Coverage for scipy\sparse\linalg\__init__.py : 0%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
""" Sparse linear algebra (:mod:`scipy.sparse.linalg`) ==================================================
.. currentmodule:: scipy.sparse.linalg
Abstract linear operators -------------------------
.. autosummary:: :toctree: generated/
LinearOperator -- abstract representation of a linear operator aslinearoperator -- convert an object to an abstract linear operator
Matrix Operations -----------------
.. autosummary:: :toctree: generated/
inv -- compute the sparse matrix inverse expm -- compute the sparse matrix exponential expm_multiply -- compute the product of a matrix exponential and a matrix
Matrix norms ------------
.. autosummary:: :toctree: generated/
norm -- Norm of a sparse matrix onenormest -- Estimate the 1-norm of a sparse matrix
Solving linear problems -----------------------
Direct methods for linear equation systems:
.. autosummary:: :toctree: generated/
spsolve -- Solve the sparse linear system Ax=b spsolve_triangular -- Solve the sparse linear system Ax=b for a triangular matrix factorized -- Pre-factorize matrix to a function solving a linear system MatrixRankWarning -- Warning on exactly singular matrices use_solver -- Select direct solver to use
Iterative methods for linear equation systems:
.. autosummary:: :toctree: generated/
bicg -- Use BIConjugate Gradient iteration to solve A x = b bicgstab -- Use BIConjugate Gradient STABilized iteration to solve A x = b cg -- Use Conjugate Gradient iteration to solve A x = b cgs -- Use Conjugate Gradient Squared iteration to solve A x = b gmres -- Use Generalized Minimal RESidual iteration to solve A x = b lgmres -- Solve a matrix equation using the LGMRES algorithm minres -- Use MINimum RESidual iteration to solve Ax = b qmr -- Use Quasi-Minimal Residual iteration to solve A x = b gcrotmk -- Solve a matrix equation using the GCROT(m,k) algorithm
Iterative methods for least-squares problems:
.. autosummary:: :toctree: generated/
lsqr -- Find the least-squares solution to a sparse linear equation system lsmr -- Find the least-squares solution to a sparse linear equation system
Matrix factorizations ---------------------
Eigenvalue problems:
.. autosummary:: :toctree: generated/
eigs -- Find k eigenvalues and eigenvectors of the square matrix A eigsh -- Find k eigenvalues and eigenvectors of a symmetric matrix lobpcg -- Solve symmetric partial eigenproblems with optional preconditioning
Singular values problems:
.. autosummary:: :toctree: generated/
svds -- Compute k singular values/vectors for a sparse matrix
Complete or incomplete LU factorizations
.. autosummary:: :toctree: generated/
splu -- Compute a LU decomposition for a sparse matrix spilu -- Compute an incomplete LU decomposition for a sparse matrix SuperLU -- Object representing an LU factorization
Exceptions ----------
.. autosummary:: :toctree: generated/
ArpackNoConvergence ArpackError
"""
from __future__ import division, print_function, absolute_import
from .isolve import * from .dsolve import * from .interface import * from .eigen import * from .matfuncs import * from ._onenormest import * from ._norm import * from ._expm_multiply import *
__all__ = [s for s in dir() if not s.startswith('_')]
from scipy._lib._testutils import PytestTester test = PytestTester(__name__) del PytestTester |