Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

""" 

Licensing: 

This code is distributed under the MIT license. 

 

 

Authors: 

Original FORTRAN77 version of i4_sobol by Bennett Fox. 

MATLAB version by John Burkardt. 

PYTHON version by Corrado Chisari 

 

Original Python version of is_prime by Corrado Chisari 

 

Original MATLAB versions of other functions by John Burkardt. 

PYTHON versions by Corrado Chisari 

 

Original code is available from 

http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html 

 

Modifications: 

Wrapped into Python class [30.10.2017] 

""" 

import numpy as np 

 

__all__ = ['Sobol'] 

 

 

class Sobol: 

def __init__(self): 

# Init class variables 

self.atmost = None 

self.dim_max = None 

self.dim_num_save = None 

self.initialized = None 

self.lastq = None 

self.log_max = None 

self.maxcol = None 

self.poly = None 

self.recipd = None 

self.seed_save = None 

self.v = None 

 

def i4_sobol_generate(self, dim_num, n, skip=1): 

""" 

i4_sobol_generate generates a Sobol dataset. 

 

Parameters: 

Input, integer dim_num, the spatial dimension. 

Input, integer N, the number of points to generate. 

Input, integer SKIP, the number of initial points to skip. 

 

Output, real R(M,N), the points. 

""" 

r = np.full((n, dim_num), np.nan) 

for j in range(n): 

seed = j + skip 

r[j, 0:dim_num], next_seed = self.i4_sobol(dim_num, seed) 

 

return r 

 

def i4_bit_hi1(self, n): 

""" 

i4_bit_hi1 returns the position of the high 1 bit base 2 in an integer. 

 

Example: 

+------+-------------+----- 

| N | Binary | BIT 

+------|-------------+----- 

| 0 | 0 | 0 

| 1 | 1 | 1 

| 2 | 10 | 2 

| 3 | 11 | 2 

| 4 | 100 | 3 

| 5 | 101 | 3 

| 6 | 110 | 3 

| 7 | 111 | 3 

| 8 | 1000 | 4 

| 9 | 1001 | 4 

| 10 | 1010 | 4 

| 11 | 1011 | 4 

| 12 | 1100 | 4 

| 13 | 1101 | 4 

| 14 | 1110 | 4 

| 15 | 1111 | 4 

| 16 | 10000 | 5 

| 17 | 10001 | 5 

| 1023 | 1111111111 | 10 

| 1024 | 10000000000 | 11 

| 1025 | 10000000001 | 11 

 

Parameters: 

Input, integer N, the integer to be measured. 

N should be nonnegative. If N is nonpositive, 

the value will always be 0. 

 

Output, integer BIT, the number of bits base 2. 

""" 

i = np.floor(n) 

bit = 0 

while i > 0: 

bit += 1 

i //= 2 

return bit 

 

def i4_bit_lo0(self, n): 

""" 

I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer. 

 

Example: 

+------+------------+---- 

| N | Binary | BIT 

+------+------------+---- 

| 0 | 0 | 1 

| 1 | 1 | 2 

| 2 | 10 | 1 

| 3 | 11 | 3 

| 4 | 100 | 1 

| 5 | 101 | 2 

| 6 | 110 | 1 

| 7 | 111 | 4 

| 8 | 1000 | 1 

| 9 | 1001 | 2 

| 10 | 1010 | 1 

| 11 | 1011 | 3 

| 12 | 1100 | 1 

| 13 | 1101 | 2 

| 14 | 1110 | 1 

| 15 | 1111 | 5 

| 16 | 10000 | 1 

| 17 | 10001 | 2 

| 1023 | 1111111111 | 1 

| 1024 | 0000000000 | 1 

| 1025 | 0000000001 | 1 

 

Parameters: 

Input, integer N, the integer to be measured. 

N should be nonnegative. 

 

Output, integer BIT, the position of the low 1 bit. 

""" 

bit = 1 

i = np.floor(n) 

while i != 2 * (i // 2): 

bit += 1 

i //= 2 

return bit 

 

def i4_sobol(self, dim_num, seed): 

""" 

i4_sobol generates a new quasirandom Sobol vector with each call. 

 

Discussion: 

The routine adapts the ideas of Antonov and Saleev. 

 

Reference: 

Antonov, Saleev, 

USSR Computational Mathematics and Mathematical Physics, 

Volume 19, 1980, pages 252 - 256. 

 

Paul Bratley, Bennett Fox, 

Algorithm 659: 

Implementing Sobol's Quasirandom Sequence Generator, 

ACM Transactions on Mathematical Software, 

Volume 14, Number 1, pages 88-100, 1988. 

 

Bennett Fox, 

Algorithm 647: 

Implementation and Relative Efficiency of Quasirandom 

Sequence Generators, 

ACM Transactions on Mathematical Software, 

Volume 12, Number 4, pages 362-376, 1986. 

 

Ilya Sobol, 

USSR Computational Mathematics and Mathematical Physics, 

Volume 16, pages 236-242, 1977. 

 

Ilya Sobol, Levitan, 

The Production of Points Uniformly Distributed in a Multidimensional 

Cube (in Russian), 

Preprint IPM Akad. Nauk SSSR, 

Number 40, Moscow 1976. 

 

Parameters: 

Input, integer DIM_NUM, the number of spatial dimensions. 

DIM_NUM must satisfy 1 <= DIM_NUM <= 40. 

 

Input/output, integer SEED, the "seed" for the sequence. 

This is essentially the index in the sequence of the quasirandom 

value to be generated. On output, SEED has been set to the 

appropriate next value, usually simply SEED+1. 

If SEED is less than 0 on input, it is treated as though it were 0. 

An input value of 0 requests the first (0-th) element of the sequence. 

 

Output, real QUASI(DIM_NUM), the next quasirandom vector. 

""" 

 

# if 'self.initialized' not in list(globals().keys()): 

if self.initialized is None: 

self.initialized = 0 

self.dim_num_save = -1 

 

if not self.initialized or dim_num != self.dim_num_save: 

self.initialized = 1 

self.dim_max = 40 

self.dim_num_save = -1 

self.log_max = 30 

self.seed_save = -1 

 

# Initialize (part of) V. 

self.v = np.zeros((self.dim_max, self.log_max)) 

self.v[0:40, 0] = np.transpose([ 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) 

 

self.v[2:40, 1] = np.transpose([ 

1, 3, 1, 3, 1, 3, 3, 1, 

3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 

1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 

3, 1, 1, 3, 1, 3, 1, 3, 1, 3]) 

 

self.v[3:40, 2] = np.transpose([ 

7, 5, 1, 3, 3, 7, 5, 

5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 

5, 3, 3, 1, 7, 5, 1, 3, 3, 7, 

5, 1, 1, 5, 7, 7, 5, 1, 3, 3]) 

 

self.v[5:40, 3] = np.transpose([ 

1, 7, 9, 13, 11, 

1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 

5, 3, 15, 7, 9, 13, 9, 1, 11, 7, 

5, 15, 1, 15, 11, 5, 3, 1, 7, 9]) 

 

self.v[7:40, 4] = np.transpose([ 

9, 3, 27, 

15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 

1, 25, 29, 3, 31, 11, 5, 23, 27, 19, 

21, 5, 1, 17, 13, 7, 15, 9, 31, 9]) 

 

self.v[13:40, 5] = np.transpose([ 

37, 33, 7, 5, 11, 39, 63, 

27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 

9, 49, 33, 19, 29, 11, 19, 27, 15, 25]) 

 

self.v[19:40, 6] = np.transpose([ 

13, 

33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 

7, 59, 65, 21, 3, 113, 61, 89, 45, 107]) 

 

self.v[37:40, 7] = np.transpose([ 

7, 23, 39]) 

 

# Set POLY. 

self.poly = [ 

1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 

61, 55, 41, 67, 97, 91, 109, 103, 115, 131, 

193, 137, 145, 143, 241, 157, 185, 167, 229, 171, 

213, 191, 253, 203, 211, 239, 247, 285, 369, 299] 

 

self.atmost = 2 ** self.log_max - 1 

 

# Find the number of bits in ATMOST. 

self.maxcol = self.i4_bit_hi1(self.atmost) 

 

# Initialize row 1 of V. 

self.v[0, 0:self.maxcol] = 1 

 

# Things to do only if the dimension changed. 

if dim_num != self.dim_num_save: 

self.dim_num_save = dim_num 

 

# Initialize the remaining rows of V. 

for i in range(2, dim_num + 1): 

 

# The bits of the integer POLY(I) gives the form of 

# self.polynomial I. 

# Find the degree of self.polynomial I from binary encoding. 

j = self.poly[i - 1] 

m = 0 

j //= 2 

while j > 0: 

j //= 2 

m += 1 

 

# Expand this bit pattern to separate 

# components of the logical array INCLUD. 

j = self.poly[i - 1] 

includ = np.zeros(m) 

for k in range(m, 0, -1): 

j2 = j // 2 

includ[k - 1] = (j != 2 * j2) 

j = j2 

 

# Calculate the remaining elements of row I as explained 

# in Bratley and Fox, section 2. 

for j in range(m + 1, self.maxcol + 1): 

newv = self.v[i - 1, j - m - 1] 

lseed = 1 

for k in range(1, m + 1): 

lseed *= 2 

if includ[k - 1]: 

newv = np.bitwise_xor( 

int(newv), 

int(lseed * self.v[i - 1, j - k - 1])) 

self.v[i - 1, j - 1] = newv 

 

# Multiply columns of V by appropriate power of 2. 

lseed = 1 

for j in range(self.maxcol - 1, 0, -1): 

lseed *= 2 

self.v[0:dim_num, j - 1] = self.v[0:dim_num, j - 1] * lseed 

 

# RECIPD is 1/(common denominator of the elements in V). 

self.recipd = 1.0 / (2 * lseed) 

self.lastq = np.zeros(dim_num) 

 

seed = int(np.floor(seed)) 

 

if seed < 0: 

seed = 0 

 

lseed = 1 

if seed == 0: 

self.lastq = np.zeros(dim_num) 

 

elif seed == self.seed_save + 1: 

 

# Find the position of the right-hand zero in SEED. 

lseed = self.i4_bit_lo0(seed) 

 

elif seed <= self.seed_save: 

 

self.seed_save = 0 

self.lastq = np.zeros(dim_num) 

 

for seed_temp in range(int(self.seed_save), int(seed)): 

lseed = self.i4_bit_lo0(seed_temp) 

for i in range(1, dim_num + 1): 

self.lastq[i - 1] = np.bitwise_xor( 

int(self.lastq[i - 1]), int(self.v[i - 1, lseed - 1])) 

 

lseed = self.i4_bit_lo0(seed) 

 

elif self.seed_save + 1 < seed: 

 

for seed_temp in range(int(self.seed_save + 1), int(seed)): 

lseed = self.i4_bit_lo0(seed_temp) 

for i in range(1, dim_num + 1): 

self.lastq[i - 1] = np.bitwise_xor( 

int(self.lastq[i - 1]), int(self.v[i - 1, lseed - 1])) 

 

lseed = self.i4_bit_lo0(seed) 

 

# Check that the user is not calling too many times! 

if self.maxcol < lseed: 

print('I4_SOBOL - Fatal error!') 

print(' Too many calls!') 

print(' MAXCOL = %d\n' % self.maxcol) 

print(' L = %d\n' % lseed) 

return 

 

# Calculate the new components of QUASI. 

quasi = np.zeros(dim_num) 

for i in range(1, dim_num + 1): 

quasi[i - 1] = self.lastq[i - 1] * self.recipd 

self.lastq[i - 1] = np.bitwise_xor( 

int(self.lastq[i - 1]), int(self.v[i - 1, lseed - 1])) 

 

self.seed_save = seed 

seed += 1 

 

return [quasi, seed]