
Robust Communication-Aware Jamming Detection and

Avoidance for Distributed Multi-Agent Systems⋆

Sang Xinga,∗, Samuel Peccouda,1,∗, Thomas Yanga, Richard Stansburya

aEmbry-Riddle Aeronautical University, 1 Aerospace Boulevard, 32114, Daytona Beach,
Florida, USA

Abstract

Swarm robotics has emerged as an innovative field, enabling groups of agents
to collectively tackle complex challenges. In this pursuit, Multi-Agent Sys-
tems (MAS) offer unparalleled potential for navigating through intricate en-
vironments. In this paper, an innovative control strategy is proposed to
enable a swarm of agents to navigate through a complex environment, which
includes regions affected by electromagnetic jamming. The swarm is un-
aware of the existence or location of these regions, known as jamming areas.
The novel control strategy is proposed as a combination of a gradient and
movement controller. The gradient controller achieves the desired swarm
formation that maximizes the communication quality between agents. The
movement controller uses Particle Swarm Optimization (PSO) and a path
planning algorithm to move towards a destination while avoiding jamming
areas. Various path planning algorithms, such as A*, Greedy Best First
Search, Breadth First Search, Dijkstra, Jump Point Search, and Theta*, are
compared in simulations. The results highlight the discovery of an optimal
path planning algorithm that facilitates efficient and robust navigation for
the MAS, while also upholding high communication quality.

⋆This research was supported by the National Science Foundation under Grant No.
2150213.

∗These authors contributed equally to this work.
Email addresses: xings@my.erau.edu (Sang Xing), speccoud@colostate.edu

(Samuel Peccoud), yang482@erau.edu (Thomas Yang), stansbur@erau.edu (Richard
Stansbury)

1Author has moved to Colorado State University since the work described in the article
was done.

Preprint submitted to Elsevier February 21, 2024



Keywords: multi-agent systems, communication-aware, formation control,
particle swarm optimization, path planning, jamming area

1. Introduction

The advent of distributed MAS has sparked a paradigm shift in vari-
ous fields, revolutionizing autonomous robotics, environmental monitoring,
disaster response, and communication networks. These decentralized net-
works, composed of interconnected agents, exhibit collective intelligence and
efficiency, empowering them to collaboratively address intricate tasks and
navigate dynamic environments [1]. However, as the reliance on distributed
MAS grows, it also unveils new challenges, particularly in the realm of mod-
ern electronic warfare.

Electronic warfare encompasses a diverse range of tactics, and among
them, jamming emerges as a formidable threat that jeopardizes the seamless
functioning of distributed MAS [2]. Jamming activities focus on disrupting
communication channels, causing disruptions in the exchange of vital infor-
mation among agents and leading to coordination failures and mission set-
backs. In this context, developing robust jamming detection and avoidance
strategies becomes paramount to ensure the dependability and effectiveness
of these systems in hostile environments.

This research paper proposes a novel control strategy for MAS using
a communication-aware gradient controller, Particle Swarm Optimization
(PSO), and path planning algorithms. In addition to demonstrating the
robustness of this control strategy, six different path planning algorithms are
compared and evaluated to determine which one is best for this application.

The paper is organized into distinct sections, each addressing different as-
pects of the proposed control strategy. To begin, Section 2 offers an extensive
overview of the preparatory work necessary for comprehending the suggested
control approach. Subsequently, Section 3 introduces the interaction model
established at the communication layer. In Section 4, the construction of
the control layer is detailed, incorporating PSO and multiple path planning
algorithms. The seamless integration of the communication layer and control
layer into a new control strategy is described in Section 5. Moving forward,
Section 6 presents the simulation environments and process. An evaluation
of these results follows in Section 7. Lastly, Section 8 concludes the paper.

2



2. Preliminaries

2.1. System Model
Consider a collective of n single-integrator modeled agents navigating

within a two-dimensional space. The behavior and movement of each agent
in time are governed by their respective dynamics, which can be described
as follows:

q̇i(t+ 1) = qi(t) + zi, i = 1, 2, . . . , n, (1)

where qi, zi ∈ R2, q, z ∈ R2n, and i ∈ V ,V = {1, 2, . . . , n},

• qi denotes the position of i-th agent at time t.

• zi denotes the control input of i-th agent.

2.2. Graph Theory
Graph theory has emerged as a widely adopted approach for modeling

MAS [3]. A graph G can be represented as a pair (V , E), comprising a set
of vertices V and a set of edges E . The vertices are typically denoted by
agent 1, 2, . . . , n, and the edges consist of ordered pairs of vertices, denoted
as E ⊆ V × V . The classification of graphs is based on various properties
they exhibit.

To facilitate the analysis of a specific agent i, the neighboring set of i,
denoted as Ni, is defined as Ni = {j ∈ V : (i, j) ∈ E}, encompassing all
vertices that are directly connected to i via an edge in the graph.

2.3. Rigid Formation
The decentralized control of rigid body formations has been a subject of

extensive investigation among researchers, often incorporating concepts from
graph rigidity theory and artificial potential fields [4]. In a rigid formation,
the inter-agent distances remain constant during motion. Agents perceive the
relative positions of their neighbors using local coordinate systems. Specifi-
cally, the relative position vector between agent i and agent j is denoted as
q⃗ij = qi − qj [5], and the relative distance is mathematically expressed as

rij =
√

(xi − xj)2 + (yi − yj)2 = ∥qi − qj∥, (2)

where xi, yi represent the coordinates of agent i [5]. To address communi-
cation complexity and mitigate potential errors, a communication range R
is introduced. Within a two-dimensional open ball with a radius of R, the
neighboring set of agent i is defined as Ni = {j ∈ V | rij ≤ R}, encompassing
all agents located within a distance of R from agent i.

3



3. Communication Layer

3.1. Communication-aware Interaction Model

In the communication layer of a distributed system, the quality of trans-
missions between agents is crucial. To assess the channel quality, the communication-
aware interaction model, denoted as ϕ(rij), is the product of far-field recep-
tion probability aij and the near-field propagation factor gij [6].

3.2. Gradient Controller

To achieve distributed rigid formation control, a gradient-based control
law is employed. The objective is to manage the inter-agent distances be-
tween agents in a way that optimizes the quality of communication. To do
this, an artificial potential function ψ(rij) is introduced to model the inter-
action between agent i and agent j [7].

In [6], the author defines the gradient-based controller Gi as the negative
gradient of the local potential functions ψt(rij):

Gi = −∇qi

[∑
j∈Ni

ψt(rij)

]
, (3)

By imposing a gradient controller on the communication-aware interaction
model, the MAS can achieve efficient and reliable communication between
agents. The gradient controller influences the movement of the agents creat-
ing the swarm formation.

4. Control Layer

4.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a powerful computational opti-
mization technique inspired by the collective behavior of bird flocking and
fish schooling [8]. It is used in combination with the gradient controller to
provide movement to the swarm. In PSO, a population of particles, each
representing a potential solution, moves through the problem space while
adapting their velocities based on their own best-known position and the
best position discovered by any particle in the swarm. This cooperative ex-
ploration and exploitation process allows PSO to rapidly converge towards
promising regions of the search space, making it particularly useful for solv-
ing complex, high-dimensional, and non-linear optimization problems. Its

4



simplicity, effectiveness, and ability to handle dynamic environments have
made PSO a popular choice in many practical applications [9].

An adaptation of PSO is proposed allowing agents to avoid jamming
areas. First, each agent in the swarm is modeled as a particle [10]. Then,
a fitness function is used to determine which agent is in an optimal location
within the environment. This serves as a ranking system, identifying which
agent is closer to the optimal solution. The fitness function is defined as

fi = ddest · wdest − log10(hjam) · wjam, (4)

ddest =
√

(xi − xdest)2 + (yi − ydest)2, (5)

djam =
√

(xi − xjam)2 + (yi − yjam)2, (6)

hjam =

{
djam, djam < 70

70, otherwise
. (7)

fi considers the distance to the destination point, ddest, and the distance
to the nearest jam point, djam. The agent with the lowest fitness value is
considered to be in the best location. An adjustment made to the fitness
function is the logarithmic scaling of the distance to the closest jam point.
This adjustment emphasizes jam points that are close and ignores them when
far away. Additionally, the system imposes a constraint on djam, limiting it to
a maximum of 70 units, as shown in hjam. wdest and wjam are constant values
that can be tuned to weigh the distance to the destination or the closest
obstacle [11].

The fitness of i-th agent is used to maintain two important values during
the optimization process: the global best value, Gbest, and the personal best
value, P best

i . The global best value represents the best fitness value among
any agent in the swarm. It serves as the benchmark for all agents, guiding
them towards promising regions in the environment. On the other hand,
the personal best value is the best fitness value that an individual agent has
found throughout the simulation. This value enables that agent to explore
and exploit locally optimal regions [12]. Gbest, P

best
i , and the agents’ previous

velocity, V prev
i , are used to direct the movement of agents in the swarm. The

previous velocity is denoted as

V prev
i = qi(t) − qi(t− 1). (8)

5



The previous velocity is calculated by subtracting the agent’s current posi-
tion, qi(t), from the agent’s previous position, qi(t− 1).

The velocity for the i-th agent generated by the PSO algorithm is defined
as,

Pi = V prev
i · wvel

+ P best
i · cpersonal

+Gbest · cglobal.
(9)

Pi is tunable using the following constant weight parameters: wvel, cpersonal,
and cglobal [13].

The PSO controller and the gradient controller are combined to update
the position of each agent in the swarm as follows:

zi = Gi + Pi. (10)

When combined, these two techniques provide motion to a destination and
away from jam points all while maximizing communication quality within the
swarm. Many simulations were conducted to find optimal control parameters
shown in Table 1. The disparity between the values of wdest and wjam arises

Table 1: Control Parameters for Figure 1

wdest wjam wvel cpersonal cglobal
1 110 0.11 0.07 0.13

from the logarithmic scaling of hjam in (7). There is also a difference in
cpersonal and cglobal because the agents in the swarm are close in proximity.
This makes the personal best value less important than the global best value
since agents are not exploring regions individually, but rather as a tight-knit
swarm.

Many simple environments with only a couple of jamming areas were
successfully navigated with this control strategy, but there are issues when
the environment increases in complexity. The problem occurs when the PSO
controller encounters a deadlock caused by agents being trapped in a local
minimum, hindering their ability to reach the global minimum [14]. Figure 1
demonstrates a case where PSO fails to reach the destination denoted as the
black square. The swarm is depicted as nodes with dashed lines indicating
communication links between agents. The large red circles in the simulation

6



(a) In deadlock (b) Trajectory of deadlock

Figure 1: Example of deadlock with PSO.

represent unknown jamming areas, and the small red stars represent known
jam points, where an agent previously entered a jamming area. Figure 1b
shows the trajectory of the swarm further demonstrating the deadlock. Over-
all, PSO combined with the gradient controller may avoid simple jamming
scenarios it is not nearly effective enough to be considered robust.

4.2. Path Planning

To address potential deadlocks that may occur when using only the gra-
dient controller and PSO, path planning algorithms are introduced into the
formation control strategy. By incorporating these path planning algorithms,
the swarm can effectively navigate around jamming areas, avoiding deadlocks
and achieving efficient navigation towards the destination [15].

4.2.1. Grid Map and Grid Cost

To facilitate the path planning algorithms’ execution, the environment is
discretized into a grid map. The grid map represents the area surrounding
the swarm and includes jam points, checkpoints, and the destination. Each
grid cell is assigned a cost based on its distance to a jam point.

grid cost =


10, if grid distance to jam point ∈ (0, 15]

5, if grid distance to jam point ∈ (15, 25]

1, if grid distance to jam point ∈ (25,∞).

(11)

Grid cells that are within or close to the jam points are assigned a higher
cost, reflecting the increased difficulty and risk associated with navigating in

7



these regions. Conversely, cells that are farther away from the jam points are
assigned lower costs, indicating safer and more accessible areas for the swarm
to navigate through. The use of grid maps and different grid costs enables
the swarm to use path planning algorithms in the discretized environment.

Figure 2: Grid map of path planning algorithm using A*.

As shown in Figure 2, the swarm’s centroid is used as the reference point
for path planning, and the path planning algorithms produce a series of check-
points leading to the destination. The agents then follow the checkpoints
which guide them to avoid jamming areas while maintaining formation. The
planned path is represented by a series of checkpoints that serve as a road
map for the agents, providing them with a clear path to follow while avoiding
potential deadlocks. Overall, path planning creates a series of checkpoints
that enhance agents’ navigation and decision-making capabilities.

4.2.2. Integrated Algorithms

The following path planning algorithms are compared and evaluated with
the current control strategy (10).

In the context of grid search algorithms, Jump Point Search (JPS) and
Theta* are optimization techniques built upon the A* search algorithm,

8



specifically tailored for uniform-cost grids. Grid search problems involve
exploring a two-dimensional grid, and these techniques aim to improve effi-
ciency and path quality.

Jump Point Search (JPS) tackles the issue of symmetries in the search
process by employing graph pruning. It intelligently eliminates certain nodes
in the grid by making assumptions about the neighbors of the current node,
following specific conditions based on the grid’s geometry. This pruning
allows JPS to reduce redundant exploration and expedite the search process
[16].

Theta*, on the other hand, enhances the A* algorithm by introducing
line-of-sight checks between nodes. This step determines whether some nodes
can be skipped during the search, thereby reducing the number of node
expansions and ultimately improving the overall path quality [17].

Switching to uninformed search algorithms, Breadth-First Search (BFS)
offers a systematic approach to exploring nodes. It traverses the grid in a
breadth-first manner, meaning it thoroughly explores all nodes at the current
depth level before moving on to the next level. This property guarantees that
BFS will find the shortest path to the solution, making it a complete and
optimal approach for finding shallow goals in a tree or graph. However, BFS
can become computationally expensive when dealing with large search spaces
due to the need to store and manage numerous nodes in memory at each level
[18].

In contrast to uninformed searches, Greedy Best First Search (GBFS)
is an informed algorithm that relies on a heuristic function to estimate the
remaining cost to the goal from each node. This heuristic-based approach
prioritizes nodes with lower estimated costs, assuming they are more likely to
lead towards the desired solution [19]. As a result, GBFS efficiently explores
promising areas of the search space, making it particularly valuable when a
well-designed and accurate heuristic is available.

Next, we have Dijkstra’s algorithm, another uninformed search algorithm.
It specializes in finding the shortest path from the starting point to the
destination. It does so by exploring nodes based on their total cost from the
starting point, gradually building the shortest path tree [20].

Lastly, A* combines the advantages of Dijkstra’s algorithm and GBFS.
Like GBFS, it employs a heuristic function to estimate the remaining cost,
but it also systematically explores nodes to find the shortest path from the
starting point to the destination. This combination makes A* a highly effi-
cient and effective informed search algorithm for grid-based problems [21].

9



5. Novel Control Strategy

To meet the requirements of a robust jamming area detection and avoid-
ance strategy that is communication-aware, the three previously mentioned
control methods, gradient controller, PSO, and path planning, are employed
together. Figure 3 shows a hierarchical view of the total system. The
schematic is split horizontally into two parts, the top half, above the drones
and the bottom half, below the drones.

Figure 3: Schematic Diagram of Proposed Control Strategy

The first part, above the drones, illustrates how data is distributed in the
system. All the information in the cloud represents the shared data that all
the agents have in common. This information is assumed to be up to date so

10



long as one communication link between a drone and the rest of the swarm
is active. Each arrow represents data transmission to or from an agent. This
data sharing methodology guarantees a distributed approach as it functions
independently without relying on any external information to operate the
swarm.

In the second part, below the drones, the control flow for each agent is
illustrated. Since the MAS is distributed, the control flow is the exact same
for each agent and no processing is done on the shared data outside of the lo-
cal processing by each agent. Coming down from each drone, an arrow splits
left and right. The left side represents the Control Layer from Section 3, and
the right side represents the Communication Layer from Section 4. These
two processes occur in parallel on each agent. The Communication Layer
includes the gradient controller as described in Section 3.2 which manages
the formation control of the swarm, updating the agent’s position based on
its communication links. The position updates converge around a forma-
tion that maximizes communication quality. As indicated by the legend, the
communication layer also detects when an agent enters a jamming area and
registers the location of the agent as a jam point. This is then communicated
with the rest of the swarm. On the left side, the Control Layer includes the
PSO from Section 4.1 and path planning described in Section 4.2. The PSO
forms a closed loop with the agent, meaning that the PSO does not require
path planning to operate. A path planning algorithm is only executed when
an agent in the swarm has detected the presence of a jamming area, shown
by the ”Jamming Detected?” conditional. The path planning creates check-
points that the swarm should fly through to reach the destination. These
checkpoints are used in the fitness function of the PSO as follows:

fi =
√

(xi − xcheckpoint)2 + (yi − ycheckpoint)2 · wdest

− log10(hjam) · wjam.
(12)

It is similar to the previous fitness function (4), but the destination coordi-
nates, xdest and ydest, are replaced with the coordinates of the next checkpoint,
xcheckpoint and ycheckpoint. A checkpoint is deemed ”checked” when the swarm
centroid is approximately within a 20-unit distance from the checkpoint,
which roughly corresponds to the radius of the swarm formation. When no
path planning has been executed or when path planning fails to identify a
feasible path, the fitness function is reverted back to (4).

11



In a distributed manner, the MAS establishes a formation via the gradi-
ent controller while simultaneously progressing towards the next checkpoint
along the planned path because of PSO. To accomplish these calculations,
data exchange between the agents is essential.

6. Simulation

To evaluate the effectiveness of the proposed formation control strategy
with the integrated path planning algorithms, extensive simulations were
conducted using MATLAB.

6.1. Simulation Environment Setup

As shown in Figure 4, various simulation environments were created to
test the swarm’s navigation capabilities and robustness. There are five differ-
ent environments of increasing complexity, each containing a different num-
ber of jamming areas from one to five. Each environment was designed to
have one optimal path to the destination and a few sub-optimal paths. The
sub-optimal paths were introduced so that there was no obvious solution
for the path planning algorithms. The swarm of agents will need to navi-
gate through these environments to reach the destination while avoiding the
jamming areas effectively.

6.2. Swarm Navigation Through Jamming Areas

Figure 5 illustrates a simulation run on the environment with five jam-
ming areas, using the A* path planning algorithm. Every simulation con-
ducted follows a similar procedure. Roughly the first ten seconds are used to
allow the gradient controller to reach a steady state, like in Figure 5a. Then,
the PSO is activated moving the swarm towards the destination unaware
of the jamming areas ahead. Eventually, when an agent enters a jamming
area a jam point is registered, and the path planning creates checkpoints,
represented by black squares in the simulation, as seen in Figure 5b. When
the swarm passes the checkpoints they turn green, and the final destination
is represented by a magenta square. Each time a new jam point is discov-
ered, the path is recalculated, overwriting the old checkpoints. As the swarm
of agents moves through the environment, their trajectory is recorded and
shown in Figure 5h. In this example, the swarm was able to reach its desti-
nation successfully after encountering only eight jam points, demonstrating
the effectiveness of the proposed control strategy.

12



All the path planning algorithms were tested on every environment, re-
sulting in thirty total simulations.

7. Evaluation of Simulation Results

This section presents the evaluation of the simulation results for the novel
control strategy (10) using the six different path planning algorithms: Greedy
Best First Search (GBFS), A*, Breadth First Search (BFS), Dijkstra, Jump
Point Search (JPS), and Theta*.

7.1. Normalization

Below are the metrics that compare the performance of the path planning
algorithms.

1. Number of Iterations: The total number of iterations required for
the swarm to reach the destination.

2. Execution Time: The total execution time required for the swarm to
reach the destination.

3. Average Distance Traveled: The distance that each agent traveled
throughout the simulation averaged.

4. Average Communication Quality of the Swarm: The average
communication quality of the MAS during the execution.

5. Number of Jam Points: The total occurrences of agents entering
jamming areas or the number of registered jam points during the sim-
ulation.

The metrics are then normalized for each algorithm to ensure a fair com-
parison across different scales. The normalization formula used for each
metric is as follows:

Normalized Value =
x− min(x)

max(x) − min(x)
∈ [0, 1] (13)

where x represents the original value of the metric, min(x) and max(x) are
the minimum and maximum values of the metric among all algorithms in
each environment.

13



7.2. Comparison of Algorithms

After normalizing the metrics, the average is taken for each algorithm in
all 5 environments to compare the performance. Figure 6 shows the compar-
ison results in the form of radar charts.

Based on the charts, A* demonstrates the best overall performance among
the six path planning algorithms. It outperforms the other algorithms in all
six metrics. Therefore, A* is the recommended algorithm for the current
model in the given simulation scenarios.

7.3. Overall Performance

The evaluation results offer valuable insights into the individual strengths
and weaknesses of each algorithm, facilitating the choice of the most appropri-
ate one. In all thirty simulations, the swarm achieved successful navigation,
reaching the destination with a high communication quality index. This con-
firms the control strategy’s robustness and effectiveness, as even less optimal
strategies demonstrated satisfactory performance.

8. Conclusion

In conclusion, this paper proposes a novel control strategy for a swarm
of agents to navigate through jamming areas efficiently while maintaining
formation and robust communication. The strategy combines gradient con-
trol, PSO, and path planning algorithms to achieve successful navigation in
complex environments. Through extensive simulations and evaluation of six
path planning algorithms, A* is identified as the most effective approach.
The proposed strategy demonstrates its effectiveness in guiding the swarm
through challenging scenarios with multiple jamming areas, ensuring high
communication quality. Future work could involve modeling communication
procedures and delays to update shared data within the swarm, providing a
more realistic representation of swarm behavior, and enhancing the control
strategy’s capabilities for real-world applications.

References

[1] Kamdar, R.; Paliwal, P.; Kumar, Y. A state of art review on various
aspects of multi-agent system. Journal of Circuits, Systems and Com-
puters 2018, 27, 1830006.

14



[2] Vadlamani, S.; Eksioglu, B.; Medal, H.; Nandi, A. Jamming attacks on
wireless networks: A taxonomic survey. International Journal of Pro-
duction Economics 2016, 172, 76–94.

[3] Zhao, Y.; Hao, Y.; Wang, Q.; Wang, Q. A rigid formation control ap-
proach for multi-agent systems with curvature constraints. IEEE Trans-
actions on Circuits and Systems II: Express Briefs 2021, 68, 3431–3435.

[4] Durniak, A. Welcome to IEEE Xplore. IEEE Power Engineering Review
2000, 20, 12.

[5] Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on automatic control 2006, 51, 401–420.

[6] Li, H.; Peng, J.; Liu, W.; Gao, K.; Huang, Z. A novel communication-
aware formation control strategy for dynamical multi-agent systems.
Journal of the Franklin Institute 2015, 352, 3701–3715.

[7] Li, H.; Peng, J.; Zhang, X.; Huang, Z. Flocking of mobile agents using
a new interaction model: A cyber-physical perspective. IEEE Access
2017, 5, 2665–2675.

[8] Eberhart, R.; Kennedy, J. Particle swarm optimization. Proceedings of
the IEEE international conference on neural networks. 1995; pp 1942–
1948.

[9] Erskine, A.; Joyce, T.; Herrmann, J. M. Stochastic stability of particle
swarm optimisation. Swarm Intelligence 2017, 11, 295–315.

[10] López-Franco, C.; Zepeda, J.; Arana-Daniel, N.; López-Franco, L. Ob-
stacle avoidance using PSO. 2012 9th International Conference on Elec-
trical Engineering, Computing Science and Automatic Control (CCE).
2012; pp 1–6.

[11] Cho lodowicz, E.; Figurowski, D. Mobile robot path planning with obsta-
cle avoidance using particle swarm optimization. Pomiary Automatyka
Robotyka 2017, 21, 59–68.

[12] Zhang, Y.; Wang, S.; Ji, G.; others A comprehensive survey on par-
ticle swarm optimization algorithm and its applications. Mathematical
problems in engineering 2015, 2015 .

15



[13] Nasrollahy, A. Z.; Javadi, H. H. S. Using Particle Swarm Optimization
for Robot Path Planning in Dynamic Environments with Moving Obsta-
cles and Target. 2009 Third UKSim European Symposium on Computer
Modeling and Simulation. 2009; pp 60–65.

[14] Li, X.; Xing, K.; Lu, Q. Hybrid particle swarm optimization algorithm
for scheduling flexible assembly systems with blocking and deadlock con-
straints. Engineering Applications of Artificial Intelligence 2021, 105,
104411.

[15] Pal, N. S.; Sharma, S. Robot path planning using swarm intelligence: A
survey. International Journal of Computer Applications 2013, 83, 5–12.

[16] Chen, T.; Chen, S.; Zhang, K.; Qiu, G.; Li, Q.; Chen, X. A jump point
search improved ant colony hybrid optimization algorithm for path plan-
ning of mobile robot. International Journal of Advanced Robotic Systems
2022, 19, 17298806221127953.

[17] Mandloi, D.; Arya, R.; Verma, A. K. Unmanned aerial vehicle path
planning based on A* algorithm and its variants in 3D environment. In-
ternational Journal of System Assurance Engineering and Management
2021, 12, 990–1000.

[18] Hussein, A.; Mostafa, H.; Badrel-din, M.; Sultan, O.; Khamis, A. Meta-
heuristic optimization approach to mobile robot path planning. 2012
International Conference on Engineering and Technology (ICET). 2012;
pp 1–6.

[19] Xie, F.; Müller, M.; Holte, R. Jasper: the art of exploration in greedy
best first search. The Eighth International Planning Competition (IPC-
2014) 2014, 39–42.

[20] Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J. E. A Survey of Path
Planning Algorithms for Mobile Robots. Vehicles 2021, 3, 448–468.

[21] Costa, M. M.; Silva, M. F. A Survey on Path Planning Algorithms for
Mobile Robots. 2019 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC). 2019; pp 1–7.

16



(a) One Jamming Area (b) Two Jamming Areas

(c) Three Jamming Areas (d) Four Jamming Areas

(e) Five Jamming Areas

Figure 4: Different simulation environments that were tested.

17



(a) No Jam Points (b) One Jam Point

(c) Two Jam Points (d) After Two Jam Points

(e) Four Jam Points (f) Eight Jam Points

(g) Path Planning Grid Map (h) Agents Trajectory

Figure 5: Example of a simulation run on the five jamming areas environment using A*
path planning.

18



Greedy Best First Search A*

Breadth First Search Dijkstra

Jump Point Search Theta*

Figure 6: Radar charts representing the performance metrics of different path planning
algorithms.

19


