
How2: DesOptPy

E. J. Wehrle∗

Version: October 17, 2015

The following is a tutorial for getting started with DesOptPy, an op-
timization toolbox written with Python. The installation and the use of
DesOptPy are introduced. The syntax is explained. Examples have been
further provided to ease the learning process.

Nomenclature
f Objective function vector

f Objective function

f∗ Optimal objective function

f0 Inital objective function

g Inequality constraint function vector

g∗ Optimal inequality constraint function
vector

g0 Inital inequality constraint function vector

g Inequality constraint function

L Lagrangian funciton value

L Lagrangian funciton value

SP Shadow prices

X Design domain matrix

x Design variable vector

x∗ Optimal design variable vector

x0 Initial design variable vector

xL Lower bounded design variable vector

xU Upper bounded design variable vector

x Design variable

xL Lower bounded design variable

xU Upper bounded design variable

λ Lagrangian multiplier

λ Lagrangian multiplier

∇ Nabla operator, here: gradient with re-
spect to design variables

∗
Dr.-Ing. Erich Wehrle

Postdoctoral Researcher

Professur Computational Mechanics

Ingenieurfakultät Bau Geo Umwelt

Technische Universität München

Arcisstr. 21

80333 München

Germany

Office: Augustenstr. 44

+49-89-289-28663

wehrle@tum.de

1

mailto:wehrle@tum.de

1 INTRODUCTION TO DESOPTPY

1. Introduction to DesOptPy

The package DesOptPy (Design Optimization in Python) was written by the author
for use in structural design optimization for mechanical structures but can be used for a
great variety of optimization problems. The goal of this project was to design a general
optimization toolbox for structural design optimization in which an optimization model
can be set up easily, quickly, efficiently and effectively, allowing colleagues and students
dive into the optimization problem without difficulty. It is also meant to be modular
and easily expandable. If you should find errors in the code or documentation, have
suggestions for improvements or wish a cooperation, please contact the author.
DesOptPy was developed by the author in his research and published in Wehrle (2015).
The code has been used in the following: Wehrle et al. (2014b,a) in addition to several
theses at the Institute of Lightweight Structures of the Technical University of Munich
including Rudolph (2013); Wachter (2014); Richter (2014); Braun (2014).
This toolbox is designed to solve optimization problems of the following convention:

min
x∈X
{f (x) |g (x) ≤ 0} ,

where f is the objective function, g the inequality constraint function, x the optimization
variables and X the optimization domain defined by the lower and upper bounds of the
variables. The upper-bounded inequality constraint function is defined as

gi = ri − ci

or normalized as
gi =

ri
ci
− 1,

and analogously for lower-bounded inequality constraints as

gi = ci − ri

or normalized as
gi = 1− ri

ci
,

where ri is the constrained response and ci is the state limit.
The optimization problem above can be solved using direct or approximation approaches
utilizing a variety of optimization algorithms of zeroth, first or second order within the
optimization model (fig. 1.1). The direct approaches uses the system responses in the
optimization process, while approximation approaches utilizes approximated system re-
sponses. The approximation is a two-step process of sampling (design of experiments)
and approximating (surrogate modelling). In DesOptPy the sampling is carried out via
Latin hypercube sampling with pyDOE with a custom option of including the corners
of the design space. The approximation is via Gaussian process (Kriging) with scikit-
learn, which is in turn is the Python implementation of DACE (Lophaven et al., 2002).

2

1 INTRODUCTION TO DESOPTPY

Initial design

Analaysis model

Optimization algorithm

Post-processing of
optimum design

Interpretation of results

xk = x0

f(xk), g(xk), ∇f, ∇g

f∗, x∗, g∗, ∇f∗, ∇g∗
xk+1 = xk

k = k + 1

f∗, x∗, λ, SP

Figure 1.1: Flow chart of an optimization within the optimization model

When using gradient-based algorithms, the Lagrangian multiplier is used for post-processing
of the optimization process: Optimality and shadow prices. Both of these are based on
the Lagrangian function

L (x∗,λ) = f (x) + λg (x) ,

where here the constraint function vector g is expanded to contain the bound constraints

gLi = xLi − xi

and
gU = xi − xUi ,

as well as inequality constraints.
Optimality is defined using the criteria after Karush (1939); Kuhn and Tucker (1951),
which is generally necessary yet not sufficient, i.e. for the subset of convex problems it
is the optimum and for more general non-convex problems that it is a optimum yet not
necessarily the optimum. This criteria says that (local) optimality is present when

Stationary: ∇L (x∗,λ) = 0

Primal feasibility : g (x∗) ≤ 0

Dual feasibility: λ ≥ 0

Complementary slackness : giλi = 0.

Shadow price SP is a meaning of the Lagrangian multipliers λi at the optimum. Rear-
ranging the Lagrangian function (see above), we get

λi = −
∂f

∂x

∂x

∂gj

3

2 STRUCTURE OF DESOPTPY

and therefore
λi = −

∂f

∂x

∂x

∂gj

∂gj
∂cj

.

The shadow price is defined depending on the specific definition of the constraint function
(see above),

Upper bound, non-normalized: λj = −
∂f

∂cj

Lower bound, non-normalized: λj =
∂f

∂cj

Upper bound, normalized: λj = −
∂f

∂cj

1

cj

Lower bound, normalized: λj =
∂f

∂cj

1

cj
.

Currently, the solvers of pyOpt (Perez and Jansen, 2013) and PyGMO are used. This
is, though, expandable to other optimization algorithms and packages.

2. Structure of DesOptPy

The code for DesOptPy utilizes a folder construct with DesOpt/, which includes the
main folder repository of models Models/. In normal running, the files are copied to
Run/ for optimization and then to Results/ upon completion. This can be turned off
by using debug mode in which the models are then run in the model folder. The basis
folder saved where user wishes, though it is recommended to use /home/$User/ or the
windows equivalent c:\Users\$User\, where $User is the user name of the computer.

DesOpt

Models

$MODEL1

SysEq.py

$MODEL2

...

Run

Results

$MODEL_$ALG_$DATE$TIME

RunFiles

ResultReport

...

Figure 2.1: Folder and file structure of DesOptPy

4

2.1 Prerequisites 2 STRUCTURE OF DESOPTPY

2.1. Prerequisites

The following are needed for full usage of DesOptPy:

Table 1: Software prerequisites for DesOptPy

Software Source

Python www.python.org
pyOpt www.pyopt.org
pyGMO esa.github.io/pygmo
SciPy www.scipy.org
NumPy www.numpy.org

MatPlotLib www.matplotlib.org
scikit-learn www.scikit-learn.org

pyDOE www.github.com/tisimst/pyDOE
LYX www.lyx.org/

Inkscape www.inkscape.org/

DesOptPy relies on the optimization solvers provided in pyOpt and PyGMO. For the
installation of the software, see the relevant user’s guide.
For the proper generation of the result report, LYX and Inkscape must be installed and
must be able to be called via command file with

frame
1 lyx �

and

frame
1 inkscape �

respectively (symbolic link in Linux—typically standard—or via setting a environment
variable in Windows).
Further, a integrated development environment is recommended. DesOptPy has been
used and developed with the following:
Spyder pythonhosted.org/spyder/
PyCharm jetbrains.com/pycharm/

2.2. Syntax

The options of DesOptPy are introduced in the following where the default values are
in parentheses:

5

http://www.python.org
http://www.pyopt.org
http://esa.github.io/pygmo
http://www.scipy.org
http://www.numpy.org
http://www.matplotlib.org
http://www.scikit-learn.org
http://www.github.com/tisimst/pyDOE
http://www.lyx.org/
http://www.inkscape.org/
http://pythonhosted.org/spyder/
http://jetbrains.com/pycharm/

2.2 Syntax 2 STRUCTURE OF DESOPTPY

2.2.1. Input parameters

SysEq The name of the function of the system equation: {definition}
x0 The initial design vector: {array}
xU The upper bounds of the design vector: {array}
xL The upper bounds of the design vector: {array}
gc The numerical value of the inequality constraints, needed for proper denormalization

of the shadow prices {array}
hc The numerical value of the equality constraints, needed for proper denormalization

of the shadow prices (not currently supported): {(“[]”), array}

Alg The algorithm for the optimization: {("SLSQP"), "MMA", "GCMMA", "NLPQLP",
"CONMIN", "NSGA2", "COBYLA", "KSOPT", "ALGENCAN", "SDPEN", "SOLVOPT", "PyGMO_de",
"PyGMO_bee_colony", "PyGMO_nsga_II", "PyGMO_pso", "PyGMO_pso_gen", "PyGMO_cmaes",
"PyGMO_py_cmaes", "PyGMO_spea2", "PyGMO_nspso", "PyGMO_pade", "PyGMO_sea",
"PyGMO_vega", "PyGMO_sga", "PyGMO_sga_gray", "PyGMO_de_1220", "PyGMO_mde_pbx",
"PyGMO_jde", "PyGMO_ihs", "PyGMO_monte_carlo", "PyGMO_sa_corana", "PyGMO_sms_emoa"}

AlgOptions Options for each algorithm. Set default and get options for each algo-
rithm with "OptAlgOptions.setDefault($AlgorithmName)". This field is also
optional or can be defined with the simplified setting object function "setSimple(self,
stopTol=[], maxIter=[], maxEval=[])". 1

SensCalc The type of design sensitivity analysis: {(“FD”), “ParaFD”, “OptSensEq” }

DesVarNorm The type of normalization used for the design variables: {(True), “xLxU”,
“x0xU” ,“None”, None, False}2,1

deltax The step size used for design sensitivity analysis with finite differences: {(“1e-3”),
float}

OptStatus Provides a status report during the optimization:{(False), True}1

OptPostProcess Provides postprocessing after optimization, including result report:
{(False), True}1

OptVideo Provides a video of design evolution of optimization process: {(False),
True}

DoE Use design of experiment with number of samples to be later used for surrogate-
based design optimization: {(False), integer}

SBDO Use surrogate-based design optimization (Currently only Kriging implemented):
{(False), True}

Debug Carry out optimization within model folder instead of using the DesOptRun for
processing and DesOptResults for solution: {(False), True}

PrintOut Print out final details of optimization upon completion: {(True), False}

1Not yet available for PyGMO algorithms
2True = “xLxU”; None = False = “None”

6

2.3 Normalization of the design variables DesVarNorm2 STRUCTURE OF DESOPTPY

2.2.2. Output parameters

xOpt The optimal design vector values: {array}
fOpt The optimal objective value: {array}
SP Shadow prices of active constraints at optimum: {array}

2.2.3. Pseudo-code syntax example

In list. 1 an example of the syntax is given by pseudo code. This example can be easily
used as a layout for programming future optimization problems.

Listing 1: Syntax of optimization problem for DesOptPy

1 from DesOptPy import DesOpt
2

3 def SysEq(x, gc)
4 # here: system equations
5 f = ...
6 g = ...
7 return(f, g)
8

9 def SensEq(x, gc) # optional
10 # here: sensitivity equations
11 dfdx = ...
12 dgdx = ...
13 return(dfdx, dgdx)
14

15 x0 = ...
16 xL = ...
17 xU = ...
18 gc = ...
19 Alg = "NLPQLP"
20 AlgOptions = OptAlgOptions.setDefault(Alg)
21 AlgOptions.setSimple(stopTol=1e-3)
22 xOpt, fOpt, SP = DesOpt(SysEq=SysEq, x0=x0, xU=xU, xL=xL, gc=gc, Alg=Alg,
23 SensCalc="FD", DesVarNorm="xLxU", deltax=1e-3,
24 OptStatus=False, OptPostProcess=False,
25 OptVideo=False, DoE=False, SBDO=False,
26 Debug=False, PrintOut=True, AlgOptions=AlgOptions)

2.3. Normalization of the design variables DesVarNorm

There are four schemes for the normalization of the design variables as well as the option
to use no normalization None.
xLxU All design variables take on a value between zero (lower bounds) and unity (upper

bounds).
xLx0 All design variables take on a value, where zero is the lower bound and unity is

the start value.
x0 All design variables take a value where unit is the start value.
xU All design variables take a value where unit is the upper bounds.

7

2.4 Status reports 3 EXAMPLES

Currently, only xLxU and None function for use when providing the design sensivities,
though all will work when using finite differencing or non-gradient solvers.

2.4. Status reports

As optimization runs can take hours, days or even longer, it is of great interest to mon-
itor the progress. A HTML file serves this purpose to show the current state of the
optimization. This option is activated by OptStatus=True.

2.5. Result reports

Using LYX and LATEX, result reports are created . For this to work properly these pro-
grams must be included in the environmental variables of the operating system. This
option is activated by OptPostProcess=True. By turning on this option, diverse conver-
gence plots are created with MatPlotLib.

2.6. Interfaces

DesOptPy is designed to be modular and expandable for different optimization prob-
lems, also those beyond structural design optimization. Presently there are interfaces to
the following software:
• ANSYS Classic
• LS-DYNA.

These interfaces to other software applications are found in the correspondingly named
folder DesOpt/.Interfaces/, which can easily expanded and customized.

3. Examples

Here three example problems will be shown to provide the user an idea how DesOptPy
can be used: an unconstrained univariate test problem and a unconstrained multivariate
test problem and a constrained multivariate problem.

Example 1: Unconstrained univariate analytical test problem: Parabola

The first test problem shows the academic example of minimizing a unidimensional func-
tion of a parabola of the form

f = (x+ 10)2 .

The Python code for this can be found in list. 2.

8

3 EXAMPLES

Listing 2: Unconstrained univariate analytical test problem

1 from DesOptPy import DesOpt
2 from DesOptPy import OptAlgOptions
3 import numpy as np
4

5

6 def SysEq(x, gc):
7 f = (x[0]+10)**2
8 g = []
9 return(f, g)
10

11

12 def SensEq(x, f, g, gc):
13 dfdx = np.array([2.*x + 20.])
14 dgdx = []
15 return(dfdx, dgdx)
16

17

18 x0 = np.array([0.])
19 xL = np.array([-100.])
20 xU = np.array([100.])
21 gc = []
22 Alg = "SLSQP"
23 AlgOptions = OptAlgOptions.setDefault(Alg)
24 AlgOptions.setSimple(stopTol=1e-3)
25 xOpt, fOpt, SP = DesOpt(x0=x0, xL=xL, xU=xU, gc=gc, SysEq=SysEq,
26 SensEq=SensEq, SensCalc="OptSensEq",
27 Alg=Alg, StatusReport=True, Debug=False,
28 DoE=False, SBDO=False, ResultReport=True,
29 deltax=1e-6, DesVarNorm=True, AlgOptions=AlgOptions)

The optimum of this trivial optimization problem is

x = −10
f∗ = 0.

Example 2: Unconstrained multivariate analytical test problem:
Rosenbrock’s banana function

Rosenbrock’s banana function is one of the most famous test problems of optimization.
Though the problem is non-convex, it can be solved with gradient-based algorithms. The
objective function has the form

f = 100 ∗
(
x2 − x21

)2
+ (1− x1)

2 .

The Python code for this can be found in list. 3.

9

3 EXAMPLES

Listing 3: Unconstrained multivariate analytical test problem: Rosenbrock’s banana
function

1 from DesOptPy import DesOpt
2 import numpy as np
3 from scipy.optimize import rosen
4 from scipy.optimize import rosen_der
5

6 def SysEq(x, gc):
7 f = rosen(x)
8 g = []
9 return(f, g)
10

11

12 def SensEq(x, f, g, gc):
13 dfdx = np.array(rosen_der(x)).reshape([1,len(x)])
14 return(dfdx, [])
15

16

17 x0 = np.ones([2,])*0.
18 xL = np.ones([2,])*-5
19 xU = np.ones([2,])*5
20 gc = []
21 xOpt, fOpt, SP = DesOpt(x0=x0, xL=xL, xU=xU, gc=gc, Alg="PyGMO_de",
22 SysEq=SysEq, deltax=1e-6,
23 StatusReport=True, DoE=False, SBDO=False,
24 ResultReport=True, DesVarNorm=True)

The optimum of this optimization problem is

x∗ =
[
1 1

]
f∗ = 0.

Example 3: Constrained multivariate analytical test problem: Cantilever3

The optimization problem takes on the form

f = a

g1 =
σ

σmax
− 1

g2 =
u

umax
− 1,

where the relevant system equations are defined as

3Source: Dakota user’s manual.

10

3 EXAMPLES

a = w · t
σ =

600

w2 · t · fx +
600

w · t2 · fy

u =
4 · `3
E · w · t

√(
fx
w2

)2

+

(
fy
t2

)2

.

The Python code for this can be found in list. 4.
Listing 4: Constrained multivariate analytical test problem: Cantilever

1 from DesOptPy import DesOpt
2 from DesOptPy import OptAlgOptions
3 import numpy as np
4

5

6 def SysEq(x, gc):
7 e = 2.9e7
8 r = 40000.
9 fx = 500.
10 fy = 1000.
11 w = x[0]
12 t = x[1]
13 area = w*t
14 f = area
15 D0 = 2.2535
16 L = 100.
17 w_sq = w*w
18 t_sq = t*t
19 r_sq = r*r
20 x_sq = fx*fx
21 y_sq = fy*fy
22 stress = 600.*fy/w/t_sq + 600.*fx/w_sq/t
23 D1 = 4.*pow(L,3)/e/area
24 D2 = pow(fy/t_sq, 2)+pow(fx/w_sq, 2)
25 D3 = D1/np.sqrt(D2)/D0
26 D4 = D1*np.sqrt(D2)/D0
27 g1 = stress/r - 1.
28 g2 = D4 - 1.
29 return(f, [g1, g2])
30

31

32 xL = np.array([1.0, 1.0])
33 xU = np.array([4.0, 4.0])
34 gc = np.array([0.0, 0.0])
35 x0 = np.array([1.8, 1.0])
36 Alg = "PyGMO_sa_corana"
37 AlgOptions = OptAlgOptions.setDefault(Alg)
38 AlgOptions.iter = 500
39 AlgOptions.Ts = 10
40 AlgOptions.Tf = 0.3
41 AlgOptions.steps = 1
42 AlgOptions.bin_size = 1
43 AlgOptions.nIndiv = 1
44 xOpt, fOpt, SP = DesOpt(x0=x0, xL=xL, xU=xU, gc=gc, SysEq=SysEq, Alg=Alg, StatusReport=False,
45 DesVarNorm=True, DoE=False, SBDO=False, ResultReport=False, deltax=1e-2,
46 Debug=False, OptNameAdd="Cantilever", AlgOptions=AlgOptions)

11

5 CHANGE LOG

The optimum of this optimization problem is

x∗ =
[
2.35 3.33

]
f∗ = 7.82.

4. Possbile future developments

In the following is a list of possible further developments for DesOptPy.
• Optimization algorithms

– openopt
– Dakota
– Hunkeler’s hybrid cellular automaton for thin-walled structures (HCA-TWS)
– User-written algorithm option

• Surrogate-based design optimization

– Pass options to surrogate modeling
– Polynomial regression
– Iterative surrogate modeling (adaptive)

• Constraint Aggregation

– Maximum constraint
– Kresselmeier–Steinhauser (also adaptive?)

• Equality constraints?
• Object-oriented programming(?)

5. Change log

Version α1.0

• Changed configuration so that SysEq.py imports and calls DesOpt
• LLB → FGCM

Version α1.1

• Seconds in OptName
• gc in SysEq and SensEq

12

5 CHANGE LOG

Version α1.2

• PyGMO solver
• New setup of optimization problem to ease integration of new algorithms
• Result presentation in alpha version—not finished
• Removed algorithm support for pyCMA as two interfaces to CMA-ES in PyGMO

Version 1.0

• Public release

13

References References

References

Braun, S. (2014). Modellbildung und Entwurfsoptimierung von einer Gitterrohrrahmen-
struktur für Elektrofahrzeuge. Semester thesis, Lehrstuhl für Leichtbau, Technische
Universität München. Advisor: E. J. Wehrle.

Karush, W. (1939). Minima of functions of several variables with inequalities as side
constraints. Master’s thesis, Department of Mathematics, University of Chicago.

Kuhn, H. W. and A. W. Tucker (1951). Nonlinear Programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492.

Lophaven, S. N., H. B. Nielsen, and J. Sondergaard (2002). DACE: A MATLAB Kriging
toolbox. Informatik og Matematisk Modellering, Danmarks Tekniske Universitet.

Perez, R. E. and P. W. Jansen (2013). pyOpt reference (Release 1.1.0 ed.).
Richter, M. (2014). Parallelization of numerical sensitivity analysis for large-scale struc-
tural design optimization. Semester thesis, Lehrstuhl für Leichtbau, Technische Uni-
versität München. Advisor: E. J. Wehrle.

Rudolph, S. (2013). Implementation of a Python-based structural optimization frame-
work with pyOpt for engineering design. Semester thesis, Lehrstuhl für Leichtbau,
Technische Universität München. Advisor: E. J. Wehrle.

Wachter, F. (2014). Strukturoptimierung unter Aufpralllaster mittels Makroelemente.
Bachelor’s thesis, Lehrstuhl für Leichtbau, Technische Universität München. Advisor:
E. J. Wehrle.

Wehrle, E. J. (2015). Design optimization of lightweight space frame structures consider-
ing crashworthiness and parameter uncertainty. Dr.-Ing. diss., Lehrstuhl für Leichtbau,
Technische Universität München.

Wehrle, E. J., Q. Xu, and H. Baier (2014a). Investigation, optimal design and uncertainty
analysis of crash-absorbing extruded aluminium structures. Procedia CIRP 18, 27–32.

Wehrle, E. J., Q. Xu, and H. Baier (2014b). Investigation, optimal design and uncer-
tainty analysis of crashabsorbing extruded aluminum structures. In Conference on
Manufacture of Lightweight Components (ManuLight2014).

14

A REPORTS

A. Reports

In this section, the status and result reports automatically generated with DesOptPy
will be shown on the example of the cantilever optimization.

15

A.1 Status report A REPORTS

A.1. Status report

The status report is generated during the optimization process to provide live access to
the developments. This is completed via a HTML document. The report is customizable
with institution logos via the HTML file and OptHis2HTML.py. As example is as follows:

16

Design Optimization Status Report
of

Cantilever_NLPQLP_201412101116

Last Update: 2014-Dec-10 11:16:49

Convergence of objective function and constraint

Convergence of design variables

Number of selected design variable: 0

Convergence of constraints

Number of selected constraint: 1

Convergence of violated constraints

Number of selected violated constraint: 0

A
.1

Status
report

A
R

E
P

O
R
T

S

17

A.2 Result report A REPORTS

A.2. Result report

The result report is generated after the optimization process to an automatic sum-
mary of the optimization. This is completed via a MatPlotLib, LYX and LATEX doc-
ument. The report is able to be customized with institution logos via the LYX file
_ResultReportPy.lyx and the Python file OptResultReport.py. As example is as fol-
lows:

18

Technische Universität München
Ingenieurfakultät Bau Geo Umwelt

Fachgebiet Computational Mechanics
Univ. Prof. Dr.-Ing. habil. F. Duddeck

Design Optimization Result Report

Cantilever

E. J. Wehrle∗

December 10, 2014

∗Research Associate
wehrle@tum.de
Fachgebiet Computational Mechanics
Technische Universität München
Arcisstraße 21
80333 München
Germany
Tel: +49-89-289-28663

Nomenclature

f̂ Normalized objective function

x̂ Normalized design variable

f Objective function

f∗ Optimal value of objective function

f0 Inital value of objective function

g Constraint function

g∗ Optimal value of constraint function

g0 Initial value of constraint function

x Design variable

x∗ Optimal value of design variable

x0 Inital value of design variable

∇ Nabla operator, here: gradient

ii

A
.2

R
esult

report
A

R
E

P
O

R
T

S

19

1 Optimization problem

Property Value
Computer name Schreibtafelrechner

Operating system Linux
Computer architecture x86_64
Number of processors 2

User wehrle

Table 1.1: Properties of computer of optimization run

Property Value
Optimization problem Cantilever

Number of design variables 2
Number of constraints 2

Algorithm name NLPQLP

Table 1.2: Information about the optimization problem and the algorithm

Property Value
ACC 1e-06

IPRINT 2
IOUT 6
LQL True

MAXIT 50
MODE 0
RHOB 0.0

STPMIN 1e-06
ACCQP 1e-06

MAXFUN 10

Table 1.3: Algorithm options

1

2 Results

2.1 Plots

Objective function

0 2 4 6 8 10 12
Iteration

1

2

3

4

5

6

7

8

O
bj

ec
ti

ve
fu

nc
ti

on
f

f

gmax

5

0

5

10

15

20

25

30

35

M
ax

im
um

co
ns

tr
ai

nt
g m

ax

Figure 2.1.1: Convergence of objective function f and maximum constraint gmax

2

A
.2

R
esult

report
A

R
E

P
O

R
T

S

20

CHAPTER 2. RESULTS 2.1. PLOTS

0 2 4 6 8 10 12
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
ti

on
f̂

f̂
gmax

5

0

5

10

15

20

25

30

35

M
ax

im
um

co
ns

tr
ai

nt
g m

ax

Figure 2.1.2: Convergence of normalized objective function f̂ and maximum constraint
gmax

0

1

2

3

4

5

6

7

8

f

f0

f∗

Figure 2.1.3: Objective function at start f0 and optimum f∗

3

2.1. PLOTS CHAPTER 2. RESULTS

0 2 4 6 8 10 12
Iteration

2

3

4

5

6

7

8

9

10

11

∇
xf

∇x1f∇x2f

Figure 2.1.4: Convergence of gradient of objective function ∇xf

Design Variables

0 2 4 6 8 10 12
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

x

x1
x2

Figure 2.1.5: Convergence of design variables x

4

A
.2

R
esult

report
A

R
E

P
O

R
T

S

21

CHAPTER 2. RESULTS 2.1. PLOTS

0.0 0.5 1.0 1.5 2.0
Design variables

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

x0

x∗

Figure 2.1.6: Design variables at start x0 and optimum x∗

0 2 4 6 8 10 12
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

x̂

x̂1
x̂2

Figure 2.1.7: Convergence of normalized design variables x̂

5

2.1. PLOTS CHAPTER 2. RESULTS

0.0 0.5 1.0 1.5 2.0
Design variables

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x̂

x̂0

x̂∗

Figure 2.1.8: Normalized design variables at start x̂0 and optimum x̂∗

Constraints

0 2 4 6 8 10 12
Iteration

5

0

5

10

15

20

25

30

35

g

g1
g2

Figure 2.1.9: Convergence of inequality constraints g

6

A
.2

R
esult

report
A

R
E

P
O

R
T

S

22

CHAPTER 2. RESULTS 2.2. TABLES

0.0 0.5 1.0 1.5 2.0
Constraints

0

5

10

15

20

25

30
g

g0

g∗

Figure 2.1.10: Inequality constraints at start g0 and optimum g∗

2.2 Tables

Design
variable

Symbol Start
value x0

Lower
bound xL

Upper
bound xU

Optimal
value x∗

1 x1 1.8 1.0 4.0 2.3516
2 x2 1.0 1.0 4.0 3.3269

Table 2.1: Details of design variables x

Response Symbol Start value Optimal value
Objective function f 1.8 7.8235

Inequality constraint 1 g1 9.6481 -0.016
Inequality constraint 2 g2 33.4067 -0.0

Table 2.2: System responses

7

2.2. TABLES CHAPTER 2. RESULTS

Property Symbol Value
First-order optimality ‖∇L‖ 24.4446

Lagrangian multiplier of g1 λg1 3.9203

Table 2.3: First-order optimality as well as non-zero Lagrangian multipliers

Property Symbol Value
Shadow price of g1 Sg1 -inf

Table 2.4: Shadow prices

Property Symbol Value Unit
Number of iterations nit 14 [−]

Number of evaluations neval 47 [−]
Starting time t0 11 : 16 : 49 hh : mm : ss
Ending time tend 11 : 16 : 49 hh : mm : ss
Elapsed time topt 00 : 00 : 00 hh : mm : ss

Table 2.5: Properties of optimization run

8

A
.2

R
esult

report
A

R
E

P
O

R
T

S

23

	Introduction to DesOptPy
	Structure of DesOptPy
	Prerequisites
	Syntax
	Input parameters
	Output parameters
	Pseudo-code syntax example

	Normalization of the design variables DesVarNorm
	Status reports
	Result reports
	Interfaces

	Examples
	Possbile future developments
	Change log
	Reports
	Status report
	Result report

