Counter RNAseq Window

Documentation
Release

Bertrand Néron

June 29, 2017

CONTENTS

CHAPTER
ONE

USER GUIDE

1.1 overview

Counter RNA seq Window is a package which aim to compute and visualize the coverage of RNA seq experiment.

The craw package contains two scripts craw_coverage and craw_htmp. craw_coverage compute the coverage, whereas
craw_htmp allow to represent graphically the results of craw_coverage with a heat map.

1.1.1 craw_coverage:

craw_coverage take as input a bam file or wig file and an annotation file. The annotation file describe on which gene
the craw_coverage must compute the coverage. The script compute a coverage for each position of this gene on a
specified window around a position of reference on both sense and put the results on a matrix. The region of interest
can be fixed for all genes (specified by the command line) or variable. In the this case the annotation file must contains
two columns to specify beginning and the end of the region to take in account. The results in the matrix are centered
on the position of reference of each gene. In the case of variable length of window the results are padded on left and
right if necessary with None value. The results is saved in a file as a tabulated separated value by default with the same
name as the bam file with the .cov extension (see Outputs for more details).

Below an example to illustrate how craw_coverage work. If we consider the following genome and we want to analyze
3 gene foo, bar, buz

slgrt/s(op ref

FAE - H\\
Position 110 11813 14 115 16171819 120 21 22 B8 124 252627 28 29 8@ 3132 13334

ohrv e S ::‘ﬁ -
A g

Forward 0101112131415 0000 1 1 1 1 1000 0 0 303132330

Reverse 01 11111000020 2122232400000 1 1 110

On the figure above
* The first line represent the positions on the genome (1-based)
— The bold position indicate the boundaries of region we want to analyse.
— the red highlighted positions indicate, for each region, the position of reference.
* the second line represent the genes and their respective sense.
* the 2 last lines the coverage at each position of the genome for each strand

So to analyse these genes, we create an annotation file like following.

gene Chr strand start stop ref

foo \ + 110 15 112
bar A% + 130 133 130
buz A - 120 124 123

Counter RNAseq Window Documentation, Release

the run a command line like:

craw_coverage —--bam mygenome.bam --annot my_annotation --ref-col ref --start-col start vatopfcol st

will produce the following coverage matrix

Gene sense -2 e 0 i, 2 3
foo S 10 n 12 13 14 15

foo AS 1 1 1 1 1 1
bar S None None 30 31 32 33
bar AS None None 1 1 1 1
buz AS None 1 1 1 i 1

buz S None 24 23 22 21 20

1.1.2 craw_htmp:

craw_htmp read coverage file produced by craw_coverage and generate a graphical representation. It can produce
either a file or an interactive graphic. The look and feel of the graphic and the format of supported outputs vary in
function of the backend of matplotlib used (see matplotlib configuration). It can also produce raw images using pillow
where 1 nucleotide is represent by 1 pixel.

1.1.3 Licensing

All files belonging to the Counter RNAseqWindow (craw) package. are distributed under the GPLv3 licensing.

You should have received a copy of the GNU General Public License along with the package (see COPYING file). If
not, see <http://www.gnu.org/licenses/>.

craw is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

craw is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

Authors: Bertrand Néron Copyright © 2017 Institut Pasteur (Paris). see COPYRIGHT file for details.

1.2 Installation

1.2.1 Requirements
For craw_coverage

* python >3

e pysam >=0.9.1.4
For craw_htmp

* python >3

e pysam >=0.9.1.4
* pandas >=0.17.1
* numpy >= 1.11.2

2 Chapter 1. User Guide

http://www.gnu.org/licenses/

Counter RNAseq Window Documentation, Release

* matplotlib >=1.5.3
* pillow >=3.4.2

1.2.2 Installation
Installation from package

Using pip

pip install craw

Do not forget to configure the matplotlib backend, specially if you use virtualenv. Otherwise on some platform there
won’t any output. See matplotlib configuration for more explanation.

Note: On MacOS install python > 3 from image on http://python.org . Then install craw using pip

pip3 install craw

craw will be installed in /Library/Framework/Python.Framework/Version/3.6/ So if you want to use directly
craw_coverage and craw_htmp just create a symbolic linc like this:

1In -s /Library/Framework/Python.Framework/Version/3.6/bin/craw_coverage /usr/local/bin/¢raw_coverage
In -s /Library/Framework/Python.Framework/Version/3.6/bin/craw_htmp /usr/local/bin/craw_htmp

The documentation (html and pdf) is located in /Library/Framework/Python.Framework/Version/3.6/share/craw/

Installation from repository

Clone the project and install with the setup.py

git clone https://gitlab.pasteur.fr/bneron/craw.git
cd craw
python3 setup.py install

Note: Instead of installing craw you can directly use the scripts from the repository. You can also use the package
without installing it. To do this, you have to export the CRAW_HOME environment variable. CRAW_HOME must

point to the src directory of the project. Then you can use craw_coverage and craw_htmp scripts located in bin
directory.

This project is documented using sphinx. So if you use a clone, you have to generate the documentation from the
source.

The project come from with some unit and functional tests. to test if everything work fine.

cd SCRAW_HOME python3 tests/run_tests.py -vvv

matplotlib configuration

matplotlib is a python library to create graphics. craw_htmp use this library to generate heat map. The two parameters
to configure for craw is:
* the backend

* figure.dpi

1.2. Installation 3

http://python.org
http://www.sphinx-doc.org/en/stable/index.html

Counter RNAseq Window Documentation, Release

backend

matplolib lay on low level graphic library of youre computer. This library will determine the graphical formats manage
by matplotlib and then by craw_htmp. Most of backend handle png but some library like Q¢ can handle ‘jpeg’, ‘eps’,

pdf ...

In your matplolibre file you must define the backend for instance to use Qt5

’backend: gtbagg

An example of matplolibrc file and all supported backend is available here:
http://matplotlib.org/users/customizing.html#a-sample-matplotlibrc-file

figure.dpi

It’s not an essential option but matplolib and craw_htmp will produce better graphic (on screen) if you configure
matplotlib to the native resolution of your screen. To know the resolution of your screen you can visit the following
page https://www.infobyip.com/detectmonitordpi.php and report the resolution (for 1 inch) in matplotlibrc file like:

figure.dpi: 96

For full explanation on how to configure matplotlib read http://matplotlib.org/users/customizing.html#the-
matplotlibrc-file.

1.3 Quick start

1.3.1 craw_coverage
craw_coverage need a file bam or wig to compute coverage and an annotation file to specify on which regions to
compute these coverages.

¢ the -b or —bam allow to specify the path to the bam file.

* or alternatively the

— -w, —wig option to specify the path to the wig file if the both strand aer encode in same file (negative value
are on reverse strand)

— —wig-for and —wig-rev to specify the paths to the wig files for the forward and reverse strand respectively
¢ the -a —annot allow to specify the path to the annotation file.

The —bam and —wig options are mutually exclusive but one of these option is required. —wig and —wig-for or —wig-rev
are also mutually exclusive. the —annot option is required.

craw_coverage —-bam ../WTEl.bam —--annot ../annotations.txt —--ref-col Position —-before 100 —--after 5
craw_coverage —--wig ../WTEl.wig —--annot ../annotations.txt --ref-col Position —--before 100 --after 5
craw_coverage —-wig-for ../WTEl_forward_strand.wig —--wig-rev ../WTEl_reverse_strand.wig|-—annot ../ai
—-—-ref-col Position —--before 100 --after 500

Warning: At the same place of bam file, there must be the corresponding index file (the bam.bai file). To generate
the .bai file you have to use samtools program:

samtools index file.bam

see http://www.htslib.org/doc/ for more explanation.

4 Chapter 1. User Guide

http://matplotlib.org/users/customizing.html#a-sample-matplotlibrc-file
https://www.infobyip.com/detectmonitordpi.php
http://matplotlib.org/users/customizing.html#the-matplotlibrc-file
http://matplotlib.org/users/customizing.html#the-matplotlibrc-file
http://www.htslib.org/doc/

Counter RNAseq Window Documentation, Release

with fix window

To compute the coverage on a fix window: we need to specify which column name in the annotation file define the
reference position. The window will computed using this reference position.

e —ref-col

Note: if —ref-col is omitted craw_coverage will use the column position. If there not “position” column an error will
occur.

two ways to determine the window:
with —window option for a window centered on the reference position.
* —window define the number of nucleotide to take in account before and after the reference position.

craw_coverage --bam file.bam --annot annot.tsv --ref-col ref \
gene Chr strand ref

bar v + 130 18 19 120 26 27 [38129)] 133 34 ..
buz Y = 123 z::|:|:/‘¥_|
’craw_coverage —-—bam ../WTEl.bam —-—-annot ../annotations.txt —--ref-col Position —--window iOO

This command will compute coverage using WTE1.bam and with annotations.txt file the column used to compute the
window is ‘Position’ and the window length will be 100 nucleotide before the reference position and 100 nucleotides
after (201 nucleotides length).

With an non centered window we have to specify two options —before and —after
* —before BEFORE define the number of nucleotide to take in account before the reference position.
o —after AFTER define the number of nucleotide to take in account after the reference position.

gene @ | i) ref craw_coverage --bam file.bam --annot annot.tsv --ref-col ref \

bar \Y + 130 18 (181120721 2228124725 26 27 [28729 [130]'37 82 133784 .

buz v . 123 — \3—$:|::/¥_|

‘craw_coverage ——-bam ../WTEl.bam —--annot ../annotations.txt —--ref-col Position —--before iOO ——after 5

This command will compute coverage using WTE1.bam and with annotations.txt file the column used to compute the
window is ‘Position’ and the window length will be 100 nucleotide before the reference position and 500 nucleotides
after (201 nucleotides length).

Note: —after and —before options must be set together and are incompatible with —window option.

with variable window

The regions must be specified in the annotation file.

 —start-col COL define the name of the column in annotation file which define the start position of the region to
compute.

* —stop-col COL define the name of the column in annotation file which define the stop position of the region to
compute.

1.3. Quick start 5

Counter RNAseq Window Documentation, Release

craw_coverage --bam file.bam --annot annot.tsv --ref-col ref \
gen Chr str start stop ref

bar |V + 130 183 130 18 1o [{2002022[E8[M24 25 26 27 28 20 [{BO[3T 82133 34 .
buz V- 120 124 123 sl T e— s —

craw_coverage —--bam ../WTEl.bam --annot ../annotations.txt --ref-col annotation_start —+start—col ani

This command will compute coverage using WTE1.bam and with annotations.txt file.
* The reference position will define by the annotation_start column
* The first nucleotide of the window will be define by annotation_start column.

* The last nucleotide of the window will be define by annotation_end column.

Other options

The following option are not mandatory:

e -q QUAL_THR, —qual-thr QUAL_THR The minimal quality of read mapping to take it in account. (de-
fault=15)

¢ -s SUFFIX, —suffix SUFFIX The name of the suffix to use for the output file. (default=".cov)

¢ -0 OUTPUT, -output OUTPUT The path of the output (default= base name of annotation file with —suffix)
* —version display version information and quit.

» —verbose, -v increase the verbosity of the output (this option can be repeat several times as -vv).

* —quiet decrease verbosity of the output. By default craw_coverage is slightly verbose and display a progress
bar. This option can be useful to disable any progression information on batch run.

* -h -help disply the inline help and exit.

Warning: by default craw_coverage use a quality threshold of 15 (like pysam)

Note: strand column mut named strand and can take 1/-1 or +/- for/rev as value for forward/reverse strands.

Warning: the coverage file can be huge depending on the number of gene to compute the coverage and the size
of the window for instance for 6000 genes with a window of 15000 nt the cov file will weight almost 900Mb.

1.3.2 craw_htmp

Compute a figure from a file of coverage generated by craw_coverage. By default, display a figure with two heatmap
one for the sense the other for the antisense. But it work also if the coverage file contains sense or anti sense data only.

Mandatory arguments

* cov_file The path to the coverage file (the output of).

6 Chapter 1. User Guide

Counter RNAseq Window Documentation, Release

Data

options

—crop CROP CROP: Crop the matrix. This option need two values the name of the first and last column to

keep [start col, stop col] eg —crop -10 1000

craw_htmp —--crop 0 2000 WTEl_var_window.cov

This command will display only column ‘0’ to 2000°, included, of the matrix generated by craw_coverage.

—sort-using-col COL sort the data using the column name ‘COL’ (descending).

—sort-using-file SORT_USING_FILE sort the rows using a file. The file must have on the first line the name
of the column to use for sorting and each line must match to a value contained in the matrix.

—sort-by-gene-size [start_col,stop_col [start_col,stop_col ...]] The rows will be sorted by gene size using
start_col and stop_col to compute length. start_col and stop_col must be a string separated by comma. If
start_col and stop_col are not specify annotation_start,annotation_end will be used.

—sense-only Display only sense matrix (default is display both).

—antisense-only Display only anti sense matrix (default is display both).

Warning: Don’t put the —sort-by-gene-size option without value as last option just before the coverage file. In this
case the craw_htmp will don’t work. If you want to use only this option, use the -v option after —sort-by-gene-size

craw_htmp --sort-by-gene-size -v WIE1l_0_2000.cov

Figure options

Normalization options

craw_htmp provide several methods to normalize data before to display them: below the different figures illustrate
the result of each normalization methods on the following matrix z.

Pos 0 1 2 3 4 5

S 0 1 10 | 100 | 1000 | 10000
AS | 10000 | 1000 | 100 | 10 1 0

S 1 10 20 | 30 40 50
AS 50 40 30 | 20 10 1

linear normalisation

—norm lin: a linear normalization is applied on the whole matrix.

e 1z the original matrix

* z; the value of a cell in the original matrix

¢ z; the value of a cell in the normalized matrix

z;, —min(zx)

Zi =

maz(z)—min(z)

1.3. Quick start

Counter RNAseq Window Documentation, Release

logaritmic normalisation

—norm log: a 10 base logarithm will be applied on the data before matrix normalization.
1. replace all 0 values by 1
2. z; = logio(x;)

z; —min(z)

3. wi = maz(z)—min(z)

linear normalisation row by row
—norm row: mean that a linear normalisation is compute row by row.
* 1z the original matrix
* x;; the value of a cell in the original matrix with I rows and .J columns

e x, the values of the i row

i —min(x;)

® Zii = ——~————
J mazx(x;)—min(xz;)

logaritmic normalisation row by row
—norm log+row mean a 10 base logarithm will be applied before a normalisation row by row.
e z the original matrix
* x;; the value of a cell in the original matrix with I rows and .J columns
e x; the values of the ¢ row
1. replace all 0 values by 1
2. z;j = logio(x:j)

o zij=min(zi)
3. Wij = max(z;)—min(z;)

8 Chapter 1. User Guide

Counter RNAseq Window Documentation, Release

Note:

* ‘row+log’ is an alias for ‘log+row’

¢ The default normalisation is lin

Other figure options

e —cmap CMAP The color map used to display data. The allowed values are defined in
http:matplotlib.org/examples/color/colormaps_reference.html eg: Blues, BuGn, Greens, GnBu, ... (default:
Blues).

—title TITLE The figure title. It will display on the top of the figure. (default: the name of the coverage file
without extension).

—dpi DPI The resolution of the output (default=100).

This option work only if —out option is specified. To set the right dpi for screen displaying use the matplotlib
configuration file.

* —size SIZE Specify the figure size

The value must be widexheight[unit] or ‘raw’. If value is ‘raw’ it will be produce two image files (for sense and
antisense) with one pixel correspond to one coverage value. Otherwise, ‘wide’ and ‘height’ must be positive
integers By default unit is in inches. eg:

— 7x10 or 7x10in for 7 inches wide by 10 inches height.
— 70x100mm for 70 mm by 100 mm.
default=7x10 or 10x7 depending of the figure orientation (see layout).
* —mark POS <COLOR> will draw a vertical line at the position POS with the color <COLOR>

WTE1_0+2000

COLOR can be the name of the most common html color red, yellow, ... or a value of a RGB in hexadecimal
format like #rgb or #rrggbb for instance #ff0000 represent pure red. (don’t forget to surround the hexadecimal
color with quotes on commandline)

If COLOR is omitted the color of the highest value of the color map used for the drawing will be used (The
default color map is Blues).

craw_htmp —--norm log \-\-mark 1000 \-\-mark 500 MediumAquamarine \-\-mark 100 "#ffO‘OOO" \-\-sens

for list of HTML colors:
— https://en.wikipedia.org/wiki/Web_colors

— https://www.w3schools.com/colors/colors_names.asp

1.3. Quick start 9

http:matplotlib.org/examples/color/colormaps_reference.html
https://en.wikipedia.org/wiki/Web_colors
https://www.w3schools.com/colors/colors_names.asp

Counter RNAseq Window Documentation, Release

Warning: The —mark option must not be the last option on the command line (just before the coverage file),
otherwise an error will occurred.:

craw_htmp --out my_fig.png —--mark 10 red —--mark 0 WTE1l_0_2000.cov => raise an error
craw_htmp —--mark 10 red —-—-mark 0 —--out my_fig.png WIE1l_0_2000.cov => work

Layout options

» —sense-on-left Where to display the sense matrix relative to antisense matrix.
» —sense-on-right Where to display the sense matrix relative to antisense matrix.
* —sense-on-top Where to display the sense matrix relative to antisense matrix.

* —sense-on-bottom Where to display the sense matrix relative to antisense matrix.

L0004+ BEV

WrE 04280

200+ D@V

wiEL preen

S
Anti

The fisrt screen capture use —sense-on-top whereas the second capture used —sense-on-left option.

Note: default is top.

Other options

¢ -h, -help Display the help message and exit

* —out OUT The name of the file (the format will based on the extension) to save the figure. Instead of displaying
the figure on the screen, save it directly in this file.

10 Chapter 1. User Guide

Counter RNAseq Window Documentation, Release

* -v, —verbose Increase output verbosity. By default craw_htmp is relatively quiet (display only warning and
error), if you want to display also the processing step just add -v on the commandline (or -vv to display also the
debugging message).

¢ —version Display version information and quit.

1.4 Inputs / Outputs

1.4.1 craw_coverage

Inputs

craw_coverage* need a file bam or wig to compute coverage and an annotation file to specify on which regions to
compute these coverages.

bam file

craw_coverage can use a file of alignment reads called bam file. a bam file is a short DNA sequence read alignments
in the Binary Alignment/Map format (.bam). craw_coverage needs also the corresponding index file (bai). The index
file must be located beside the bam file with the same name instead to have the .bam extension it end by .bai extension.
If you have not the index file you have to create it.

To index a bam file you need samtools. The command line is

samtools index file.bam

For more explanation see http://www.htslib.org/doc/ .

wig file

craw_coverage can compute coverage also from wig file see https://wiki.nci.nih.gov/display/tcga/wiggle+format+specification

and http://genome.ucsc.edu/goldenPath/help/wiggle.html . for format specifications. Compare d to these specifica-
tions craw support coverages on both strands. the positive coverages scores are on the forward strand whereas the
negative ones are on the reverse strand.

track type=wiggle_0 name="demo" color=96,144,246 altColor=96,144,246 autoScale=on grap}l
variableStep chrom=chrI span=1

72 12.0000
73 35.0000
74 70.0000
75 127.0000
72 -88.0000
73 -42.0000
74 -12.0000
75 -1.0000

1Type=bar

In the example above the coverage on the Chromosome I for the positions 72, 73, 74, 75 are 12, 35, 70, 127 on the
forward strand and 88, 42, 12, 1 on the reverse strand.

1.4. Inputs / Outputs 11

http://www.htslib.org/doc/
https://wiki.nci.nih.gov/display/tcga/wiggle+format+specification
http://genome.ucsc.edu/goldenPath/help/wiggle.html

Counter RNAseq Window Documentation, Release

annotation file

The annotation file is a tsv file by default. It’s mean that it is a text file with value separated by tabulation (not spaces)
or commas. But if a separator is specified (—sep) it can be a csv file or any columns file.

The first line of the file must be the name of the columns the other lines the values. Each line represent a row.

name

YELO72W
YELO71W
YELO70W
YELO66W
YELO65W
YELO62W
YELOS58W
YELOS6W

gene
RMD6
DLD3
DSF1
HPA3
SIT1
NPR2
PCM1
HAT2

chromosome

chrv
chrVv
chrv
chrv
chrv
chrv
chrv
chrVv

+

+ o+ + + o+

strand Position
14415
17845
21097
27206
29543
36254
44925
48373

All lines starting with ‘#” character will be ignored.

This is the annotation file for Wild type
bla bla

name

YELO72W
YELO71W
YELO70W
YELOG66W
YELO65W
YELO62W
YELO58W
YELOS6W

gene
RMD 6
DLD3
DSF1
HPA3
SIT1
NPR2
PCM1
HAT2

chromosome

chrv
chrv
chrv
chrv
chrv
chrv
chrv
chrv

+

+ o+ o+ o+ o+

strand Position
14415
17845
21097
27206
29543
36254
44925
48373

mandatory columns

There is 3 mandatory columns in the annotation file.

columns with fixed name

two with a fixed name:

* strand indicate on which strand is located the region of interest. The authorized values for this columns are +/-
, 1/-1 or for/rev.

¢ chromosome the chromosome name where is located the region of interest.

columns with variable name In addition of these two columns the column to define the position of reference is
mandatory too, but the name of this column can be specified by the user. If it’s not craw_coverage will use a column

name ‘position’.

If we want to compute coverage on variable window size, 2 extra columns whose name must be specified by the user
by the following option:

 —start-col to define the beginning of the window (this position is included in the window)

» —stop-col to define the end of the window (this position is included in the window)

name gene type chromosome strand annotation_start annotation_end |has_transcriy
YELO72W RMD6 gene chrv 1 13720 14415 1 14745 13569

YELO71W DLD3 gene chrv 1 16355 17845 1 17881 16177

YELO70W DSF1 gene chrv 1 19589 21097 1 21197 19539

YELO66W HPA3 gene chrv 1 26721 27206 1 27625 26137

YELO65W SIT1 gene chrv 1 27657 29543 1 29601 27625

YELO62W NPR2 gene chrv 1 34407 36254 1 36401 34321

12 Chapter 1. User Guide

Counter RNAseq Window Documentation, Release

YELO58W PCM1 gene chrv 1 43252 44925 1 44993 43217
YELOS56W HAT2 gene chrv 1 47168 48373 1 48457 47105
YELOS52W AFG1 gene chrv 1 56571 58100 1 58105 56537
craw_coverage —--wig file.wig ——annot annot.txt —--ref-col annotation_start --start-col a#notation_staJ

The position of reference must be between start and end. The authorized values are positive integers.

Note: the position of reference can be used to define the reference and the start ot the end of the window.

craw_coverage —-bam file.bam —-—-annot annot.txt —--ref-col annotation_start —--start-col aﬁnotation_staJ

All other columns are not necessary but will be reported as is in the coverage file.

Outputs

coverage_file

It’s a tsv file with all columns found in annotation file plus the result of coverage position by position centered on the
reference position define for each line. for instance

craw_coverage —-wig=../data/small.wig —-annot=../data/annotations.txt
——ref-col=annotation_start —--before=0 --after=2000

In the command line above, the column ‘0’ correspond to the annotation_start position the column ‘1’ to annota-
tion_start + 1 on so on until ‘2000° (here we display only the first 3 columns of the coverage).

Running Counter RnAseqg Window craw_coverage

Version: craw NOT packaged, it should be a development version | Python 3.4

Using: pysam 0.9.1.4 (samtools 1.3.1)

#

craw_coverage run with the following arguments:

—-—after=3

——annot=../data/annotation_wo_start.txt

—-before=5

——chr-col=chromosome

——-output=small_wig.cov

——qual-thr=0

——quiet=1

——-ref-col=Position

——sense=mixed

——sep=

—-strand-col=strand

——suffix=cov

—-verbose=0

——wig=../data/small.wig

sense name gene type chromosome strand annotation_start annotation_end has_|
S YELO72W RMD6 gene chrv + 13720 14415 1 14745 13569 7 7
AS YELO72W RMD6 gene chrv + 13720 14415 1 14745 13569 0 0
S YELO71W DLD3 gene chrv + 16355 17845 1 17881 16177 31 33

The line starting with ‘#’ are comments and will be ignored for further processing. But in traceability/reproducibility
concern, in the comments craw_coverage indicate the version of the program and the arguments used for this experi-
ment.

1.4. Inputs / Outputs 13

Counter RNAseq Window Documentation, Release

1.4.2 craw_htmp

Inputs

see cov_out

Outputs
The default output of craw_htmp (if —out is omitted) is grapical window on the screen. The figure display on the screen
can be saved using the window menu.

L£O00C+ v B@E

wrEL D4z

Sensa

It is also possible to generate directly a image file in various format by specifying the —out option. The output format
will be deduced form the filename extension provide to —out option.

—--out foo.jpeg for jpeg image or —--out foo.png for png image

The supported format vary in function of the matloblib backend used (see matplotlib configuration).

If —size raw is used 2 files will be generated one for the sense and the other for the antisense. If —out is not specified it
will be the name of the coverage file without extension and the format will be png.

’craw_htmp foo_bar.cov —-size raw

will produce foo_bar.sense.png and foo_bar.antisense.png

’craw_htmp foo_bar.cov --size raw --out Xyzzy.jpeg

will produce Xyzzy.sense.jpeg and Xyzzy.antisense.jpeg

14 Chapter 1. User Guide

CHAPTER
TWO

DEVELOPER GUIDE

2.1 Overview

Scripts are located in bin directory, and use some modules located in craw directory.

* craw_coverage use module craw.annotat ion to handle annotation file and module craw. coverage to
compute coverage this module rely on pysam.

e craw_htmp read coverage file generate by craw_coverage and produce graphical representation of data. This
script use functions in module craw. heatmap in the form of heatmap. The module craw. heatmap have
some capabilities to sort, crop, normalize data before represent them. this module rely on numpy, pandas to ma-
nipulate data (craw. heatmap. sort, craw.heatmap.crop_matrix, craw.heatmap.lin_norm,
) and matplotlib and/or pillow to generate images (craw.heatmap.draw_heatmap |,
craw.heatmap.draw_raw_image)

2.2 reference API

2.2.1 craw

The _get_version_message is a private function that provide a human readable version of craw package and python
which is common to all scripts. Each script have a public function get_version_message that call this function for the
common part and add the version of all dependencies need for the script.

craw.get_version_message ()
Returns A human readable version of the craw package version
Return type string

craw.init_logger (log_level)
Initiate the “root” logger for craw library all logger create in craw package inherits from this root logger This
logger write logs on sys.stderr

Parameters log_level (int) — the level of the logger

2.2.2 annotation

The annotation module contains everything that is needed to parse annotation file and handle it.

15

Counter RNAseq Window Documentation, Release

AnnotationParser
The entry point to parse an annotation file is the craw. annotation.AnnotationParser. Anannotation parser
have two methods:

* craw.annotation.AnnotationParser.get_annotations () create a new type of Entry and iter-
ate over the annotation file and for each line return a new instance of the newly craw.annotation.Entry
class it just create on the fly.

* the other more technique give the maximum of nucleotides before and after the reference. It is needed to
compute the size of the resulting matrix.

The force of this approach is to generate a new type of entry for each parsing. So it’s very flexible and allow to fit with
most of annotation file. But for one file, all the parsing use the same Entry class so it ensure the coherence in data.

new_entry_type

Is a factory which generate a new subclass of craw.annotation.Entry given the fields gather form the annota-
tion file header (first line non starting with #) and the columns semantic given by the user. The first role of this factory
is to check if all parameter given by user correspond ot header and do some coherence checking. If everything seems
Ok it generate on the fly a new subclass of craw.annotation.Entry.

Entry Class

An Entry correspond to one line of the annotation file.

The Entry convert values if necessary (strand in a internal representation +/-, position in integer ...). It also expose a
generic api to access some fields whatever the named of the columns.

annotation API reference

class craw.annotation.AnnotationParser (path, ref_col, strand_col="strand’,
chr_col="chromosome’, start_col=None,
stop_col=None, sep="t")

Parse the annotation file
* create new type of Entry according to the header
* create one Entry object for each line of the file

__init__ (path, ref_col, strand_col="strand’, chr_col="chromosome’, start_col=None,
stop_col=None, sep="\t")

Parameters
» path (string) — the path to the annotation file to parse.
* ref_col (string) — the name of the column for the reference position
¢ chr_col (string) — the name of the column for the chromosome
e strand_col (string) — the name of the column for the strand
e start_col (string) — the name of the column for start position
* stop_col (string) — the name of the column for the stop position

* sep (string) — The separator tu use to split fields

16 Chapter 2. Developer Guide

Counter RNAseq Window Documentation, Release

__weakref
list of weak references to the object (if defined)

get_annotations ()
Parse an annotation file and yield a Ent ry for each line of the file.

Returns a generator on a annotation file.

max ()
Returns the maximum of bases to take in count before and after the reference position.
Return type tuple of 2 int

class craw.annotation.Entry (values)
Handle one entry (One line) of annotation file

__init_ (values)
Parameters values (list of string) — the values parsed from one line of the annotation file

___weakref
list of weak references to the object (if defined)

_convert (field, value)
Convert field parsed from annotation file in Entry internal value

Parameters
» field (string) — the field name associated to the value.
* value (string) — the value to convert
Returns the converted value
Return type any
Raise RuntimeError or value Error if a value cannot be converted

_switch_start_stop()
Switch start and stop value if self.start > self.stop This situation can occur if annotation regards the reverse
strand

chromosome
The name of the Chromosome

header
The header of the annotation file

ref
The position of reference

start
The Position to start the coverage computation

stop
The position to end the coverage computation (included)

strand
the strand +/-

class craw.annotation. Idx (col_name, idx)

__getnewargs_ ()
Return self as a plain tuple. Used by copy and pickle.

2.2. reference API 17

Counter RNAseq Window Documentation, Release

static__new__ (_cls, col_name, idx)

Create new instance of Idx(col_name, idx)

__repr__ ()
Return a nicely formatted representation string

_asdict ()
Return a new OrderedDict which maps field names to their values.

classmethod _make (iterable, new=<built-in method __new__ of type object>, len=<built-in function

len>)
Make a new Idx object from a sequence or iterable

_replace (_self, **kwds)
Return a new Idx object replacing specified fields with new values

col_name
Alias for field number O

idx
Alias for field number 1

craw.annotation.new_entry_type (name, fields, ref_col, strand_col="strand’,

chr_col="chromosome’, start_col=None, stop_col=None)
From the header of the annotation line create a new Entry Class inherited from Entry Class

Parameters
* name (str) — The name of the new class of entry.
» fields (list of string) — The fields constituting the new type of entry.
* ref_col (string) — The name of the column representing the position of reference (default
is ‘position’).
* strand_col (string) — The name of the column representing the strand (default is
‘strand’).

* chr_col (string) — The name of the column representing the name of chromosome (default
is ‘chromosome’).

* start_col (string) — The name of the column representing the position of the first base
to compute the coverage (inclusive).

* stop_col (string) — The name of the column representing the position of the last base to
compute the coverage (inclusive).

Returns anew class child of Ent ry which is able to store information corresponding to the header.

2.2.3 wig

This module allow to parse wig files (wig file specifications are available here:
https://wiki.nci.nih.gov/display/tcga/wiggle+format+specification, http://genome.ucsc.edu/goldenPath/help/wiggle.html).
The wig file handle by this modules slightly differ fom de canonic specifications as it allow to specify coverage on
forward and reverse strand. If the coverage score is positive that mean that it’s on the forward strand if it’s negative,
it’s on the reverse strand.

The WigParser and helpers

The craw.wig.WigParser allow to parse the wig file. It read the file line by line, test the category of the line
trackLine, declarationLine or datal.ine and call the right method to parse the line and build the genome object.

18 Chapter 2. Developer Guide

https://wiki.nci.nih.gov/display/tcga/wiggle+format+specification
http://genome.ucsc.edu/goldenPath/help/wiggle.html

Counter RNAseq Window Documentation, Release

The classes craw.wig.VariableChunk and craw. wig.FixedChunk are not keep in the final data model,
they are just used to parsed the data lines and convert the wig file information (step, span) in coverages for each
positions.

The data model to handle the wig information

The craw. wig.Genome objects contains craw. wig. Chromosome (each chromosomes ar unique and the names
of chromosomes are unique). Each chromosomes contains the coverage for the both strands. To get the coverage for
region or a position just access it with indices or slices as traditional python list, tuple, on so on. The slicing return
two lists. The first list correspond to the coverage on this particular region for the forward strand, the second element
for the reverse strand. By default the chromosomes are initialized with 0.0 as coverage for all positions.

All information specified in the track line are stored in the infos attribute of craw. wig. Genome as a dict.

wig API reference

class craw.wig.Chromosome (name, size=1000000)
Handle chromosomes. A chromosome as a name and contains Chunk objects (forward and reverse)

__getitem__ (pos)
Parameters pos — a position or a slice (0 based) if pos is a slice the left indice is
excluded
Returns the coverage at this position or corresponding to this slice.
Return type a list of 2 list of float [[float,...],[float, ...]]
Raises IndexError if pos is not in coverage or one bound of slice is out the coverage

__init_ (name, size=1000000)
Parameters

* name (str) —

* size (the default size of the chromosome. Each time we try to set a value greater
than the chromosome the chromosome size is doubled. This is to protect the ma-
chine against memory swapping if the user provide a wig file with very big chro-
mosomes.) —

len__ ()
Returns the actual length of the chromosome
Return type int

__setitem__ (pos, value)

Parameters
* pos (int or s1ice object) — the postion (0-based) to set value
* value (float or iterable of float) — value to assign

Raises
* ValueError — when pos is a slice and value have not the same length of the

slice

* TypeError — when pos is a slice and value is not iterable
* IndexError —if pos is not in coverage or one bound of slice is out the coverage

__weakref
list of weak references to the object (if defined)

_estimate_memory (col_nb, mem_per_col)
Parameters
* col_nb (int) — the number of column of the new array or the extension

2.2. reference API 19

Counter RNAseq Window Documentation, Release

* mem_per_col (int) — the memory needed to create or extend an array with one
col and 2 rows fill with 0.0
Returns the estimation of free memory available after creating or extending chromo-
some
Return type int

_extend (size=1000000, fill=0.0)
Extend this chromosome of the size size and fill with fill. :param size: the size (in bp) we want
to increase the chromosome. :type size: int :param fill: the default value to fill the chromosome.
:type fill: float or nan :raise MemoryError: if the chromosome extension could overcome the
free memory.

class craw.wig.Chunk (**kwargs)
Represent the data following a declaration line. The a Chunk contains sparse data on coverage on a
region of one chromosomes on both strand plus data contains on the declaration line.

__init__ (**kwargs)
Parameters kwargs (dictionary) — the key,values pairs found on a Declaration line

__weakref
list of weak references to the object (if defined)

is_fixed step ()
This is an abstract methods, must be implemented in inherited class :return: True if i’s a fixed
chunk of data, False otheweise :rtype: boolean

parse_data_line (line, chrom, strand_type)
parse a line of data and append the results in the corresponding strand This is an abstract meth-
ods, must be implemented in inherited class.
Parameters

* line (string) — line of data to parse (the white spaces at the end must be strip)

* chrom (Chromosome object.) — the chromosome to add coverage data

* strand_type (string ‘+’, ‘-*, ‘mixed’) — which kind of wig is parsing: forward,

reverse, or mixed strand

class craw.wig.FixedChunk (**kwargs)
The FixedChunk objects handle data of ‘fixedStep’ declaration line and it’s coverage data

is_fixed_step ()
Returns True
Return type boolean

parse_data_line (line, chrom, strand_type)
parse line of data following a fixedStep Declaration. add the result on the corresponding strand
(forward if coverage value is positive, reverse otherwise) :param line: line of data to parse (the
white spaces at the end must be strip) :type line: string :param chrom: the chromosome to add
coverage data :type chrom: Chromosome object. :param strand_type: which kind of wig is
parsing: forward, reverse, or mixed strand :type strand_type: string ‘+’ , *-°, ‘mixed’

class craw.wig.Genome
A genome is made of chromosomes and some metadata, called infos

__delitem__ (name)
remove a chromosome from this genome
Parameters name (string) — the name of the chromosome to remove
Returns None

__getitem _ (name)
Parameters name (string) — the name of the chromosome to retrieve
Returns the chromosome corresponding to the name.

20 Chapter 2. Developer Guide

	User Guide
	overview
	Installation
	Quick start
	Inputs / Outputs

	Developer Guide
	Overview
	reference API

