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1 Introduction

To identify singly occupied molecular orbitals (SOMOs) in open-shell systems, we employed two com-
plementary schemes: (i) orbital projection analysis, and (ii) cosine similarity mapping. Both approaches
compare the sets of α and β molecular orbitals obtained from unrestricted calculations. SOMOs are ex-
pected to show strong projections onto the β virtual space and minimal overlap with the β occupied space
— a characteristic signature of magnetic (unpaired) molecular orbitals in open-shell systems. The pro-
jection scheme evaluates the squared overlap of each α orbital with the β orbital space using the atomic
orbital overlap matrix, allowing for a quantitative decomposition of each α orbital across the β manifold.
It is completed by the standard projection of MOs on a reduced space, namely the projection of α occupied
MOs on two sub-spaces, defined by β-occupied MOs and β-virtual MOs, respectively. In contrast, the
cosine similarity approach measures the angular similarity between α and β orbitals based on their MO
coefficients, identifying pairs of orbitals with nearly identical spatial character. Together, these methods
help identify SOMOs as occupied α orbitals that lack a clear counterpart among the occupied β orbitals.

2 Similarity schemes

2.1 Projection of occupied α MOs onto the β orbital space

Given a Gaussian log file from an unrestricted DFT calculation, we extract the molecular orbital (MO) coef-
ficients for both α and β orbitals (pop=full keyword), along with the AO overlap matrix S (iop(3/33=1)
keyword) and the printing of the basis set (gfprint gfinput keywords). The analysis focuses on eval-
uating how each occupied α orbital projects onto the full space spanned by all β orbitals, which includes
both occupied and virtual ones.

Let Φα
i ∈ R1×nbasis be the coefficient vector of the i-th occupied α orbital, and let Φβ ∈ RN×nbasis be

the matrix of all β orbitals stored row-wise, where N = nβ is the total number of β orbitals. The projection
vector is computed as:

vi =< ϕα
i |ϕβ >= Φα

i · S · (Φβ)T ∈ R1×N

The squared norm ∥vi∥2 gives the total overlap of the α orbital with the β space.
To differentiate between the contributions from occupied and virtual β orbitals, we split the projection:

vocc
i =< ϕα

i |ϕβ
occ >= Φα

i · S · (Φβ
occ)

T

vvirt
i =< ϕα

i |ϕ
β
virt >= Φα

i · S · (Φβ
virt)

T

We then compute:

• ∥vocc
i ∥2 = projection of |ϕα

i > onto occupied β orbitals

• ∥vvirt
i ∥2 = projection of |ϕα

i > onto virtual β orbitals

The total projection norm is decomposed to analyze how concentrated or spread the projection is across β
orbitals:
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• The three largest values among the squared projections v2ij are summed to compute “Top 1 (%)”,
“Top 2 (%)” and “Top 3 (%)”. Top 1 (%) can also bee seen as a dominance ratio, i.e.
the quantity is defined as the largest single squared projection divided by the total projection norm:
maxj v

2
ij/∥vi∥2

• The “β MOs >15%” column lists all β orbitals contributing more than the specified percentage to
the squared projection norm, along with their contribution in the format [j, pj ], where j is the β-MO
index and pj the percentage contribution. For the most important contribution, it is nothing else
than the dominance ratio. It provides a direct quantitative decomposition of each α orbital onto
the β orbital basis. Each entry explicitly identifies the β orbital(s) that significantly compose the
corresponding α orbital, along with their respective percentage contributions

An orbital is flagged as a SOMO candidate if its projection onto the virtual β space exceeds 0.5 and its
projection onto the occupied β space is below 0.5:

∥vvirt
i ∥2 > 0.5 and ∥vocc

i ∥2 < 0.5

This criterion is named “SOMO P2v?” in the output and in a saved spreadsheet file. In some
cases, where the mixing of the projection onto occupied and virtual β MOs makes the identification not
straightforward, a secondary, less robust, criterion has been defined. A SOMO candidate, named “SOMO
dom. β MO?”, is identified when the dominance ratio is associated to a virtual β MO.

2.2 Diagonalization of the projection of α occupied orbitals onto β sub-spaces

In order to further analyze the nature of singly occupied molecular orbitals (SOMOs) and their relation to
the β spin manifold, a complementary diagonalization procedure was implemented.

Starting from the set of occupied α orbitals ϕα
i , two separate projections are constructed, namely the

projection onto the occupied β orbitals ϕβ
occ and the projection onto the virtual β orbitals ϕβ

virt.
Given the atomic orbital overlap matrix S, the rectangular projection matrices are defined as:

Aocc = Φα
i · S · (Φβ

occ)
T , Avirt = Φα

i · S · (Φβ
virt)

T .

From these, the symmetric projection matrices are formed:

P occ = AoccA
T
occ, P virt = AvirtA

T
virt.

The matrices P occ and P virt are diagonalized to obtain their eigenvalues and eigenvectors.
The eigenvalues of P occ quantify how strongly a linear combination of occupied α orbitals projects

onto the occupied β space. Similarly, the eigenvalues of P virt measure the projection onto the virtual β
space. Eigenvectors with low eigenvalues for P occ but significant projection onto β virtual orbitals are
strong candidates for SOMOs.

2.3 Cosine similarity of MOs

The identification of singly occupied molecular orbitals (SOMOs) can also be achieved through the com-
putation of the cosine similarity between pairs of molecular orbitals (MOs) derived from unrestricted spin
density functional theory (DFT) calculations. Specifically, we computed similarities between α and β spin
orbitals, taking into account the non-orthogonality of the basis set used in quantum chemical calculations.

Let us denote two molecular orbital coefficient vectors as Φα
i (for alpha-spin orbitals) and Φβ

j (for
beta-spin orbitals). Each vector has dimensions corresponding to the number of basis functions used in
the calculation, denoted by nbasis. Given the overlap matrix S (dimension nbasis × nbasis), obtained from
the quantum chemistry calculation, the scalar product between two coefficient vectors accounting for basis
overlap is defined as:

⟨ϕα
i |ϕ

β
j ⟩ = ΦαT

i SΦβ
j (1)
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Thus, the cosine similarity between two molecular orbitals Φα
i and Φβ

j accounting for the basis overlap
matrix, S, is given by:

cosine similarity(ϕα
i , ϕ

β
j ) =

ΦαT
i SΦβ

j√
ΦαT

i SΦα
i

√
ΦβT

j SΦβ
j

(2)

The similarity matrix constructed from these cosine similarities was then used to optimally match α
and β orbitals employing the Hungarian algorithm, ensuring maximal global similarity. Also known as the
Kuhn–Munkres algorithm, it is a classic method used to solve the assignment problem: given a cost matrix,
it finds the optimal one-to-one assignment (or matching) that minimizes (or maximizes) the total cost (or
similarity).

Orbital pairs with high cosine similarity, particularly those involving occupied alpha-spin orbitals matched
to virtual beta-spin orbitals (or vice versa), can also be identified as potential candidates for SOMOs. This
method provides a robust and quantitatively precise approach to identifying SOMOs in unrestricted DFT
calculations, facilitating detailed analyses of electronic structures in open-shell systems.

2.4 Brief discussion

The projection technique quantifies how much each α orbital overlaps with the entire β orbital space
by computing the squared norm of the projection vector using the AO overlap matrix. This provides an
absolute, physically meaningful measure of orbital mixing, especially relevant when analyzing partial spin
contamination or magnetic character. In contrast, cosine similarity evaluates the angle between two orbital
vectors, yielding a dimensionless similarity score between -1 and 1. It’s more suited for comparing the
shape of orbitals than their actual physical contribution to each other. While cosine similarity is useful
for clustering and pattern recognition, the projection approach is generally more precise when it comes to
quantifying actual contributions and mixing between spin orbitals, especially in systems with open-shell or
near-degenerate character. As regards the diagonalization-based projection strategy, it allows the detection
of SOMO candidates with negligible coupling to occupied β orbitals, provides a detailed inspection of how
α occupied orbitals distribute onto the β manifold, and offers deeper insights of orbital reorganization
effects in open-shell systems.

3 Examples

3.1 Formaldehyde (H2CO) in its lowest triplet state

In an all-electron basis set, there are 9 occupied α MOs, ϕα
occ, and 7 occupied β MOs, ϕβ

occ. As summarized
in the previous section, gSOMOs provides several tools to find two two SOMOs among the nine ϕα

occ. Table 1
presents simplified projection data of occupied α orbitals onto β orbitals for the lowest triplet state, T1, of
formaldehyde. It is adapted from the dataframe created by the project occupied alpha onto beta()

function. Orbitals identified as SOMO indicate significant projection onto virtual β orbitals and negligible
projection onto occupied β orbitals.
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A heatmap can be generated to visualize the main projection contributions of α molecular orbitals onto
β orbitals. The color intensity reflects the percentage contribution of each β orbital to the total projection
norm of a given α orbital. Only contributions above 15% were retained for clarity. Red dashed lines indicate
the HOMO–LUMO frontier for both spin channels (Figure 1a). This analysis is very close to the heatmap
generated after the cosine similarity between α and β MOs (Figure 1b)

Figure 1: similarity of α and β MOs of the first triplet state of H2CO around the HOMO-LUMO frontier. (a)
Projection of α MOs onto the full space spanned by all β orbitals (only contributions above 20% were retained for
clarity); (b) Cosine similarity. Dashed lines mark the HOMO/LUMO boundaries for α (horizontal) and β (vertical)
spin orbitals.

And finally, and still in a projection scheme, the analysis of the eigenvalues of P occ and P virt agree
with the previous similarity analysis schemes. Figure 2 reveals that two occupied α MOs do not project on
the ϕβ

occ subspace, whereas two MOs - hopefully the same - project on the ϕβ
virt subspace. The MO analysis

performed on the two eigenvectors of P occ and the two eigenvectors of P virt and reported in Table 2 show
without doubt that the counterpart of the 8th and 9th α MOs are the 8th and 9th unoccupied β MOs.

Figure 2: Eigenvalues of P occ and P virt for H2CO.
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SOMO Candidate #1 SOMO Candidate #2

α occupied contributions:

• α 9 (99.5%)

β virtual projections:

• β 9 (96.4%)

α occupied contributions:

• α 8 (89.4%)

β virtual projections:

• β 8 (98.4%)

Table 2: SOMO candidates for H2CO, as given by the analyzis of the eigenvectors of P occ and P virt.

3.2 Iron complex

Figure 3: Iron complex in its fully optimized quintet state
geometry.

In some cases, the identification of SOMOs by vi-
sual inspection can become very challenging, mak-
ing a tool like gSOMOs particularly valuable. The
dispersion of SOMO contributions over multiple α
and β orbitals can arise from near-degeneracy ef-
fects in the frontier orbital region, possibly ampli-
fied by minor symmetry breaking or delocalization
effects inherent to DFT. This behavior is typical for
open-shell transition metal complexes with dense
manifolds of occupied and virtual states This is
the case for the quintet state of the iron complex
shown in Figure 3. The cosine similarity method
correctly identifies three SOMOs but fails for the
fourth, which only imperfectly projects onto the vir-
tual β space - whereas it correctly identifies MOs
169, 92 and 194, the fourth SOMOs is identified as
MO 164. In contrast, the projection scheme per-
forms well, especially through the diagonalization of
P occ and P virt and the associated analysis. Figure
4 shows that four null eigenvalues are found after
the diagonalization of P occ, associated to four eigenvalues close to 1 after the diagonalization of P virt.
The decomposition of the SOMO candidates is reported in Table 3. The projection scheme isolates clear
contributions for each SOMO candidate, mainly involving a few α-occupied and β-virtual orbitals. SOMO1

shows a mixed α-character (orbitals 187 and 164) projecting mainly onto β-orbital 194. SOMO2 has a
more distributed α-character but projects onto β-orbitals 192 and 193. SOMO3 is dominated by orbital
186, projecting onto β-orbital 198, while SOMO4 is mainly from orbital 168, with projections onto β-
orbitals 193 and 192. SOMO1 clearly shows why the cosine similarity misidentified the dominant αocc-βvirt
pair: although orbital 187 contributes most (44.2%), a significant mixing with orbital 164 (27.3%) leads
to an overemphasis on the 164 → 194 projection. This explains why the cosine similarity method failed
here, while the projection-based approach provides a more reliable identification. Despite some mixing, the
dominant contributions are clearly identified, confirming the robustness of the projection analysis.

4 Conclusion

In summary, the combined use of orbital projection analysis and cosine similarity mapping available in gSOMOs

provides a robust framework for the identification and characterization of SOMOs in open-shell systems.
The projection approach quantifies the physical overlap between α and β spin channels, while the similarity
mapping offers a complementary perspective. Together, these methods capture subtle near-degeneracies
and possible weak spin contamination effects, offering a detailed understanding of the electronic structure.
This workflow can be readily extended to the analysis of open-shell transition metal complexes, radicals,
and any other systems exhibiting open-shell character.
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Figure 4: Eigenvalues of P occ and P virt for the iron complex.

SOMO Candidate #1 SOMO Candidate #2

α occupied contributions:

• α 187 (44.2%)

• α 164 (27.3%)

β virtual projections:

• β 194 (73.3%)

• β 196 (16.1%)

α occupied contributions:

• α 169 (41.1%)

• α 186 (21.6%)

• α 165 (15.7%)

β virtual projections:

• β 192 (53.1%)

• β 193 (26.9%)

SOMO Candidate #3 SOMO Candidate #4

α occupied contributions:

• α 186 (30.0%)

β virtual projections:

• β 198 (73.0%)

α occupied contributions:

• α 168 (51.8%)

• α 183 (16.3%)

β virtual projections:

• β 193 (41.6%)

• β 192 (26.7%)

Table 3: SOMO candidates for the iron complex, as given by the analyzis of the eigenvectors of P occ and P virt.
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