Coverage for numpy\linalg\info.py : 0%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
"""\ Core Linear Algebra Tools ------------------------- Linear algebra basics:
- norm Vector or matrix norm - inv Inverse of a square matrix - solve Solve a linear system of equations - det Determinant of a square matrix - lstsq Solve linear least-squares problem - pinv Pseudo-inverse (Moore-Penrose) calculated using a singular value decomposition - matrix_power Integer power of a square matrix
Eigenvalues and decompositions:
- eig Eigenvalues and vectors of a square matrix - eigh Eigenvalues and eigenvectors of a Hermitian matrix - eigvals Eigenvalues of a square matrix - eigvalsh Eigenvalues of a Hermitian matrix - qr QR decomposition of a matrix - svd Singular value decomposition of a matrix - cholesky Cholesky decomposition of a matrix
Tensor operations:
- tensorsolve Solve a linear tensor equation - tensorinv Calculate an inverse of a tensor
Exceptions:
- LinAlgError Indicates a failed linear algebra operation
""" from __future__ import division, absolute_import, print_function
depends = ['core'] |