
Hamiltonian-Inspired
Optimization in Neural

Networks

Javier Marín
javier@jmarin.info

The optimization problem

Optimization in machine learning seeks to find parameters 𝜃∗ that minimize an objective function

𝜃∗ = argmin 𝑓 𝑥 for 𝜃 ∈ Ω

Key challenges include non-convexity, high dimensionality, and ill-conditioning of the objective
function.

Common approaches:
• First-order methods (e.g., Gradient Descent)
• Second-order methods (e.g., Newton's method)
• Momentum-based methods (e.g., Nesterov Accelerated Gradient)
• Adaptive methods (e.g., Adam)
• Hamiltonian-inspired methods (leveraging principles from classical mechanics)

Each approach offers trade-offs between computational efficiency, convergence speed, and ability to
navigate complex optimization landscapes.

Hamiltonian-Inspired Optimization in Neural Networks 2

Non-convex optimization
The generic form of an analytic optimization problem is the following:

min
"∈ℝ!

𝑓 𝑥 for 𝑥 ∈ 𝒞

Where 𝑥 is the variable of the problem, 𝑓:ℝ% ⟶ℝ is the objective function of the problema and 𝒞 ∈
ℝ% is the constraint. While the constraint set 𝒞 is often assumed to be convex, we extend our
consideration to non-convex sets. This extension is important for many machine learning problems.

In traditional optimization, we use the gradient operator ∇𝑓(𝑥) and the projection operator
∏𝒞(4) . These are fundamental to our approach, but we will modify their use in the Hamiltonian
framework.

The standard Projected Gradient Descent (PGD) algorithm for solving the generic form above is:

𝑥(𝑡 + 1) = ∏𝒞 𝑥(𝑡) − 𝜂∇𝑓(𝑥(𝑡)

wehere 𝜂 the step size. Our Hamiltonian approach will build upon this foundation.
Hamiltonian-Inspired Optimization in Neural Networks 3

Introduction to Hamiltonian Mechanics

Hamiltonians in physics describe systems that conserve total energy, potentially leading to more
stable optimization trajectories. In quantum mechanics, Hamiltonians govern the evolution of
wavefunctions, exploring all possible states. Similarly, in optimization, this could lead to better
exploration of the parameter space.

In a frictionless pendulum the total
energy, it is the sum of potential
and kinetic energy is conserved
trough its evolution.

Hamiltonian-Inspired Optimization in Neural Networks 4

Introduction to Hamiltonian Mechanics

𝑞̇ = 𝐻% , 𝑝̇ = −𝐻&

̇𝑞' =
𝜕𝐻
𝜕𝑝'

(𝑡, 𝑞, 𝑝) , 𝑝(= −
𝜕𝐻
𝜕𝑞(

(𝑡, 𝑝, 𝑞)

A Hamiltonian can be defined with the following 2𝑛 ordinary differential equations of motion:

where 𝐻 = 𝐻(𝑡, 𝑞, 𝑝) is the Hamiltonian, 𝑞 and 𝑝 are the position and momentum vectors of a
mechanical system with 𝑛 degrees of freedom, and 𝑡 is the time.
In isolated systems, the Hamiltonian system 𝐻(𝑞, 𝑝, 𝑡) remains constant over time, representing the
“total energy” of the system

𝑑𝐻
𝑑𝑡 =

𝜕𝐻
𝜕𝑡 + 𝐻,𝐻 =

𝜕𝐻
𝜕𝑡 = 0

where { , } denotes the Poisson bracket operator.
Hamiltonian-Inspired Optimization in Neural Networks 5

Hamiltonian Systems in ML

Hamiltonian-Inspired Optimization in Neural Networks 6

Symplectic Geometry: The Hidden
Structure of Dynamical Systems

𝑑𝑞
𝑑𝑡

=
𝜕𝐻
𝜕𝑝

𝑑𝑝
𝑑𝑡

=
𝜕𝐻
𝜕𝑞

Neural network optimization can be analyzed as a trajectory in parameter space of a Hamiltonian system.
Equations of motion in a Hamiltonian system:

In most practical applications, we can't solve these equations analytically. Symplectic integrators are
numerical methods specifically designed to solve Hamiltonian systems while preserving their key
geometric properties, particularly the symplectic structure. This is why symplectic geometry is important
for us.

We can define a Hamiltonian in an optimization space 𝐻: ℝ)×ℝ) → ℝ as 𝐻(𝑞, 𝑝) = 𝑇(𝑝) − 𝑉(𝑞),
where 𝑞 represents the current state of the model parameters (𝜃), analogous to position in mechanical
systems, and 𝑝 is the difference between consecutive parameter states, 𝑝(= 𝑞{(+,} − 𝑞(. 𝑇(𝑝) is the
“kinetic energy” term representing the cost of changing the model parameters, and 𝑉(𝑞) is the “potential
energy” term representing the loss function of the current model state.

Hamiltonian-Inspired Optimization in Neural Networks 7

Symplectic Geometry

Symplectic integrators are numerical methods specifically formulated to solve Hamiltonian
systems while preserving their fundamental geometric features, particularly the symplectic
structure. In simpler terms, these tools help scientists make very accurate predictions about
how things move in space or in other systems where energy is conserved, even when
they're looking far into the future. They're like the difference between a map that stays
accurate for a short walk and one that can guide you accurately on a journey around the world.

Symplectic structures are fundamental geometric objects in differential geometry and classical
mechanics, and support Hamilton's equations of motion by explaining the connection between
position and momentum in physical systems. In simple terms, symplectic structures are
specific rules that define how things move in physics, similar to an equation for motion.
Poincaré’s Theorem states that any solution to a Hamiltonian system is a symplectic flow, and
it can also be shown that any symplectic flow corresponds locally to an appropriate Hamiltonian
system.

Hamiltonian-Inspired Optimization in Neural Networks 8

Symplectic Geometry

Starts at rest

Achieves peak velocity at the base

Momentarily stops and reverses

Peak velocity again

Process starts again

A frictionless pendulum is one of the
most basic forms of a symplectic space.
Velocity and angle are the two
components that describe the
movements of a pendulum. We can
map this in a 2D space as a trajectory.

Hamiltonian-Inspired Optimization in Neural Networks 9

Symplectic Euler method

𝑝!"# = 𝑝! − Δ𝑡 ×
$%
$&
(𝑞!, 𝑝!"#)

In local coordinates (𝑞(, 𝑝(), a standard symplectic form can be written as:

The simpler form of a symplectic integrator that aligns more closely with our implementation would be
the Symplectic Euler method. This is a first-order symplectic integrator and is one of the simplest
forms of integration. For a Hamiltonian system with position 𝑞 and momentum 𝑝, the Symplectic
Euler method can be written as:

𝑞!"# = 𝑞! − Δ𝑡 ×
$%
$(
(𝑞!, 𝑝!"#)

Where Δ𝑡 is the time step (analogous to the learning rate in optimization).

𝜔 = ∑(𝑑𝑞(∧ 𝑑𝑝(

Hamiltonian-Inspired Optimization in Neural Networks 10

For optimization functions that are 𝛼-strongly convex and 𝛽-strongly smooth, we have:

𝛼
2
𝑥 − 𝑦 . ≤ 𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥), 𝑦 − 𝑥 ≤

𝛽
2

𝑥 − 𝑦 .

Although our approach focuses on non-convex functions, these characteristics enhance our analysis
of function landscapes.

Traditional convergence analysis for PGD shows that for convex, Lipschitz functions:

1
𝑇

T
/
𝑓(𝑥(𝑡)) − 𝑓(𝑥∗) ≤ 𝑂

1
𝑇

We will adapt similar approaches to analyze our Hamiltonian method.

Hamiltonian Optimizer

Hamiltonian-Inspired Optimization in Neural Networks 11

Hamiltonian Optimizer
For non-convex problems, PGD can be modified to use local properties such as restricted strong
convexity. Our Hamiltonian method will provide an alternative approach to handling non-convexity.
We have already seen the expression for functions that are 𝛼-strongly convex and 𝛽-strongly smooth.
This concept will underpin our understanding of the local features of our potential energy function.

The optimization problem is reformulated as finding the stationary points of the Hamiltonian

𝜕𝑥
𝜕𝑝 = −

𝑑𝑝
𝑑𝑡

𝜕𝐻
𝜕𝑝 = −

𝑑𝑥
𝑑𝑡

Note: While not directly used, the concept of optimizing over multiple variables is relevant to our
approach, as we will alternate between position and momentum updates.

Hamiltonian-Inspired Optimization in Neural Networks 12

From Gradient Optimizer to Hamiltonian Optimizer
Function value 𝑓 𝑥 → Potential energy, 𝑉(𝑥)

Rate of parameter change 𝑑𝜃→ Kinetic energy, 𝑇(𝑥)

Momentum based approach translates to
the algorithm being able to "roll past"
small local minima in the loss landscape,
potentially finding better global or local
minima that simple gradient descent
might miss. The conservation of the
Hamiltonian (total energy) ensures that
the system maintains this exploratory
behavior throughout the optimization
process, unlike in some other methods
where the exploration gradually
decreases.

Hamiltonian-Inspired Optimization in Neural Networks 13

Algorithm 1 Hamiltonian (Symplectic) Optimizer

Require: Learning rate η, momentum coefficient β, epsilon
ε
for each iteration do
for each parameter θ in model parameters do
g ← ∇L(θ) // Compute gradient
v ← state[θ]['momentum'] // momentum

// Update momentum
v ← β × v + (1 − β) × g

// Compute Hamiltonian
K ← 0.5 × v ² // Kinetic energy
V ← 0.5 × g ² // Potential energy
H ← K + V // Hamiltonian

// Update parameter
θ ← θ − η × v / (√H + ε)

// Store updated momentum
state[θ]['momentum'] ← v

end for
end for

Momentum update:
𝑚! = 𝛽 ×𝑚 !"# + 1 − 𝛽 × 𝑔!

- We add a momentum decay factor 𝛽

Hamiltonian:
- We separate the computation of the Hamiltonian as kinetic +
potential energy

Parameter update:

𝜃! = 𝜃!"# −
𝜂×𝑚!

𝐻! + 𝜀
- We normalize by the square root of the Hamiltonian 𝐻! + 𝜀

𝑚 − momentum, the same as 𝑝 in 𝐻(𝑞, 𝑝) 𝜂 − learning rate
𝐻 − Hamiltonian, 𝐻(𝑞, 𝑝) 𝜀 − small constant for stability
𝜃 − parameters, the same as 𝑞 in 𝐻(𝑞, 𝑝)) 𝑔 − gradient

Hamiltonian (Symplectic) Optimizer

Hamiltonian-Inspired Optimization in Neural Networks 14

Hamiltonian Loss Function

𝑅 : Regularization term – analogous
to Potential energy (𝑉)

𝐻'011(𝜃) = 𝐿2314 (𝜃) + 𝜆 × 𝑅(𝜃)

𝐿"#$% : Base loss function (e.g.,
cross-entropy) - analogous to
kinetic energy (𝑇)

Hamiltonian loss is the combination of a standard loss 𝐿2314 (𝜃), plus a regularization term,
𝜆 × 𝑅 𝜃 .

Hamiltonian-Inspired Optimization in Neural Networks 15

*𝑅 𝜃 penalizes large parameter values, promoting smoother solutions. In mechanical systems, high potential
energy can lead to large oscillations. By penalizing high potential energy, we're essentially damping these
oscillations, leading to smoother trajectories in parameter space.

𝑅 𝜃 =
1
2
𝜃(.

Regularization term

𝑇 𝑝 =
1
2
𝑝 .

Potential energy in
Hamiltonian Systems

Hamiltonian Loss Function

Algorithm 2 Hamiltonian Loss Function

Require: Model outputs, true labels, model parameters θ, regularization coefficient λ
L&'() ← CrossEntropy(outputs, labels) // Compute base loss
R ← 0.5 × ∑ θ* ² // Compute regularization term
for each parameter θ*in model parameters do

R ← R + 0.5× θ* +

end for
H,-((← L&'() + λ × R // Compute total Hamiltonian loss

return H,-((
Hamiltonian-Inspired Optimization in Neural Networks 17

Combining Hamiltonian Optimizer and Hamiltonian Loss

Symplectic Euler method

Feedback
Forward pass

Gradients

Hamiltonian-Inspired Optimization in Neural Networks 1

Experimental results I
Standard GPT-2 model vs. Hamiltonian-inspired model

Key Findings:
1. Hamiltonian model showed improved performance in multi-

hop reasoning tasks
2. Lower and more stable Hamiltonian energy profiles for valid

reasoning chains
3. Smoother trajectories with lower curvature in embedding

space for valid chains
4. Better conservation of angular momentum-like quantities in

valid reasoning

Advantages of Hamiltonian Approach:
1. Enhanced ability to distinguish valid from invalid reasoning

paths
2. More efficient balance between cognitive progression and

relevance
3. Potential for guiding AI systems towards more effective

reasoning strategies

Hamiltonian-Inspired Optimization in Neural Networks 18

The experiment compares this approach to XGBoost using the Freddie Mac Single-
Family Loan-Level Dataset (SFLLD) across different time horizons (12, 36, and 60
months).

1. The Hamiltonian approach achieves superior Area Under the Curve (AUC)
scores across all time horizons, indicating better discriminative power and
ranking ability.

2. XGBoost performs better in traditional metrics like accuracy, precision, and
recall.

3. The Hamiltonian method demonstrates more consistent performance over
time, suggesting better generalization to future, unseen data.

Experimental results II

FM12 (12 months) FM36 (36 months) FM60 (60 months)

Hamiltonian inspired approach

Mean accuracy 0.8047 ∓0.0021 0.7638 ∓0.0010 0.6975 ∓0.0003
Mean F1 Score 0.8012 ∓0.0000 0.7608 ∓0.0008 0.6968 ∓0.0003
Mean AUC score 0.8027 ∓0.0000 0.764 ∓0.0000 0.6974 ∓0.0000
Mean Precision 0.8201 ∓0.0000 0.777 ∓0.0000 0.6994 ∓0.0000
Mean Recall 0.8381 ∓0.0001 0.7638 ∓0.0000 0.6973 ∓0.0000

XGBoost algorithm

Accuracy 0.9871 0.9663 0.9319
Precision 0.9948 0.9831 0.9796
Recall 0.9827 0.9663 0.9319
F1 Score 0.9882 0.9745 0.9542
AUC 0.6072 0.6221 0.6665

Hamiltonian-Inspired Optimization in Neural Networks 19

Future directions

1. Explore applications in other complex ML tasks, such as reinforcement learning and generative
models.

2. Research the method's scalability to larger, more complex neural network architectures.

3. Develop theoretical safe-guards for convergence and optimality in non-convex settings.

4. Integrate with other optimization techniques to create hybrid approaches.

5. Study the interpretability aspects of Hamiltonian-based optimization trajectories.

6. This Hamiltonian-inspired approach opens new opportunities for optimization in machine
learning, bridging physics and AI in promising ways.

Hamiltonian-Inspired Optimization in Neural Networks 20

