__author__ = 'sibirrer'
import scipy.interpolate
import numpy as np
import lenstronomy.Util.util as util
__all__ = ['Interpol']
[docs]class Interpol(object):
"""
class which uses an interpolation of an image to compute the surface brightness
parameters are
'image': 2d numpy array of surface brightness (not integrated flux per pixel!)
'center_x': coordinate of center of image in angular units (i.e. arc seconds)
'center_y': coordinate of center of image in angular units (i.e. arc seconds)
'phi_G': rotation of image relative to the rectangular ra-to-dec orientation
'scale': arcseconds per pixel of the image to be interpolated
"""
param_names = ['image', 'amp', 'center_x', 'center_y', 'phi_G', 'scale']
lower_limit_default = {'amp': 0, 'center_x': -1000, 'center_y': -1000, 'scale': 0.000000001, 'phi_G': -np.pi}
upper_limit_default = {'amp': 1000000, 'center_x': 1000, 'center_y': 1000, 'scale': 10000000000, 'phi_G': np.pi}
def __init__(self):
pass
[docs] def function(self, x, y, image=None, amp=1, center_x=0, center_y=0, phi_G=0, scale=1):
"""
:param x: x-coordinate to evaluate surface brightness
:param y: y-coordinate to evaluate surface brightness
:param image: 2d numpy array (image) to be used to interpolate
:param amp: amplitude of surface brightness scaling in respect of original image
:param center_x: center of interpolated image
:param center_y: center of interpolated image
:param phi_G: rotation angle of simulated image in respect to input gird
:param scale: pixel scale (in angular units) of the simulated image
:return: surface brightness from the model at coordinates (x, y)
"""
x_, y_ = self.coord2image_pixel(x, y, center_x, center_y, phi_G, scale)
return amp * self.image_interp(x_, y_, image)
[docs] def image_interp(self, x, y, image):
if not hasattr(self, '_image_interp'):
# Setup the interpolator.
# Note that 'x' and 'y' in this block only refer to first and second
# image array axes. Outside this block it is more complicated.
nx, ny = np.shape(image)
image_bounds = np.zeros((nx + 2, ny + 2))
nx0, ny0 = nx + 2, ny + 2
image_bounds[1:-1, 1:-1] = image
x_grid = np.linspace(start=-(nx0 - 1) / 2, stop=(nx0 - 1) / 2, num=nx0)
y_grid = np.linspace(start=-(ny0 - 1) / 2, stop=(ny0 - 1) / 2, num=ny0)
self._image_interp = scipy.interpolate.RectBivariateSpline(x_grid, y_grid, image_bounds, kx=1, ky=1, s=0)
# y and x must be flipped in call to interpolator
# (try reversing, the unit tests will fail)
return self._image_interp(y, x, grid=False)
[docs] def total_flux(self, image, scale, amp=1, center_x=0, center_y=0, phi_G=0):
"""
sums up all the image surface brightness (image pixels defined in surface brightness at the coordinate of the pixel)
times pixel area
:param image: pixelized surface brightness
:param scale: scale of the pixel in units of angle
:param amp: linear scaling parameter of the surface brightness multiplicative with the initial image
:param center_x: center of image in angular coordinates
:param center_y: center of image in angular coordinates
:param phi_G: rotation angle
:return: total flux of the image
"""
return np.sum(image) * scale**2 * amp
[docs] @staticmethod
def coord2image_pixel(ra, dec, center_x, center_y, phi_G, scale):
"""
:param ra: angular coordinate
:param dec: angular coordinate
:param center_x: center of image in angular coordinates
:param center_y: center of image in angular coordinates
:param phi_G: rotation angle
:param scale: pixel scale of image
:return: pixel coordinates
"""
ra_ = ra - center_x
dec_ = dec - center_y
x_ = ra_ / scale
y_ = dec_ / scale
x, y = util.rotate(x_, y_, phi_G)
return x, y
[docs] def delete_cache(self):
"""delete the cached interpolated image"""
if hasattr(self, '_image_interp'):
del self._image_interp