Der gerade Stab, konstanter Querschnitt Theorie I. und II. Ordnung

EX01 Einfeldträger Gleichlast

EX01-01 (problem)

import numpy as np
import matplotlib.pyplot as plt
import stanpy as stp

EI = 32000  # kNm²
l = 6  # m
q = 10  # kN/m

s = {"EI": EI, "l": 6, "q": q, "bc_i":{"w":0, "M":0},  "bc_k":{"w":0, "M":0, "H":0}}

fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_load(ax, s)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.75, 1.2)
plt.show()
../_images/straight_beam_constant_cs_1_0.png

EX01-02 (solution)

dx = 1e-9
x = np.linspace(0, l, 100)
x = np.sort(np.append(x, [l / 2, l / 4, 3 * l / 4, l-dx]))
Z_a, Z_b  = stp.tr_solver(s)
Fxa = stp.tr(s, x=x)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)

w_x = Z_x[:, 0]
phi_x = Z_x[:, 1]
M_x = Z_x[:, 2]
V_x = Z_x[:, 3]
Z_a = [0.0000e+00 2.8125e-03 0.0000e+00 3.0000e+01 1.0000e+00]
Z_b = [ 0.0000e+00 -2.8125e-03  0.0000e+00 -3.0000e+01  1.0000e+00]

EX01-03 (plotting)

scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_M(ax, x=x, Mx=M_x, annotate_x=[0, l / 2, l / 4, 3 * l / 4, l], fill_p="red", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.1)
ax.set_ylabel("M/Mmax*{}".format(scale))
ax.set_title("[M] = kNm")
plt.show()
../_images/straight_beam_constant_cs_3_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1)
stp.plot_solution(ax, x=x, y=V_x, annotate_x=[0, l / 2, l / 4, 3 * l / 4, l-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.8)
ax.set_ylabel("V/Vmax*{}".format(scale))
ax.set_title("[V] = kN")
plt.show()
../_images/straight_beam_constant_cs_4_0.png
scale = 0.2
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1, lw=1, linestyle=":", c="#111111")
stp.plot_w(ax, x=x, wx=w_x, scale=scale, linestyle="-")
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.8)
ax.set_ylabel("w/wmax*{}".format(scale))
ax.set_title("[w] = m")
plt.show()
../_images/straight_beam_constant_cs_5_0.png

EX02 Einfeldträger Einzellast

EX02-01 (problem)

import numpy as np
import matplotlib.pyplot as plt
import stanpy as stp

EI = 32000  # kNm²
l = 6  # m
P = 2  # kN

s = {
    "EI": EI,
    "l": 6,
    "P1": (P, 2),
    "P2": (P + 1, 3),
    "P3": (P + 2, 4),
    "bc_i": {"w": 0, "M": 0},
    "bc_k": {"w": 0, "M": 0, "H": 0},
}

fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_load(ax, s)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.75, 1.0)
plt.show()
../_images/straight_beam_constant_cs_6_0.png

EX02-02 (solution)

dx = 1e-9
x = np.linspace(0, l, 500)
annotation = np.array([2-dx, 2, 3-dx, 3, 4-dx, 4, 6-dx])
x = np.sort(np.append(x, annotation))

Fxa = stp.tr(s, x=x)
Z_a, Z_b = stp.tr_solver(s)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)
Z_a = [0.00000e+00 5.72049e-04 0.00000e+00 4.16667e+00 1.00000e+00]
Z_b = [-0.00000e+00 -5.99826e-04  0.00000e+00 -4.83333e+00  1.00000e+00]

EX02-02-02 (solution)

Zusammensetzen von Stäben - Äquivalent zu EX02-02 Kräfte werden jeweils am Stabende angsetzt

s1 = {"EI": EI, "l": 2, "P1": (P, 2), "bc_i": {"w": 0, "M": 0}}
s2 = {"EI": EI, "l": 1, "P2": (P+1, 1)}
s3 = {"EI": EI, "l": 1, "P3": (P+2, 1)}
s4 = {"EI": EI, "l": 2, "bc_k": {"w": 0, "M": 0, "H": 0}}

s = [s1, s2, s3, s4]
Fxa = stp.tr(*s, x=x)
Z_a, Z_b = stp.tr_solver(*s)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)
Z_a = [0.00000e+00 5.72049e-04 0.00000e+00 4.16667e+00 1.00000e+00]
Z_b = [-0.00000e+00 -5.99826e-04  0.00000e+00 -4.83333e+00  1.00000e+00]

EX02-02-03 (solution)

Zusammensetzen von Stäben - Äquivalent zu EX02-02 Kräfte werden jeweils am Stabanfang angsetzt

s1 = {"EI": EI, "l": 2, "bc_i": {"w": 0, "M": 0}}
s2 = {"EI": EI, "l": 1, "P1": (P, 0)}
s3 = {"EI": EI, "l": 1, "P2": (P+1, 0)}
s4 = {"EI": EI, "l": 2, "P1": (P+2, 0), "bc_k": {"w": 0, "M": 0, "H": 0}}

s = [s1, s2, s3, s4]

Fxa = stp.tr(*s, x=x)
Z_a, Z_b = stp.tr_solver(*s)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)
Z_a = [0.00000e+00 5.72049e-04 0.00000e+00 4.16667e+00 1.00000e+00]
Z_b = [-0.00000e+00 -5.99826e-04  0.00000e+00 -4.83333e+00  1.00000e+00]

EX02-03 (plotting)

w_x = Z_x[:, 0]
phi_x = Z_x[:, 1]
M_x = Z_x[:, 2]
V_x = Z_x[:, 3]

scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, *s)
stp.plot_M(ax, x=x, Mx=M_x, annotate_x=[2, 3, 4], fill_p="red", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.1)
ax.set_ylabel("M/Mmax*{}".format(scale))
ax.set_title("[M] = kNm")
plt.show()
../_images/straight_beam_constant_cs_10_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, *s, watermark_pos=1)
stp.plot_solution(ax, x=x, y=V_x, annotate_x=[0, [2-dx, 2], 3-dx, 3, [4, 4-dx], 6-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1.5, 1.5)
ax.set_ylabel("V/Vmax*{}".format(scale))
ax.set_title("[V] = kN")
plt.show()
../_images/straight_beam_constant_cs_11_0.png
scale = 0.2
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, *s, watermark_pos=1, lw=1, linestyle=":", c="#111111")
stp.plot_w(ax, x=x, wx=w_x, scale=scale, linestyle="-")
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.8)
ax.set_ylabel("w/wmax*{}".format(scale))
ax.set_title("[w] = m")
plt.show()
../_images/straight_beam_constant_cs_12_0.png

EX03 (todo: testing)

EX03-01 (problem)

import numpy as np
import matplotlib.pyplot as plt
import stanpy as stp

EI = 32000  # kNm²
l = 6  # m
P = 10  # kN
q = 10 # kN/m
N = -1000 # kN

s = {
    "EI": EI,
    "l": 6,
    "q":q,
    "P1": (P, l/3),
    "N":N,
    "bc_i": {"w": 0, "M": 0},
    "bc_k": {"w": 0, "M": 0, "H": 0},
}

fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_load(ax, s)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.75, 2)
plt.show()
../_images/straight_beam_constant_cs_13_0.png

EX03-02-01 (solution)

dx = 1e-9
x = np.linspace(0, l, 500)
annotation = np.array([0, l / 3 - dx, l / 3, l / 2, 2, 3, 4, l-dx])
x = np.sort(np.append(x, annotation))

Fxa = stp.tr(s, x=x)
Z_a, Z_b = stp.tr_solver(s)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)

w_x = Z_x[:, 0]
phi_x = Z_x[:, 1]
M_x = Z_x[:, 2]
R_x = Z_x[:, 3]

V_x = stp.R_to_Q(x, Z_x, s)
Z_a = [0.00000e+00 3.94707e-03 0.00000e+00 3.66667e+01 1.00000e+00]
Z_b = [ 0.00000e+00 -3.80371e-03  0.00000e+00 -3.33333e+01  1.00000e+00]

EX03-03 (plotting)

scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_M(ax, x=x, Mx=M_x, annotate_x=[0, l/3, x[M_x==np.max(M_x)], l], fill_p="red", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1, 0.1)
ax.set_ylabel("M/Mmax*{}".format(scale))
ax.set_title("[M] = kNm")
plt.show()
../_images/straight_beam_constant_cs_15_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1)
stp.plot_R(ax, x=x, Rx=R_x, annotate_x=[0, [l/3-dx, l/3], l/2, l-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1, 1)
ax.set_ylabel("R/Rmax*{}".format(scale))
ax.set_title("[R] = kN")
plt.show()
../_images/straight_beam_constant_cs_16_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1)
stp.plot_solution(ax, x=x, y=V_x, annotate_x=[0, [l/3-dx, l/3], l/2, l-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1, 1)
ax.set_ylabel("V/Vmax*{}".format(scale))
ax.set_title("[V] = kN")
plt.show()
../_images/straight_beam_constant_cs_17_0.png
scale = 0.2
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1, lw=1, linestyle=":", c="#111111")
stp.plot_w(ax, x=x, wx=w_x, scale=scale, linestyle="-")
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.8)
ax.set_ylabel("w/wmax*{}".format(scale))
ax.set_title("[w] = m")
plt.show()
../_images/straight_beam_constant_cs_18_0.png

EX04 Stabkonstruktion Theorie II

EX04-01 (problem)

import numpy as np
import matplotlib.pyplot as plt
import stanpy as stp

EI = 32000  # kNm²
GA = 20000  # kNm²
l = 6  # m
H = 10  # kN
q = 4 # kN/m
N = -1500 # kN
w_0 = 0.03 # m

s = {
    "EI": EI,
    "GA": GA,
    "l": l,
    "q": q,
    "P": (H, l/2),
    "N": N,
    "w_0": w_0,
    "bc_i": {"w": 0, "phi": 0},
    "bc_k": {"w": 0, "M": 0, "H": 0},
}

fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_load(ax, s)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1.5, 2)
plt.show()
../_images/straight_beam_constant_cs_19_0.png

EX04-02 (solution)

dx = 1e-9
x = np.linspace(0, l, 500)
annotation = np.array([l / 2 - dx, l / 2, l-dx])
x = np.sort(np.append(x, annotation))

Fxa = stp.tr(s, x=x)
Z_a, Z_b = stp.solve_tr(Fxa[-1], **s)
Z_x = Fxa.dot(Z_a)

print("Z_a =", Z_a)
print("Z_b =", Z_b)

w_x = Z_x[:, 0]
phi_x = Z_x[:, 1]
M_x = Z_x[:, 2]
R_x = Z_x[:, 3]

V_x = stp.R_to_Q(x, Z_x, s)
Z_a = [  0.        0.      -76.78432  29.79739   1.     ]
Z_b = [-0.00000e+00 -3.75553e-03  0.00000e+00 -4.20261e+00  1.00000e+00]

EX04-03 (plotting)

scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s)
stp.plot_M(ax, x=x, Mx=M_x, annotate_x=[0,x[M_x==np.max(M_x)], l], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-1, 1.2)
ax.set_ylabel("M/Mmax*{}".format(scale))
ax.set_title("[M] = kNm")
plt.show()
../_images/straight_beam_constant_cs_21_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1)
stp.plot_R(ax, x=x, Rx=R_x, annotate_x=[0, [l/2-dx, l/2], l-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 1.4)
ax.set_ylabel("R/Rmax*{}".format(scale))
ax.set_title("[R] = kN")
plt.show()
../_images/straight_beam_constant_cs_22_0.png
scale = 0.5
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1)
stp.plot_solution(ax, x=x, y=V_x, annotate_x=[0, [l/2-dx, l/2], l-dx], fill_p="red", fill_n="blue", scale=scale, alpha=0.2)
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 1.2)
ax.set_ylabel("V/Vmax*{}".format(scale))
ax.set_title("[V] = kN")
plt.show()
../_images/straight_beam_constant_cs_23_0.png
scale = 0.2
fig, ax = plt.subplots(figsize=(12, 5))
stp.plot_system(ax, s, watermark_pos=1, lw=1, linestyle=":", c="#111111")
stp.plot_w(ax, x=x, wx=w_x, scale=scale, linestyle="-")
ax.grid(linestyle=":")
ax.set_axisbelow(True)
ax.set_ylim(-0.8, 0.8)
ax.set_ylabel("w/wmax*{}".format(scale))
ax.set_title("[w] = m")
plt.show()
../_images/straight_beam_constant_cs_24_0.png

Grundlagen

Den Übertragungsbeziehungen liegen die Gleichgewichtsbedingungen sowie die konstitutiven und kinematischen Beziehungen (1) zugrunde.

(1)\[\begin{split}\frac{dR(x)}{dx} &= -q(x) \\[1em] \frac{dM(x)}{dx} &= V(x) + m(x)\\[1em] \frac{d\varphi (x)}{dx} &= -\left[\frac{M(x)}{EI}+\kappa^e (x)\right]\\[1em] \frac{dw (x)}{dx} &= \varphi (x) + \frac{V}{G\tilde{A}}\end{split}\]

Zur vollständigen Beschreibung des Problems ergibt sich, als zusätzliche Gleichung, aus einer statischen Äquivalenzbetrachtung die Umrechnung (2) zwischen Querkraft und Transversalkraft.

(2)\[V(x) = R(x) - N^{II}(x)\left[\frac{dw_v(x)}{dx}+\frac{dw(x)}{dx}\right]\]

Die oben angeschriebenen gekoppelten Differentialgleichungen können mittels Eliminationsverfahren auf M-Niveau oder w-Niveau eliminert werden. Nach Anwendung des Eliminationsverfahrens ergibt sich

(3)\[\begin{split}\frac{d^2M(x)}{dx^2} - K M &= -\gamma\sum a_j\bar{q}_j+\sum a_{j-1} m_j-\gamma N^{II}\sum a_j\kappa^e_j\\[1em] \frac{d^2w(x)}{dx^2} - K w &= -K (a_0w_A+a_1w'_A)-\frac{\gamma}{EI}(a_0M_A+a_1Q_A)\\[1em] &+\gamma\sum\left(\frac{a_{j+2}}{EI}-\frac{a_j}{GA}\right)\bar{q}_j -\frac{\gamma}{EI}\sum a_{j+1}m_J-\gamma\sum a_j\kappa^e_j\end{split}\]

mit

(4)\[\gamma = \frac{1}{1-\frac{N^{II}}{S}}\qquad K = -\gamma\frac{N^{II}}{EI}\qquad\bar{q}_j = q_j - N^{II} w^V_{j+2}\]

Beide Differentialgleichungen haben die Form allgemeine Form

(5)\[y'' - K y = \sum_0 a_j k_j\]

Mit dem in [todo ref: stahlbauhandbuch] vorgestellten Lösungskonzept ergibt sich die allgemeinen Lösung zu:

(6)\[y = b_0 y_A + b_1 y'_A + \sum b_{j+2} k_j\]

Diese können entweder analytisch nach folgender Tabelle mittels Fallunterscheidung

Theorie

Hilfswert

\(b_0\)

\(b_1\)

\(b_2, b_3,...\)

  1. Ordnung

\(N = 0\)

\(b_j = a_j\)

  1. Ordnung

\(N < 0\)

\(\sqrt{\lvert K\rvert}\)

\(\cos fx\)

\(\frac{\sin fx}{f}\)

\(b_j = \frac{b_{j-2}-a_{j-2}}{K}\)

\(N > 0\)

\(\sqrt{\lvert K\rvert}\)

\(\cosh fx\)

\(\frac{\sinh fx}{f}\)

oder numerisch mit der Rekursionsformel (7) berechnet werden.

(7)\[b_j = \sum_{t=0}^\inf \beta_t\qquad\beta_t = \frac{Kx^2}{(j+2t)(j+2t-1)}\beta_{t-1}\]

In stanpy können die \(b_j\) Funktionen für einen konstanten Querschnitt für beliebige \(j\) und \(x\) wie folgt berechnet werden

import numpy as np
import stanpy as stp

EI = 32000  # kNm²
GA = 20000  # kN
l = 6
NII = -1500  # kN

s = {"EI": EI, "GA": GA, "N": NII}

a_j, b_j = stp.bj_opt2_p89(l, return_aj=True, **s)

print("a_j =", a_j)
print("b_j =", b_j)
a_j = [[ 1.   6.  18.  36.  54.  64.8]]
b_j = [[ 0.21835  4.33504 15.42461 32.8553  50.82105 62.05548]]