31:20 slip39 3 decision 10 humidity 17 speak
2022-01-31 15:31:20 slip39 4 shadow 11 idea 18 main
2022-01-31 15:31:20 slip39 5 closet 12 crystal 19 party
2022-01-31 15:31:20 slip39 6 disease 13 duke 20 brave
2022-01-31 15:31:20 slip39 7 scandal 14 episode

2022-01-31 15:31:20 slip39 4th 1 voting 8 theory 15 predator
2022-01-31 15:31:20 slip39 2 pajamas 9 unfold 16 often
2022-01-31 15:31:20 s1ip39 3 decision 10 drove 17 friendly
2022-01-31 15:31:20 slip39 4 sister 11 flip 18 headset
2022-01-31 15:31:20 sl1ip39 5 capacity 12 surprise 19 dilemma
2022-01-31 15:31:20 slip39 6 award 13 bundle 20 elegant
2022-01-31 15:31:20 slip39 7 firm 14 prepare

2022-01-31 15:31:20 slip39 5th 1 voting 8 always 15 grant
2022-01-31 15:31:20 s1lip39 2 pajamas 9 mixture 16 cluster
2022-01-31 15:31:20 sl1ip39 3 decision 10 necklace 17 volume
2022-01-31 15:31:20 slip39 4 smug 11 float 18 decorate
2022-01-31 15:31:20 slip39 5 discuss 12 rocky 19 exchange
2022-01-31 15:31:20 slip39 6 making 13 crisis 20 course
2022-01-31 15:31:20 s1lip39 7 shelter 14 champion

2022-01-31 15:31:20 slip39 6th 1 voting 8 swing 15 remind
2022-01-31 15:31:20 s1lip39 2 pajamas 9 darkness 16 clay
2022-01-31 15:31:20 slip39 3 decision 10 sidewalk 17 jewelry
2022-01-31 15:31:20 slip39 4 spew 11 identify 18 snake
2022-01-31 15:31:20 slip39 5 acid 12 expand 19 steady
2022-01-31 15:31:20 slip39 6 review 13 aspect 20 imply
2022-01-31 15:31:20 slip39 7 fraction 14 scatter

2022-01-31 15:31:20 slip39 ETH m/44°/60°/0°/0/0 : 0x7d8CO25EEdf731301698045e7E2517c027ae28d1
2022-01-31 15:31:20 slip39 BTC m/84°/0°/0°/0/0 : bc1q6w4270mak8npOc56nntnnfx9jg60myummdz88

2022-01-31 15:31:20 slip39.recovery Recovered 128-bit SLIP-39 secret with 4 (1st, 2nd, 7th, 8th) of 8 supplied

2.3 Generation of Addresses

For systems that require a stream of groups of wallet Addresses (eg. for preparing invoices for
clients, with a choice of cryptocurrency payment options), slip-generator can produce a stream
of groups of addresses.

2.3.1

slip39-generator --help --version

slip39-generator Synopsis

| sed ’s/~/: /’> # (just so output formatting looks correct)

usage: slip39-generator [-h] [-v] [-q] [-s SECRET] [-f FORMAT]
[-c CRYPTOCURRENCY] [-p PATH] [-d DEVICE]

[-b BAUDRATE] [-e ENCRYPT] [--decrypt ENCRYPT]
[--enumerated] [--no-enumerate] [--receive]
[--corrupt CORRUPT]

Generate public wallet address(es) from a secret seed

optional arguments:

-h, --help show this help message and exit
-v, --verbose Display logging information.
-q, --quiet Reduce logging output.

-s SECRET, --secret SECRET
Use the supplied 128-, 256- or 512-bit hex value as
the secret seed; ’-’ (default) reads it from stdin
(eg. output from slip39.recover)

-f FORMAT, --format FORMAT
Specify default crypto address formats: legacy,
segwit, bech32; default ETH:legacy, BTC:bech32,
LTC:bech32, DOGE:legacy

-c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
A crypto name and optional derivation path (default:
"ETH:{Account.path_default (’ETH’)}"), optionally w/
ranges, eg: ETH:../0/-

-p PATH, --path PATH Modify all derivation paths by replacing the final
segment (s) w/ the supplied range(s), eg. ’.../1/-’
means .../1/[0,...)

-d DEVICE, --device DEVICE
Use this serial device to tramnsmit (or --receive)
records

-b BAUDRATE, --baudrate BAUDRATE
Set the baud rate of the serial device (default:
115200)

-e ENCRYPT, --encrypt ENCRYPT
Secure the channel from errors and/or prying eyes with
ChaCha20Poly1305 encryption w/ this password; ’-’
reads from stdin

--decrypt ENCRYPT

--enumerated Include an enumeration in each record output (required
for --encrypt)

--no-enumerate Disable enumeration of output records

--receive Receive a stream of slip.generator output

--corrupt CORRUPT Corrupt a percentage of output symbols

Once you have a secret seed (eg. from slip39.recovery), you can generate a sequence
of HD wallet addresses from it. Emits rows in the form:

<enumeration> [<address group(s)>]

If the output is to be transmitted by an insecure channel (eg. a serial port), which may insert
errors or allow leakage, it is recommended that the records be encrypted with a cryptographic
function that includes a message authentication code. We use ChaCha20Poly1305 with a password and a
random nonce generated at program start time. This nonce is incremented for each record output.

Since the receiver requires the nonce to decrypt, and we do not want to separately transmit the
nonce and supply it to the receiver, the first record emitted when --encrypt is specified is the
random nonce, encrypted with the password, itself with a known nonce of all O bytes. The plaintext
data is random, while the nonce is not, but since this construction is only used once, it should be

10

satisfactory. This first nonce record is transmitted with an enumeration prefix of "nonce".

2.4 The slip39 module API

Provide SLIP-39 Mnemonic set creation from a 128-bit master secret, and recovery of the secret
from a subset of the provided Mnemonic set.

2.4.1 sl1ip39.create

Creates a set of SLIP-39 groups and their mnemonics.

Key Description

name Who/what the account is for

group _threshold How many groups’ data is required to recover the account(s)

groups Each group’s description, as {"<group>":(<required>, <members>), ...}
master _secret 128-bit secret (default: from secrets.token _bytes)

passphrase An optional additional passphrase required to recover secret (default: "")
iteration exponent For encrypted secret, exponentially increase PBKDF2 rounds (default: 1)
cryptopaths A number of crypto names, and their derivation paths |

Outputs a s1ip39.Details namedtuple containing:

Key Description

name (same)

group threshold (same)

groups Like groups, w/ <members> = ["<mnemonics>", ...|
accounts Resultant list of groups of accounts

This is immediately usable to pass to s1ip39.output.

import codecs

import random

NOTE:

We turn off randomness here during SLIP-39 generation to get deterministic phrases;

during normal operation, secure entropy is used during mnemonic generation, yielding
random phrases, even when the same seed is used multiple times.

H OH O R HE HH

import shamir_mnemonic
shamir_mnemonic.shamir.RANDOM_BYTES = lambda n: b’\00’ * n

import slip39

cryptopaths = [("ETH","m/44°/60°/0°/0/-2"), ("BTC","m/44°/0°/0°/0/-2")]
master_secret = b’\xFF’ * 16

passphrase = b""

create_details = s1ip39.create(

"Test", 2, { "Mine": (1,1), "Fam": (2,3) 1},
master_secret=master_secret, passphrase=passphrase, cryptopaths=cryptopaths)

[

[

f"{g_name} ({g_of}/{len(g_mnems)}) #{g_n+1}:" if 1_n == 0 else ""

] + words

for g_name, (g_of,g_mnems) in create_details.groups.items()

for g_n,mnem in enumerate(g_mnems)

for 1_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:"))

]

11

0 1 2 3

Mine(1/1) #1: 1 academic 8 safari 15 standard
2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger

Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth

Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate

Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Add the resultant HD Wallet addresses:

[
[account.path, account.address]
for group in create_details.accounts
for account in group
]
0 1
m/44°/60°/0°/0/0 0x824b174803e688dE39aF5B3D7Cd39bE6515A19al
m/44’/0°/0’/0/0 bclgmbua96hx30snwrwsinv97q96h53186ded 7wmjl
m/44’/60°/0°/0/1 0x8D342083549C635C0494d3c77567860ee7456963
m/44’/0’/0’/0/1 bclqwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29Ilnh
m/44’/60°/0°/0/2 0x52787E24965E1aBd691df77827A3CfA90f0166AA
m/44°/0’/0’/0/2 bcl1g690m430qu29auyefarwirviumncunvyw6v53n9

2.4.2 slip39.output

Key Description

name (same as s1ip39.create)

group threshold (same as slip39.create)

groups Like groups, w/ <members> = ["<mnemonics>", ...]|
accounts Resultant { "path": Account, ...}

card format ‘index’, '(<h>,<w>),<margin>’, ...

paper_format Letter’, ...

Produce a PDF containing all the SLIP-39 details for the account.

slip32.output(*create_details)

12

2.4.3 slip39.recover

Takes a number of SLIP-39 mnemonics, and if sufficient group_threshold groups’ mnemonics are
present (and the options passphrase is supplied), the master_secret is recovered. This can be
used with s1ip39.accounts to directly obtain any Account data.

Note that the passphrase is not checked; entering a different passphrase for the same set of
mnemonics will recover a different wallet! This is by design; it allows the holder of the SLIP-39
mnemonic phrases to recover a "decoy" wallet by supplying a specific passphrase, while protecting
the "primary" wallet.

Therefore, it is essential to remember any non-default (empty) passphrase used, separately
and securely. Take great care in deciding if you wish to use a passphrase with your SLIP-39 wallet!

Key Description
mnemonics ["<mnemonics>", .. .|
passphrase Optional passphrase to decrypt secret

recoverydecoy = slip39.recover(
create_details.groups[’Mine’] [1][:] + create_details.groups[’Fam’][1][:2],
passphrase=b"wrong!"

)
recoverydecoyhex = codecs.encode(recoverydecoy, ’hex_codec’).decode(’ascii’)
recoveryvalid = slip39.recover(
create_details.groups[’Mine’] [1]1[:] + create_details.groups[’Fam’][1][:2],
passphrase=passphrase
)
recoveryvalidhex = codecs.encode(recoveryvalid, ’hex_codec’).decode(’ascii’)

[[£"{len(recoverydecoy)*8}-bit secret w/ decoy password recovered:"]] + [
[£"{recoverydecoyhex [b*32:b*32+32]}"]
for b in range(len(recoverydecoyhex) // 32)
] + [[£"{len(recoveryvalid)*8}-bit secret recovered:"]] + [
[£"{recoveryvalidhex [b*32:b*32+32]}"]
for b in range(len(recoveryvalidhex) // 32)

0
128-bit secret w/ decoy password recovered:
2e522cea2b566840495¢220cf79c756e

128-bit secret recovered:
fHF

3 Conversion from BIP-39 to SLIP-39

If we already have a BIP-39 wallet, it would certainly be nice to be able to create nice, safe
SLIP-39 mnemonics for it, and discard the unsafe BIP-39 mnemonics we have lying around, just
waiting to be accidentally discovered and the account compromised!

3.1 BIP-39 vs. SLIP-39 Incompatibility

Unfortunately, it is not possible to cleanly convert a BIP-39 derived wallet into a SLIP-39 wallet.
Both of these techniques preserve "entropy" (random) bits, but these bits are used differently —
and incompatibly — to derive the resultant Ethereum wallets.

The best we can do is to preserve the 512-bit output of the BIP-39 mnemonic phrase as a
set of 512-bit SLIP-39 mnemonics.

13

3.1.1 BIP-39 Entropy to Mnemonic

BIP-39 uses a single set of 12, 15, 18, 21 or 24 BIP-39 words to carefully preserve a specific 128
to 256 bits of initial entropy. Here’s a 128-bit (12-word) example using some fixed "entropy"
OxFFFF. .FFFF:

from mnemonic import Mnemonic

bip39_english = Mnemonic("english")
entropy = b’\xFF’> * 16
entropy_mnemonic = bip39_english.to_mnemonic(entropy)
[
[entropy_mnemonic]
]

0
Z0O ZOO ZOO ZOO ZOO ZOO ZOO ZOO ZOO ZOO ZOO WIrong
Each word is one of a corpus of 2048 words; therefore, each word encodes 11 bits (2048 =
2*%x11) of entropy. So, we provided 128 bits, but 12%11 = 132. So where does the extra 4
bits of data come from?
It comes from the first few bits of a SHA256 hash of the entropy, which is added to the end
of the supplied 128 bits, to reach the required 132 bits: 132 / 11 == 12 words.
This last 4 bits (up to 8 bits, for a 256-bit 24-word BIP-39) is checked, when validating the
BIP-39 mnemonic. Therefore, making up a random BIP-39 mnemonic will succeed only 1 / 16
times on average, due to an incorrect checksum 4-bit (16 == 2**4) . Lets check:

def random_words(n, count=100):
for _ in range(count):

yield ’ ’.join(random.choice(bip39_english.wordlist) for _ in range(n))

successes = sum(
bip39_english.check(m)
for i,m in enumerate(random_words(12, 10000))) / 100

[[£"Valid random 12-word mnemonics:"]] + [
[£"{successes}%" 11 + [
[£~ 1/{100/successes:.3}" 1]

0
Valid random 12-word mnemonics:
6.1%
~1/164
Sure enough, about 1/16 random 12-word phrases are valid BIP-39 mnemonics. OK, we’ve
got the contents of the BIP-39 phrase dialed in. How is it used to generate accounts?

3.1.2 BIP-39 Mnemonic to Seed

Unfortunately, we do not use the carefully preserved 128-bit entropy to generate the wallet! Nope,
it is stretched to a 512-bit seed using PBKDF2 HMAC SHA512. The normalized text (not the
entropy bytes) of the 12-word mnemonic is then used (with a salt of "mnemonic" plus an optional
passphrase, "" by default), to obtain the seed:

seed = bip39_english.to_seed(entropy_mnemonic)
seedhex = codecs.encode(seed, ’hex_codec’).decode(’ascii’)
[

[£f"{len(seed)*8}-bit seed:" 1] + [

[£"{seedhex[b*32:b*32+32]}"]

for b in range(len(seedhex) // 32)
1

14

0

512-bit seed:
b6a6d8921942dd9806607ebc2750416b
289adea6691987692e15ed926c3aa92
bf88ece232317b4ead63e84b0fcd3b53
577812eed449cccd48eb45e61544625b6

3.1.3 BIP-39 Seed to Address

Finally, this 512-bit seed is used to derive HD wallet(s). The HD Wallet key derivation process
consumes whatever seed entropy is provided (512 bits in the case of BIP-39), and uses HMAC
SHAS512 with a prefix of b"Bitcoin seed" to stretch the supplied seed entropy to 64 bytes (512
bits). Then, the HD Wallet path segments are iterated through, permuting the first 32 bytes
of this material as the key with the second 32 bytes of material as the chain node, until finally
the 32-byte (256-bit) Ethereum account private key is produced. We then use this private key to
compute the rest of the Ethereum account details, such as its public address.

path = "m/44°/60°/0°/0/0"
eth_hd = slip39.account(seed, ’ETH’, path)
[
[£"{len(eth_hd.key)*4}-bit derived key at path {path!r}:" 1] + [
[£"{eth_hd.key}" 1] + [

["... yields ..." 11 + [

[f"Ethereum address: {eth_hd.address}"]

]

0

256-bit derived key at path "m/44’/60°/0°/0/0":

7af65baddd53£23495dcb04995e96f47¢243217{c279f10795871b725cd009ae

. yields ...
Ethereum address: 0xfc2077CA7F403cBECA41B1B0OF62D91B5EA631B5E
Thus, we see that while the 12-word BIP-39 mnemonic careful preserves the original 128-bit

entropy, this data is not directly used to derive the wallet private key and address. Also, since an
irreversible hash is used to derive the seed from the mnemonic, we can’t reverse the process on
the seed to arrive back at the BIP-39 mnemonic phrase.

3.1.4 SLIP-39 Entropy to Mnemonic

Just like BIP-39 carefully preserves the original 128-bit entropy bytes in a single 12-word mnemonic
phrase, SLIP-39 preserves the original 128-bit entropy in a set of 30-word mnemonic phrases.

name,thrs,grps,acct = slip39.create(
"Test", 2, { "Mine": (1,1), "Fam": (2,3) }, entropy)

[

[£"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" if 1 _n == 0 else ""] + words

for g_name, (g_of,g_mnems) in grps.items()

for g_n,mnem in enumerate(g_mnems)

for 1_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, rows=7, cols=3, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:"))

15

0 1 2 3
Mine(1/1) #1: 1 academic 8 safari 15 standard
2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger
Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth
Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate
Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Since there is some randomness used in the SLIP-39 mnemonics generation process, we would
get a different set of words each time for the fixed "entropy" OxFFFF..FF used in this example
(if we hadn’t manually disabled entropy for shamir_mnemonic, above), but we will always derive
the same Ethereum account 0x824b..19al at the specified HD Wallet derivation path.

[

["Crypto", "HD Wallet Path:", "Ethereum Address:"]

1+ L

[account.crypto, account.path, account.address]
for group in create_details.accounts

for account in group

]

0 1 2
Crypto HD Wallet Path: Ethereum Address:
ETH m/44°/60°/0°/0/0 0x824b174803c688dE39aF5B3D7CA39bE6515A19a1
BTC m/44°/0°/0’/0/0 bclgmbua96hx30snwrwsinv97q96h53186ded 7wmjl
ETH m/44°/60°/0°/0/1 0x8D342083549C635C0494d3c77567860ee7456963
BTC m/44°/0°/0’/0/1 bclqwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29Iinh
ETH m/44°/60°/0°/0/2 0x52787E24965E1aBd691df77827A3CFAI0f0166AA
BTC m/44’/0°/0°/0/2 bclq690m430qu29auyefarwirviumncunvyw6v53n9

3.1.5 SLIP-39 Mnemonic to Seed

Lets prove that we can actually recover the original entropy from the SLIP-39 recovery mnemon-
ics; in this case, we’ve specified a SLIP-39 group threshold of 2 groups, so we’ll use 1 mnemonic

from Mine, and 2 from Fam:

16

_,mnem_mine = grps[’Mine’]

_,mnem_fam = grps[’Fam’]
recseed = slip39.recover(mnem_mine + mnem_fam[:2])
recseedhex = codecs.encode(recseed, ’hex_codec’).decode(’ascii’)
[
[£"{len(recseed)*8}-bit seed:"]
1+ L

[f"{recseedhex[b*32:b*32+32]}"]
for b in range(len(recseedhex) // 32)

0
128-bit seed:
T

3.1.6 SLIP-39 Seed to Address

And we’ll use the same style of code as for the BIP-39 example above, to derive the Ethereum
address directly from this recovered 128-bit seed:

receth = slip39.account(recseed, ’ETH’, path)
[

[£"{len(receth.key)*4}-bit derived key at path {path!r}:" 1] + [
[£"{receth.key}" 11 + [
["... yields ..." 1] + [
[f"Ethereum address: {receth.address}"]

]

0

256-bit derived key at path "m/44’/60°/0°/0/0":

6a2ec39aab88ec0937b79c8afb6aaf2fd3c909e9ab6c3ddd32abb354a06a21a2b

. yields ...
Ethereum address: 0x824b174803e688dE39aF5B3D7Cd39bE6515A19al
And we see that we obtain the same Ethereum address 0x824b..1a2b as we originally got

from s1ip39.create above. However, this is not the Ethereum wallet address obtained from
BIP-39 with exactly the same OxFFFF...FF entropy, which was 0xfc20..1B5E. This is due to the
fact that BIP-39 does not use the recovered entropy to produce the seed like SLIP-39 does, but
applies additional one-way hashing of the mnemonic to produce the seed.

3.2 BIP-39 vs SLIP-39 Key Derivation Summary

At no time in BIP-39 account derivation is the original 128-bit mnemonic entropy used directly
in the derivation of the wallet key. This differs from SLIP-39, which directly uses the 128-bit
mnemonic entropy recovered from the SLIP-39 Shamir’s Secret Sharing System recovery process
to generate each HD Wallet account’s private key.

Furthermore, there is no point in the BIP-39 entropy to account generation where we could
introduce a known 128-bit seed and produce a known Ethereum wallet from it, other than as the
very beginning.

3.2.1 BIP-39 Backup via SLIP-39

There is one approach which can preserve an original BIP-39 wallet address, using SLIP-39
mnemonics.

It is clumsy, as it preserves the BIP-39 output 512-bit stretched seed, and the resultant
59-word SLIP-39 mnemonics cannot be used (at present) with the Trezor hardware wallet. They
can, however, be used to recover the HD wallet private keys without access to the original BIP-39

17

mnemonic phrase — you could generate and distribute a set of more secure SLIP-39 mnemonic
phrases, instead of trying to secure the original BIP-39 mnemonic.
We’ll use slip39.recovery --bip39 ... to recover the 512-bit stretched seed from BIP-39:

(python3 -m slip39.recovery --bip39 \
--mnemonic "Zoo zZ00O Z0O Z0O Z0OO ZOO ZOO ZOO ZOO Z00 zoo wrong"
) 2>&1

2022-01-31 15:31:27 slip39.recovery Recovered 512-bit BIP-39 secret from english mnemonic
b6a6d8921942dd9806607ebc2750416b289adeab69198769f2e15ed926c3aa92bf88ece232317b4ead63e84b0fcd3b53577812ee449ccc448eb

Then we can generate a 59-word SLIP-39 mnemonic set from the 512-bit secret:

(python3 -m slip39.recovery --bip39 \
--mnemonic "ZooO Z0O Z00 ZOO ZOO Z0O ZOO ZOO Z0O0 200 zoo wrong" \
| python3 -m slip39 --secret - --no-card) 2>&1

2022-01-31 15:31:27 slip39.recovery Recovered 512-bit BIP-39 secret from english mnemonic
2022-01-31 15:31:27 slip39 ETH m/44°/60°/0°/0/0 : 0xfc2077CA7F403cBECA41B1BOF62D91B5EA631B5E
2022-01-31 15:31:27 slip39 BTC m/84°/0°/0°/0/0 : bclgkOa9hr7wjfxeenz9nwenw9f1lhqOtmsf6vsgnn2

This 0xfc20..1B5E address is the same Ethereum address as is recovered on a Trezor using
this BIP-39 mnemonic phrase.

4 Building & Installing

The python-slip39 project is tested under both homebrew:
$ brew install python-tk@3.9

and using the official python.org/downloads installer.
Either of these methods will get you a python3 executable running version 3.9+, usable for
running the s1ip39 module, and the s1ip39.App GUI.

4.1 The sl1ip39 Module

To build the wheel and install s1ip39 manually:

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 install

To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter
GUI, support serial I/O, and to support creating encrypted Ethereum JSON wallets:

$ python3 -m pip install slip39[gui,serial,json]

4.2 The slip39 GUI

To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter GUI:
$ python3 -m pip install slip39[guil
Then, there are several ways to run the GUI:

$ python3 -m slip39.App # Execute the python s1ip39.App module main method
$ s1ip39-App # Run the script provided by the s1ip39 module

18

https://www.python.org/downloads/

4.2.1 The MacOS SLIP39.app

You can build the native MacOS SLIP39.app.

This requires the official python.org/downloads installer; the homebrew python-tk@3.9 will
not work for building the native app using either PyInstaller. (The py2app approach doesn’t
work in either version of Python).

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 app

5 Dependencies

Internally, python-slip39 project uses Trezor’s python-shamir-mnemonic to encode the seed data
to SLIP-39 phrases, [python-hdwallet| to convert seeds to ETH, BTC, LTC and DOGE wallets, and
the Ethereum project’s eth-account| to produce encrypted JSON wallets for specified Ethereum

accounts.

5.1 The python-shamir-mnemonic API

To use it directly, obtain , and install it, or run python3 -m pip install shamir-mnemonic

$ shamir create custom --group-threshold 2 --group 1 1 --group 1 1 --group 2 5 --group 3 6
Using master secret: 87e39270d1d1976e9ade9cc15a084c62
1 of 1 shares required:

Group 1 of 4 -
merit aluminum
Group 2 of 4 -
merit aluminum
Group 3 of 4 -
merit aluminum
merit aluminum
merit aluminum
merit aluminum
merit aluminum
Group 4 of 4 -
merit aluminum
merit aluminum
merit aluminum
merit aluminum
merit aluminum
merit aluminum

acrobat

romp capacity leader gray dining thank rhyme escape genre havoc furl breathe class pitch loc

1 of 1 shares required:
beard romp briefing email member flavor disaster exercise cinema subject perfect facility genius bik
2 of 5 shares required:

ceramic
ceramic
ceramic
ceramic
ceramic

roster already cinema knit cultural agency intimate result ivory makeup lobe jerky theory ga
scared beam findings expand broken smear cleanup enlarge coding says destroy agency emperor
shadow cover smith idle vintage mixture source dish squeeze stay wireless likely privacy imp
sister duke relate elite ruler focus leader skin machine mild envelope wrote amazing justice
smug buyer taxi amazing marathon treat clinic rainbow destroy unusual keyboard thumb story 1

3 of 6 shares required:

decision
decision
decision
decision
decision
decision

round bishop wrote belong anatomy spew hour index fishing lecture disease cage thank fantas
scatter carpet spine ruin location forward priest cage security careful emerald screw adult
shaft arcade infant argue elevator imply obesity oral venture afraid slice raisin born nerv
skin already fused tactics skunk work floral very gesture organize puny hunting voice pytho
snake cage premium aide wealthy viral chemical pharmacy smoking inform work cubic ancestor
spider boundary lunar staff inside junior tendency sharp editor trouble legal visual tricyc

19

https://gihub.com/trezor/python-shamir-mnemonic.git
https://github.com/meherett/python-hdwallet.git
https://github.com/ethereum/eth-account

	Security with Availability
	Shamir's Secret Sharing System (SSSS)

	SLIP-39 Account Creation, Recovery and Address Generation
	Creating New SLIP-39 Recoverable Seeds
	Recovery & Re-Creation
	Generation of Addresses
	The slip39 module API

	Conversion from BIP-39 to SLIP-39
	BIP-39 vs. SLIP-39 Incompatibility
	BIP-39 vs SLIP-39 Key Derivation Summary

	Building & Installing
	The slip39 Module
	The slip39 GUI

	Dependencies
	The python-shamir-mnemonic API

