s UNIVERSITY OF

‘i‘l‘

{¥ CAMBRIDGE

C1 Research Computing - Coursework Assignment

Raunaq Rai (rsr45@cam.ac.uk)
Data Intensive Science, Department of Physics, University of Cambridge

18 December, 2024

1 Introduction

This report details the development and implementation of a Python package, dual _autodiff,
designed for automatic differentiation using dual numbers. The package computes deriva-
tives efficiently while supporting mathematical operations such as trigonometric, logarith-
mic, and exponential functions.

The approach builds on the concept of forward-mode automatic differentiation, which
is essential in fields like optimisation, computational physics, and machine learning. This
technique traces its roots to the foundational work by Wengert [1], who introduced a sys-
tematic way to compute derivatives using intermediate variables. More recently, Baydin
et al. [2] surveyed the use of automatic differentiation in machine learning, emphasising
its importance in training deep neural networks.

To enhance performance, a Cython-optimised version, dual autodiff x, was also
developed. This document covers the structure of the project, the mathematical principles
behind dual numbers, and the implementation details of the package.

2 Setting Up the Development Environment

Apple Silicon devices primarily use the ARMG64 architecture, which can pose challenges
when working with scientific computing tools built for x86_64. To ensure compatibility
with these tools, I configured the development environment to run in x86_64 mode. This
step was crucial for enabling the execution of packages and tools designed for x86_64
systems.

To achieve this:

e Rosetta Installation: Rosetta, an emulation layer, was installed to facilitate
running x86_64 binaries on ARM-based devices. This was achieved using:

/usr/sbin/softwareupdate --install-rosetta

e Configuring Terminal: The Terminal application was set to run in Rosetta mode,
ensuring compatibility with x86_64 libraries and tools.



e Creating an x86_64 Conda Environment: A dedicated Conda environment
was created with all required dependencies for developing and testing the package.

This setup allowed for consistent development and ensured the compatibility of tools

and libraries required for this project.

3 Theoretical Background

3.1 Dual Numbers
Dual numbers can be defined as truncated Taylor series of the form:
T =+ Ve, (1)
where v,7 € R, and € is a nilpotent number such that €2 = 0 and € # 0. Here:
e v: Represents the primal value.
e v: Represents the derivative or tangent value.

As explained by Baydin et al. [2|, arithmetic operations with dual numbers align
naturally with symbolic differentiation principles:

(l’l + j31€> + (IQ + jj2€) = (.Tl + 1’2) + (.Tl + Si’2>€, (2)

(1’1 + 1’16)(1’2 + 11.326) = T1T2 + (131[1.52 + j,’l{EQ)E, (3)

3.2 Automatic Differentiation

Automatic differentiation leverages dual numbers to compute derivatives efficiently. For
a function f(z), substituting z = v + ve yields:

f(@) = f(v+1e) = f(v) + ['(v)oe, (4)

The derivative f'(v) is embedded in the coefficient of €, enabling simultaneous evalu-
ation of function values and derivatives.
This principle extends to composite functions via the chain rule:

fg(v +ve)) = fg(v) + f'(9(v))g' (v)ve, ()

4 Implementation of Dual Numbers and Operations

4.1 Overview of the Dual Class

The dual.py file implements the Dual class, the core of the dual_autodiff package.
This class defines dual numbers and supports operations such as addition, subtraction,
multiplication, and division.



4.1.1 Arithmetic Operations
The Dual class overrides arithmetic operators for seamless integration. For example:

x = Dual(2, 1)
y = Dual(3, 2)
print(x + y) # Output: Dual(real=5, dual=3)

4.1.2 Mathematical Functions
The Dual class also implements key mathematical functions such as:

e Trigonometric functions (sin, cos, tan).

Exponential and logarithmic functions (exp, log).

Hyperbolic functions (sinh, cosh, tanh).

Square root (sqrt).
For example:

x = Dual(2, 1)
result = x.sin()
print(result) # Output: Dual(real=0.9092..., dual=-0.4161...)

4.1.3 Error Handling and Special Cases

The Dual class ensures that mathematical operations like 1log and sqrt are only applied
within valid domains, raising appropriate errors when encountering invalid inputs.

4.2 Example of Using Dual Numbers

Counsider the function:
1
f(z) =log(z) + 2* = f'(z) = . + 2z. (6)

This can be evaluated directly using the Dual class:

x = Dual(2, 1)
f_x = x.log() + x*x*2 # Output: Dual(real=4.0, dual=4.5)

4.3 Utility Functions

To enhance usability and simplify mathematical operations, two utility modules are pro-
vided as part of the package:

e functions.py: This module provides global aliases for commonly used mathemat-
ical functions, such as sin, cos, log, and sqrt. These aliases act as wrappers
around the corresponding methods of the Dual class, allowing users to apply these
functions directly to Dual instances or standard numerical values. For example:



from dual_autodiff.functions import sin, cos, log
x = Dual(2, 1)
result = sin(x) + log(x)

These aliases improve the user experience by making the library’s API intuitive and
easy to use, especially when working with dual numbers in complex expressions.

e base.py: This module includes helper functions to streamline operations on Dual
instances:

— is_dual instance(value): A utility function that checks whether a given
value is an instance of the Dual class. This is useful for validation, ensuring
that mathematical operations are applied only to compatible types.

— ensure_dual (value): A function that wraps a non-Dual value into a Dual
object with its derivative initialized to zero. This ensures that all mathemati-
cal functions can seamlessly handle both standard numerical values and dual
numbers.

These utility functions simplify the use of the package by enabling both explicit han-
dling of dual numbers and implicit conversions when required, making the library more
accessible for a wide range of users.

5 Project Structure and Packaging

5.1 Repository Organisation

The repository adheres to established best practices for Python projects to ensure clarity,
maintainability, and modularity. Below is an overview of its structure:

5.1.1 Top-Level Directory
The top-level directory organises the project as follows:

e dual_autodiff/: Core implementation, including modules like dual. py, functions.py,
and base.py.

e dual_autodiff _x/: Cythonised implementation of the package for enhanced per-
formance, including .pyx source files and compiled .so binaries.

e tests/: Unit tests for core modules. Use the pytest command to run the tests.

e docs/: Documentation files, including Sphinx configurations and example note-
book.

e report/: LaTeX report and related files.
e dist/: Package distribution files (wheel and source archives).
e build/: Temporary build files.

e pyproject.toml: Modern Python project configuration.
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e requirements.txt: Python dependencies.
e environment.yaml: Conda environment definition.
e README.md: Project overview and instructions.

e LICENCE: Contains the MIT License under which the project is distributed.

5.2 Building and Installing the Package

The pyproject.toml file is used to manage the configuration and metadata of the project.
It follows the modern Python packaging standards and includes the following sections:

e [build-system]: Specifies the tools required for building the package, such as
setuptools and wheel.

e [project]: Contains metadata, including the project name, version, author, and
dependencies.

e [tool.setuptools_scm]: Enables dynamic versioning based on the state of the
repository.

To build and install the package, the following steps were performed:
1. Install build tools: pip install build.

2. Build distributions: python -m build.

3. Install in editable mode: pip install -e ..

This approach ensures the package is properly configured, packaged, and ready for
distribution or further development.
6 Publishing to PyPI

To make the dual autodiff package publicly available, it was uploaded to the Python
Package Index (PyPI). The following steps outline the publishing process and installation
instructions.

6.1 Publishing to PyPI
To publish the dual_autodiff package on PyPI, the following steps were followed:
1. Create Distributions: Build source and wheel distributions as done previously:

2. Upload to PyPI: Use twine to securely upload distributions.

Authentication with PyPI credentials was required.

3. Verify Upload: https://pypi.org/project/rsr4b-dual-autodiff/


https://pypi.org/project/rsr45-dual-autodiff/

6.2 Installing the Package

Install the package via pip:

pip install rsr4b5-dual-autodiff

6.3 Testing the Installation
Verify functionality:

import dual_autodiff as df
x = df.Dual(2, 1)
print(x.sin())

7 Differentiating a Function

7.1 Function Definition
The target function for differentiation is:
f(z) = log(sin(z)) + 2* cos(z), (7)
The derivative of this function, computed analytically, is:

f'(z) = —a*sin(z) + cos(z)

Sn(2) + 2z cos(z), (8)

7.2 Using Dual Numbers for Differentiation

To compute f'(x) at x = 1.5 using dual numbers:

e Represent x as a dual number: x = 1.5+ 1¢, where the real part is 1.5 and the dual
part represents the derivative.

e Substitute = into f(z) and use the dual number arithmetic to compute f'(x) from
the dual part of the result.
7.3 Results
7.3.1 Using Dual Numbers

The function f(x) and its derivative f’(z) were computed at z = 1.5 using dual numbers.
The results are as follows:

f(1.5) = 0.15665054756073515,  f'(1.5) = —1.9612372705533612

7.3.2 Using Manual Computation

The analytical expression for f(z) and f’(x) was used to compute the same values at
x = 1.5. The results are:

f(1.5) = 0.15665054756073515,  f'(1.5) = —1.9612372705533614



7.3.3 Comparison

The results obtained using dual numbers closely match the manually computed values,
confirming the correctness of the dual number implementation. The slight discrepancy
in the derivative (2 x 107!3) is attributed to floating-point precision errors inherent in
numerical computations.

7.4 Comparison with Numerical Differentiation

e Numerical Differentiation: The central difference formula was used:
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This was evaluated for step sizes decreasing logarithmically from h = 107%5 to
h =1073.

Figure [I]illustrates the behavior of the numerical derivative as the step size decreases.
The red dashed line represents the true derivative obtained using dual numbers, which
serves as the reference value.
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Figure 1: Convergence of the numerical derivative for decreasing step sizes. The red
dashed line indicates the true derivative obtained using dual numbers. The numerical
derivative converges to the true value for small step sizes, but diverges due to round-off
errors as h becomes excessively small.

e Accuracy: For moderate values of h, the numerical derivative closely matches the
true value. However, as h increases further, round-off errors lead to divergence.

e Dual Numbers: The dual number method provides a stable and precise derivative,
unaffected by the limitations of finite differences.

e Efficiency: Unlike numerical differentiation, dual numbers compute the derivative
in a single step, making the method both computationally efficient and less error-
prone.



8 Tests and Validation

The tests/ directory contains unit tests designed to validate the functionality of the
dual _autodiff package. These tests ensure the correctness of mathematical operations,
dual number functionality, and integration with various functions like trigonometric, log-
arithmic, and exponential operations.

8.1 Structure of the tests/ Directory

The directory includes the following key test files:

e test_dual.py: Validates the core Dual class, including arithmetic operations and
function implementations.

e test_functions.py: Tests global mathematical functions like sin, cos, and log.

e test_base.py: Ensures utility functions such as is_dual_instance() and ensure_dual ()
work correctly.

8.2 Outcome

The tests validate that the dual_autodiff package functions as expected under various
scenarios. They also confirm that dual numbers provide accurate derivatives.

9 Project Documentation with Sphinx

The docs/ directory contains all the files required to generate the HI'ML documentation
for the dual autodiff package using Sphinx. After running make html in the terminal,
Sphinx processes the source files and generates structured HTML documentation, which
can be found in the build/html/ directory.

9.1 Structure of the docs/ Directory

e Makefile and make.bat: Used to build the documentation. The Makefile is for
Unix-based systems, while make.bat is for Windows.

e source/: Contains the source files for the documentation:
— index.rst: The main landing page of the documentation, linking to other

sections.

— dual _autodiff.rst: Detailed API reference for the package, generated using
the autodoc extension.

— modules.rst: Lists all the modules included in the dual autodiff package.
— tutorial.rst: A guide for using the package, linking to the tutorial notebook.

— dual _autodiff.ipynb: A Jupyter notebook providing hands-on examples of
the package’s features.

— apple_silicon x86_setup.rst: A section explaining how to set up the devel-
opment environment on Apple Silicon devices.



— conf.py: The Sphinx configuration file, which defines project settings, exten-
sions, and theme configurations.

e build/: Stores the generated documentation:

— build/doctrees/: Contains intermediate files generated during the build pro-

CessS.

— build/html/: The final HTML output, including static assets, search func-
tionality, and individual pages:

*

*

*

index.html: The main landing page.

dual _autodiff.html: Detailed API reference.

tutorial.html: The tutorial section with examples.

apple_silicon x86_setup.html: Instructions for configuring the devel-
opment environment.

_static/: Contains CSS, JavaScript, and image assets for styling and
functionality.

9.2 Generated Output

The generated HTML documentation features:

e Landing Page: An overview of the project with links to tutorials and references.

e API Reference: Detailed documentation for all modules, classes, and functions
in the package.

e Tutorial: A step-by-step guide, showcasing practical examples of using the pack-

age.

e Environment Setup Guide: Instructions for configuring the development envi-
ronment on Apple Silicon devices.

The Sphinx-generated documentation ensures clarity and accessibility, providing users
with a detailed understanding of the dual_autodiff package. It combines automatically
generated API references with user-friendly tutorials, making it an essential resource for
both developers and users.

10 Cythonizing the Package

10.1 Configuration and Implementation

To Cythonize the dual_autodiff package, a separate directory named dual _autodiff x
was created. This included necessary configurations to ensure efficient compilation and
distribution of the Cythonized version.



10.1.1 Key Configuration Files

e setup.py: Defined Cython modules to be compiled (e.g., dual.pyx, functions.pyx)
and metadata for the package.

e pyproject.toml: Declared build dependencies (Cython, setuptools, wheel) and
Python version compatibility.

e MANIFEST.in: Included essential files (README.md, compiled . so files) while exclud-
ing unnecessary source files (.pyx, .py).
10.1.2 Cythonization Process

1. Code Preparation: Python files (.py) in the original dual autodiff directory
were copied into dual_autodiff x and renamed to .pyx to allow Cython compila-
tion.

2. Compilation: The source files were compiled into shared object files (.so) using:

python setup.py build_ext --inplace

3. Installation: The package was installed in editable mode for testing and further
development:

pip install -e .

10.2 Performance Insights

To evaluate the effectiveness of Cythonization, we compared the performance of the pure
Python and Cythonized implementations.

10.2.1 Experimental Setup

Execution times were measured for arrays of dual numbers with lengths ranging from 100
to 14,000. Three ranges of real parts were considered: (0,10), (10,100), and (100, 1000).
Each experiment was repeated 100 times, and linear regression was applied to analyse
gradients of execution time with respect to array length.

10.2.2 Observations

Figure [2] illustrates the performance comparison:

e The Cythonized version exhibited significantly lower execution times across all sce-
narios.

e Gradients for the Cythonized implementation were consistently smaller, highlight-
ing better scalability.

e Performance improvements were particularly notable for larger arrays, validating
the computational efficiency of Cython.
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Performance Comparison with Average Gradients and Best Fit Lines
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Figure 2: Performance comparison between the pure Python and Cythonized versions of
dual _autodiff. The gradients indicate the rate of increase in execution time with array
length.

10.3 Conclusion

Cythonization reduced execution time and improved scalability by compiling Python code
into efficient C extensions. These results align with findings from related works, such as
Mortensen and Langtangen [3], which demonstrated that Cythonized code can achieve
performance comparable to low-level languages like C++-.

10.4 Analysis of Gradients

The gradients of the execution time with respect to the array length, as indicated in the
legend of Figure [2] provide a quantitative measure of the computational efficiency of the
Python and Cythonized versions. These gradients represent the rate at which execution
time increases with the number of dual numbers in the array. The following insights can
be drawn from the gradients:

10.5 Analysis of Gradients

The gradients in Figure 2] provide a quantitative measure of how execution time scales
with the array length:

e Python Implementation: The gradients are consistently higher, around 2.20 x
1074, across all ranges of dual numbers. This indicates that the execution time
for the Python implementation increases more rapidly with the number of dual
numbers. The similarity of gradients across ranges suggests that the range of real
parts has minimal impact, and the computational overhead primarily depends on
array length.

e Cythonized Implementation: The gradients are significantly lower, approxi-
mately 1.63 x 1074, for all ranges. This slower rate of increase in execution time
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highlights the efficiency of the Cythonized implementation. A lower gradient in-
dicates that the Cythonized version scales better with increasing array lengths,
making it more suitable for handling larger datasets.

Scalability and Impact of Lower Gradients:

The lower gradient for the Cythonized implementation demonstrates its superior scala-
bility. As the array length grows, the execution time for the Cythonized version increases
at a much slower rate compared to the Python implementation. This efficiency arises
from the reduced overhead in Cython, where the code is compiled into C, minimising
dynamic type-checking and interpretation, which are inherent to Python. Consequently,
the Cythonized version is better equipped to handle larger and more computationally
intensive tasks efficiently.

11 Building Wheels for Linux

To create specific wheels for the dual_autodiff x package targeting cp310-manylinux x86_64
and cp311-manylinux_x86_64, initial attempts were carried out manually on the Univer-

sity of Cambridge’s CSD3 cluster due to compatibility issues on macOS M4. However, I
later utilised a family member’s laptop to streamline the process with a single command,
directly generating wheels in the required manylinux format.

11.1 Steps for Building the Wheels on CSD3
1. Building the Python 3.10 Wheel:

e Python 3.10 was built from source and installed in $HOME/python310:

./configure --prefix=$HOME/python310 --enable-optimisations
make -j$(nproc) && make install

e The wheel was created and saved in the wheelhouse directory:

/home/rsr45/python310/bin/python3.10 setup.py bdist_wheel
-—-dist-dir wheelhouse

2. Building the Python 3.11 Wheel:

e Verified Python 3.11 was installed on CSD3 and prepared the environment:

python3.11 -m pip install --user --upgrade pip setuptools
wheel cython

e The wheel was created and saved in the wheelhouse directory:

python3.11 setup.py bdist_wheel --dist-dir wheelhouse
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11.2 Final Method and Contents of the Wheel

By utilising the family member’s laptop, I generated both wheels in the manylinux format
with a single command:

cibuildwheel --output-dir wheelhouse .

This simplified the process and ensured compatibility with manylinux standards.
The wheels are stored in the wheelhouse directory, and their contents were verified
by extracting each into the wheel _contents directory:

e Compiled Binaries: Shared object files (*.so) for the core modules (base, dual,
functions, and version), ensuring optimal performance.

e Metadata: The dist-info directory contains essential files such as:

— METADATA: Package details like name, version, and dependencies.
— WHEEL: Compatibility and wheel-specific metadata.
— RECORD: File integrity and hash information.

e Compiled Binaries: The dual autodiff directory contained shared object files
(*.s0) for the core modules (base, dual, and functions), ensuring optimised per-
formance without exposing the source code.

e Metadata: The dist-info directory included essential metadata files such as:

— METADATA: Package details like name, version, and dependencies.
— WHEEL: Compatibility and wheel-specific metadata.
— RECORD: File integrity and hash information.

11.3 PyPI Upload

The dual _autodiff x package was uploaded to PyPI under the name rsr45-dual-autodiff-x,
allowing users to install it easily via:

pip install rsr45-dual-autodiff-x

11.3.1 Key Features

Efficient dual number arithmetic.

Comprehensive mathematical functions.

Automatic differentiation.

Performance optimisation with Cython for enhanced speed.

This ensures the package is accessible for scientific and computational tasks, promoting
usability and reproducibility.
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