Surpriser: Manual

D. Gamermann®

2Department of Physics, Universidade Federal do Rio Grande do Sul (UFRGS) - Instituto de Fisica ,
Av. Bento Gongalves 9500 - Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil.

Abstract

Instructions for the use of package Surpriser to study graph communities.

1 Introduction

The main methods and functions in the package are programmed in C and callable through python via the python C
API. Upon installation, the C code and functions are compiled. The process is straightforward in Linux (given that the

python-dev packages are properly installed in the system), but less experienced Windows users might have difficulties.

If you do science, consider using Linux and open source software.

This package was programmed in order to study the community structure of complex networks, using as quality parameter
the surprise [1].

A network is a set of K nodes between which one finds n links. Mathematically, we describe our networks as symmetric
K x K matrices whose elements ij are either 0 or 1, indicating whether node ¢ has connection with node j.

The network’s nodes may be divided into communities. A community is a subset of the nodes. The network community
structure is defined by a partition: to every node in the network a number between 1 and N. is assigned’, indicating to
which community it belongs. Here N, is the total number of communities of the network.

The surprise is a measure that depends on the partition of the nodes of a network into communities. It is defined as® [1]:

min(M,n) (]M) (F*]W)

S = —In Z j/n—g

= O

(1)

where n is the total number of links in the network, F' is the total number of possible links given the value of K (links in a
complete graph with K nodes: K(K —1)/2), p is the number of links inside communities given the community partition and
M is the total number of possible links inside communities given the partition. If C; is the number of nodes in community

i, then

L Actually, python starts counting elements from zero, not one. So, when in the text we refer to community 1, in python it would be community
number 0.

2We use and programmed everything using the natural logarithm (In), though when first defined by its authors, the surprise was evaluated using
base 10 logarithm (log).

Nc

vy 7@'(0;‘ D} 2)

Even for small networks, the number of different ways into which one may group its nodes into any given number
of communities is huge (a complex combinatorics problem), and which is the best way to divide the graph’s nodes into
communities is an open problem in the field. The standard way to approach it is to define a quality function and use some
heuristics in order to find a partition that maximizes this function. The most popular one is the modularity, but this has
several drawbacks and pitfalls [2, 3]. We developed this package in order to maximize the surprise, instead.

The package is composed of four modules: surprise, data, randoms and benchmark. In the following sections we explain
the objects and functions found in each module and how to use them with examples. The basic object programmed, which

we call Surpriser, is found in the surprise module. We describe in the next section its attributes and methods.

2 The surprise Module

In this section we describe the Surpriser object, its initialization, attributes and methods and the other functions found in

the surprise module.

2.1 Surpriser Initialization and Attributes

The basic element of the package is the Surpriser object. This will contain all the graph’s information and its community

structure. In order to create it, just call Surpriser with the M matrix as argument®:

>>> from Surpriser.surprise import *
>>>
>>> M = [[0, 1], [1, 0]]
>>> sur = Surpriser(M)
>>> print sur
< Graph/communities info
Number of nodes : 2
Number of links 11 (1)
Number of communities : 2
Number of intralinks : O (O)

Surprise : 0.000000 >

In the above example, a trivial network with two connected nodes is created. By default, since no community structure
was given in the Surpriser call, each node was allocated in its own community. This can be seen by the show_communities

method.

>>> sur.show_communities()
community O (size 1) : O,

community 1 (size 1) : 1,

3In the code snipets in this manual, python 2 syntax will be used. Small adaptions might have to be made in order to execute them in python 3,
like instead of print sur to use print(sur).

Let’s create the object for the network in figure 1, which has had its community structure studied in [4]. From the figure,

intuitively, one would associate two 4 nodes communities (the 4 nodes cliques in the extremes) and maybe assign another

community to the 3 nodes path connecting the cliques.

In the code below, its M-matrix and Surpriser object is created, already making the above mentioned supposition about

the network’s community structure (from now on, unless strictly necessary, we will suppress the import commands from the

examples).

>> M= [[0, 1, 1, 1, O, O,
[1, 0, 1, 1, 0, O,
[1, 1, 0, 1, O, O,
1, 1, 1, 0, 1, O,
fo, o, 0o, 1, 0, 1,
fo, o, 0o, 0, 1, O,
fo, o, o, 0, 0, 1,
fo, o, o, 0, 0, O,
fo, o, o, o, 0, O,
fo, o, o, o, 0, O,
fo, o, o, o, 0, O,

>>> communities = [[0, 1,

0, 0, 0, 0, 01,
0, 0, 0, 0, 01,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
1, 0, 0, 0, 0],
0, 1, 0, 0, 01,
1, 0, 1, 1, 11,
0, 1, 0, 1, 11,
0o, 1, 1, 0, 11,
0, 1, 1, 1, 0]1]

2, 3], [4, 5, 6], [7, 8,9, 10]]

>>> sur = Surpriser(M, communities)

>>> print sur
< Graph/communities info :
Number of nodes
Number of links
Number of communities :
Number of intralinks
Surprise

>>> sur.show_communities()

community O (size 4) : O,
community 1 (size 3) : 4,
community 2 (size 4) : 7,

11
16 (55)
3

14 (15)

: 21.653068 >

8, 9, 10,

Note that, in order to create the object with a preestablished community structure, in the Surpriser call, one must include

an optional argument with a list where each element is another list with all nodes in a given community.

In the representation of the

Surpriser object, one can see its attributes, shown below with the attributes names in place

Figure 1: Network used in the example.

of their values and shown from the object:

< Graph/communities info
Number of nodes : K
Number of links : nl (F)
Number of communities : Nc
Number of intralinks : p (M)
Surprise : surprise >

>>> sur.K

11

>>> sur.nl

16

>>> sur.F

55

>>> sur.Nc

>>> sur.p

14

>>> sur.M

15

>>> sur.surprise

21.653067988321435

2.2 Methods

Most methods of the Surpriser object transform the community structure of the network. There are three basic ways to

transform the communities:

e Merge — two communities may be merged into a single one.
e Exchange — an element of a given community is transferred to another community.

e Extract — an element of a given community is extracted (becomes its own community).

The three methods that control these basic operations are merger, exchanger and extractor. The arguments in the
call of these methods are all optional, and they basically specify which community/ies should be tried, how many times and
weather do the change or only do it if the surprise of the partition increases. The merger method, for example, with its

default options reads:
Surpriser.merger(icl=-1, ic2=-1, N=1, BfA=0)

Where icl and ic2 indicate the two communities that should be merged. When a number below zero is given, it will
randomly select a community from all possible ones. The IV parameter, indicates how many times it should try to do merges.
If it is 1, it tries only once with the specified communities, if they were given, if it is bigger than 1, it randomly selects
communities N times trying to do the merge and if it is 0, it will do a merge once, no matter the change in the surprise value,

whereas if N is bigger than 0, it makes the merge only if the surprise value increases. If BfA (Best from All) is 1 instead

of 0, it ignores the value of ic2, and tries to merge icl with all other communities, only effectively making the merge that
increases the most the value of the surprise. This method will return the number of merges actually executed.

The calls to the other two methods receive very similar arguments:
Surpriser.exchanger(icl=-1, ic2=-1, N=1, iex=-1, BfA=0)
Surpriser.extractor(icl=-1, N=1, iex=-1, BfA=0)

The only difference is the optional iex that indicates which element from community ic1 should be tried (to be exchanged
or extracted). The iex should not be the node number (corresponding line in the M matrix), but its position in the community
list. It should, therefore, be a number between zero and the community size minus one.

As an example, the network in figure 1 can have its full community structure revealed only by a series of merges. If the

M-matrix is stored in variable M, multiple random merges may raise the surprise value to its maximum:

>>> sur = Surpriser (M)

>>> print sur

< Graph/communities info
Number of nodes : 11
Number of links : 16 (55)
Number of communities : 11
Number of intralinks : O (O)
Surprise : 0.000000 >

>>> sur.merger (N=100)

7

>>> print sur

< Graph/communities info
Number of nodes : 11
Number of links : 16 (55)
Number of communities : 4
Number of intralinks : 13 (13)
Surprise : 21.675463 >

>>> sur.show_communities()

community O (size 4) : 0, 1, 3, 2,

community 1 (size 4) : 9, 10, 8, 7,

community 2 (size 2) : 5, 6,

community 3 (size 1) : 4,

The returned number (7 in this case) is the total number of merges done. Note that actually, we found now a surprise value
bigger than with the three communities we had created the object previously. With 4 communities, the surprise value is
~ 0.02 bigger and the central nodes are split into a community of two and another of one node?. Of course, nodes 4 and 6
are indistinguishable, and if we join nodes 4 and 5 into a community and leave node 6 alone in another, one should get the

same surprise value:

4Note that in the merger call, the argument used was 100, this means that 100 random merges were tried. Since the process is random, in each
execution of the above snippet a slightly different result may come.

>>> sur.exchanger(icl=2, ic2=3, N=0, iex=0)
1
>>> sur
< Graph/communities info
Number of nodes 11
Number of links : 16 (55)
Number of communities : 4
Number of intralinks : 13 (13)
Surprise 1 21.675463 >
>>> sur.show_communities()
community O (size 4) : 0, 1, 3, 2,
community 1 (size 4) : 9, 10, 8, 7,
community 2 (size 1) : 6,

community 3 (size 2) : 4, 5,

In the exchanger call, N=0 specifies that the element should be exchanged even if the surprise value is not improved, ic1 is
the community number from where an element will be removed, ic2 the community to which it should be sent and iex=0
specifies that the first element of the community (python counts from 0, not from 1) is the chosen one®.

Two of the operations (extract and exchange) may be performed on a subcommunity level. Given the subgraph defined

by a community, one may study the subcommunity structure of this community, and check if extracting a subcommunity or

exchanging it will increase the overall surprise. The functions that perform this subcommunity analysis are:

Surpriser.subcommuniter(ic=-1, N=1, iex=-1)
Surpriser.subcommunity_exchanger (icl=-1, ic2=-1, N=1, iex=-1, BfA=0)

Surpriser.subcommunity(ic)

The last one, Surpriser.subcommunity will return the Surpriser object representing the subgraph of the community.
These methods, in order to produce the subcommunity structure of the chosen community, will execute the algorithm
implemented in the surpriser method stepper, described below.

A greedy algorithm has been implemented which performs all merges, exchanges, extractions, and also the same operations
over the subcommunities, in an ordered way until no operation is able to increase the surprise value any more. The order in
which the operations are done may be differently chosen. In the default execution it proceeds as follows:

It starts a loop over the communities into which the graph is currently partitioned. In each community it will then
start a loop in its nodes, check the community to which each of the node’s neighbors belong and if they are not the
same it tries first to merge the two communities, if it does not succeed, it tries to exchange an element between the two
communities. Having finished the loop over the community nodes, it will, while successful, perform first single element
extractions from the community and after this, subcommunity extractions. When it is done with the extractions, it tries all
possible subcommunity exchanges. After the loop over all communities is finished, it starts all over again, until after going
through all the communities it does not find a single operation that improves the value of the surprise. The call for this

method with all its optional arguments is:

5Note that if the random process resulted in a different partition, these values might have to be different in order to do the same operation as
described here. Actually a first random merge may actually link nodes 4 with 3 or 6 with 7, in which case the final partition will not be the maximum
possible value for the surprise, unless extractions or exchanges are also made.

Surpriser.stepper(ord=1, subcoms=1)

There are four possible orders in which the operations are performed. With ord=1, it will perform exactly the algorithm
described above. If ord=2, the loop over the communities tries to first merge only with the best possible community
(increasing the surprise the most), and then, until exhaustion, tries to extract elements, then subcommunities, then to
exchange elements and finally subcommunities. If ord=3, each operation is made to exhaustion in each community before
jumping to the next operation in the same order as described before. For any other value of ord, the operations are
made to exhaustion over each community, but in the following order: first all merges, then all extractions and finally
all exchanges. If subcoms=1, the operations are also performed over the subcommunities (Surpriser.subcommuniter and
Surpriser.subcommunity_exchanger), otherwise only over the communities themselves. In the tests we made, usually the
default algorithm runs faster than the other versions and, though the other versions seem greedier for the merges are always
done to the best match, not necessarily they render better results. Since the algorithm always run its loops in an ordered
way and, as will be discussed soon, the surprise surface over the partition space is very rugged (very difficult to identify an
global maximum among many local ones), the same initial partition ordered differently might result in a different maximum
value for the final surprise with a different final partition.

Finally, it is also possible to perform a Monte-Carlo approach instead of the greedy algorithms described above. All
operations can be performed by the methods with the tag _an, with a temperature indicated. In this case, the object
computes the change in the surprise value when an operation is performed. If it increases the surprise, the change is
accepted, if it decreases the surprise, the change is accepted with a probability given by e~ where AS is how much the
surprise decreased (absolute value) and 7 is the temperature which was set by the method call. If no temperature was

specified, the default value is 1. The methods to perform this annealing are:
Surpriser.merger_an(icl=-1, ic2=-1, N=1, T=1.)
Surpriser.exchanger_an(icl=-1, ic2=-1, N=1, T=1.)
Surpriser.extractor_an(icil=-1, N=1, T=1.)
Surpriser.subcommuniter_an(isc=-1, N=1, T=1.)
Surpriser.subcommunity_exchanger_an(isc=-1, N=1, T=1.)
Surpriser.montecarlo_step(T=1., K=self.K, subcoms=0)

The last method, montecarlo_step, performs a full Monte-Carlo step, it will randomly perform each one of the five
annealing operations K times. In the next section an example with these functions will be shown.
Finally, the surpriser object has other methods to help inspect its current community structure and the underlying graph

as a whole. We list them below, with their arguments.

e Surpriser.community(ic) — returns a list with the nodes in community ic.

e Surpriser.connected(i, j) — returns the element ij of matrix M. In other words, 1 if nodes ¢ and j are connected

and 0 otherwise.

e Surpriser.linksin(list) — the list argument should be a list of nodes (possible community) and the method
returns a tuple where the first element is the number of internal links in the community defined by 1ist and the second

element the number of external links in the community.

e Surpriser.partition() — returns the current partition of the network’s nodes into communities, i.e. a list with K

elements where element i is the community of node 1.

e Surpriser.checkN(im=-1, iex=-1, iecl=-1, iec2=-1, iscex=-1, iscl=-1, isc2=-1) — this method can be used

to study the changes that would be made in the surprise values by merges, exchanges, extractions, ...

e Surpriser.shake(subcoms=1) — Performs all exchanges and/or subcommunity exchanges that do not alter the
surprise value for the partition. The argument subcoms, as in the other functions where it appears, indicates whether

to perform or not the operations at the subcommunity level as well.

In section 3 (Module data and Examples) we explain in more details the uses of these methods illustrating them with

some, well, examples...

2.3 Functions in the surprise module

The module also has functions to study the partitions and the surprise itself.

First note that the evaluation of the surprise itself in equation (1), may quickly present problems due to machine precision,
since real world networks are usually composed of thousands of nodes and in the evaluation of the surprise one must compute
many combinations of the links in different numbers of communities, which involves the factorial of big numbers divided by
even bigger ones. The strategy we used to evaluate this expression was to allocate in memory the logarithms of the factorials
and factor out the biggest one from the summation in equation (1). The functions needed to compute the elements in the

evaluation of the surprise and the surprise itself are implemented in:
e fact(N) — returns the natural logarithm of the factorial of N (In N!).
e gammas(M, N) — returns the natural logarithm of the combination of M elements N by N (In (}))).
e surprise(M, F, nl, p) — returns the surprise in equation (1).
The other functions in the package may be used to study the different partitions one may generate from a network:

e compare(partitionl, partition2) — evaluates the variation of information [5] between two partitions. A partition

is a list with K elements where element i is the community of node 1.
And finally, two functions to perform an embedding of a set of data which can be used to produce visualizations:

e ChiGrad(matr, coords, gamma=-1., N=0, dlim=0.1) — Evaluates the gradient of a coordinate embedding.

o embedding(matr, coords=[], gamma=-1., dlim=0.1, lamb=2., adj=0.05, eps=1.e-10) — evaluates an embed-

ding.

Again the use of these functions will be clearer in the next section.

3 Module data and Examples

Along with the package, there is some data over which one may work in order to test the package. One may import the data

which comes along with the distribution with:

>>> from Surpriser.data import *

This will import the M-matrices of the network in figure 1 (variable Mtoy) and two real world networks: the metabolic
network of Synechocystis sp. PCC 6803 (variable Msyn) and the PPI (protein-protein interaction) network of Mycoplasma
genitalium G37 (variable M243273). It also imports two lists indicating to which metabolite the nodes in the synechocystis
network (syn) are associated and to which proteins the nodes in the PPI network are. These lists are in variables NODESsyn
and NODES243273. The data for the production of the syn network was taken from KEGG database [6] and for the PPI
network from STRING database [7]. Details about the construction of these networks and the study of their (and others)
characteristics can be found in [8].

Having imported the data, the first example we showed in the previous section could be done differently:

>>> sur = Surpriser (Mtoy)

>>> sur.stepper ()

(0, 0, 7, 0, 0)

>>> print sur

< Graph/communities info :
Number of nodes 11
Number of links : 16 (55)
Number of communities : 4
Number of intralinks : 13 (13)

Surprise 1 21.675463 >

One interesting characteristic of the surprise (and actually of, probably, any quality function one can choose to in order
to study the community structure of a graph) is the existence of many possible local maxima, which of course greatly
complicates the task of finding the actual maximum (if it is indeed unique). As we showed, for the toy graph of figure 1 there
are two possible partitions that result in the same maximum surprise. The authors of [3] propose an interesting approach to
visualize this issue.

First, we used the annealing functions of the package in order to produce thousands of different partitions. Then, using the
package function compare, which evaluates the variation of information between two partitions, we compared each partition
we generated to each other, producing a distance matrix d, whose element d;; is the variation of information (VI) between
partitions ¢ and j divided by the logarithm of eleven (since the network has 11 nodes, the VI between two partitions is a
number between 0 and In(11) and therefore the elements of the distance matrix will be numbers between 0 and 1).

We worked here (to produce the following figures) with 1336 partitions from the thousands we produced. In figure 2 one
can see the histogram of the surprise values for these different partitions.

Then we proceeded to produce an embedding of the partitions: to each partition, we want to assign a two dimensional
vector 7; = (x;,y:) in such a way that the euclidean distance between the vectors 7; and 7; are as similar as possible to the
distances d;; computed from the variation of information. To do that we implemented an steepest descent algorithm that

walks over the 7 parameter space searching the minimum of x? defined as:

X' = i > d (dz‘j — V(@i —) + (yi — yj)2)2 3)

=1 j>i|d;j <diim

where the first sum runs over all partitions while the second sum runs over the partitions whose distance to the i** partition

is less than some predetermined value dj;m. This sum will be smaller the closer that the euclidean distances between the

60 -

40 H n b

counts
w
o
T
T
T
]
T
T
!

0 ‘ H Mo a0 o0 T
0 5 10 15 20 25

Surprise

Figure 2: Histogram for the surprise values of 1336 different partitions of the toy network.

vectors 7; are to the variation of information evaluated in the matrix d;;. Finally, parameter v can be used to give more
importance to partitions that are closer (y < 0) or further (7 > 0) away from each other. The steepest descent algorithm
implemented in function embedding evaluates the gradient of x? in parameter space and updates the values x; and y; in the
direction opposite to this gradient (towards smaller values of x?). In the function call, two parameters control the evolution
of the algorithm: lambda and adj. lambda is how far in the direction opposite to the gradient it should start walking and
adj is how to adapt lambda after an successful or failed step (it will be decreased or increased, respectively, by a proportion
equal to it and therefore adj should be a value between 0 and 0.9). The algorithm should stop when the modulus of the
gradient reaches a value below eps, defined in the function call, but it will also stop before reaching the desired precision if
lambda gets smaller than machine precision or if it fails more than 5000 times to perform a successful iteration.

The data used here also comes with the package distribution (variables partsToy and surpsToy). Below we present the
script used to produce figure 3, where in the xy plane are the coordinates 7; and in the z-axis the surprise value corresponding
to each partition. The surface plot was produced using gnuplot dgrid3d command via the GNUplot.py package, which should
be installed in order to perform some of the commands below. The user who wishes, can export the resulting coordinates

and use it with another plotting library or software.

from Surpriser.surprise import *

from Surpriser.data import *

from math import log

from Gnuplot import Gnuplot as gplot # This and the line below can only be executed

from Gnuplot import Data as gdata # if the GNUplot.py package is installed in the system.

= gplot(persist=1) # to produce the plots

(o8]
I

=
1]

len(partsToy) # partitions in data

matr = [[0. for ii in xrange(N)] for jj in xrange(N)]

for ii in xrange(N):

10

partl = partsToy[ii]
for jj in xrange(ii+l, N):
part2 = partsToy[jjl

dd = compare(partl, part2)/(log(11.)) # VI

matr[ii] [jj] = dd

matr[jj][ii] = dd

coords = embedding(matr, coords=[], gamma=-1., dlim=1., lamb=.2, adj=.05, eps=1.e-9)

a, b, ¢ = ChiGrad(matr, coords, gamma=-1., dlim=1.)

print c/(2*N) # gradient modulus per coordinate

xs = [coord[0] for coord in coords]
ys = [coord[1] for coord in coords]
zs = [surpsToy[ii] for ii in xrange(N)] # surprises from data

g("set cont") # following commands from GNUplot
g("set pm3d")

g("unset su")

d = gdata(xs, ys, zs, with_="lines")

g("set zlabel ’Surprise’ rotate by 90")

g("set xlab ’x’")

g("set ylab ’y’")

g("set dgrid3d 150,150 gnorm 5")

g.splot(d)

Note that in the embedding function call above, the optional argument coords is an empty list (could actually have been
left omitted). This should be an initial guess on the coordinates, but if left empty, the points are dispersed around the origin
at random.

In figure 3 one can clearly see how ruggedy the surprise surface is in this visual representation. Actually the surprise
is not a continuous function of its variables, since the variables upon which it depends are discrete, but this representation
shows that similar partitions may have different values of the surprise making it a complex task to find an absolute maximum.

Finally, let’s see what the method Surpriser.checkN is all about. Given an state of the partition (Surpriser object),
its method checkN can be called in five different ways in order to check all possible changes in the surprise resulting from

the five different basic operations:
e optional argument im — merges of community im to all other communities.
e optional argument iex — extraction of each element from community iex.
e optional arguments iecl and iec2 — exchange of each element from iecl to iec2.
e optional argument iscex — extraction of each subcommunity from community iscex.

e optional arguments iscl and isc2 — exchange of each subcommunity from iscl to community isc2.

11

25
20
15
10

Surprise

Figure 3: Surprise surface over the partition space.

In every call, it will return the result of only one of the above possibilities, if arguments are given to more than one, it
performs only the first one appearing in the order above. To understand the method, consider the commands below analyzing

the metabolic network of the cyanobacteria Synechocystis (from the package’s data):

>>> syn = Surpriser (Msyn)
>>> syn.stepper ()
(26, 157, 397, 60, 45)

>>> merges = syn.checkN(im=0)

In my computer (CORE i7, 16Gb ram) the stepper method takes around 20 seconds to run while it performs 26 extractions,
157 exchanges, 397 merges, 60 subcommunities extractions and 45 subcommunities exchanges. The surprise value reached
is ~ 3748.37 and the number of communities in this partition is 252. After execution of the above commands, the merges
list has 252 elements, indicating what would be the change in the surprise value if community 0 were merged to each other
community in the partition. Note that this community cannot be merged with itself, but the list has 252 elements anyway.
Element im of the returned list will always be zero.

The stepper method reaches a point where it finds no possible improvement in the surprise value. So, it should come
as no surprise that the maximum value of the merges list in this case is 0. (element im). Let’s check the least bad possible

merge:

>>> max(merges) # is 0.,

0.0

>>> merges.index(max(merges)) # the value of the first element since im=0
0

>>> ma = max(merges[1:])

>>> ima = merges.index(ma)

12

>>> print ima, ma

242 -1.12395317036

The above commands are telling us that, if we merge communities 0 and 242, the surprise value will decrease 1.12389405263,
and this is the merge that decreases the surprise value the least among all possible merges of community 0 (there can be
other merges that cause, at most, the same decrease).

Let’s now study possible extractions:

>>> ¢3 = syn.community(3); print c3
[223, 222, 951, 391, 952, 953]

>>> extrs = syn.checkN(iex=3)

>>> ma = max(extrs)

>>> mi = min(extrs)
>>> print "Maximum : %f (%i)\nMinimum : %f (%i) "% (ma, extrs.index(ma), mi, extrs.index(mi))
Maximum : -3.124128 (0)

Minimum : -7.923214 (1)

After execution of these commands, extrs list will have 6 elements (the size of community 3). The maximum® possible
change in surprise from extracting an element from this community is —3.124128 if the first element (223) is extracted and

the minimum possible change is —7.923214. We can check what this node represents with another list in the package’s data:

>>> print NODESsyn[223]

3-Sulfopyruvate

Let’s now search for a situation similar to the one we had with the toy network: a change in the partition that keeps the

surprise unaltered.

>>> pairs = []
>>> for il in xrange(syn.Nc):
for i2 in [ele for ele in range(syn.Nc) if ele!=il]:
changes = syn.checkN(iecl=il, iec2=i2)
if 0. in changes:

pairs.append((i1, i2))

>>> print len(pairs)

5

The above tells us that there are four pairs of communities where we find this situation where a given node can be in

either community resulting in the same surprise value for the partition. Let’s check one of these situations:

>>> print pairs[0]
(28, 201)
>>> ¢28 = syn.community(28)

>>> changes = syn.checkN(iec1=28, iec2=201)

6Note that these are actually negative values, and in this sense we are talking about maximum and minimum here, but the maximum “disturbance”
in the surprise value would be with the extraction that results in the minimum change in the surprise.

13

>>> ich = changes.index(0.); print ich
5
>>> print c28[ich], NODESsyn[c28[ich]]

522 D-Ribulosel,5-bisphosphate

Therefore, node 522 (D-Ribulosel,5-bisphosphate), which is currently in community 28, could be in community 201

resulting in no change in the surprise value. Let’s perform the operation and check:

>>> syn.exchanger(ic1=28, ic2=201, N=0, iex=5)
1
>>> print syn
< Graph/communities info
Number of nodes 1 967
Number of links : 2651 (467061)
Number of communities : 252
Number of intralinks : 1121 (3904)

Surprise : 3748.366873 >
Let’s now check the subcommunity operations over community 0:

>>> subCs = syn.subcommunity(0)
>>> print subCs
< Graph/communities info
Number of nodes 1 61
Number of links : 350 (1830)
Number of communities : 16
Number of intralinks : 145 (231)
Surprise : 130.856080 >
>>> subExs = syn.checkN(iscex=0)
>>> ma = max(subExs)
>>> print subExs.index(ma)
1
>>> scl = subCs.community(1)
>>> c0 = syn.community(0)
>>> sclp = [cO[ele] for ele in scl]
>>> print sclp
[683, 682, 777]
>>> nodes = [NODESsyn[ele] for ele in sclp]
>>> print nodes
[’Cob(II)yrinatea,cdiamide’, ’Cobyrinate’, ’Cobyrinatec-monamide’]
>>> print ma

-3.15305928893

14

The call to the method subcommunity returns the Surpriser object representing the subgraph composed of the nodes
in community 0. The above commands are telling us that inside this community, nodes 683, 682 and 777, representing’
metabolites Cob(II)yrinatea_cdiamide, Cobyrinate and Cobyrinatec-monamide form subcommunity 1 and extracting this

subcommunity from the community will decrease the value of the surprise 3.15322041956 points. Lets check:

>>> surpi = syn.surprise

>>> syn.subcommuniter (0, N=0, iex=1)
1

>>> print syn.surprise-surpi

-3.15305928893

Extracting the subcommunity resulted in the predicted change...

Now let’s try to find the optimal partition with the annealing methods. The default algorithm of the stepper method
found the optimal value of surprise for the metabolic network contained in Msyn to be around 3748.37 and it took in my
computer a bit less than 20 seconds to run. With the code below, we start to build a community structure with random

merges and then run the annealing over it:

>>> sur = Surpriser(Msyn)

>>> sur.merger (N=1000000)

819

>>> T = 2.

>>> kk = 0

>>> for ii in xrange(200):
k = sur.montecarlo_step(T=T, K=sur.K, subcoms=1)
kk += k

T = 0.95%T

>>> print sur
< Graph/communities info
Number of nodes 1 967
Number of links 1 2651 (467061)
Number of communities : 279
Number of intralinks : 975 (3511)
Surprise : 3186.664261 >
>>> print kk

52454

The merger command in the snippet above tries to perform one million random merges in the network. The average
time it takes to run is 2.6s (in my computer). The number of successful operations done is around 830 (in the snippet above
it was 819) and the average surprise value reached is 2229 for an average number of communities equal to 136. Runing the
annealing process took my computer a bit more than 30 seconds (50% longer than the default algorithm). After the merges

that create a starting community structure, the annealing process begin with a temperature of 2. The resulting partition

"Note how we carefully associated the references in one object to the nodes in the other object.

15

after 52454 successful operations has 279 communities with a surprise value of 3186, way below the 3748 reached by the
algorithm and the temperature is too low for this process to execute any successful operation over the current partition.
Let’s now try something else: can we use the annealing to improve upon the partition found by the algorithm?

First let’s think what would a good temperature be. For takling this issue, we run the code below:

sur = Surpriser(Msyn)

sur.stepper ()

changes1 = []
changes2 = []
changes3 = []
changes4 = []
changes5 = []

for ii in xrange(sur.Nc):

bla = sur.checkN(im=ii)

changes1.extend(bla[ii+1:])

bla = sur.checkN(iex=ii)

changes2.extend(bla)

for jj in xrange(ii+l, sur.Nc):
bla = sur.checkN(iecl=ii, iec2=jj)
changes3.extend(bla)
bla = sur.checkN(iecl=jj, iec2=ii)
changes3.extend(bla)
bla = sur.checkN(iscl=ii, isc2=jj)
changes4.extend(bla)
bla = sur.checkN(iscl=jj, isc2=ii)
changes4.extend(bla)

bla = sur.checkN(iscex=ii)

changesb.extend(bla)

Now we have lists with all possible changes in the surprise value after running all possible partition modifications over
the current state. The evaluation of these values took around 30 seconds. The averages of the values are:

changesl — merges: —4.63 £+ 6.91

changes2 — extractions: —8.41 £ 13.29

changes3 — exchanges: —9.63 &+ 13.15

changes4 — subcommunity exchanges: —7.99 + 23.18

changes5 — subcommunity extractions: —5.95 £ 22.72

Each operation has a different (but all similar) typical value. We executed then the snippet below: an annealing starting
with a temperature of 0.2. Less than 0.02% of all 420966 possible operations computed in the changes lists have variation of
surprise equal or smaller than this value. The annealing process programmed stops running when, after two full montecarlo

steps, no successful operation is made:

16

T=.2
stop = False
iszero = 0
while not stop:
k = sur.montecarlo_step(T=T, K=10*sur.K, subcoms=1)
if k==0:
if iszero>1:
stop = True
else:
iszero += 1
else:
iszero = 0

T = 0.99%T
The annealing took around 10 minutes to run and improved a bit (~0.1%) surprise value for the new partition:

>>> print sur
< Graph/communities info
Number of nodes 1 967
Number of links : 2651 (467061)
Number of communities : 254
Number of intralinks : 1115 (3808)

Surprise : 3752.044684 >

Though one can see that the default algorithm programmed in the stepper method does not reach the global maximum
of surprise (and even after the annealing one can not know if it has been reached), the improvements upon it might be too
small to justify the extra computational time to keep searching.

Now, Let’s come back to the study of changes that result in the same surprise, but this time let’s focus in the exchange

of subcommunities and in the other network present in the data:

>>> sur = Surpriser(M243273)
>>> sur.stepper ()
>>> pairs = []
>>> for il in xrange(sur.Nc):
for i2 in [ele for ele in range(sur.Nc) if ele!=il]:
changes = sur.checkN(iscl=il, isc2=i2)
if 0. in changes:

pairs.append((i1, i2))

>>> print len(pairs)

5

The execution of the surpriser algorithm in this case, takes longer than in the syn graph for, though this network has less

nodes, it is a much denser graph. The surprise reached by the algorithm is around 5663.49 and the partition has 56 different

17

communities. Some of the snippets in the following might also take a bit longer (minutes) to run.
We find one subcommunity that can be interchanged between communities resulting in the same value for the surprise.

Let’s check the metabolites in one of this:

>>> print pairs[0]

(1, 54)

>>> ¢l = sur.community(1)

>>> subc = sur.subcommunity(1)

>>> changes = sur.checkN(iscl=1, isc2=54)

>>> ich = changes.index(0.)

>>> subcns = subc.community(ich)

>>> subcnsp = [cl[ele] for ele in subcns]

>>> print [NODES243273[ele] for ele in subcnsp]

[’MG_189°, ’MG_160’]

So, we found a subcommunity of two elements that may be exchanged between communities 1 and 54 without altering
the value of the surprise. Note, however, that these changes not altering the surprise value may open the opportunity that
other merges, extractions, exchanges, ... do alter now the surprise values. In fact, our tests show that once the stepper
method reaches its stop point, if changes not altering the surprise value are done to the partition, running again the stepper
after these changes, might improve a little bit the value of the surprise (around 0.05% in some tests we performed which, for
this PPI network, for example, raises the value from 5663.488667 to 5666.340193). Another Surpriser method does precisely

this: it will perform once every change in the graph not altering the value of the surprise. This method is called shake.

>>> sur.shake()

(6, 2)

The results (6 and 2) are the number of single element exchanges that were done and the number of subcommunity exchanges
(more than one element) that were done (2 in this case).

Along with the data, three other functions are also imported: check, partToComs and comsToPart.

The function check should receive as argument an Surpriser object. It will perform simple checks on the properties
of the object and return True if it is all ok, or print an alert message and return False otherwise. This function was
programmed for debugging purposes when programming the package and is here as courtesy. In principle, no change in the
surpriser object should ever result in an object failing the checks, and if any bug is ever encountered, please try this function
and inform me which message the function warns the test has failed.

The other function transforms a partition in a list of communities or vice-versa. The list of communities are used in the

surpriser calls, while the partition list is returned by the partition method and used by the compare function.

>>> sur = Surpriser (Mtoy)
>>> sur.stepper()

(0, 0, 7, 0, 0)

>>> part = sur.partition()
>>> print part

[0, 0,0,0,2,2,3,1,1, 1, 1]

18

>>> print partToComs(part)
tto, 1, 2, 31, [7, 8, 9, 10], [4, 5], [6]]
>>> print sur.linksin([7, 8, 9, 10])

(6, 1

In the above example, we also show the use of method linksin. Among nodes 7, 8, 9 and 10, there are 6 connections

(number of connections inside a clique of size 4) and one external connection which is the one between nodes 7 and 6.

4 The benchmark module

In this module (Surpriser.benchmark) one can also find the implementation of a new benchmark to analyze the performance
of this (and any other) community detection algorithm. The benchmark is a simple implementation of the intuitive idea that
the ideal community would be a clique in the graph. In this benchmark, each community is initially defined as a clique and
the cliques can have their connections degraded with a given probability and connections between the cliques may be created
with another probability. Apart from the cliques, a fraction r of the graph nodes are randomly connected in order to give
rise to communities formed by single nodes (not coming from cliques, though the list of cliques with which the benchmark
is created may be composed of single nodes). The probabilities p and ¢ may be functions of the cliques sizes.

There is one object and three functions in this module:

e MBenchmark(cliques, r=0.01, cycle=False)

e Pielou(coms)

e Pielouer(Nc, pie, imin=1, imax=100, Nt=100, eps=.01)

e PielouerNodes(Nc, pie, Nmin, Nmax, imin=1, imax=100, Nt=100, eps=.01)

The first is the benchmark object which should receive a list of cliques sizes (the communities sizes) upon creation plus
optional arguments (r and cycle). The other functions are to evaluate the pielou index [9] for the communities sizes or to
generate numbers with a given value for their pielou index.

When creating the benchmark, cliques should be a list containing the cliques sizes and r should be a number indicating
the fraction of the graphs’ nodes that should be created outside the cliques. Note that, the total number of nodes inside
communities will be the sum of the cliques list and rK (the product of the total number of nodes in the network by the
parameter) is the number of nodes that do not belong to any community (are their own communities). Therefore, the total

number of nodes, K, in the network will be given by K = int (w)

1—r

Finally, if the last argument, cycle, is evaluated as True, each clique will have at least one connection to the adjacent
clique in the list and the last clique with the first, they will be forming a ring.

The benchmark network is initially created as fully connected cliques disconnected to each other and a fraction of nodes
r K randomly connected to the cliques. This structure can be degraded in two ways: connections inside the cliques may be

removed and connections between the cliques can be created. The methods that control the degradation are:

e degradP(funcl=lambda cs, pars:.8, paramsl=())

e degradQ(func2=lambda csl, cs2, pars:.01, params2=(), singles=True)

When degradP is called, each link inside each community may be removed with a probability given by funci(cs, paramsl1),

where cs is the community size and params1 are parameters of the function. The method degradQ works in a similar way,

19

but here each possible link between two communities (cliques) might be created with probability given by func2(cs1, cs2,
params2), where csl and cs2 are the two cliques sizes and params2 parameters the function may receive. In this last
method, if singles=True, the possible links between the isolated nodes and each possible community may also be created
with probability controlled by func2 and params2.

To illustrate the use of the benchmark, consider the code below®:

>>> from Surpriser.surprise import *

>>> from Surpriser.data import *

>>> from Surpriser.benchmark import *

>>>

>>> cliques = [5, 5, 3, 4, 3] # 5 cliques

>>>r = .05

>>> cbar = sum(cliques)/5.

>>> Ke = b*cbar/(1-r) # Expected number of nodes
>>> bench = MBenchmark(cliques, r)

>>> coms = partToComs(bench.partition)

>>> print coms

[fo, 1, 2, 3, 41, [5, 6, 7, 8, 91, [10, 11, 12], [13, 14, 15, 16], [17, 18, 19], [20]]
>>>p = .2

>>> q = .05

>>> bench.degradP(funci=lambda c, par: p)

>>> bench.degradQ(func2=lambda c1, c2, par: q)
>>> print bench.incliques, bench.betweenc

26 10

In the above example, the last two numbers, 26 and 10, are the number of connections inside the communities and between
them after degradation. One cannot predict the exact values for these numbers, but we can evaluate their expected values,
given p and ¢ (the functions were just constant numbers in the above example). If ¢; is the size of community 7, then the
expected value for the number of links inside communities (l;ns) and the expected value for the number of links between

communities (lpet) are:

Nc

) = S -pa=l) (W

=1

(lbet) = ZCZinCj +rK (5)

i=1 j<i
Let’s check in the above example:

>>> lins = sum([(1-p)*ci*(ci-1)/2. for ci in cliques])
>>> comsizes = [len(com) for com in partToComs(bench.partition)]

>>> lbet = sum([g*ci*cj for ii, ci in enumerate(comsizes) for cj in comsizes[:ii]]) + Kexr

8Note that the degradation and clique connection process is random, therefore, each time this snippet of code is executed, the result might be a
bit different.

20

>>> print lins, lbet

25.6 9.95263157895

The result is close to the values 26 and 10, though note that in each execution of the snippet, a different result might come
up, since the generation of the benchmark contains a random process, as well as the degradation of it. But if the process is

repeated many times, the average result will be closer and closer to the above numbers:

>>> bet

1

>>> ins = []

>>> for ii in xrange(100000):
bench = MBenchmark(cliques, r)
bench.degradP (funci=lambda c, par: p)
bench.degradQ(func2=lambda c1, c2, par: q)
bet.append(bench.betweenc)

ins.append(bench.incliques)

>>> print sum(bet)*1./100000
9.90463
>>> print sum(ins)*1./100000

25.58878
Finally, we can execute the surpriser algorithm over the graph and compare with the original partition:

>>> from math import log

>>>

>>> sur = Surpriser(bench.M)

>>> sur.stepper ()

(3, 1, 14, 0, O

>>> compare(bench.partition, sur.partition())/log(sur.K)

0.078267404240154

The compare function returns the variation of information between two partitions, which is a number between 0 (if they are
exactly equal) and log(K) (the maximum possible value) where K is the length of the partition (the number of nodes). In
the above example, the discrepancy was around 8%, which means that around 1 or 2 nodes in 21 (K) are misplaced in the
partition obtained by the algorithm with respect to the benchmarked one.

In the above example, the internal connections of all cliques were degraded with the same probability p, but it is reasonable
to think that bigger cliques will have a bigger degradation probability than smaller ones. For instance, a clique of size two,
if degraded can no longer be considered to be a community for its members will not be connected any more. For taking into
account the effect that the community sizes have in the probabilities p and ¢, the functions func1 and func2 in the degradP
and degradQ methods, should not be left constant.

To show how this works, consider the example below, where the degradation probability grows linearly from 0, when the

clique size is 2 until it reaches 80% when the clique size is 50.

>>> func = lambda cs, params: params[0]*cs + params[1] # linear function

21

>>> cliques = range(2, 51, 3)
>>> nc = len(cliques)
>>> r = .05

>>> q

0.005

>>> params = (1./60, -1./30) # func(2, params)=0 and func(50, params) = 0.8
>>> cbar = sum(cliques)*1./nc

>>> Ke = nc*cbar/(1-r)

>>> bench = MBenchmark(cliques, r)

>>> bench.degradP (funci=func, paramsl=params)

>>> bench.degradQ(func2=lambda cl1, c2, pa: q) # q is left constant

>>> coms = partToComs (bench.partition)

>>> print bench.incliques, bench.betweenc

2834 518

>>>

>>> lins = sum([(1-func(ci, params))*ci*(ci-1)/2. for ci in cliques])

>>> comsizes = [len(com) for com in partToComs(bench.partition)]

>>> lbet = sum([q*ci*cj for ii, ci in enumerate(comsizes) for cj in comsizes[:iil]]) + Kexr
>>> print lins, lbet

2856.0 525.858157895

Note that in the MBenchmark.degradP method call, the degradation probability function (funcl) is a two variable function,
the first variable is the clique size and the second a list with the function’s parameters (even if the function has a single
parameter, it should be given as a single element list). The probability of connections between cliques (given by the
MBenchmark.degradQ method) is also a function (func2), in principle of three variables, the first two being the two cliques
sizes and the third the function’s parameters. In the above example, this function is just a constant (g).

In order to check the results, another function has been implemented in order to analyze the Surpriser object:
surStats(sur, pprint=False)

This function will return a tuple with the parameters estimated from the community structure contained in the Surpriser
object: it evaluates the global p, ¢ and r from the object and return it along with two lists, the first containing the cliques
(communities with more than 2 elements) and the second the p value inside each community. The snippet below exemplifies

its use in the above created network:

>>> sur = Surpriser(bench.M, coms)

>>> pp, qq, rr, coo, ps = surStats(sur)
>>> pp

0.6149979622333922

>>> qq

0.004924442145266069

>>> rr

0.04946236559139785

>>> coo = [len(ele) for ele in coo]

22

>>> for ii, ele in enumerate(coo):

print "size: %3i - obs: %1.4f, func: %1.4f"(ele, ps[ii], func(ele, params))

size: 2 - obs: 0.0000, func: 0.0000
size: 5 - obs: 0.1000, func: 0.0500
size: 8 - obs: 0.1071, func: 0.1000
size: 11 - obs: 0.2182, func: 0.1500
size: 14 - obs: 0.1319, func: 0.2000
size: 17 - obs: 0.2206, func: 0.2500
size: 20 - obs: 0.2947, func: 0.3000
size: 23 - obs: 0.3557, func: 0.3500
size: 26 - obs: 0.3723, func: 0.4000
size: 29 - obs: 0.4655, func: 0.4500
size: 32 - obs: 0.5000, func: 0.5000
size: 35 - obs: 0.5479, func: 0.5500
size: 38 - obs: 0.6245, func: 0.6000
size: 41 - obs: 0.6402, func: 0.6500
size: 44 - obs: 0.7061, func: 0.7000
size: 47 - obs: 0.7530, func: 0.7500

size: 50 - obs: 0.8106, func: 0.8000

The last output in this snippet is the observed degradation probability inside each community and the value of the linear
function for the community size. The surStats function might also receive an optional second argument that, if equal to

True, will print in the screen a summary of the statistics:

>>> pp, qq, rr, coo, ps = surStats(sur, True)
Comunities : 40
Cliques : 17

av click size: 26.000000 +- 15.149257

P : 0.614998
pbar : 0.402849 +- 0.252212
q : 0.004924
r 1 0.049462

The difference between p and pbar presented by the output summary is that p is globally evaluated for the whole community
structure (all intracommunity links divided by the total possible number given the identified communities) while the values
presented for pbar are the average and standard deviation of the ps list which contains the values of p evaluated for each
community separately.

The three functions in this package deal with the diversity in the community sizes. The Pielou index [9] measures how
even a partition of elements into groups is. It is taken from a biology context, where one wants to measure, for different
interacting species, how even the distribution of the individual organisms in the different group of species is.

Let’s take the number K of elements and divide them into the N. communities. Each group i has C; elements in it,

23

N
therefore, Z =K.
i=1

Now, take an element at random. The probability that it belongs to community i is p; = 7. The more even the

communities sizes are, the more uncertain one can be on the community of a randomly selected element. The pielou index

PI is a measure of this uncertainty. First, evaluate the entropy for the p; distribution:

N
H = —Zpilnpi, (6)

i=1
its maximum value is In IV in the case that p; = % (most even case) and its minimum is 0 if one has all elements in the same

community (one is in this case 100% certain on a randomly selected element). Thus, one can construct a normalized index

(between 0 and 1) dividing H by In N and this is the pielou index:

Pl = ——. (7)

The package function Pielou measures, for a list of numbers, its pielou index given by equation 7. This function
should receive upon calling a list of numbers representing the community sizes. The other two functions, Pielouer and
PielouerNodes can be used to generate a list of numbers with a desired value for its corresponding pielou index. Both
functions must receive as mandatory arguments the number of communities (Nc) and the desired pielou index (pie), the
optional argument eps whose default value is 0.01 specifies the accepted tolerance in the desired value of PI (the algorithm
returns the generated list when its corresponding pielou index is between pie-eps and pie+eps the other optional arguments
imin and imax control the minimum and maximum accepted sizes for a community while the other optional argument Nt
controls how many times (Nt*Nc) the algorithm should try number substitutions in order to achieve pie before stopping.
The function PielouerNodes has two extra mandatory arguments in order to control the minimum and maximum number

of total nodes in the graph (the sum of the community sizes should be bigger than Nmin and smaller than Nmax).

>>> coms = Pielouer(10, 0.75) # 10 communities with PI=0.75

>>> print coms, sum(coms)

[25, 12, 12, 1, 9, 24, 98, 15, 95, 5] 296

>>> print Pielou(coms)

0.759392321411

>>> coms = Pielouer(10, 0.75, eps=0.0001) # 10 communities with PI=0.75 with greater precision
>>> print coms, sum(coms)

[12, 18, 1, 16, 96, 77, 5, 2, 9, 49] 285

>>> print Pielou(coms)

0.750025475811

If these numbers are now used as cliques sizes in the generation of a benchmark network, for example, the first graph would
have 296 nodes and the second 285 (if r=0). If one wants a given number of nodes in the networks, one should use the other

pielouer function:

>>> coms = PielouerNodes(10, 0.75, 320, 330) # 10 communities with PI=0.75

Best pielou achieved after 1000 tries is 0.867901.

24

>>> print coms
[1, 3, 16, 63, 22, 71, 16, 41, 38, 57]
>>> print Pielou(coms)

0.867901035382
Here one sees an example when the algorithm failed after Nt*Nc attempts. One can try to increase Nt:

>>> coms = PielouerNodes(10, 0.75, 320, 330, imin=2, Nt=10000) # 10 communities with PI=0.75
>>> print coms, sum(coms)

[62, 15, 99, 23, 2, 72, 46, 2, 2, 2] 325

>>> print Pielou(coms)

0.75717468992
Now, say one wants a given exact number of nodes. It is only a matter of setting Nmin=Nmax:

>>> coms = PielouerNodes(10, 0.75, 320, 320, imin=2, Nt=10000) # 10 communities with PI=0.75
>>> print coms, sum(coms)

[14, 2, 49, 72, 2, 14, 2, 97, 2, 66] 320

>>> print Pielou(coms)

0.7431058202

5 The randoms Module

Along with the package, this module has been introduced with some functions in order to deal with random numbers and
statistics, in particular, dealing with the power-law scale-free distribution. In the benchmark introduced above and some of
the analysis done®, one already sees the need of a random number generator and a function to produce the statistics of a set

of numbers. These two are included in the present module as:

e stats(numbers, assymetry=0) — returns the average, standard deviation and, if the assymetry parameter is evaluated

as True, the skewness for a set of numbers.

e drand() — generates a homogeneous random number between 0 and 1.
Below a simple example for their use:

>>> from Surpriser.randoms import *

>>>

>>> N = 1000000

>>> nums = [drand() for ii in xrange(N)]

>>> print stats(nums, assymetry=1)

(0.4998283690074808, 0.28866528035922, 0.00046975546204043345)

>>>

In this example, 1000000 random numbers were generated and the descriptive statistics for the set is evaluated. Note that

the expected average, standard deviation and skewness for the homogeneous distribution between 0 and 1 are respectively

1 /a
5> 1/ 13 and 0.

9Therefore, the Surprise.data module has dependency on some functions of the Surprise.randoms module.

25

A distribution that has been the focus of much attention in the study of graphs is the power-law distribution. In this
distribution the probability of generating a given number is proportional to the number to some negative power: p(z) < ™7,
where 7y is a parameter.

If can assume only integer values bigger than some xo, the precise form of the distribution reads:

x =Y

¢(v,@o) = (8)
0 T < To

p(z/v,20) =

¢(v,zo) 9)

Il
i

where ((v, o) is the Riemann zeta function (modified such that the sum starts at a minimum value z¢). This distribution
has v and x¢ as parameters. The parameter o is an integer indicating the smallest number in the distribution.

If z can assume any real value bigger than some xo, the distribution reads:

p(a:/’y, 330) _ o o (10)
0 xr < Xo
In both cases (z real or integer), the distribution is only defined (can be normalized) for v bigger than 1, it only has
finite average for v bigger than 2 and the distribution’s standard deviation is only defined if v is bigger than 3.

The following functions evaluate the expressions related to these distributions:

e drand SF(gamma=2.3, x0=1.) — returns a random number between x0 and infinity with continuous power-law distri-
bution (Eq. (10)).
e irand SF(gamma=2.3, x0=1, iMAX=4000000) — returns an integer random number between x0 and infinity (~iMAX)

with discrete power-law distribution (Eq. (8)).
e zeta(gamma, xmin=1, N=20) — evaluates the zeta Riemann function {(v, z0) (Eq. (9)).

e dzetadx(gamma, xmin=1, N=20) — evaluates the first derivative with respect to 7 of the zeta Riemann function
%C(’Yﬂto)'

The implementation of the Riemann zeta function evaluates a sum (not the one in Eq. (9), which converges too slowly) and
the optional argument N in the last two functions controls the number of terms in this sum. Our numerical experiments
show that the precision achieved, even for values of « close to 1, are smaller than the machine precision summing 20 terms.
The function irand_SF does have to evaluate the sum in Eq. (9) until reaching some random probability and the optional
argument iMAX controls the maximum number of terms in this sum, which will therefore be the maximum possible random
integer that the function returns. If the sum reaches this value, a number close to and slightly bigger than iMAX is returned,
but note that in these cases, the actual returned number should have been even bigger, therefore the function actually

failed'®. The probability that this sum passes the value in iMAX can be evaluated from the distribution in Eq. (8):

iMAX

pli > iMAX) = 1- Y C(:i_;o) (11)

T=z0

10Working with much bigger values for iMAX is of course possible, but increases the running time.

26

In the snippet below, given xo = 1, this is evaluated for different values of ~:

>>> gammas = [1.01, 1.05, 1.1, 1.5, 2.0, 2.3, 2.5]

>>> for gamma in gammas:

som

for

som

ii in xrange(1l, 4000001):

som += ii**(-gamma)

/= zeta(gamma)

print "For gamma=%1.2f : %3.12f Ys"/(gamma, (1.-som)*100, "%")

For gamma=1.
For gamma=1.
For gamma=1.
For gamma=1.
For gamma=2.
For gamma=2.

For gamma=2.

01 :

05 :

10 :

50 :

00

30

50 :

85.403692624039 %,
45.442666406296 7,
20.659783339617 %,

0.038279336016 7%

: 0.000015198166 7%

: 0.000000140733 %

0.000000010955 %

When working with values of v slightly above 1, it is important to pay close attention to this issue.

Finally, the last four functions in the module deal with the estimation of the parameter « for a set of numbers:

e gamma MLE(xi, x0=1, uncert=0, gamma0=2.3, eps=1.e-8, nsum=20) — estimates the parameter v that maximizes

the likelihood for a set of numbers assuming the distribution in Eq. (8).

e gamma MLE cont(xi, x0=1., uncert=0, eps=1.e-8, delt=0.02) — estimates the parameter v that maximizes the

likelihood for a set of numbers assuming the distribution in Eq. (10).

e InL(xi, gamma=2.3, x0=1, nsum=20) — evaluates the logarithm of the likelihood for a set of numbers using the

distribution in Eq. (8).

e Inl cont(xi, gamma=2.3, x0=1.) — evaluates the logarithm of the likelihood for a set of numbers using the distri-

bution in Eq. (10).

Given a set of numbers that one assumes comes from a given distribution p(x;), the log-likelihood of the set is given by:

InL = Zlnp(xi) (12)

The functions gamma MLE and gamma MLE cont evaluate for a list of numbers (xi), given a value for xo, the value of the

parameter v that maximizes the likelihood in Eq. (12). The optional parameter uncert in these functions indicate if the

function should also return the lower and upper uncertainty for the v parameter, these being the points around « where the

likelihood is increased by half point. The other optional arguments in these functions are of numerical nature: the parameter

gammaO indicates where the algorithm (steepest descent) should start looking; the parameter eps indicates when the search

finishes (reaches the desired precision or which value of the derivative have to be considered null); nsum is the same parameter

as N in the evaluation of the Riemann-zeta function and delt is the value of A~ for the numerical evaluation of derivatives.

27

Finally, the functions 1nL and 1nL_cont evaluate the log-likelihood given by equation (12) for a set of numbers xi and
given values for 7 and . In the snippet below random numbers with scale-free distribution are generated and these functions

are used in order to cross-check the quality of the produced set.

>>> nums = [irand_SF(2.5, x0=2) for ii in xrange(1000)]
>>> gamma, uncs = gamma_MLE(nums, uncert=1, x0=2)

_ - %1.6£"%(gamma, uncs[0], uncs[1])

>>> print "gamma = %1.6f ~ + %1.6f
gamma = 2.497919 ~ + 0.049426 _ - 0.048302

>>> 1nl = 1nL(nums, gamma=gamma, x0=2)

>>> 1n2 = 1nL(nums, gamma=gamma+uncs[0], x0=2)

>>> 1n3 = 1nL(nums, gamma=gamma-uncs[1], x0=2)

>>> print "Diference 1: %1.6f \nDiference 2: %1.6f "% (1lnl-1n2, 1n1-1n3)
Diference 1: 0.500000

Diference 2: 0.500000

Here 1000 numbers are generated and the 7 for the set is evaluate as v = 2.47117070 513353, Also the difference between the
log-likelihood in the central value and in the uncertainty limits is checked.

The same can be done for the continuous distribution:

>>> nums = [drand_SF(1.9, x0=3) for ii in xrange(1000)]
>>> gamma, uncs = gamma_MLE_cont (nums, uncert=1, x0=3)

>>> print "gamma = %1.6f ~ + J1.6f _ - %1.6f"%(gamma, uncs[0], uncs[1])

gamma = 1.921007 ~ + 0.029433 _ - 0.028819

>>> 1nl = 1nL_cont(nums, gamma=gamma, x0=3)

>>> 1n2 = 1nL_cont(nums, gamma=gamma+uncs[0], x0=3)

>>> 1n3 = 1nL_cont(nums, gamma=gamma-uncs[1], x0=3)

>>> print "Diference 1: %1.6f \nDiference 2: %1.6f "/%(1lnl-1n2, 1n1-1n3)
Diference 1: 0.500000

Diference 2: 0.500000

6 Bugs and Feedback

These functions have been thoroughly tested in a linux mint system using python 2.7.17 and python 3.6.9.

Please email any detected bugs, suggestions or your feedback to the author (Daniel Gamermann: gamermann@gmail.com).

7 License

Surpriser is released under the GNU GENERAL PUBLIC LICENSE. See COPYING and README files for further infor-

mation.

References

[1] Rodrigo Aldecoa and Ignacio Marin. Deciphering network community structure by surprise. PloS one, 6(9):e24195, 2011.

28

2]

Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proceedings of the National Academy

of Sciences, 104(1):36-41, 2007.

Benjamin H Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Performance of modularity maximization in

practical contexts. Physical Review E, 81(4):046106, 2010.

Rodrigo Aldecoa and Ignacio Marin. Surprise maximization reveals the community structure of complex networks.

Scientific reports, 3:1060, 2013.

Marina Meila. Comparing clusterings by the variation of information. In Learning Theory and Kernel Machines, pages

173-187. Springer Berlin Heidelberg, 2003.

Minoru Kanehisa, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and Mao Tanabe. Kegg as a reference resource for

gene and protein annotation. Nucleic Acids Research, 44(D1):D457-D462, 2016.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos,
K. P. Tsafou, M. Kuhn, P. Bork, L. J. Jensen, and C. von Mering. STRING v10: protein-protein interaction networks,

integrated over the tree of life. Nucleic Acids Res., 43(Database issue):D447-452, Jan 2015.

D. Gamermann, J. Triana-Dopico, and R. Jaime. A comprehensive statistical study of metabolic and protein—protein

interaction network properties. Physica A: Statistical Mechanics and its Applications, 534:122204, November 2019.

E.C. Pielou. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology,

13:131-144, December 1966.

29

