EUFAR

Standards and Protocols

EGADS Algorithm Handbook

Version 0.8.8

Last Updated: January 11, 2018

ii

Contents

(I General Algorithms|

[3.1 Simple correction of spikes|. Lo oo oo

4 Transforms|

4.1 Linear Interpolation|
4.2 Linear Interpolation (old)| o
4.3 Convert ISO 8601 time to date/time elements|
4.4 Convert ISO 8601 time string to seconds|
4.5 Convert elapsed seconds to ISO 8601 time string|
4.6 Converts a time or a time vector to decimal year.|

(I Atmospheric Algorithms|

[5 Thermodynamics|
5.1 Incremantal pressure altitude |. 0oL

5.3 Density of dry alr|. L
5.4 Relative humidity from capacitive probe|
[5.5 Pressure and angle of incidence (CNRM)|.
5.6 Dynamic pressure and angle of incidence|. L.
[5.7 Potential Temperature| L
5.8 Static Temperature|.
5.9 Virtual Temperature|

5.11 True air speed (CNRM)|
5.12 True air speed (RAF)|

[5.13 Longitudinal true airspeed|. L.

iii

10
11
12
13

14

CONTENTS

................................. 30

31

................................ 32
.................................. 33
............................ 34
.............................. 35
............................... 36
...................... 37

6.7 Total Number Concentrationl 38
6.8 Sample area for imaging probes (Allin)l 39
6.9 Sample area for imaging probes (Center In)[. 40
[6.10 Sample area for scattering probes|o oo 41
[6.11 Sample Volume| 42
[6.12 Surface Area Concentrationl 43
[7_Radiation 44
[7.1 Camera Viewing Angles| 45
[[2 Planck Emissionl o 00 46
[7.3 Rotate solar vector to aircraft frame 47
7.4 Scattering Angles| L 49
[7.5 Solar Vector Calculation (Blanco)|. 50
[7.6 Solar Vector Calculation (Reda-Andreas)] 52
[7.7 Blackbody Temperaturel oo oo 58
8 Quality Controll 59
[8.1 Check navigation data for inconsistencies| 60

[8.2 Additional consistency check & QA for navigation data (no correction!)| . . 62

Index] 64

(Bibliography and references 64

iv

Chapter 1

Introduction

This document contains descriptions of algorithms contained in the EGADS toolbox. Within
each algorithm description is the following:

e Algorithm Name — name of algorithm as implemented in EGADS .

e Category — general category of algorithm. Algorithm can be found in this subdi-
rectory in EGADS .

e Summary — short description of what the algorithm does.

e Inputs — expected inputs to algorithm. This field includes expected units, and data
type of input.

e Outputs — outputs produced by algorithm.
e Formula — description of formulas or methods behind the algorithm.
e Source — person, institution or entity who provided the algorithm.

e References — any references to literature, journals or documents with more infor-
mation on the current algorithm

To aid in algorithm usage and discovery, there is a general naming scheme for EGADS
algorithms. Generally, algorithm names are composed as follows:

{measurement}_{context/detail/instrument}_{source}

For example, an algorithm provided by CNRM to calculate the density of dry air would
be named density_dry_air_cnrm.

For more information about using these algorithms within EGADS , or using EGADS
itself, please refer to the EGADS documentation which can be found at https://github.com/
eufarn7sp/egads

https://github.com/eufarn7sp/egads
https://github.com/eufarn7sp/egads

Part 1

General Algorithms

Chapter 2

Mathematics

CHAPTER 2. MATHEMATICS

2.1 Time Derivative

Algorithm name: derivative_wrt_time
Category: Mathematics

Summary: Calculation of the first time derivative of a generic parameter. Calculations
of time derivatives are centered for all except the first and last values in the
vector. Returns None value for scalar parameters.

Inputs:
T Vector Parameter to calculate first derivative
t Vector Time signal [sec]
Outputs:
x Vector First derivative of x [units of = / sec]
Formula:
I
Yt — i
Source:
References:

Chapter 3

Corrections

CHAPTER 3. CORRECTIONS

3.1 Simple correction of spikes

Algorithm name: correction_spike_simple_cnrm
Category: Corrections

Summary: Detection of spikes which exceed a specified threshold. The detected value
is replaced with the mean of the surrounding values.
This algorithm does not apply well to variables that are naturally discontinuous.

Inputs:

X Vector Parameter for analysis

So Coeff Spike detection threshold (same units as X, and must
be positive)

Outputs:

X Vector Parameter with corrections applied

Formula: The ith term is considered a spike if the following are all true:

[.X[i] = XT[i — 1] > So (3.1)
IX[i] — X[i + 1]] > So
(X[i] = X[i —1])(X[i] = X[i+1]) > 0
with
X[i+1]+ X[i —1]

XC[Z] = 2

Otherwise, X.[i] = X[i]
Source: CNRM/GMEI/TRAMM

References:

Chapter 4

Transforms

CHAPTER 4. TRANSFORMS

4.1 Linear Interpolation

Algorithm name: interpolate_linear
Category: Transforms

Summary: This algorithm linearly interpolates a variable piecewise from one coordinate
system to another. It is mostly used to fill gaps.

Inputs:

x Vector x-coordinates of the data points (must be increasing).
f Vector Data points to interpolate.

Tinterp Vector New set of x-coordinates to use in interpolation.

frert Coeff, optional Value to return when zipierp < 9. Default is fo.
frignt ~ Coeff, optional Value to return when zipierp > @y,. Default is f,.
Outputs:

finterp Vector Interpolated values of f.

Formula: For each value of x;pserp the two surrounding points are found and designated
zq and x3, with corresponding values f, and f,. Then finierp is calculated piecewise as
follows:

fb_fa

Tp — Lq

finterpm = fa + (minterp[i] - xa)

Values where Zjnserp is less than xg are replaced with f. 4, if provided, or fy. Likewise,
fright if given, or f,, are substituted where x;perp is greater than z,.

Important: in the current version of the algorithm, the corresponding i** value is in-
terpolated only if:

® Tinterpli] doesn’t exist in z

o f(x) = NaN if zipterpli] exists in x

Source:

References:

CHAPTER 4. TRANSFORMS

4.2 Linear Interpolation (old)

Algorithm name: interpolate_linear_old
Category: Transforms
Summary: This algorithm linearly interpolates a variable piecewise from one coordinate

system to another. All values are interpolated, even if they exist in the new
coordinate system.

Inputs:

x Vector x-coordinates of the data points (must be increasing).
f Vector Data points to interpolate.

Tinterp Vector New set of x-coordinates to use in interpolation.

freft Coeff, optional Value to return when ipierp < xo. Default is fo.
frignt ~ Coeff, optional Value to return when z;pierp > @,. Default is f,.
Outputs:

finterp Vector Interpolated values of f.

Formula: For each value of x;pserp the two surrounding points are found and designated
zq and xp, with corresponding values f, and f,. Then finserp is calculated piecewise as
follows:

fb_fa

Tp — Tg

finterpm = fa + (l'interp[i] - xa)

Values where Z;pterp is less than zg are replaced with fi s, if provided, or fo. Likewise,
frignt if given, or f, are substituted where xipterp is greater than x,,.

Source:

References:

CHAPTER 4. TRANSFORMS
4.3 Convert ISO 8601 time to date/time elements

Algorithm name: isotime_to_elements
Category: Transforms

Summary: This algorithm takes a series of ISO 8601 strings and splits them into their
composant values (year, month, day, hour, minute, second) using the Python
dateutil module. This module is format agnostic, and will recognize any ISO
8601 format.

Inputs:

tiso Vector ISO 8601 date-time string
Outputs:

year Vector year

month Vector month

day Vector day

hour Vector hour

minute Vector minute

second Vector second

Formula: This algorithm applies the Python dateutil.parser module to decompose an
ISO date-time string into its composant values.

Source:

References:

10

CHAPTER 4. TRANSFORMS

4.4

Convert ISO 8601 time string to seconds

Algorithm name: isotime_to_seconds

Category: Transforms

Summary: This algorithm converts a series of ISO 8601 date-time strings to delta time

in seconds. It takes an optional format string for the conversion and an
optional reference time. If no reference time is provided, then Jan 1, 1970,
00:00:00 is used as the reference.

Inputs:

tiso Vector ISO 8601 strings

trsores String, Optional Reference time [ISO 8601 string] - default is
’19700101T000000’

format String, Optional ISO 8601 string format - if none provided, alg will
attempt to deconstruct time string.

Outputs:

At Vector Seconds since reference

Formula: This algorithm uses the Python dateutil and datetime modules to parse and
process ISO 8601 date strings into seconds elapsed. The basic steps of the algorithms are:

1.

Convert from ISO 8601 string into datetime tuple. If no format string is used, the
Python function dateutil.parser.parse is used to deconstruct the string, since it can
automatically recognize nearly any date string format. If a format string is provided,
then datetime.datetime.strptime(string, format) is used to deconstruct the string.

. datetime tuple objects are subtracted from the reference time to get a datetime.timedelta

object.

Number of seconds and microseconds are calculated from the datetime.timedelta
object and stored as numeric objects and passed out of the algorithm.

Source:

References:

11

CHAPTER 4. TRANSFORMS
4.5 Convert elapsed seconds to ISO 8601 time string

Algorithm name: seconds_to_isotime
Category: Transforms

Summary: Given a vector of elapsed seconds and a reference time, this algorithm calcu-
lates a series of ISO 8601 formatted time strings using the Python datetime
module. The format of the returned ISO 8601 strings can be controlled
by the optional format parameter. The default format is yyyymmddTHH-

MMss.
Inputs:
tsecs Vector Elapsed seconds [s]
tref String ISO 8601 reference time
format String, optional ISO 8601 format string, default is yyyymmddTHH-
MDMss
Outputs:
tiso Vector ISO 8601 date-time strings

Formula: The ISO 8601 time strings are generated from the inputs using the Python
datetime module using these steps for each item in the ts..s vector:

1. Create a datetime object using the input reference time (t,.r) representing the start
time.

2. Calculate a timedelta object from the input elapsed seconds parameter.

3. Add the timedelta object to the reference datetime object to calculate an absolute
time.

4. Convert the resulting datetime object to an ISO 8601 string following the given
format, if any.

Source:

References:

12

CHAPTER 4. TRANSFORMS
4.6 Converts a time or a time vector to decimal year.

Algorithm name: time_to_decimal_year
Category: Transforms

Summary: Given a vector of time (ms/s/mm/h/d/m) and an optional reference year,
this algorithm converts the data to a format in decimal year. Ex: 1995.0125

Inputs:

t Vector Time [s]

tref String, optional Time reference, default is 19500101 T000000
Outputs:

ty Vector Time in decimal year [year]

Formula: The decimal year vector t, is generated from the inputs using the Python
datetime module using these steps for each item in the t vector:

1. Regardless of the time format (second, minute, hour, day, month, ...), ¢ is converted
to year automatically by the instance EgadsData.

2. The user time reference, ¢,.y, if provided by the user, is converted to seconds using
the algorithm ISOtimeToSeconds, based on the reference 1950-01-01 at 00h00mmO0s.
trey can be positive if the user time reference is after 1950-01-01, or negative if the
user time reference is before 1950-01-01.

3. The time reference is then rescaled to year.

4. The final ¢, vector is computed by adding t,.; + 1950 to t.

Source:

References:

13

Part 11

Atmospheric Algorithms

14

Chapter 5

Thermodynamics

15

CHAPTER 5. THERMODYNAMICS
5.1 Incremantal pressure altitude

Algorithm name: altitude_pressure_incremental_cnrm
Category: Thermodynamics

Summary: Calculate a pressure altitude incrementally along the trajectory of an aircraft
from the Laplace formula (22 = Z1 + Ra/g < Tv > log(P1/P2)).

Inputs:

Ps Vector|t] Static pressure [hPa]

Tv Vector[t] Virtual temperature [K or °C]

t Vector|t] Measurement period [s]

Z0 Coeff Reference altitude at SO if SO is provided, can be air-
port altitude (m) if SO is not provided and measure-
ments start in airport [m]

S0 Coeft, optional Reference time, if not provided SO = t[0] [s]

Outputs:

alt.p Vector|t] Pressure altitude [m]

Formula: Tw is converted to Kelvin if needed, then:

Zio = Z0 with 0 such as ref_time;g = S0

R Tvj + Tv; Ps; . i1=7+1for j <i0
Z]—Zz+g.<2>.1og<st with i=j—1forj>i0

Source: CNRM/GMEI/TRAMM

References: Equation of state for a perfect gas, Triplet-Roche [10], page 36.

16

CHAPTER 5. THERMODYNAMICS

5.2 Pressure altitude

Algorithm name: altitude_pressure_raf
Category: Thermodynamics

Summary: Calculates pressure altitude given static pressure using US Standard Atmo-
sphere definitions. Sea level conditions in the US Standard Atmosphere are
defined as having a pressure of 1013.25 hPa and a temperature of 15 degC
at an altitude of Om.

Inputs:

P Vector Static pressure [hPa]
Outputs:

H Vector Pressure altitude [m]

Formula: For pressures greater than or equal to 226.3206:

R L
AN
_<P0>]

where the lapse rate L is 0.0065 K/m. For pressures less than 226.3206:

T P,
H:H1+R 1ln(1>

To
="
L

g P
where Hj is 11000m, 77 is 216.65 K and P; is 226.3206.
Source: NCAR EOL-RAF

References: US Standard Atmosphere 1976 (NASA-TM-X-74335), 241 pages. http://ntrs.nasa.gov/archiv

17

CHAPTER 5. THERMODYNAMICS

5.3 Density of dry air

Algorithm name: density_dry_air_cnrm
Category: Thermodynamics

Summary: Calculates density of dry air given static temperature and pressure.

Inputs:
P Vector Static pressure [hPa]
T Vector Static temperature [K or °C]
Outputs:
p Vector Density of dry air [kg/m?]
Formula:
~ 100P;
P~ R,

with R, = 287.05 J kg™t K—!
Density of humid air can be calculated using this same algorithm by using virtual
temperature instead of static temperature.

Source: CNRM/GMEI/TRAMM

References: Equation of state for a perfect gas, Triplet-Roche [10], page 34.

18

CHAPTER 5. THERMODYNAMICS
5.4 Relative humidity from capacitive probe

Algorithm name: hum_rel_capacitive_cnrm
Category: Thermodynamics

Summary: Calculates relative humidity using the measured frequency from a capacitive

probe.
Inputs:
Ucapf Vector Output frequency of the capacitive probe [Hz]
T, Vector Static temperature [K]
A Vector Static pressure [hPa]
AP Vector Dynamic pressure [hPa]
Cy Coeff. Temperature correction coefficient [%°C|
Fin Coeff. Minimal acceptable frequency [Hz]
Co Coeff. Oth degree calibration coefficient
Ch Coeft. 1st degree calibration coefficient
Cy Coeff. 2nd degree calibration coefficient
Outputs:
H, Vector Relative humidity [%)]

Formula: If Ucapf < Fiin then Ucapf = Fiin

P 9
H, = P AP [Co + ChUcapf + CoUcapf* + Cy(Ts — 20)]

with T in °C and 20 in °C.

Source: CNRM/GMEI/TRAMM

References: CAM note on humidity instrument measurements. [1]

19

CHAPTER 5. THERMODYNAMICS
5.5 Pressure and angle of incidence (CNRM)

Algorithm name: pressure_angle_incidence_cnrm
Category: Thermodynamics

Summary: Calculates static pressure and dynamic pressure by correction of static error.
Angle of attack and sideslip are calculated from the horizontal and vertical
differential pressures.

Inputs:

P, Vector Raw static pressure [hPa]

AP, Vector Raw dynamic pressure [hPa]

AP, Vector Horizontal differential pressure [hPa]
AP, Vector Vertical differential pressure [hPa]

Co Coeff.[2] Angle of attack calibration coefficients
Cs Coeft.[2] Slip calibration coefficients

Cerrstar Coeff.[4] Static error coefficients

Outputs:

P Vector Static Pressure [hPa]

AP Vector Dynamic pressure corrected with static error [hPa]
o' Vector Angle of attack [rad]

B Vector Sideslip [rad]

Formula: If AP, > 25hPa:
Errstat = Cerrstat [0] + Cerrstat[l]APT + Cerrstat [Q]APTQ + Cerrstat [3]A-Pr3

otherwise:

AP,
Errstat = 2—5r Errstat @ 25 hPa (5.1)

P, = P;, — Errstat
AP = AP, + Errstat

a = Cy[0] + Cy[1] AA];}
AP
B =Csl0] + Cslll 55

Source: CNRM/GMEI/TRAMM

References:

20

CHAPTER 5. THERMODYNAMICS

5.6

Dynamic pressure and angle of incidence

Algorithm name: pressure_dynamic_angle_incidence_vdk

Category: Thermodynamics

Summary: This algorithm calculates dynamic pressure and angles of incidence from a

5-hole probe using differences in pressure between the ports. The algorithm
requires calibration coefficients which are obtained by a calibration proce-
dure of the probe at predefined airflow angles. See van den Kroonenberg,
2008 [11] for more details on the calibration procedure.

Inputs:

AP, Vector Pressure difference between top port and center port
[hPa]

AP, Vector Pressure difference between bottom port and center
port [hPa]

AP Vector Pressure difference between left port and center port
[hPa]

AP, Vector Pressure difference between right port and center port
[hPa]

APy, Vector Pressure difference between center port and static
pressure [hPa]

a;j Coeff[11,11] Angle of attack calibration coefficients

bij Coeff[11,11] Sideslip calibration coefficients

ij Coeff[11,11] Dynamic pressure calibration coefficients

Outputs:

q Vector Dynamic pressure [hPa]

a Vector Angle of attack [deg]

g Vector Sideslip angle [deg]

Formula: Total pressure difference is calculated using pressure differentials from the 5

ports.

125
+ (AP, — 4AP, + AP, + APR)? + (AP, + AP, — 4AP, + AP;)?

1
AP = <[(APt + AP, + AP, + AP)? + (—4AP + AP, + AP, + AR)®

1/2
+ (AP, + AP, + AP, — 4AP1)2]> + %(APt + AP, + AP, + AP)

The dimensionless pressure coeflicients k, and kg are defined using AP and the mea-
sured differential pressures.

21

CHAPTER 5. THERMODYNAMICS

L _AR-AR
*~ AP
. _ AP AR
B= AP

These are applied to general calibration polynomial form (11th order) from Bohn and
Simon, 1975 [3], where m = n = 11.

a=> (k)" |>_ ai(ks)
i=0 5=0 |

B=> (ko) Zbij(kﬁ)j
i=0 =0

kg = Z qu (ks)’

Finally, the dynamic pressure, angle of attack and sideslip angle can be calculated
using these coeflicients.

q = APy, + APk,

o=

tan 3
(8 = arctan (n?’)
cos &

Source:
References:

A.C. van der Kroonenberg, et al., “Measuring the Wind Vector Using the Autonomous
Mini Aerial Vehicle M2AV,” J. Atmos. Oceanic Technol., 25 (2008): 1969-1982. [11]

22

CHAPTER 5. THERMODYNAMICS

5.7 Potential Temperature

Algorithm name: temp_potential_cnrm
Category: Thermodynamics

Summary: Calculates potential temperature.

Inputs:
T, Vector Static temperature [K or oC]
P Vector Static pressure [hPa]
R, /cpa Coetl. Gas constant of air divided by specific heat of air at
constant pressure
Outputs:
0 Vector Potential temperature [same unit as 7]
Formula:

o <1000>Ra/cm
s Ps

Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [10].

23

CHAPTER 5. THERMODYNAMICS

5.8 Static Temperature

Algorithm name: temp_static_cnrm

Category: Thermodynamics

Summary: Calculates static temperature of the air from total temperature. This method
applies to probe types such as the Rosemount.

Inputs:

T; Vector Measured total temperature [K]
AP Vector Dynamic pressure [hPa]

P Vector Static pressure [hPal]

Ty Coeff. Probe recovery coefficient

R, /cpa Coetl.

Outputs:

Gas constant of air divided by specific heat of air at
constant pressure

T Vector

Formula:
T, =

Static temperature [K]

Ty

Source: CNRM/GMEI/TRAMM

References:

Ra/cpa
1+7y <(1+%{) ’ —1)

24

CHAPTER 5. THERMODYNAMICS

5.9 Virtual Temperature

Algorithm name: temp_virtual_cnrm
Category: Thermodynamics

Summary: Calculates the virtual temperature of air.

Inputs:

T Vector Static temperature [K or oC]

r Vector Water vapor mixing ratio [g/kg]

Outputs:

T, Vector Virtual temperature [same units as 7]
Formula:

1+ (Ry/Ro)r

T =T, 1+r

where R,/R, = 1.608
Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [10], page 56.

25

CHAPTER 5. THERMODYNAMICS

5.10 Mach number

Algorithm name: velocity_mach_raf
Category: Thermodynamics

Summary: Calculates the mach number based on dynamic and static pressure.

Inputs:
AP Vector Dynamic pressure [hPa]
P Vector Static pressure [hPa]
Outputs:
M Vector Mach number
Formula:
~y—1
2 AP =
M=, " 1) -1
v—1 < P *)]

Source: NCAR-EOL

References: NCAR-RAF Bulletin #23 [7]

26

CHAPTER 5. THERMODYNAMICS

5.11 True air speed (CNRM)

Algorithm name: velocity_tas_cnrm

Category: Thermodynamics

Summary: Calculates true air speed based on static pressure, static temperature and
dynamic pressure using the Barré-St Venant formula.

Inputs:

Ts Vector Static temperature [K]

AP Vector Dynamic pressure [hPa]

A Vector Static pressure [hPa]

Cpa Coeff. Specific heat of air at constant pressure (for dry air

R, /cpa Coett.

Outputs:

1004 J K~ kg™1)
Gas constant of air divided by specific heat of air at
constant pressure

Vi Vector

Formula:

True air speed [m/s]

Vi = 2CpaTs

Source: CNRM/GMEI/TRAMM

L AP Ra/cpa .
+ 5 -

References: NCAR-RAF Bulletin #23 [7], Méchanique des fluides, Candel [4]

27

CHAPTER 5. THERMODYNAMICS

5.12 True air speed (RAF)

Algorithm name: velocity_tas_raf
Category: Thermodynamics

Summary: Calculates true air speed based on Mach number, measured temperature
and thermometer recovery factor. Typical values of the themometer recovery
factor range from 0.75-0.9 for platinum wire ratiometer (flush bulb type)
thermometers, and around 1.0 for TAT type thermometers.

Inputs:

T, Vector Measured temperature [K]

M Vector Mach number

e Coeft. thermometer recovery factor

Outputs:

Vi Vector True air speed [m/s]
Formula:

R~T,.M?
Vi =
140.5(y —1)eM?

where the recovery factor e can be determined for a thermometer by comparing its mea-
sured temperature with the actual total and static temperature.

Tr - Ts

Tt - Ts

e

Source: NCAR-EOL

References: NCAR-RAF Bulletin #23 [7]

28

CHAPTER 5. THERMODYNAMICS

5.13 Longitudinal true airspeed

Algorithm name: velocity_tas_longitudinal_cnrm

Category: Thermodynamics

Summary: Calculates the true air speed along the longitudinal axis of the aircraft.

Inputs:

Vi Vector True air speed [m/s]
o' Vector Angle of attack [rad]
B Vector Sideslip angle [rad]
Outputs:

Viz Vector

Formula:

V;tz:

Source: CNRM/GMEI/TRAMM

Longitudinal true air speed [m/s]

Vi
V/1+tan? o + tan? 3

References: NCAR-RAF Bulletin #23 [7]

29

CHAPTER 5. THERMODYNAMICS

5.14 3D Wind Vectors

Algorithm name: wind_vector_3d_raf
Category: Thermodynamics

Summary: This algorithm applies vector transformations using aircraft speed, angle of
attack and sideslip to calculate the three-dimensional wind vector compo-

nents.
Inputs:
U, Vector Corrected true air speed [m/s]
a Vector Aircraft angle of attack [rad]
B Vector Aircraft sideslip [rad]
Up Vector Easterly aircraft velocity from INS [m/s]
Up Vector Northerly aircraft velocity from INS [m/s]
wp Vector Upward aircraft velocity from INS [m/s]
) Vector Roll [rad]
6 Vector Pitch [rad]
P Vector True Heading [rad]
6 Vector Pitch rate [rad/sec]
P Vector Yaw rate [rad/sec]
L Vector Distance separating INS and gust probe
along aircraft center line [m]
Outputs:
u Vector Easterly wind velocity component [m/s]
v Vector Northerly wind velocity component [m/s]
w Vector Upwards wind velocity component (positive up) [m/s]
Formula:

D= \/(1+tan2a+tan25)

u = —U,D " [sint) cos § 4 tan B(cos 1) cos ¢ + sin v sin §sin ¢) + tan a(sin ¢ sin 6 cos ¢ — cos ¢ sin ¢)]
+ up — L(ésin@sinw — zbcoswcosﬁ)

v =—U,D ! [cos 1 cosf — tan B(sin 1) cos ¢ — cos) sin O sin ¢) + tan a(cos 1) sin @ cos ¢ + sin 1) sin)]
+vp — L(t) sin 1) cos 0 + 0 cos 1 sin 0)

w = —UaD_l(sinﬁ — tan J cosfsin ¢ — tan a cos 0 cos ¢) + wy, + L6 cos b

Source:

References: NCAR-RAF Bulletin #23 [7]

30

Chapter 6

Microphysics

31

CHAPTER 6. MICROPHYSICS

6.1 Effective diameter

Algorithm name: diameter_effective_dmt
Category: Microphysics
Summary: Calculates effective diameter of a size distribution. In general, this definition

is only meaningful for water clouds, and another form must be used when
in ice clouds.

Inputs:
ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]
d; Vector [bins] Average diameter in size category i [pm)]
Outputs:
D, Vector[time] Effective diameter [pm]
Formula:
m
3 Z Cid?
De _ Z:Ll
i=1
Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]

32

CHAPTER 6. MICROPHYSICS

6.2 Mean diameter

Algorithm name: diameter_mean_raf
Category: Microphysics

Summary: Calculates the arithmetic average of all particle diameters given in a particle
size distribution.

Inputs:
n; Array[time, bins] Number of particles in each channel ¢
d; Vector[bins] Channel i size [pum]
Outputs:
D Vector[time] Mean diameter [pm]
Formula: S nd
D==—
Ny

where V; is the total number of particles.
Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

33

CHAPTER 6. MICROPHYSICS

6.3 Median Volume Diameter

Algorithm name: diameter_median_volume_dmt
Category: Microphysics
Summary: Calculates the median volume diameter given a size distribution. The

median volume diameter is the size of droplet below which 50% of the total
water volume resides.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]

d; Vector [bins] Average diameter of size category i [um]

Si Array[time, Shape factor of the hydrometeor of size category i to

bins],Optional account for asphericity

pi Vector|bins],Optional Density of hydrometeor in size category i [g cm™3].
Default is p,, = 1.0 g cm™3

Outputs:

Dywa Vector[time] Median volume diameter [pm]

Formula: Step 1: Compute liquid water content
T m
W = 6 Z Cid?pisz‘
i=1

Step 2: Beginning at the first size channel, calculate the accumulated mass S, =
w1y + ws + ...w, where w; is the mass of water in channel 1, and w, is the channel where
the accumulated mass is greater than or equal to 0.5W, i.e. greater than or equal to 50%
of the total LWC.

Step 3: Compute the median volume diameter, D,,,q by interpolating linearly between
the channels that bracket where the accumulated mass exceeded the total LWC:

Dmvd - dn—l + (05 - Sn—l/Sn)(dn - dn—l)

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 33. [5]

34

CHAPTER 6. MICROPHYSICS

6.4 Extinction Coefficient

Algorithm name: extinction_coeff_dmt
Category: Microphysics

Summary: Calculates extinction coefficient given a particle size distribution.

Inputs:
ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]
d; Vector[bins] Average diameter of size category i [um]
Q. Vector|bins], Optional Extinction efficiency; default is Q. = 2
Outputs:
B, Vector[time] Extinction coefficient [km™1]
Formula:
T m
B. = Z Z Qecid?
=1
Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]

35

CHAPTER 6. MICROPHYSICS

6.5 Mass Concentration

Algorithm name: mass_conc_dmt
Category: Microphysics
Summary: Calculates mass concentration given a size distribution. Can be used to

calculate liquid or ice water content depending on the types of hydrometeors
being sampled.

Inputs:
Ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]
d; Vector[bins] Average diameter of size category i [um]
S; Array[time, bins] Shape factor of the hydrometeor of size category i to
account for asphericity
pi Vector[time, bins] Density of the hydrometeor in size category i [g cm™3]
Outputs:
M Vector[time] Mass concentration [g cm]
Formula:
T m
M = 6 Z Sipicidi
i=1
Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]

36

CHAPTER 6. MICROPHYSICS
6.6 Total Number Concentration (DMT)

Algorithm name: number_conc_total_dmt
Category: Microphysics

Summary: Calculation of total number concentration given distribution of particle
counts from a particle sampling probe.

Inputs:
ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]
Outputs:
N Vector[time] Total number concentration [cm 2]
Formula:
m
V=3
i=1
Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]

37

CHAPTER 6. MICROPHYSICS

6.7 Total Number Concentration

Algorithm name: number_conc_total_raf
Category: Microphysics

Summary: Calculation of total number concentration for a particle probe.

Inputs:
n; Array Number of particles in each channel ¢
SV Array Sample volume [m?]
Outputs:
Ny Vector Total number concentration [m™]
Formula: n
Ny = L
t SV

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

38

CHAPTER 6. MICROPHYSICS
6.8 Sample area for imaging probes (All in)

Algorithm name: sample_area_oap_all_in_raf
Category: Microphysics
Summary: Calculation of ’all in’ sample area size for OAP probes such as the 2DC,

2DP, CIP, etc. This sample area varies by number of shadowed diodes. This
routine calculates a sample area per bin.

Inputs:
A Coeft. Laser wavelength [nm]
Dgrms Coeff. Distance between probe arm tips [mm]
dD Coeft. Diode diameter [pm]
M Coeff. Probe magnification factor
N Coeff. Number of diodes in array
Outputs:
SA Vector Sample area [m?]
Formula:
6R?
DOF; = = (6.1)
.dD
Ri = 7/7
X=1.N-1

where DOF must be less than Dg;.,s. The parameter ¢ ranges from 1 to N — 1, since
particles touching either edge are rejected as they are not considered ’all-in’.

dD(N — X; — 1)
M
A value for ESW; (effective sample width) is calculated for each X.

ESW; =

SA; = (DOF;)(ESW;)

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

39

CHAPTER 6. MICROPHYSICS
6.9 Sample area for imaging probes (Center In)

Algorithm name: sample_area_oap_center_in_raf
Category: Microphysics

Summary: Calculation of 'center in’ sample area size for OAP probes such as the 2DC,
2DP, CIP, etc. This sample area varies by number of shadowed diodes. This
routine is intended to calculate a sample area per bin.

Inputs:
A Coeft. Laser wavelength [nm]
Dgrms Coeff. Distance between probe arm tips [mm]
dD Coeft. Diode diameter [pm]
M Coeff. Probe magnification factor
N Coeff. Number of diodes in array
Outputs:
SA Vector Sample area [m?]
Formula:
6R?
DOF; = —* (6.2)
dD
=2
X=1.N

where DOF must be less than Dgp,s. The parameter ¢ ranges from 1 to V.

NdD

E —
SW %

SA; = (DOF;)(ESW)

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

40

CHAPTER 6. MICROPHYSICS
6.10 Sample area for scattering probes

Algorithm name: sample_area_scattering_raf
Category: Microphysics

Summary: Calculation of sample area for scattering probes such as the FSSP, CAS,

etc.
Inputs:
DOF Coeft. Depth of field [m]
BD Coeft. Beam diameter [m]
Outputs:
SA Coeft. Sample area [m?]
Formula:

SA = (DOF)(BD)

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

41

CHAPTER 6. MICROPHYSICS

6.11 Sample Volume

Algorithm name: sample_volume_general_raf
Category: Microphysics

Summary: Calculates sample volume for microphysics probes (1D, 2D, FSSP, etc).

Inputs:

Vi Vector True air speed [m/s]

SA Coeft. Sample area of probe [m?]

ts Coeft. Sample rate [s]

Outputs:

SV Vector Sample volume [m?]
Formula:

SV = Vit SA

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [§]

42

CHAPTER 6. MICROPHYSICS

6.12 Surface Area Concentration

Algorithm name: surface_area_conc_dmt
Category: Microphysics

Summary: Calculation of surface area concentration given size distribution from particle

probe.
Inputs:
ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [em ™3]
d; Vector[bins] Average diameter of size category i [um]
S; Array[time, bins] Shape factor of hydrometeor in size category i, to ac-
count for asphericity
Outputs:
S Vector|[time] Surface area concentration [pm? cm ™3]
Formula:
m
S=m Z sicz-d?
i=1
Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]

43

Chapter 7

Radiation

44

CHAPTER 7. RADIATION

7.1 Camera Viewing Angles

Algorithm name: camera_viewing_angles

Category: Radiation

Summary: Calculates per-pixel camera viewing angles of a digital camera given its
sensor dimension and focal length. x—y coordinates are defined as having
the left side of the image (x=0) aligned with the flight direction and y=0 to
the top of the image.

Inputs:

Ny Coeff Number of pixels in x direction

Ny Coeff Number of pixels in y direction

ly Coeft Length of the camera sensor in x direction [mm]

Ly Coeft Length of the cameras sensor in y direction [mm]

f Coeft Focal length of the camera lens [mm|]

Outputs:

0. Array[ng,ny] Camera viewing zenith angle [deg]

P, Array[ng,ny] Camera viewing azimuth angle [deg], mathematic neg-

ative system with 0°into flight direction, clockwise

Formula:

For each i, j where 0 <7 <n, and 0 < j < ny:

/2

G
Ty

i =/
Ny

d:‘/$2+y2

d
0.(i,7) = 2tan™! a7

®.(i,§) = 2r — tan"* y
x

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:

45

CHAPTER 7. RADIATION

7.2 Planck Emission

Algorithm name: planck_emission
Category: Radiation

Summary: Calculates the Planck emission of a surface at a given wavelength given its

temperature.
Inputs:
T Vector Temperature [K]
A Coeft Wavelength [nm]
Outputs:
rad Vector Black body radiance [W m-2 sr-1 nm-1]

Formula: After converting A to meters, the radiance is calculated by:

2hc?
rad = ¢ %1077

)\5(exp(k;’§T) - 1)

where c¢ is the speed of light in m/s, h is the Planck constant in J s and kp is the
Boltzmann constant in J/K.

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:

46

EUFAR
CHAPTER 7. RADIATION
7.3 Rotate solar vector to aircraft frame

Algorithm name: rotate_solar_vector_to_aircraft_frame
Category: Radiation

Summary: Rotates solar vector to aircraft coordinates given roll, pitch and yaw. All
rotations are defined with a mathematically positive spherical coordinate

system.

Inputs:

0o Vector Solar Zenith [degrees]

D, Vector Solar Azimuth [degrees] (mathematic negative,
North=0°, clockwise)

ba Vector Aircraft roll angle [degrees] (mathematic positive, left
wing up=positive)

04 Vector Aircraft pitch angle [degrees] (mathematic positive,
nose down=positive)

Vg Vector Aircraft yaw angle [degrees| (mathematic negative,
North=0°, clockwise)

Outputs:

Ooa Vector Solar Zenith, AC coordinates [degrees]

Doy Vector Solar Azimuth, AC coordinates [degrees| (mathematic

negative, North=0°, clockwise)

Formula: First, & and 1, must be transformed into mathematially positive coordinate
systems by subtracting them from 360.
Next, the cartesian coordinates are calculated from the solar vector:
x = sin g cos P
y = sin g sin O

z = cosfg

Then, the cartesian coordinates are rotated using three rotation matrixes using yaw,
pitch and roll:

x! c0s 0, cos g cos B, sin Y, —sinf, T
y'| = |sin ¢ sin b, cos 1, — cos ¢, sin1), sin @, sin O, sin 1, + cos P, cos P, sin g, cosh, | |y
z COS (g Sin B, cos Yy + sin ¢, sin, oS @, sin b, sin P, — sin @, cos P, cos P, cosb, | | 2z

Finally, convert back to spherical coordinates:
/

z
g = cos !
/
1Y
(I)(Da = tan 1 ?

47

CHAPTER 7. RADIATION

®nq must be between 0 and 360 and then converted back to mathematic negative
coordinate system (i.e. subtract it from 360).

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:

48

CHAPTER 7. RADIATION

7.4 Scattering Angles

Algorithm name: scattering_angles
Category: Radiation

Summary: Calculates the scattering angle for each pixel of an image given the camera
viewing angle and solar vector.

Inputs:

Ny Coeff Number of pixels in x dimension

Ny Coeff Number of pixels in y dimension

0. Array[ng, ny| Camera viewing zenith angle [degrees]

D, Array[n,, ny] Camera viewing azimuth angle [degrees] (0°= flight

direction)

0o Coeff Solar zenith angle [degrees]

O Coeff Solar azimuth angle [degrees] (0°= North)

Outputs:

Oscat Array[ng, ny Scattering angles of each pixel [degrees]
Formula:

Oseqr = cOS™ ' (— sin O, cos P sin O, cos P, — sin O, sin P sin O, sin P, + cos O, cos b..)

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:

49

CHAPTER 7. RADIATION
7.5 Solar Vector Calculation (Blanco)

Algorithm name: solar_vector_blanco
Category: Radiation

Summary: This algorithm comuptes the current solar vector, given current date, time,
latitude and longitude. Algorithm is most accurate between 1999-2005, but
calculations out to 2015 show the solar vector can be determined with an
error of less than 0.5 minutes of arc.

Inputs:
Date_tim¥éector ISO String of current date/time in UTC [yyyymmd-
dThhmmss]
lat Vector Latitude [degrees]
long Vector Longitude [degrees]
Outputs:
ra Vector Right ascension [radians]
J Vector Declination [radians]
6, Vector Solar Zenith [radians]
0 Vector Solar Azimuth [radians]
Formula:
1461 367
Jjd = T(y + 4800 + (m — 14)/12) + ﬁ(m —2—12((m — 14)/12))
3
— Z(y + 4900 + (m — 14)/12)/100 + d — 32075 — 0.5 + hour /24.0

4
jd = (1461(y + 4800 + (m — 14)/12)) /4 + (367(m — 2 — 12((m — 14)/12)))/12
— (3((y + 4900 + (m — 14)/12)/100)) /4 + d + 32075 — 0.5 + hour/24.0

where y is the year, m is the month, d is the day of the month and hour is the current
hour in decimal format, i.e. with minutes and seconds as fractions of an hour. Note that
all divisions in this calculation are integer divisions except the last.

The ecliptic coordinates of the sun are computed from the Julian Day by:

n = jd — 2451545.0
Q = 2.1429 — 0.0010394594n
L (mean longitude) = 4.8950630 + 0.017202791698n
¢ (mean anomaly) = 6.2400600 + 0.0172019699n
[(ecliptic longitude) = L + 0.03341607 sin g + 0.00034894 sin 2g — 0.0001134 — 0.0000203 sin 2
ep (obliquity of the ecliptic) = 0.4090928 — 6.2140 x 10~n 4 0.0000396 cos Q2

50

CHAPTER 7. RADIATION

The conversion from ecliptic coordinates to celestial coordinates is computed by:

cosepsinl
ra (right ascension) = tan™! [p]
cos!

6 (declination) = sin™![sinepsinl]

where ra must be between 0 and 27.
The conversion between celestial coordinates to horizontal coordinates is then com-
puted by the following equations:

gmst = 6.6974243242 + 0.0657098283n + hour

pi
180

w (hour angle) = Imst —ra

Imst = (15gmst + long)

6, = cos™ ‘[cos lat cos w cos & + sin § sin lat]

— tan-! —sinw
v= tan d cos lat — sin lat cosw
FarthMeanRadius .
Parallax = - —sin @,
AstronomicalUnit

0. = 0.+ Parallax
where: FarthMeanRadius = 6371.01 km and AstronomicalUnit = 149597890 km
Source:

References: Manuel Blanco-Muriel, et al., “Computing the Solar Vector,” Solar Energy
70 (2001): 436-38. [2]

51

CHAPTER 7. RADIATION
7.6 Solar Vector Calculation (Reda-Andreas)

Algorithm name: solar_vector_reda
Category: Radiation

Summary: This algorithm calculates the current solar vector based on time, latitude and
longitude inputs. It accepts optional pressure and temperature arguments
to correct for atmospheric refraction effects. The zenith and azimuth angle
calculated by this algorithm have uncertainties equal to +0.0003° in the
period from the year -2000 to 6000.

Inputs:
Date_tim¥ector ISO String of current date/time in UTC [yyyymmd-
dThhmmss]

lat Vector Latitude [degrees]

long Vector Longitude [degrees]

E Vector Elevation [m]

P Vector, Optional Local pressure [hPa]

T Vector, Optional Local temperature [°C|

Outputs:

0 Vector Solar Zenith [degrees]

¢ Vector Solar Azimuth [degrees]
Formula:

1. Calculate Julian and Julian Ephemeris Day, Century and Millennium:

(a) Calculate Julian Day (JD):
JD = INT(365.25(Y + 4716)) + INT(30.6001(M + 1)) + D + B — 1524.5

where:
e INT is the integer of the calculated terms (e.g. 8.7 = 8, 8.2 = 8, etc)
e Y is the year
e M is the month of the year. If M <=2then Y =Y —1and M = M + 12

e D is the day of the month with decimal time (i.e. with fractions of the day
being represented after the decimal point.)

e B is equal to 0 for the Julian Calendar, and equal to (2 — A+ INT(A/4))
for the Gregorian calendar, where A = INT(Y/100)

(b) Calculate Julian Ephemeris Day (JDE):

AT
DE=JD+ ——
I JD+ 86400

52

CHAPTER 7. RADIATION

()

(d)

Where AT is the difference between the Earth rotation time and the Terrestrial
Time. It can be calculated following the NASA “Polynomial expressions for
delta T (AT)*“ [12].

Calculate Julian Century (JC) and the Julian Ephemeris Century (JCFE) for
the 2000 standard epoch:

JD — 2451545
JO= 36525
JDE — 2451545
E:
e 36525

Calculate the Julian Ephemeris Millennium (JME) for the 2000 standard

epoch:
JME = @
10

2. Calculate Earth heliocentric longitude, latitude and radius vector (L, B, and R):

(a)

Calculate L0O; and LO:

LO; = A; cos(B; + C; x JME)

n

Where the terms A;, B; and C; are based on values found in table A4.2 of the
algorithm literature [9].

Calculate the terms L1, L2, 1.3, L4 and L5 by using these same equations, but
using the appropriate terms from the table.

Calculate the Earth heliocentric longitude (in radians):

L =10"8(L0+ L1 x JME+ L2 x JME? 4 L3 x JME® + L4 x JME* + L5 x JME?)

Convert L to degrees and limit between 0° and 360°.

Calculate the Earth heliocentric latitude B by using table A4.2 and repeating
steps (a)-(c) using the appropriate values. Then convert B to degrees. Note
that there are no B2 through B5.

Calculate the Earth radius vector R (in AU) in a similar manner by repeating
steps (a)-(c) and using the appropriate values from table A4.2.

3. Calculate the geocentric longitude and latitude (© and f):

©=L+180
B=-B

Where © must be limited between 0° and 360°.

4. Calculate the nutation in longitude and obliquity (A and Ae):

53

CHAPTER 7. RADIATION

(a) Calculate the mean elongation of the moon from the sun (in degrees):

JCE?
Xy = 297.85036 + 445267.11480JCE — 0.0019142.JCE? +
189474
(b) Calculate the mean anomaly of the sun (in degrees):
, JCE
X7 = 357.52772 4 35999.050340JCE — 0.0001603JCE*~ —
300000
(c) Calculate the mean anomaly of the moon (in degrees):
L, JCE
Xo = 134.96298 + 477198.867398 JCE + 0.0086972JCE~ + 56250
(d) Calculate the moon’s argument of latitude (in degrees):
, JCE
X3 =93.27191 4 483202.017538JCE — 0.0036825JCE~ + 397970

(e) Calculate the longitude of the ascending node of the moon’s mean orbit on the
ecliptic, measured from the mean equinox of the date (in degrees):

JCE®
X, = 125.04452 — 1934.136261JCE + 0.0020708JCE?
! * * 150000
(f) For each row in table A4.3, calculate the terms Ay and Ae (in 0.0001 of arc
seconds):
4
sz = (CLZ‘ + b1JCE) sin Z XjY%’j
§=0
4
A¢€; = (¢; + d; JCE) cos Z XY
j=0
where:

e a;, b;, ¢; and d; are the values listed in the ith row and columns a, b ¢ and
d in Table A4.3.

e X; are the X values calculated above
e Y ; are the values in row ¢ and jth Y column in table A4.3.

(g) Calculate the nutation in longitude and obliquity (in degrees):

63
> Ay
_ _i=0
36000000
63
Z AEZ‘
Ae= =9
36000000

Ay

54

CHAPTER 7. RADIATION

5. Calculate the true obliquity of the ecliptic (in degrees):

U=JME/10
€0 = 84381.448 — 4680.93U — 1.55U2 + 1999.25U° — 51.38U4
—249.67U° — 39.05U° + 7.12U07 + 27.87U8 + 5.79U° + 2.45U1°
€ = €9/3600 + Ae

6. Calculate the aberration correction (in degrees):

204808
3600R

7. Calculate the apparent sun longitude (in degrees):

A=0+ Ay + AT

8. Calculate the apparent sidereal time at Greenwich at any given time (in degrees):

JC3

j— - 2 2710000
v = 280.46061837 4 360.98564736629(.J D — 2451545) + 0.000387933JC 38710000

v =1+ A cose
where vy must be limited to the range from 0° to 360°.

9. Calculate the geocentric sun right ascension (in degrees):

180, 4 (sinAcose—tanﬁsine)
a = — tan
COoS A

where, as before, & must be limited to the range from 0° to 360°.

10. Calculate the geocentric sun declination § (in degrees):

180
§ = — sin~!(sin B cos € + cos B sin esin \)
T

11. Calculate the observer local hour angle (in degrees):
H=v+long—«a

Limit H from 0° to 360°, and note that in this algorithm H is measured westward
from south.

12. Calculate the topocentric sun right ascension and declination (in degrees):

(a) Calculate the equatorial horizontal parallax of the sun (in degrees):

‘= 8.794
~ 3600R

55

CHAPTER 7. RADIATION

(b) Calculate the terms w (in radians), x and y:
u = tan~1(0.99664719 tan lat)

— cosu+ ———— coslat
T = cosu+ oo s cosla

y = 0.99664719 sin u + sin lat

E
6378140
(c) Calculate the parallax in the sun right ascension (in degrees):

180 1 (—xsin sin H)

Aa = — tan~
m cosd — xsiné cos H

(d) Calculate the topocentric sun right ascension and declination (in degrees):

o =a+ Aa
5 — tan- ((sin(5 — ysin€) cos Aa)

cosd — xsin € cos H

13. Calculate the topocentric local hour angle (in degrees):
H =H - Aa
14. Calculate the topocentric zenith angle (in degrees):

(a) Calculate the topocentric elevation angle without atmospheric correction (in
degrees):

180
eo = — sin~!(sin lat sin & + coslat cos &' cos H')
7r

(b) Calculate the atmospheric refraction correction (in degrees):
P 283 1.02
1010 (T + 273 10.3

(+) 60 tan <€0 —+ m)

Ae

Note that this step is skipped if temperature and pressure are not provided by
the user. Also note that the argument for the tangent is computed in degrees. A
conversion to radians may be needed if required by your computer or calculator.

(c) Calculate the topocentric elevation angle (in degrees):
e=-¢eg+ Ae

(d) Calculate the topocentric zenith angle (in degrees):
0=90—c¢

15. Calculate the topocentric azimuth angle (in degrees):

180 in A’
& =~ tan™! (o) +180
™

cos H' sin lat — tan ¢’ coslat

Limit ® from 0° to 360°. Note that ® is measured eastward from north.

56

CHAPTER 7. RADIATION

Source:

References: Reda and Andreas, “Solar Position Algorithm for Solar Radiation Appli-
cations,” National Renewable Energy Laboratory, Revised 2008, accessed
February 14, 2012, http://www.nrel.gov/docs/fy080sti/34302.pdf. [I]

57

http://www.nrel.gov/docs/fy08osti/34302.pdf

CHAPTER 7. RADIATION

7.7 Blackbody Temperature

Algorithm name: temp_blackbody
Category: Radiation

Summary: Calculates the blackbody temperature for a given radiance at a specific

wavelength.
Inputs:
rad Vector Blackbody radiance [W m-2 sr-1 nm-1]
A Coeft Wavelength [nm]
Outputs:
T Vector Temperature [K]

Formula: After converting A to m and rad to W m-3 sr-1, the blackbody temperature
is calculated by:
hc

T =
kpA (2, + 1)

where ¢ is the speed of light in m/s, h is the Planck constant in J s and kp is the
Boltzmann constant in J/K.

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:

58

Chapter 8

Quality Control

59

CHAPTER 8. QUALITY CONTROL
8.1 Check navigation data for inconsistencies

Algorithm name: nav_chk
Category: Quality Control

Summary: Tests navigation file (position and attitude) for inconsistencies and corrects
them. The code is based on a HyMap *gps File.

Inputs: *.gps file plus the number of image lines according to the ENVI header of the
related image data. The *.gps file is a multi-column ASCII file derived by HyVista Corp.
proprietary software, which synchronises times and generates an output which is indexed
by scan line number. The table below shows the list of parameters.

Formula:

Parameters Example Description

Line 1 Scan line number

UTC Time 48835.0462/20/5/2004 Time of day in seconds/day/month/year

VME Time 929386852.0 Internal computer tick time in microsec-
onds

IMU Time 2048825953.1 Internal IMU time in microseconds

Latitude 48.03321015 Decimal degrees (positive = north, nega-
tive = south)

Longitude 11.28140200 Decimal degrees (positive = east, negative
= west)

Altitude 2970.79892155 Meters above MSL

Pitch 0.22235917 Decimal degrees (positive = nose up)

Roll 0.54269902 Decimal degrees (positive = right wing
up)

Heading 0.37774316 Decimal degrees (positive = N-E-S direc-
tion, negative = N-W-S direction)

True Track 1.00507651 Decimal degrees (0 to 360)

Ground Speed 72.90907700

Meters / second

Sat 5 Number of satellites being received
DGPS 1 DGPS status: 1 = DGPS being received
0 = no DGPS received
Outputs: status file — template+’_status’

If applicable: corrected gps file
backup of original .gps — filename.gps_original

test & correct the following

e point or colon - separator in .gps =/, error catched in hymap_read_gps.pro corrected

when re-writing the .gps-file anyway

60

CHAPTER 8. QUALITY CONTROL

e Flines in image = #lines in gps
if too many gps-lines: truncate lines at beginning (like Hyvista does)

if too few gps-lines: adding extrapolated lines at end
e invalid start / end time: calculating average timestep & using last relieable line

e data gaps (indicated by identical time): interpolate info

Source: DLR-DFD

References: EUFAR FP7 - DJ2.2.2 - Quality Layers for VITO, DLR, INTA and PML

61

CHAPTER 8. QUALITY CONTROL
8.2 Additional consistency check & QA for navigation data
(no correction!)

Algorithm name: nav_const
Category: Quality Control

Summary: Tests navigation file (position and attitude) for consistency. The code is
based on a HyMap *gps File.
This check can be performed after nav_chk.pro.

Inputs: *.gps file. The *.gps file is a multi-column ASCII file derived by HyVista Corp.
proprietary software, which synchronises times and generates an output which is indexed
by scan line number. The table below shows the list of parameters.

Parameters Example Description

Line 1 Scan line number

UTC Time 48835.0462/20/5/2004 Time of day in seconds/day/month/year

VME Time 929386852.0 Internal computer tick time in microsec-
onds

IMU Time 2048825953.1 Internal IMU time in microseconds

Latitude 48.03321015 Decimal degrees (positive = north, nega-
tive = south)

Longitude 11.28140200 Decimal degrees (positive = east, negative
= west)

Altitude 2970.79892155 Meters above MSL

Pitch 0.22235917 Decimal degrees (positive = nose up)

Roll 0.54269902 Decimal degrees (positive = right wing
up)

Heading 0.37774316 Decimal degrees (positive = N-E-S direc-
tion, negative = N-W-S direction)

True Track 1.00507651 Decimal degrees (0 to 360)

Ground Speed 72.90907700 Meters / second

Sat 5 Number of satellites being received

DGPS 1 DGPS status: 1 = DGPS being received

0 = no DGPS received

Outputs: if (KEYWORD_SET(gps_err_array)) — QC array
otime, lat, lon, alt, pit, rol, heading, track, speed, sat, dgps
Values: 0:0K 1:minor problem 2:major problem
if (KEYWORD _SET(gps_data)) — gps data as array
otime, lat, lon, alt, pit, rol, heading, track, speed, sat, dgps

Formula: test & report the following

e if data range is not plausible

62

CHAPTER 8. QUALITY CONTROL

e if change between steps > threshold:
latlon, alt, pit, rol, heading, track, speed

e uncorrectable errors in:

time, latlon, alt, pit, rol, heading, track, speed, sat, dgps

Source: DLR-DFD

References: EUFAR FP7 - DJ2.2.2 - Quality Layers for VITO, DLR, INTA and PML

63

Bibliography

1]

2]

=

Bellec, H. and G. Duverneuil, 1996: Appareils de mesure de ’hygrométrie sur le Merlin
IV. Note de Centre 9, Météo-France CNRM/CAM, July 1996.

Blanco-Muriel, Manuel, Alarcon-Padilla, Diego C., Lépez-Moratalla, Teodoro, and
Lara-Coira, Martin, 2001: Computing the Solar Vector. Solar Energy, 70, 431-441.

Bohn, D., and H. Simon, 1975: Mehrparametrige approximation der Eichraume und
Eichflachen von Unterschall-bzw. Uberschall-5-Loch-Sonden. Archiv fur Technisches
Messen and Mejf$techniche Praxis, Vol 470 (3) 31-37.

Candel, S., 1990. Méchanique des fluides. Dunod.

Droplet Measurement Technologies, Inc, 2009. Data Analysis User’s Guide Chapter
I: Single Particle Light Scattering. DOC-0222, Rev A. Accessed February 2, 2012.
http://www.dropletmeasurement.com/sites/default /files/ManualsGuides/Data Anal-
ysis Guide/DOC-0222 Rev A Data Analysis Guide Ch 1.pdf

Droplet Measurement Technologies, Inc, 2009. Data Analysis User’s Guide Chap-
ter II: Single Particle Imaging. DOC-0223, Rev A. Accessed February 2, 2012.
http://www.dropletmeasurement.com/sites/default /files/ManualsGuides/Data Anal-
ysis Guide/DOC-0223 Rev A Data Analysis Guide Ch 2.pdf

Lenschow, D.H. and P. Spyers-Duran, 1989: Measurement Techniques: Air
Motion Sensing. NCAR Bulletin No. 23, 1989. Accessed June 23, 2010.
http://www.eol.ucar.edu/raf/Bulletins/bulletin23.html

Barmgardner, Darrel, 1989. Airborne Measurements for Cloud Mi-
crophysics. NCAR Bulletin No. 24, 1989. Accessed June 23, 2010.
http://www.eol.ucar.edu/raf/Bulletins/bulletin24.html

Reda, Ibrahim and Afshin Andreas, 2008: Solar Position Algorithm for Solar Radiation
Applications. National Renewable Energy Laboratory. Revised 2008. Last accessed
February 14, 2012. http://www.nrel.gov/docs/fy08osti/34302.pdf.

[10] Triplet, J.P. and G. Roche, 1971. Météorolgie Générale. Météo-France.

[11] van den Kroonenberg, A.C., T. Martin, M. Buschmann, J. Bange, and P. Vérsmann,

2008: Measuring the Wind Vector Using the Autonomous Mini Aerial Vehicle M2AV.
J. Atmos. Oceanic Technol., 25, 1969-1982.

[12] NASA, GSFC Eclipse website, https://eclipse.gsfc.nasa.gov/LEcat5/deltapoly.html.

64

http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data%20Analysis%20Guide/DOC-0222%20Rev%20A%20Data%20Analysis%20Guide%20Ch%201.pdf
http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data%20Analysis%20Guide/DOC-0222%20Rev%20A%20Data%20Analysis%20Guide%20Ch%201.pdf
http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data%20Analysis%20Guide/DOC-0223%20Rev%20A%20Data%20Analysis%20Guide%20Ch%202.pdf
http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data%20Analysis%20Guide/DOC-0223%20Rev%20A%20Data%20Analysis%20Guide%20Ch%202.pdf
http://www.eol.ucar.edu/raf/Bulletins/bulletin23.html
http://www.eol.ucar.edu/raf/Bulletins/bulletin24.html
http://www.nrel.gov/docs/fy08osti/34302.pdf
https://eclipse.gsfc.nasa.gov/LEcat5/deltapoly.html

	Introduction
	I General Algorithms
	Mathematics
	Time Derivative

	Corrections
	Simple correction of spikes

	Transforms
	Linear Interpolation
	Linear Interpolation (old)
	Convert ISO 8601 time to date/time elements
	Convert ISO 8601 time string to seconds
	Convert elapsed seconds to ISO 8601 time string
	Converts a time or a time vector to decimal year.

	II Atmospheric Algorithms
	Thermodynamics
	Incremantal pressure altitude
	Pressure altitude
	Density of dry air
	Relative humidity from capacitive probe
	Pressure and angle of incidence (CNRM)
	Dynamic pressure and angle of incidence
	Potential Temperature
	Static Temperature
	Virtual Temperature
	Mach number
	True air speed (CNRM)
	True air speed (RAF)
	Longitudinal true airspeed
	3D Wind Vectors

	Microphysics
	Effective diameter
	Mean diameter
	Median Volume Diameter
	Extinction Coefficient
	Mass Concentration
	Total Number Concentration (DMT)
	Total Number Concentration
	Sample area for imaging probes (All in)
	Sample area for imaging probes (Center In)
	Sample area for scattering probes
	Sample Volume
	Surface Area Concentration

	Radiation
	Camera Viewing Angles
	Planck Emission
	Rotate solar vector to aircraft frame
	Scattering Angles
	Solar Vector Calculation (Blanco)
	Solar Vector Calculation (Reda-Andreas)
	Blackbody Temperature

	Quality Control
	Check navigation data for inconsistencies
	Additional consistency check & QA for navigation data (no correction!)

	Index
	Bibliography and references

