Source code for lenstronomy.GalKin.cosmo
import lenstronomy.Util.constants as const
import numpy as np
__all__ = ['Cosmo']
[docs]class Cosmo(object):
"""
cosmological quantities
"""
def __init__(self, d_d, d_s, d_ds):
"""
:param d_d: angular diameter distance to the deflector
:param d_s: angular diameter distance to the source
:param d_ds: angular diameter distance between deflector and source
"""
if d_ds <= 0 or d_s <= 0 or d_d <=0:
raise ValueError('input angular diameter distances Dd: %s, Ds: %s, Dds: %s are not suppored for a lens'
' model!' % (d_d, d_s, d_ds))
self.dd = float(d_d) # angular diameter distance from observer to deflector in physical Mpc
self.ds = float(d_s) # angular diameter distance from observer to source in physical Mpc
self.dds = float(d_ds) # angular diameter distance from deflector to source in physical Mpc
[docs] def arcsec2phys_lens(self, theta):
"""
converts are seconds to physical units on the deflector
:param theta: angle observed on the sky in units of arc seconds
:return: pyhsical distance of the angle in units of Mpc
"""
return theta * const.arcsec * self.dd
@property
def epsilon_crit(self):
"""
returns the critical projected mass density in units of M_sun/Mpc^2 (physical units)
"""
const_SI = const.c**2 / (4*np.pi * const.G) # c^2/(4*pi*G) in units of [kg/m]
conversion = const.Mpc / const.M_sun # converts [kg/m] to [M_sun/Mpc]
pre_const = const_SI * conversion # c^2/(4*pi*G) in units of [M_sun/Mpc]
Epsilon_Crit = self.ds / (self.dd * self.dds) * pre_const # [M_sun/Mpc^2]
return Epsilon_Crit