CALIPER

K iper

ENABLING INTROSPECTION OF
MPI LIBRARIES THROUGH THE
MPI T INTERFACE

Authors:
Srinivasan Ramesh

August 18, 2017



Introduction

MPI libraries today involve multiple components interacting in complex
ways to affect performance. Together with the heterogeneous nature of
current and future architectures, this means default MPI library settings
may not always be optimal for performance and scalability — significant
performance gains may be achieved by tailoring MPI library behaviour to
suit application characteristics. To understand MPI library internals, there
needs to be a way to introspect the MPI_T libary at runtime. In order to
modify MPI library behaviour dynamically at runtime, the library must ex-
pose a means to do so.

The MPI_T interface, introduced in the MPI 3.0 standard provides exter-
nal tools an opportunity to introspect and potentially modify MPI library
behaviour at runtime by means of two semantics:

e Performance Variables (PVARs): Performance variables represent MPI
internal information in the form of counters, state, watermarks, etc.
The MPI specification details the various classes of PVARs supported,
allowed datatypes and access semantics each of class.

e Control Variables (CVARs): Control variables are the means by which
an external tool can modify MPI library behaviour and fine-tune ap-
plication performance. They are essentially knobs that may represent
the value of a particular setting inside the MPI library.

Caliper is an application introspection tool that relies on source code anno-
tations to collect information and perform profiling related tasks. Caliper
services are the basic building blocks that can be combined freely to realize
advanced profiling / tracing capabilities. The MPI service utilizes the PMPI
interface to profile MPI library calls. This document describes the design
of the MPIT service that performs MPI library introspection through the
MPI_T interface. The motivation behind this document is to describe the
rationale that went into the design of the service. Caliper is in active devel-
opment — this document deliberately avoids description of code or filenames



used to implement the MPIT service. However, any design modifications to
the service shall be reflected here.

We shall touch upon some Caliper concepts when required. For detailed
description of Caliper design, kindly refer to Caliper documentation.



Collecting PVARs through
MPI.T

0.1 Creating a performance session

In order to use MPI_T, a tool must first create a performance session and
associate handles for the performance variables it wishes to read. Perfor-
mance sessions allow the MPI library to distinguish between multiple tools
/ software modules that may be simultaneously querying the MPI_T inter-
face.

The MPIT Caliper service creates an MPI_T performance session during
the Caliper service registration phase.

0.2 PVAR handle allocation

Before a tool can read the value of a PVAR, it must first allocate a handle
for the PVAR. The MPI_T interface specifies a function that allows a tool
to know the number of PVARs exported by an MPI implementation at any
given point in time. A couple of points need to be kept in mind when
allocating PVAR handles:

e Number of PVARs can change: The number of PVARs exported by
the library can change at any point in time. Typically, MPI libraries
export additional PVARs after MPI_Init. Caliper allocates handles
for PVARSs from multiple places: During the registration for the MPIT
service, inside the wrapper for MPI_Init, and from inside the wrapper
for certain MPI calls (description follows).

e PVARSs can be bound to MPI objects: The MPI_pvar_get_info func-
tion returns the bind type for the PVAR. The idea here is that PVARs



can be associated with a specific object such as a communicator or mes-
sage. As a result, there can be multiple handles allocated for a PVAR
at any given index. These handles must be allocated appropriately
depending on the bind type.

— MPI_T_BIND_NO_OBJECT: These PVARs are not bound to any
MPI object — Caliper allocates handles for such PVARs during
Caliper registration and inside the wrapper for MPI_Init.

— MPI_T_BIND_MPI_COMM: These PVARs are bound to MPI com-
municators, and is a special case. Handles for pvars bound to
MPI_COMM_WORLD and MPI_COMM_SELF are allocated during Caliper
registration phase. Additionally, handles are created each time
MPI_Comm_create is invoked, by intercepting the call through the
PMPI wrapper.

— MPI_T_BIND_WIN: These PVARs are bound to MPI windows. As
a result, handles for such pvars are allocated inside the Caliper
PMPI wrapper for MPI_Win_create.

— MPI_T_BIND_MPI_ERR_HANDLER: These PVARSs are bound to MPI
error handlers. Handles for such pvars are allocated inside the
PMPI wrapper for MPI_Errhandler_create.

— MPI_T_BIND_MPI_FILE: These PVARs are bound to file objects.
Handles are allocated inside the PMPI wrapper for MPI_File_open.

— MPI_T_BIND_MPI_GROUP: These PVARs are bound to MPI group
objects. Handles are allocated inside the PMPI wrapper for
MPI_COMM_GROUP.

— MPI_T_BIND_MPI_QOP: These PVARs are bound to MPI reduction
operators. Handles are allocated inside the PMPI wrapper for
MPI_Op_create.

— MPI_T_BIND_MPI_INFO: These PVARs are bound to MPI Info
objects. Handles are allocated inside the PMPI wrapper for
MPI_Info_create.

— MPI_T_BIND_MPI_MESSAGE, MPI_T_BIND_MPI_REQUEST: Not sup-
ported inside Caliper currently. Open question — how do we
allocate handles for these?

0.3 PVAR classes and notion of aggregability

Depending on what they represent, PVARs are categorized into counters,
state variables, watermarks, etc., and are handled differently. For this pur-



pose, we define the notion of aggregatability as follows: Any PVAR on which
it is meaningful to apply one or more of (SUM, MAX, MIN, AVG, COUNT)
operators is defined as aggregatable.

Along with other information, a call to MPIT _pvar_get_info returns the
CLASS to which the PVAR belongs. The various classes, along with how
Caliper handles them are:

e MPI_T_PVAR_CLASS_TIMER, MPI_T_PVAR_CLASS_AGGREGATE,
MPI_T_PVAR_CLASS_COUNTERS: These are free-counting, monotonically
increasing values. As such, they are not aggregatable, but by storing
the ”last” value for these counters and timers, the difference between
the current and last value is a derived metric that is aggregatable by
use of SUM, MAX, MIN, AVG operators. Storing this difference is
more useful than just the raw counter values, as one would typically
by interested in the change caused to any of these PVARs rather than
the raw value itself.

e MPI_T_PVAR_CLASS_STATE: Represents MPI state at any instant in
time. Non-aggregatable value.

e MPI_T_PVAR_CLASS_SIZE: Represents size of an MPI resource. Non-
aggregatable value.

e MPI_T_PVAR_CLASS_LEVEL, MPI_T_PVAR_CLASS_PERCENTAGE: Represents
the instantaneous level or percentage utilization of an MPI resource.
It is meaningful to apply the AVG, MIN, MAX operators, and hence
these classes are aggregatable.

e MPI_T_PVAR_CLASS_HIGHWATERMARK,
MPI_T_PVAR_CLASS_LOWWATERMARK: As such, they are non-aggregatable.
However, one can define aggregatable derived metrics out of these
PVARs. Specifically, Caliper defines two derived metrics: A boolean
that tells us if the watermark has gone up from the last time it was
read, and a double value specifying the change in the value between
successive reads. Both of these derived metrics are aggregatable quan-
tities as one can apply the COUNT and / or SUM operator to them.

e MPI_T_PVAR_CLASS_GENERIC: Represents PVARs that do not fall into
any of the above classes. These PVARs would need to handled on a
case-by-case basis, and thus for now, we define these as non-aggregatable
values.



0.4 Creating Caliper attributes for PVARs

The basic data unit in Caliper is an attribute. An attribute is a key value
pair that has certain properties. For each PVAR exposed by the MPI library,
Caliper defines an attribute with the same name as the PVAR. Each PVAR
attribute has the following properties:

e CALI_ATTR_AS_VALUE - We do not want ”stacking” for PVAR values.
They should be treated much the same way as PAPI counters.

e CALI_ATTR_SCOPE_PROCESS - PVARs are defined on a per-rank basis

e CALI_ATTR_SKIP_EVENTS - We do not want callbacks to be triggered
everytime the attribute for a PVAR is updated

e Metadata (class.aggregatable) - Boolean value specifying if the
PVAR is aggregatable or not. Aggregatability is determined in accor-
dance with the rules above.

Apart from creating a Caliper attribute for each PVAR exported, there are
two additional attributes created for each watermark PVAR exported — one
that represents the number of times the watermark changes, and another
that represents the cumulative change in the watermark PVAR.

0.5 Querying and storing PVARs

In the current design, all PVARs exported by the MPI library are queried
when a snapshot is triggered. By integrating the MPIT service along with
the MPI service, this would be useful in determining how various MPI
function calls contribute to changes in PVAR values. Moreover, one can
gather meaningful information by aggregating using MPI function names or
annotated code regions as keys. Currently, we note about 10-15% overheads
in collecting PVARs during every snapshot event. This may not be a very
scalable option, as this overhead would increase with a rise in number of
PVARs exported.

Depending on the class of the PVAR, we either store the raw value read
from the interface in the snapshot, or a derived metric.

e MPI_T_PVAR_CLASS_TIMER, MPI_T_PVAR_CLASS_AGGREGATE,
MPI_T_PVAR_CLASS_COUNTERS: We store the difference between the
current value and the ”last value” for such PVARs in the snapshot.
Storing and aggregating this derived value is more meaningful — it



helps us answer questions such as: How do different MPI functions
contribute to this PVAR? Which MPI function is responsible for the
highest value?

MPI_T_PVAR_CLASS_STATE, MPI_T_PVAR_CLASS_SIZE: These PVARs
are stored as is in the snapshot. Perhaps it may be more meaningful
to view changes over time, such as in a trace.

MPI_T_PVAR_CLASS_HIGHWATERMARK, MPI_T_PVAR_CLASS_LOWWATERMARK:
Along with storing the raw value for watermark PVARs, we store the
derived metrics that represent the number of times the watermark
changed, along with how much the watermark changed in the snap-
shot. By aggregating across MPI functions for example, we can answer
questions such as: Which function most frequently pushed up / down

a watermark? Which function was responsible for the highest cumu-
lative change in a given watermark?

MPI_T_PVAR_CLASS_LEVEL,MPI_T_PVAR_CLASS_PERCENTAGE: We store
these PVARs as is in the snapshot. It maybe meaningful to view the
average, maximum or minimum value for these PVARs, aggregated
across MPI functions.



