Appendix A

EUREEKA Documentation

This appendix provides additional information for potential users of the EUREEKA
library that implements the ideas presented in our thesis. Section A.1 describes the

installation of the framework and Section A.2 explains how to use the software.

A.1l. Installation

In the following we provide a guide on how to install the EUREEKA framework. The
dependencies (i.e., software necessary for the framework to run) are discussed in Sec-

tion A.1.1, while the installation and post-install setup issues are covered in Section A.1.2.

A.1.1. Dependencies

EUREEKA is implemented in the Python programming language (see http://www.
python.org). The framework is known to work in the Python versions 2.4, 2.5 and 2.6
on a variety of Linux and Windows systems. Apart of Python, the following software is

necessary or recommended:
® necessary:

— the MySQL database server (tested with the versions 14.12 and 14.14, however,
any version supporting the SQL-92 standard should be fine); see http://www.

mysql.com/ for details on the software

201


http://www.python.org
http://www.python.org
http://www.mysql.com/
http://www.mysql.com/

202 EUREEKA Documentation

— the MySQLdb Python package (tested with versions the 1.2.2 and 1.2.3, how-
ever, any version should be fine); see http://sourceforge.net/projects/

mysql-python/ for details on the software

— the RDFLib Python package for RDF data processing (tested with the versions
2.4.0 and 2.4.2, however, any version supporting named graphs, N3 format
and N3 rule representation should be fine); see http://www.rdflib.net/ for

details on the software
e recommended:
— to enable native EUREEKA knowledge extraction from text:

x the NLTK Python package for natural language processing (tested with
the version 2.0b8, however, any version higher than 0.9.9 should be fine);
see http://www.nltk.org for details on the software

— to enable the EUREEKA DBus server:

* the DBus inter-process communication framework (tested with the version
1.2.1, however, any version should be fine); see http://www.freedesktop.

org/wiki/Software/dbus for details on the software

x the DBus Python binding (tested with the version 0.82.4, however, any ver-
sion should be fine); see http://www.freedesktop.org/wiki/Software/

DBusBindings for details on the software
— to enable the text extraction from PDF files:

x the PDFMiner Python package for extracting information from PDF files
(tested with the version 20100104, however, any version should be fine);
see http://www.unixuser.org/~euske/python/pdfminer/ for details on

the software

A.1.2. Installation and Setup

After making sure the necessary dependencies have been satisfied, the EUREEKA
framework can be installed from the source Python package available at http://pypi.
python.org/pypi/eureeka/0.1. The package has to be unpacked first. Switching into
the unpacked directory then, one can install EUREEKA by executing the


http://sourceforge.net/projects/mysql-python/
http://sourceforge.net/projects/mysql-python/
http://www.rdflib.net/
http://www.nltk.org
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/DBusBindings
http://www.freedesktop.org/wiki/Software/DBusBindings
http://www.unixuser.org/~euske/python/pdfminer/
http://pypi.python.org/pypi/eureeka/0.1
http://pypi.python.org/pypi/eureeka/0.1

EUREEKA Documentation 203

python setup.py install

command. Note that on UNIX, Linux and Mac operating systems, one should execute

the command either as a super-user, or using the
sudo python setup.py install

alternative. This installs EUREEKA into the standard location for Python packages on

the particular system. Alternate installation path can be specified using the
python setup.py install --home=<dir>

command. The <dir> folder is then used as a base for the installation. Note that
one has to tell Python where to look for the modules in an alternative installation loca-
tion (see http://docs.python.org/install/#modifying-python-s-search-path for
details on how to do that).

When the installation is complete, several setup steps have to be performed before
one can start working with EUREEKA. First of all, a database user and a new database
dedicated to the particular EUREEKA deployment have to be created in MySQL. This
setup will be used for the low-level storage of the EUREEKA grounding and knowledge

base later on.

Furthermore, an EUREEKA configuration file has to be created'. The configuration
file is supposed to contain attribute-value tuples separated by the tabulator character in
each line. Comments can be used, too (anything starting with the # character will be
ignored by EUREEKA until the end of the line). The attributes that must be specified

(together with corresponding values) in the configuration file are:

e DB HOST — The address of the MySQL database server host (e.g., localhost for the
server and EUREEKA present on the same machine).

e DB_USER — The name of the EUREEKA database user created previously.
e DB_PASS — The password of the EUREEKA database user created previously.

e DB NAME — The name of the EUREEKA database created previously.

IThe suggested name of the file is eureeka.cfg, located in the directory from which the EUREEKA
scripts or server are supposed to be launched (the path is used by default). However, it is also
possible to specify arbitrary alternative configuration file when executing EUREEKA scripts, as
shown later in Sections A.2.2 and A.2.3.


http://docs.python.org/install/#modifying-python-s-search-path

204 EUREEKA Documentation

Additional attributes may be specified in the configuration file, too, although they
are not essential for some uses of the EUREEKA framework and can often be initialised
to default values and/or specified later on an ad hoc basis when they are needed (as

shown in Section A.2.2). The non-essential attributes are as follows:

e N3_IN — The directory containing N3 RDF files to be incorporated into an EU-
REEKA knowledge base by a script that is a part of the software package (see
Section A.2.2 for details). Defaults to the current working directory (w.r.t. the
location from where EUREEKA scripts are being launched).

e N3_0UT — The directory for N3 files produced by EUREEKA scripts (e.g., by means
of querying, see Section A.2.2 for details). Defaults to the current working directory
(w.r.t. the location from where EUREEKA scripts are being launched).

e TEXT — The directory with textual input to be processed by the native EUREEKA
extraction service (see Section A.2.2 for details). Defaults to the current working

directory (w.r.t. the location from where EUREEKA scripts are being launched).

e DB DUMP — The directory for dumps of the EUREEKA knowledge base in the form
of MySQL tables (see Section A.2.2 for details). Defaults to the current working
directory (w.r.t. the location from where EUREEKA scripts are being launched).

e RL PATH — The path to the N3 rule base to be used with EUREEKA. Defaults
to <cwd>/default.n3, where <cwd> is the current working directory (w.r.t. the

location from where EUREEKA scripts are being launched). If such a file is not
present, EUREEKA uses the RDFS entailment rules by default.

e DC REL — The path to a file mapping resources to their relevances concerning the
knowledge aggregation (see Section 6.1 for details). Defaults to <cwd>/relevan-
ce.txt, where <cwd> is the current working directory (w.r.t. the location from
where EUREEKA scripts are being launched). If such a file is not present, EU-
REEKA uses the default relevance value specified by the DEF_REL attribute for all

resources.

e DEF REL — The default value of a resource relevance concerning the knowledge ag-
gregation, which is to be used for all resources that are not explicitly mentioned in
the resource-to-relevance mapping file given by the DC_REL attribute. Defaults to
0.2.



EUREEKA Documentation 205

A.2. Usage

This section describes how to use the EUREEKA library. First we discuss an API for pro-
grammatic access to the functionalities implemented by the framework in Section A.2.1.
Then we give an overview of scripts that expose the most essential capabilities of EU-
REEKA in a straightforward manner (Section A.2.2). Besides the API and scripts,
users may employ an EUREEKA daemon in order to use the framework from other
applications implemented in arbitrary programming languages. This is documented in
Section A.2.3. The RDF-compatible format used by EUREEKA for the data interchange
is specified in Section A.2.4. Finally, Section A.2.5 presents few realistic examples of

data processed by EUREEKA.

A.2.1. Library API

The EUREEKA library consists of several modules reflecting the overall architecture
presented in Section 7.2 of Chapter 7.

extraction.py
The module is responsible for the knowledge extraction from text. The following main
methods are available in the module:
e callExtREQ)
— description: calls an external method for extracting relations from text
— input:
* text — a string representing the text to be processed

* prov_tit — a string representing the title of the provenance document from

which the text comes

* np2doc — a dictionary representing mapping from extracted noun phrases

to the corresponding provenance document titles

— output: a tuple consisting of a list of extracted Relation objects (see the

following section for the details on the object) and an updated np2doc mapping



206 EUREEKA Documentation

e extractRels()
— description: executes the native relation extraction method
— nput:
* text — a string representing the text to be processed

* prov_tit — a string representing the title of the provenance document from

which the text comes

* np2doc — a dictionary representing mapping from extracted noun phrases

to the corresponding provenance document titles

— output: a tuple consisting of a list of extracted Relation objects (see the

following section for the details on the object) and an updated np2doc mapping
e trimRels()

— description: trims the list of the extracted relations (using the term frequency-
based method introduced in Section 7.2.1 of Chapter 7)

— nput:
x relations — a list representing the extracted relations

* np2doc — a dictionary representing mapping from extracted noun phrases

to the corresponding provenance document titles

— output: a list of filtered relations with proper certainties set

storage.py

The module is responsible for the low-level storage of EUREEKA knowledge bases and
grounding in a relational (MySQL) database. Abstract object wrappers of the low-level

storage are offered here as well. The following classes are present in the module:

e Relation — A class implementing an intermediate representation of relations, con-
sisting only from lexical expressions, provenance information and certainty degree.
Its main purpose is to provide a layer between the input from users and/or vari-
ous input processors and the EUREEKA knowledge base, as well as to present the
knowledge base content back to users in human readable way. The main attributes

of the class are:



EUREEKA Documentation 207

— subject — a string representing the lexical form of the relation’s first argument
— predicate — a string representing the lexical form of the relation name
— object —astring representing the lexical form of the relation’s second argument

— contexts — a dictionary representing a mapping from the relation context

names to their values
— certainty — a float representing the relation’s certainty

— score — a float representing the relation’s relevance score (e.g., a temporary
significance assigned within the extraction process, or a relevance score of a
relation returned within a query answer, computed among the knowledge base

entities)

— provenance — a dictionary representing a mapping from unique resource prove-

nance identifiers to corresponding human-readable titles

Apart of various rather obvious get/set methods for accessing and setting the at-

tributes, the Relation class has the following important methods:
— getTriples()
x description: creates an RDF representation of the relation object
* anput:

- ns_pref — a string representing the namespace prefix for the URIs used

in the relation’s RDF representation

x output: a list of triples (i.e., Python tuples) corresponding to the RDFLib
format of RDF triple representations, which encodes the particular relation
in the RDF interchange format (see Section A.2.4 for details)

— getHashKey ()

x description: creates a SHA1 sum of the object, which may be used as a
unique identifier of the particular statement (e.g., when serialising state-

ments)
* Input:

- no input



208 EUREEKA Documentation

x output: a string representing the SHA1 sum of a textual representation of

all the statement’s lexical elements

e Entity — An object for temporary entity representations that are assumed to be
already scoped down so that only “subject”, “predicate”, “object” triples with
corresponding degree are taken into account. The class implements algebraic op-
erations and similarities on such entities. The main attributes of the class are as

follows:

— identifier — an integer representing the unique identifier of the entity (i.e., a

subject)

— elements — a dictionary representing a mapping from (“predicate”, “object”)

tuples to the corresponding certainty degrees
Apart of the rather obvious set/get methods, the class has the following functions:
— _add__(Q)
x description: element-wise addition of an entity (+)
* input:
- other — an another Entity object
x output: the result of the addition of the input entity to the self
— _mul QO
* description: multiplication of the entity by a scalar (-)
* anpul:
- x — a float number
x output: the result of the scalar multiplication of self by the input number
— _eq_-QO
x description: strong entity equality (=)
* input:
- other — an another Entity object

* output:



EUREEKA Documentation 209

— _mne_Q
% description: strong entity inequality ()
* input:
- other — an another Entity object

* oulput: a boolean value determining whether the input entity and self are

strongly equal or not
— _len__Q)
x description: entity size in terms of statements with a non-zero certainty
* Input:
- other — an another Entity object

x oulput: a boolean value determining whether the input entity and self are

strongly unequal or not
— isWeaklyEqualTo()
« description: weak entity equality (=)
* input:
- other — an another Entity object

* output: a boolean value determining whether the input entity and self are

weakly equal or not
— sim()
x description: similarity of the entity to another one
* input:
- other — an another Entity object

- fit_incl — a boolean value determining whether the entity fitness should

be reflected in the computed similarity or not; default value is True

- penalty — penalisation for adjustment of the fitness computation; default

value is 2.0



210 EUREEKA Documentation

- even — a boolean value, determining whether the similarity should be
computed as a commutative similarity between self and other, or as
a similarity of self to other (i.e., taking only the contextual scope of

self into account); the default value is False
x output: a float representing the computed similarity value

e Grounding — An object representing the grounding. It realises the storage of the
grounding mapping in a database table, as well as a convenient retrieval of the

stored values. The main attributes of the class are as follows:

— cfg — a dictionary where the keys and values represent the configuration file
attributes and corresponding values, respectively; the class is supposed to be
initialised with the dictionary containing data parsed from a configuration file,

all the other attributes of the class are initialised accordingly then
The main methods of the class are:
— _len__Q)

x description: determines the size of the grounding mapping in terms of the

number of unique entity identifiers
* anput:
- no input
* outpul: an integer representing the size
— size()

x description: determines the size of the grounding mapping w.r.t. either the
number of unique entity identifiers, or the number of lexical expressions

associated with the identifiers
* input:

- in_terms — a boolean value; if set to True, the method returns the
number of lexical expressions associated with the unique identifiers by
the grounding; the method behaves as __len__() otherwise (the default

option)

x oulput: an integer representing the chosen notion of the grounding size



EUREEKA Documentation 211

— add ()

x description: adds a lexical expression to the grounding (possibly assigning

a new unique identifier if the term is new)
* input:
- term — a string representing the expression to be added

- tag — a string representing the part of speech tag according to which the
expression should be lemmatised (defaults to None, which corresponds

to a noun)

- force_id — an integer; if the parameter is not None (default), its value
is used for the unique identifier assignment instead of the automatically

computed one

- scope — an integer representing the lexical scope of the expression being
added (defaults to None)

x oulput: an integer representing the identifier assigned to the input term
— addSyn()
x description: adds a synonymous lexical expression to an already added one
* anput:
- synonym — a string representing the synonym expression to be added

- term — a string representing the master term to be associated with the

synonym

- tag — a string representing the part of speech tag according to which the
expression should be lemmatised (defaults to None, which corresponds

to a noun)
- d — a float representing the degree of synonymy (defaults to 0.75)

- scope — an integer representing the lexical scope of the expression being
added (defaults to None)

* output: no output

— getO



212 EUREEKA Documentation

x description: retrieves a lexical expression for an identifier, or vice versa
* input:

- key — a string or an integer representing a lexical expression or an entity

identifier

- tag — a string representing the part of speech tag according to which the
expression should be lemmatised (defaults to None, which corresponds

to a noun)

- scope — an integer representing the lexical scope of the expression being
added (defaults to None)

x output: either an integer representing the identifier associated with the
input, or a lexical expression associated with the input (depending on
whether the input is a lexical expression or an identifier, respectively);

None is returned if no output corresponding to the input is found
— __getitem__()

x description: an alias for the get() method with default tag and scope

values
* Input:

- key — a string or an integer representing a lexical expression or an entity

identifier
x output: same as for the get () method
— _delitem__Q)
x description: deletes an item from the grounding
* input:

- key — a string or an integer representing a lexical expression or an entity

identifier pointing to the entry to be deleted

- tag — a string representing the part of speech tag according to which the
expression should be lemmatised (defaults to None, which corresponds

to a noun)



EUREEKA Documentation 213

* output: no output

— contains()
x description: checks whether the grounding contains an identifier or a term
* Input:

- key — a string or an integer representing a lexical expression or an entity
identifier to be checked for

- tag — a string representing the part of speech tag according to which the
expression should be lemmatised (defaults to None, which corresponds

to a noun)

* output: a boolean value determining whether the input is or is not present

in the grounding
— has_key ()

x description: an alias for the contains method, accepting only entity iden-
tifiers as an input (False is returned if anything else than integer is passed
to the method)

* Input:
- key — an integer representing an entity identifier to be checked for

x oulput: a boolean value determining whether the input is or is not present

in the grounding
— isVar()

x description: checks whether the input symbol is a variable representation

or not
* Input:

- key — a string representing a lexical expression or an entity identifier to
be checked for

x output: a boolean value determining whether the input is or is not a variable

— getSynonyms ()



214 EUREEKA Documentation

x description: retrieves synonyms of an input lexical term or entity identifier
* input:
- key — a string representing the lexical expression or an entity identifier

- scope — an integer representing the lexical scope of the expression being
added (defaults to None)

x output: a list of (string,float) tuples, representing the lexical expressions

synonymous to the input and the corresponding synonymy degrees
— getSenses()

x description: retrieves all entity identifiers corresponding to the input lexical

expression
* input:
- key — a string representing the lexical expression

x output: a list of integer values, representing the entity identifiers associated

with the input expression by the grounding

e Entities — An object representing a set of entity representations (i.e., an essential
part of a knowledge base). It realises the storage of entities in a database table, as

well as their updates and retrieval. The main attributes of the class are as follows:

— cfg — a dictionary where the keys and values represent the configuration file
attributes and corresponding values, respectively; the class is supposed to be
initialised with the dictionary containing data parsed from a configuration file,

all the other attributes of the class are initialised accordingly then
The main methods of the class are:
— _len__Q

x description: retrieves the size of the object in terms of the number of unique

entities
* input:
- no input

x output: an integer representing the size



EUREEKA Documentation 215

— __getitem Q)

% description: retrieves an entity representation (Entity object) from the

store according to an input entity identifier
* input:
- s — an integer representing the input identifier

* output: an Entity object representing the aggregated representation of all

statements with s in the “subject” position
— _delitem__Q)
x description: deletes an entity from the store
* Input:
- key — an integer representing the identifier of the entity to be deleted
* output: no output
— get()

x description: retrieves an entity representation, focusing on a specific prove-
nance only (resulting in plain __get__() if there are no statements with the

given provenance)
* Input:
- 8 — an integer representing the input identifier
- prov — an integer representing the provenance identifier

x output: an Entity object representing the entity composed only of state-
ments with the specified provenance (or an aggregated entity in case there

are no such statements)
— checkConnection()

x description: checks if the underlying database connection is alive (and

refreshes it if it has timed out)
* input:

- no input



216 EUREEKA Documentation

* output: no output
— keys()
x description: retrieves identifiers of all stored entities
* Input:
- no input
x output: a list of integers representing the entity identifiers
— values()
x description: retrieves aggregated representations of all stored entities
* input:
- no input
* output: a list of Entity objects representing the aggregated stored entities
— has key()
x description: checks whether the store contains an entity or not
* Input:

- key — an integer representing the identifier of the entity to be checked

for

x oulput: a boolean value determining whether an entity with the input

identifier is present or not
— update()

x description: updates the store with the statements from the input entity
(the provenance identifier of the updated statements is set to 0, as the
method is supposed to be used for updates by inferred statements that

have a default provenance identifier 0)
* Input:

- ent — an Entity object, according to which the store is supposed to be

updated



EUREEKA Documentation 217

* output: no output
— addRelations()

x description: adds multiple relations (i.e., entity representation statements

in their lexicalised form) into the store
* input:
- relations — a list of Relation objects

- g — a Grounding object used for resolving the lexical expressions in the

input to entity identifiers

- limit —the number of statements to be stored in the underlying database
table using a bulk insert (set to 50000 by default)

* output:

— getRelations()
x description: retrieves relations corresponding to input entity identifiers
* Input:

- subj_ids — a list of integers representing the entity identifiers for which

relations should be retrieved from the store

- sim — a float representing the similarity value by which the actual degree
in the retrieved statements should be multiplied (1.0 by default); a non-

default value is to be used for instance in rule materialisations

- mxsz — maximum number of most relevant statements to be retrieved (0

by default, meaning that all statements are returned)

- contexts — a dictionary representing the context name and context value
identifiers ({} by default); it is used for filtering of the retrieved state-

ments to particular contextual scopes only

- g — a Grounding object used for resolving the entity identifiers in the
store to lexical expressions in the retrieved relations (None by default,

meaning that the object is initialised according to the class cfg attribute)



218

EUREEKA Documentation

- ftlr — a dictionary supposed to restrict the relations only to particular

subject,object pairs (used when generating answers to single-statement
queries with variable predicate), supposed to be in the form of {s_1: (o_1,
d1), s2:(02,d2), ... , sm:(omn,dn)} ({} by default)

- prov — an integer representing a provenance filter for the retrieved rela-

tions (the default value —1 means that no filter is applied; for any other

value, only statements with the specified provenance are retrieved)

x output: a list of Relation objects representing the retrieved statements
— updateScores()

x description: updates relevance scores in the underlying store

* input:

- k — maximum number of iterations of the HITS algorithm cycle (10 by

default)

- minf — minimum predicate frequency for the relation weight computation

(25 by default)

- bulk_1limit — maximum number of statement score values to be updated

in a bulk insert (100000 by default)

* output: no output

— query()
x description: evaluates queries on the entity store
* input:

- gs — a sequence of (s,p,o0,d) statements, where d is a degree used

for degree-sign checks, and s,p,o is in the following acceptable forms
(0,a,b), (a,b,0), (0,c,None), (None,c,0), where 0 indicates what
one queries for and the a, b, c values represent the respective query

conditions

- partial — a boolean value determining whether the query evaluation

should be soft (i.e., taking also answer entities with fitness lesser than 1

into account) or not (True by default)



EUREEKA Documentation 219

- idx_only — a boolean value determining whether only answer entity in-

dices should be returned or not (True by default)

- omit — a list of integers representing identifiers of entities to be filtered

from the result ([] by default, meaning that nothing is filtered out)

- mxid — an integer representing maximum number of most relevant entities
to appear in the result (0 by default, meaning that all result entities are

returned)

- mxsz — an integer representing maximum number of most relevant state-
ments to appear in the result (0 by default, meaning that all result

statements are returned)

x output: either a list of integer values representing the answer entities, or a
list of Relation objects representing the query answer statements (sorted

by their relevance)

rules.py

The module is responsible for the import, representation and basic manipulation of rules.

The following classes are present in the module:

e Vertex — An object for representation of vertices of an antecedent graph, which is
crucial for the process of instantiating rule variables. The main attributes of the

class are:

— identifier — an integer representing a vertex identifier (i.e., the corresponding

rule antecedent entity identifier)

— subj_of — a list of (integer,integer,float) tuples representing the predicates,
objects and corresponding degrees, respectively, that reflect the objects bound
by the predicates to the identifier playing the role of a subject, with the degrees
as specified by the particular tuples

— obj_of —same as subj_of, only reflecting the subjects bound by the predicates
to the identifier playing the role of an object, with the degrees as specified by

the particular tuples

The main methods of the class are:



220 EUREEKA Documentation

— getID(O)
x description: returns the vertex identifier
* input:
- no input
x output: an integer representing the identifier
— subject0f )

x description: updates the subj_of list with a new tuple composed from the

input parameters (in the order specified in the list below)
* Input:
- p — an integer representing the predicate entity identifier
- o — an integer representing the object entity identifier
- d — a float representing the corresponding relation degree
* output: no output
— object0f ()

x description: updates the obj_of list with a new tuple composed from the

input parameters (in the order specified in the list below)
* input:
- 8 — an integer representing the subject entity identifier
- p — an integer representing the predicate entity identifier
- d — a float representing the corresponding relation degree
* output: no output
— getSuccessors()
x description: retrieves identifiers of successor vertices associated with self
* input:

- gr — a list of integers representing entity identifiers to be filtered out

from the result ([] by default, meaning no filtering is applied)



EUREEKA Documentation 221

* output: a list of integers representing the successor vertex identifiers

e Rule — An object representing rules (or complex queries with multiple variable

statements). The main attributes are:
— ruleid — an integer representing the identifier of the rule
— weight — a float representing the weight of the rule

— ante — a dictionary with integer keys and Entity object values, representing

the rule antecedent identifiers and the corresponding entities

— conseq — a dictionary with integer keys and Entity object values, representing

the rule consequent identifiers and the corresponding entities
The main methods of the class are:
— _eq_-0O

x description: an equality operator for rule comparison (by means of the
strong equality of the antecedent/consequent entities and equality of the

rule weight)
* Input:
- other — another Rule object
* output: a boolean value determining the (non)equality of self and other
— _me__Q)
x description: an inverse of the equality operator
* Input:
- other — another Rule object
% output: a boolean value determining the (non)equality of self and other
— setID()
x description: sets the rule identifier
* input:

- 1 — an integer representing the identifier to be set



222 EUREEKA Documentation

* output: no output
— getID()
x description: returns the rule identifier
* Input:
- no input
x output: an integer representing the identifier to be set
— setWeight ()
x description: sets the rule weight
* input:
- w — a float representing the weight to be set
* output: no output
— getWeight ()
x description: returns the rule weight
* Input:
- no input
* oulput: a float representing the rule weight
— getAnteGraph()

x description: constructs and returns the rule antecedent graph, implemented
as a dictionary mapping antecedent entity identifiers to the corresponding

Vertex objects
* Input:

- ground — a Grounding object (used for determining variable entity iden-

tifiers)

* oulput: a dictionary with integer keys and Vertex object values, represent-

ing the constructed antecedent graph

— getConnection()



EUREEKA Documentation 223

% description: returns a relation connection (i.e., a predicate identifier and

corresponding degree) between two antecedent variables

* Input:
- vl — an integer representing an antecedent entity identifier
- v2 — an integer representing an antecedent entity identifier

- direction — a string determining whether v1, v2 should be taken as
a subject and object, respectively, or the other way around; the ’so’,
os’ (’so’ is the default one) correspond to the particular options, re-

spectively, and any other options are ignored

x output: an (integer, float) tuple representing the connection predicate and

degree values
— setAntecedent ()
x description: sets a rule antecedent
* Input:
- m — an Entity object representing the antecedent
* output: no output
— getAntecedent ()
x description: returns a rule antecedent
* anput:

- 1 — an integer representing the identifier of the antecedent to be retrieved

(None by default); if nothing is specified, first available antecedent is
returned

* output: an Entity object representing the antecedent
— getAntecedents ()

x description: returns all rule antecedents

* input:

- no input



224 EUREEKA Documentation

x output: a list of Entity objects representing the antecedents
— setConsequent () beginitemize
— description: sets a rule consequent
— input:
* m — an Entity object representing the consequent
— output: no output
e getConsequent ()
— description: returns a rule consequent
— nput:

* 1 — an integer representing the identifier of the consequent to be retrieved
(None by default); if nothing is specified, first available consequent is re-

turned
— output: an Entity object representing the consequent
e getConsequents()
— description: returns all rule consequents
— input:
* no input

— output: a list of Entity objects representing the consequents

Apart of the classes, the module implements the following main function:
e loadRules()
— description: loads rules stored in a file
— nput:
x T — a string representing the path to the rule file
* g — a Grounding object to be used for parsing the rule file

x format — a string representing the format of the file to be parsed; ’n3’
and ’text’ options are accepted, where the former stands for thr N3 rule



EUREEKA Documentation 225

representation standard and the latter stands for an interal testing-only
EUREEKA plain text format (’n3’ is default)

— output: a list of Rule objects parsed from the file

kb.py

The module is responsible for the higher-level knowledge base representation, together
with the associated reasoning and querying services. A default entity aggregation func-
tion is implemented in the module:

e avgF()

— description: an arithmetic mean ordered weighted averaging operator imple-
mentation

— input:

x a — a list of arguments that implement an __add__() operator and can be
multiplied by a float

— output: a float representing the arithmetic mean of the arguments
The following classes are present in the module:

e KB — An object implementing the knowledge base functionalities on the top of the
Grouding mapping and Entities store database wrappers. The class has to be
initialised with the cfg parameter, which is a dictionary representing attribute,
value pairs parsed from a configuration file. The main attributes of the class are
as follows:

— cfg — a dictionary where the keys and values represent the configuration file
attributes and corresponding values, respectively; the class is supposed to
be initialised with the dictionary containing data parsed from a configuration
file, all the other attributes of the class (e.g., a rule set and specific Grounding
and Entities objects) are initialised accordingly then

— rules — a dictionary with string keys mapped to lists of Rule objects; the
keys are labels of particular rule sets associated with the knowledge base,
while the lists represents the rule sets themselves; a default RDFS entailment
rule set is loaded under the >default’ key every time the class is initialised

The main methods of the class are:
— loadRules()

x description: loads rules from a file or from a default internal represen-
tation of RDFS entailment rules and sets the corresponding self.rules
key, value pair



226 EUREEKA Documentation

* input:
- desc — the rule set description label (’default’ by default)

- path — the path to the rule file (None by default, meaning that the
default internal representation of RDFS entailment rules is loaded)

- format — a string representing the format of the file to be parsed; ’n3”
and ’text’ options are accepted, where the former stands for the
N3 rule representation standard and the latter stands for an interal
testing-only EUREEKA plain text format (’n3’ is default)

* output: no output

— getRules()
x description: retrieves rules according to a given description label
* input:

- desc — a string representing the description of the rule set to be
retrieved (’default’ by default)

x output: a list of Rule objects
— load()

x description: imports serialised statements from an N3 file (assumed to be
in the EUREEKA data interchange format, see Section A.2.4 for details)

* Input:
- path — a string representing the path to the N3 file
* output: no output
— add(O
x description: adds a relation (i.e., a statement) to the knowledge base
* Input:
- r —a Relation object
* output: no output
— set()

x description: sets a new entity into the underlying store, overwriting any
possible former content with the same identifier

* input:

- m— an Entity object to be set



EUREEKA Documentation 227

* output: no output
— get()

x description: retrieves an entity from the knowledge base, either as an
Entity objects, or as a list of Relation objects

* input:

- x — an integer representing the identifier of the entity to be retrieved,
or a string representing the lexical expression associated with the
entity (or entities) to be retrieved

- scope — an integer representing the lexical scope of the string input
expression (None by default)

- get_rels — a boolean determining whether a list of Relation objects
or an Entity should be returned (False by default)

* output:
— getAl1()
x description: retrieves all entities from the knowledge base
* input:
- no input
x oulput: a list of Entity objects
— ask()

x description: evaluates a query in the EUREEKA human-centric query
language

* Input:
- q — a string representing the query
x output: a list of Relation objects representing the answers
— updateScores()
x description: updates relevance scores in the underlying store
* Input:

- k — maximum number of iterations of the HITS algorithm cycle (10
by default)

- minf — minimum predicate frequency for the relation weight compu-
tation (25 by default)



228 EUREEKA Documentation

* output: no output
— expandRules ()

x description: processes an input rule set in order to make it acceptable by
the algorithms described in Chapter 6 (essentially expanding those with
relation variables)

* input:

- rule_set — a list of Rule objects representing the rule set to be
processed

x output: a list of Rule objects representing the expanded input rule set
— execute()

% description: implementation of the single rule (or query) execution algo-
rithm

* Input:
- r — a Rule object representing the rule or query to be evaluated

- partial — a boolean determining whether the evaluation should be
soft or crisp (True by default)

- max_res — an integer representing the maximum number of single
variable instance candidates to be retrieved from a database at once

(1000 by default)

- contexts — a dictionary with integer keys and values, representing
the contextual filtering of the result ({} by default, meaning that no
filtering is applied)

- focus — a list of integers representing the focus entities to be set as
traversal root ([] by default, meaning no focus entities are applied
for the traversal)

- itlim — an integer representing maximum number of the algorithm
iterations within one execution (1000 by default)

x output: a list of Relation objects representing the rule materialisation
or query answers

— apply O
x description: evaluates a rule set on the knowledge base
* Input:

- rules — a list of Rule objects to be evaluated



EUREEKA Documentation 229

- partial — a boolean determining whether the evaluation should be
soft or crisp (True by default)

- max_res — an integer representing the maximum number of single
variable instance candidates to be retrieved from a database at once

(1000 by default)

- contexts — a dictionary with integer keys and values, representing
the contextual filtering of the result ({} by default, meaning that no
filtering is applied)

- upd_only — a boolean value determining if the knowledge base should
be updated according to the evaluation results, or if only the results
should be returned (False by default)

x output: a list of Relation objects representing the evaluation results
— extend ()

x description: extends the sets of statements associated with input entities
by means of applying a particular rule set to them and the knowledge
base content

* input:

- to_extend — a list of integers representing the identifiers of entities
to be extended

- desc — a string representing the description label of the rule set to
be applied (’default’ by default)

- partial — a boolean determining whether the evaluation should be
soft or crisp (True by default)

- max_res — an integer representing the maximum number of single

variable instance candidates to be retrieved from a database at once
(1000 by default)

- contexts — a dictionary with integer keys and values, representing
the contextual filtering of the result ({} by default, meaning that no
filtering is applied)

- itlim — an integer representing maximum number of the algorithm
iterations within one execution (25 by default)

* output: a list of Relation objects representing the results
— closure()

x description: realises a full knowledge base closure according to a given
rule set



230 EUREEKA Documentation

* input:

- desc — a string representing the description label of the rule set to
be applied (’default’ by default)

- partial — a boolean determining whether the evaluation should be
soft or crisp (True by default)

- max_res — an integer representing the maximum number of single
variable instance candidates to be retrieved from a database at once
(1000 by default)

- contexts — a dictionary with integer keys and values, representing
the contextual filtering of the result ({} by default, meaning that no
filtering is applied)

* output: no output

srvlib.py

The module provides an object wrapper of the essential EUREEKA functionalities that
is to be used by the EUREEKA daemon (see Section A.2.3 for details). The following
classes are present in the module:

e EureekaServer — An object implementing a DBus IPC wrapper of the basic EU-
REEKA functionalities. The class has to be initialised with two parameters —
object_path and config. The former is used for initialisation of the DBus service
object, while the latter initialises the cfg class attribute. The attributes of the
class are:

— cfg — a dictionary where the keys and values represent the configuration file
attributes and corresponding values, respectively; the class is supposed to be
initialised with the dictionary containing data parsed from a configuration
file, all the other attributes of the class are initialised accordingly then

— kbase — the knowledge base (a KB object) to be exposed via the server wrap-
per; initialised using the cfg value

The main methods of the class are:
— shutdown ()
x description: shuts the DBus EUREEKA server down
* input:
- no input

* output: no output



EUREEKA Documentation 231

— askQuery ()

x description: evaluates a query in the EUREEKA human-centric query
language

* Input:
- q — a string representing the query

% output: a list containing two strings; the second string is a RDF /XML
representation of the query answer statements (in the EUREEKA inter-
change format converted from N3 to RDF/XML), the first string is one
of °C’, ’Q’, determining whether the query result relates to a single
concept retrieval or a regular query answer, respectively (this distinction
is used in the result rendering by the CORAAL application, other ap-
plications may choose to use only the RDF /XML result representation,
though)

— extQuery()

x description: same as askQuery (), only the results are extended according
to the default rule set associated with the underlying knowledge base

* input:
- q — a string representing the query
x output: same as for askQuery ()
— getPForS()

x description: returns a list of possible predicate terms for the given subject
term

* Input:
- subj — a string representing the input term
x output: a list of strings representing the retrieved predicate terms
— getSForP()

x description: returns a list of possible subject terms for the given predicate
term

* Input:
- pred — a string representing the input term
x oulput: a list of strings representing the retrieved subject terms

— get0ForP()



232 EUREEKA Documentation

x description: returns a list of possible object terms for the given predicate
term

* input:
- pred — a string representing the input term
x output: a list of strings representing the retrieved object terms
— get0ForSP()

x description: returns a list of possible object terms for the given subject
and predicate term

* input:
- subj — a string representing the input subject term
- pred — a string representing the input predicate term
x output: a list of strings representing the retrieved object terms
— getPFor0()

x description: returns a list of possible predicate terms for the given object
term

* input:
- obj — a string representing the input term
x output: a list of strings representing the retrieved predicate terms
— getSFor0P()

x description: returns a list of possible subject terms for the given object
and predicate term

* Input:
- obj — a string representing the input object term
- pred — a string representing the input predicate term
x output: a list of strings representing the retrieved subject terms
— getPForS0()

x description: returns a list of possible predicate terms for the given subject
and object term

* Input:

- subj — a string representing the input subject term



EUREEKA Documentation 233

- obj — a string representing the input object term
x output: a list of strings representing the retrieved predicate terms
— getSynonyms ()
x description: returns a list of all synonyms associated with a term
* Input:
- t — a string representing the input term

x output: a list of strings representing the synonyms

util.py

The module defines various global constants and provides auxiliary services for the func-
tional parts of EUREEKA. For instance, default RDFS entailments rules are defined
here, as well as features like lemmatisation of compound phrases. We do not provide
detailed documentation of the functions corresponding to the auxiliary features, as they
are not primarily supposed to be called by users, but rather by other EUREEKA mod-
ules. The documentation of the functions can be found in the source of the util.py
module, though.

A.2.2. Scripts

The EUREEKA scripts realise the communication wrappers outlined in Section 7.2.4
of Chapter 7. Apart of these, EUREEKA installation package contains also auxiliary
scripts for input pre-processing. Usage details of the scripts are provided in the follow-
ing paragraphs. Note that a special attention has to paid to passing any multi-word
arguments to any of the scripts. For instance, on most UNIX and Linux systems, an
argument containing spaces has to be enclosed in double quotes (i.e., the " character)
in order to be processed correctly by the scripts.

ext.py

The script is contained in the scripts directory of the EUREEKA installation (package).
It serves for extracting statements from a set of text files. The result of the extraction
is a set of N3 files that contain statements (in the EUREEKA data interchange format)
extracted from the corresponding input files.

The input files are assumed to be in the XML format, adhering to the following
simple structure:



234 EUREEKA Documentation

<?xml version="1.0" encoding="UTF-8"7>
<xml>

<doc title="DOCUMENT TITLE">
DOCUMENT TEXT

</doc>

</xml>

Plain text files can be transformed into this structure using the txt2xml.py script
described below. PDF files can be transformed similarly, only applying the pdf2txt.py
script before txt2xml.py.

The following command line arguments can be used with the script:

e [-h | --help] — no argument value necessary, results in printing a help message
and terminating

e [-c | --config] — specifies an alternative configuration file (by default, the file
eureeka.cfg in the current working directory is loaded)

e [-i | --input] — specifies an alternative path containing the input files (by de-
fault, the TEXT attribute value from the configuration file is used)

e [-o | --output] — specifies an alternative path for storing the output files (by
default, the N3_IN attribute value from the configuration file is used)

kbm.py

The script is contained in the scripts directory of the EUREEKA installation (package).
It serves for initialisation and updates of the EUREEKA knowledge base, as well as for
relevance-based score computation.

The following command line arguments can be used with the script:

e [-h | --help] — no argument value necessary, results in printing a help message
and terminating

e [-c | --config] — specifies an alternative configuration file (by default, the file
eureeka.cfg in the current working directory is loaded)

e [-m | --import] — no argument value necessary, results in importing statements
from the N3 files in the N3_IN directory specified by the configuration file (assumed
to be in the EUREEKA data interchange format)

[-n | --input] — specification of an alternative path for the statement import

[-i | --init] — no argument value necessary, results in initialisation of the
knowledge base



EUREEKA Documentation 235

[-d | --dump] — no argument value necessary, results in a database dump of the
knowledge base into the DB_DUMP directory specified by the configuration file

[-u | --update-scores] —no argument value necessary, results in (re)computation
of the relevance-based entity scores

que.py

The script is contained in the scripts directory of the EUREEKA installation (package).
It serves for the knowledge base querying and entity retrieval.

The following command line arguments can be used with the script:

[-h | --help] — no argument value necessary, results in printing a help message
and terminating

[-c | --config] — specifies an alternative configuration file (by default, the file
eureeka.cfg in the current working directory is loaded)

[-g | --get] — specification of a term corresponding to an entity or entities to
be retrieved; the results are stored in an N3 file in the N3_0UT directory specified
by the configuration file; the file is in the EUREEKA data interchange format and
its filename (without the extension) is a SHA1 sum of the query string

[-q | --query] — specification of a query to be executed on the knowledge base;
the results are stored in an N3 file in the N3_0UT directory specified by the config-
uration file; the file is in the EUREEKA data interchange format and its filename
(without the extension) is a SHA1 sum of the query string

[-x | -—extend] — same as the above option, however, the query results are
extended according to a default rule set associated with the knowledge base

pdf2txt.py

The script is contained in the scripts directory of the EUREEKA installation (package).
It serves for converting PDF files into plain text files, making use of a pure-Python PDF
processing library pdfminer.

The script is to be launched as:

pdf2txt.py dirl dir2

where dir1 is the path to a directory where the PDF files to be converted are stored and
dir2 is the path to a directory where the converted text files (with the same filename,

only

having the .txt extension) are to be stored.



236 EUREEKA Documentation

txt2xml.py

The script is contained in the scripts directory of the EUREEKA installation (package).
It converts plain text files into XML with title annotations described in the section
dealing with the ext.py script. The document titles to be used in the XML files are
selected according to a mapping parsed from a file specified in a command-line argument.
By default, the filename of the file begin converted is selected.

The following command line arguments can be used with the script:

e [-h | --help] — no argument value necessary, results in printing a help message
and terminating

e [-d | --dir] — specification of the input directory containing the plain text files
to be converted in situ (i.e., the converted XML files are stored in the same direc-
tory)

e [-m | --map] — specification of a path to the file containing the filename to title

mapping (the file is supposed to contain rows of the corresponding filename, title
tuples divided by the tabulator character)

A.2.3. Daemon

The DBus daemon (or server) is located in the scripts directory of the EUREEKA
installation (package). The daemon is launched by the eureekad.py script, which ini-
tialises the EureekaServer class (located in the srvlib.py module) and an binds the
class with an associated DBus connection (a system bus). It is recommended to execute
the script in the background, so that it runs indefinitely.

The following command line arguments can be used with the eureekad.py script:

e [-h | --help] — no argument value necessary, results in printing a help message
and terminating

e [-c | --config] — specifies an alternative configuration file (by default, the file
eureeka.cfg in the current working directory is loaded)

The daemon can be stopped by terminating the corresponding process in the current
implementation (it safely dies then and can be relaunched without any problems).

When the daemon is running, any application that can access the corresponding
DBus inter-process communication bus can call the EureekaServer class, pass input
parameters to them (following the signatures of the particular methods) and get their
outputs. The bus name of the bus on which EUREEKA exposes its functionalities is
ie.deri.sw.smile.koraal.dbus.eureeka and the corresponding DBus object address
is /ie/deri/sw/smile/koraal/dbus/eureeka. Note that the access of particular ap-
plications to the EUREEKA bus has to be configured in the DBus policy settings.



EUREEKA Documentation 237

The DBus signatures of the methods that can be accessed via the EUREEKA daemon
are as follows:

e askQuery()

— input signature: ’s’

— output signature: ’as’
o extQuery()

— input signature: ’s’

— output signature: ’as’
e getPForS()

— input signature: ’s’

— output signature: ’as’
e getSForP()

— input signature: ’s’

— output signature: ’as’
e getOForP()

— input signature: ’s’

— output signature: ’as’
e get0OForSP()

— input signature: ’ss’

— output signature: ’as’
e getPFor0()

— input signature: ’s’

— output signature: ’as’
e getSFor0P()

— input signature: ’ss’

— output signature: ’as’
e getPForS0()

— input signature: ’ss’

— output signature: ’as’



238

EUREEKA Documentation

getSynonyms ()
— input signature: ’s’

— output signature: ’as’

A.2.4. Data Interchange Format

The data interchange format specification is a pretty straightforward serialisation of
the Relation object defined in the storage.py module. The particular relations (i.e.,
statements from which the EUREEKA entities consist) are stored as descriptions in the
N3 format. A generic description is as follows:

DESCPREF: DESC_ID

EUPREF:hasCertainty "D""“<http://www.w3.org/2001/XMLSchema#float>;
EUPREF:hasObject "OBJ";

FUPRFEF :hasPredicate "PRED";

EFEUPREF :hasProvenance "PROV_ID : PROV_TIT”;

EUPREF:hasScore "S"~“<http://www.w3.org/2001/XMLSchema#float>;
EUPREF:hasSubject "SUBJ";

EUPREF:CTX NAME_ 1 "CTX_VALUE_1";

FEUPREF: CTX_NAME_N "CTX_VALUE_N"

The meaning of the particular elements and expressions in the description is:

EUPREF — a namespace prefix of the EUREEKA RDF presentation elements
(<http://ontologies.smile.deri.ie/eureeka/presentation>)

DESCPREF — a namespace prefix of the description (when serialising statements
from EUREEKA, the prefix is automatically generated from the EUPREF value;
applications may choose to use arbitrary prefixes, though)

has* — predicates having the obvious lexical representations associated with the
statement as values (string literals); two predicates deserve a special remark,
though:

— the hasScore value represents either a relevance-based score of the statement
(when the statement is retrieved from an EUREEKA knowledge base), or a
combination of the general relevance-based score derived from the knowledge
base content and particular relevance of the statement to a query (when the
statement represents a query answer); the values can be used for sorting the
statement by applications in either case; zero or one hasScore predicate may
occur in a single statement (zero occurrence meaning that a statement has
no score associated with it)



EUREEKA Documentation 239

— the value of the hasProvenance predicate is a string with a special syntax
representing the provenance identifier (usually a SHA1 sum of the title in
the current EUREEKA applications) and the corresponding provenance doc-
ument title, separated by the ’:’ character; zero or multiple hasProvenance
predicates may occur in a single statement representation

o CTX NAME i, CTX_VALUE i — name and value of a context associated with
a statement; zero or multiple such predicates may occur in a single statement
representation

Apart of the data interchange format specified above, EUREEKA can import rules
in the N3 format. A description of how to represent rules in N3 is provided for instance
at http://dig.csail.mit.edu/2007/Talks/0110-rules-tbl. Note that the N3 rule
representation does not currently offer any consensual means for representing degrees,
thus the degrees and weights of the rules represented in N3 and imported into EUREEKA
are supposed to be equal to 1.

A.2.5. Examples

In the following, we provide a simple example of real data processed by EUREEKA.
The data are taken from a testing case, processing a corpora of scientific news articles.
Note that a more comprehensive, realistic and, perhaps most importantly, user friendly
way of browsing data processed by EUREEKA is the CORAAL application (see http:
//coraal.deri.ie:8080/coraal/ and also Chapter 8).

In the following, a sample of processed text is provided.

<?xml version="1.0" encoding="UTF-8"7>

<xml>

<doc title="Bacteria remove gold from soil and deposit it on grains
where they live, scientists say">

Australian scientists have found the strongest evidence so far that
bacteria play a key role in forming gold grains and nuggets. They
have found bacteria that remove gold from the soil and deposit pure
grains of it around them. Researcher Dr Frank Reith from the CRC

for Landscape Environments and Mineral Exploration, and colleagues

gathered their evidence at two separate mines and publish their results
today in the journal Science. At the Tomakin mine on the south coast

of New South Wales and the Hit or Miss mine in tropical north Queensland,
most gold is hidden away in quartz veins, in amounts that are invisible
even to high-powered microscopes. But the soil above the mines also
contains grains and nuggets of gold that have somehow found their

way out of the quartz. "There are a probably a lot of processes
involved," Reith says.


http://dig.csail.mit.edu/2007/Talks/0110-rules-tbl
http://coraal.deri.ie:8080/coraal/
http://coraal.deri.ie:8080/coraal/

240 EUREEKA Documentation

He and other scientists have long suspected that bacteria play a
part, but it’s an idea that has generated some scepticism. To test
the theory, Reith sifted the soil above the mines and collected gold
grains 0.1-2.5 millimetres across, and then subjected them to several
experiments. First, Reith looked at the grains under a high-powered
electron microscope to confirm that they contained bacteria-shaped
bubbles of gold. "They’re little lumps on the surface," Reith says.

Next, he looked for organic matter on the grains, as evidence that
bacteria had been growing on their surfaces. Finally, he used a
technique called polymerase chain reaction to look for bacterial

DNA on the surfaces of the grains to show that living bacteria are
still there. "The DNA would have degraded if the bacteria weren’t
around any more," Reith says. About 807 of the grains had living
bacteria on them, Reith says. And the only bug that was found on

all those positive samples was Ralstonia metallidurans. "These grains
come from areas that are almost at the opposite ends of Australia,"
Reith notes. "We were pretty happy with that." Reith thinks the
Ralstonia bacteria play an important role in the microbial ecosystem
in soil, helping to rid it of the soluble gold that most other species
find toxic. "This is the guy whose job it is to get the toxic gold
out of the environment so the other bacteria can live a happy life,"
he says. In the future, the gold-loving bugs could prove a boon

to industry, Reith says. Perhaps they could be used to improve gold
processing, or even be useful as a marker for the presence of gold
that’s otherwise invisible.

</doc>
</xml>

The corresponding N3 file with extracted statements is as follows (the dots in the
prefixes are a shorthand for the address specified in the prefix _4):

Oprefix _3:
<http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/>.
Oprefix _4:
<http://ontologies.smile.deri.ie/eureeka/presentation>.
Oprefix _5:
<http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/3>.
Oprefix _6:
<http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/7>.
Oprefix _7:

<http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/474715855>.

-5:¢c34108884d153e43e6a61023a70c04081d0a713
_4:hasCertainty "0.259098821438""~"<http://www.w3.0rg/2001/XMLSchema#float>;


http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/
http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/3
http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/7
http://.../01a290b541d4cbfd4ae968b2ea2c7861c6044c22/474715855

EUREEKA Documentation 241

_4:hasObject "grain";

_4:hasPredicate "contain";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "mine".

_7:b£4799fce2£6300388£9780dac3f4eb

_4:hasCertainty "0.0997571651644"~"<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "0.1-2.5 millimetre";

_4:hasPredicate "collect";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "mine".

6:£4655c6122c£833df7e698b6797bd49fd031a2e

_4:hasCertainty "-0.323873526797"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "grain";

_4:hasPredicate "type";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "nugget of gold".

-3:¢02235dd3c41756c0d555ec4cbafd194737ale74

_4:hasCertainty "0.350857896689"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "bacteria";

_4:hasPredicate "live";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "grain".

-3:¢c209336e392041532e£82d2d276693945cc90853

_4:hasCertainty "0.132297933821"""<http://www.w3.0rg/2001/XMLSchema#float>;
_4:hasObject "nugget of gold";

_4:hasPredicate "contain";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "mine".

_3:¢c4547ad70473d5287e9b73eedd7edab6d8cfbO08c

_4:hasCertainty "-0.323873526797"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "nugget of gold";



242 EUREEKA Documentation

_4:hasPredicate "type";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasSubject "grain".

The sample above does not contain any contexts. An example of an extracted state-
ment with actual context is as follows:

_3:2058d£34b82ee96be3b787db72e7£38266b88c0e

_4:hasCertainty "0.106478109628"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "foray";

_4:hasPredicate "make";

_4:hasProvenance "fla3ea6eeb83d13clebfdbadf74d62ccfc2bcae0 : This

fishy creature, which was up to 3 metres long, walked on land with

fins that have arm-like bones";

_4:hasSubject "Tiktaalik fish";

4:in "search of food";

4:onto "land".

Let us add the following statements (a sample from a simple testing “metal ontology”)
to the knowledge extracted from the article about gold and bacteria:

_0:stmt1l

_4:hasCertainty "1.0"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "raw gold"; _4:hasPredicate "type"; _4:hasProvenance
"54ddd54fbff1cd40bd723fa89d40e3ce21cdf2a7 : metal ontology"
_4:hasSubject '"nugget of gold".

_0:stmt2
_4:hasCertainty "1.0"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "raw metal"; _4:hasPredicate "type"; _4:hasProvenance

"54ddd54fbff1cd40bd723fa89d40e3ce21cdf2a7 : metal ontology"
_4:hasSubject "raw gold".

_O0:stmt3
_4:hasCertainty "1.0"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "transitive"; _4:hasPredicate "type"; _4:hasProvenance

"54ddd54fbff1cd40bd723fa89d40e3ce21cdf2a7 : metal ontology"
_4:hasSubject "type".

Together with the rule specifying the semantics of transitive relations:
?r :type :tramsitive. 7x 7r 7y. 7y 7r 7z => 7x Yr 7z.
we can infer the following statement:

_0:stmt4
_4:hasCertainty "1.0"""<http://www.w3.org/2001/XMLSchema#float>;



EUREEKA Documentation 243

_4:hasObject "raw metal"; _4:hasPredicate "type"; _4:hasProvenance
""767167373¢c26954db00c50d8d256309b5439f032 : inferred"
_4:hasSubject "nugget of gold".

Finally, submitting the query
? : NOT type : nugget of gold
to EUREEKA the following set of statements is returned:

_3:c4547ad70473d5287e9b73eedd7edab6d8cfb9O08c

_4:hasCertainty "-0.323873526797"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "nugget of gold";

_4:hasPredicate "type";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasScore "1.0"""<http://www.w3.org/2001/XMLSchema#float>;

_4:hasSubject "grain".

-3:¢02235dd3c41756c0d555ec4cbaf4194737ale74

_4:hasCertainty "0.350857896689"""<http://www.w3.org/2001/XMLSchema#float>;
_4:hasObject "bacteria';

_4:hasPredicate "live";

_4:hasProvenance "01a290b541d4cbfd4ae968b2ea2c7861c6044c22 : Bacteria
remove gold from soil and deposit it on grains where they live, scientists
say";

_4:hasScore "1.0"""<http://www.w3.org/2001/XMLSchema#float>;

_4:hasSubject "grain".

An application for processing the query results may either render all statements, or only
the one containing the query term?, or return only the subject representing the actual
query answer.

2This would hide the other statement, which represents a realistic example of noise in EUREEKA, as
it is rather non-sensical.



