
maze-dataset: Maze Generation with Algorithmic
Variety and Representational Flexibility
Michael Igorevich Ivanitskiy 1¶, Aaron Sandoval 4, Alex F. Spies 2,
Tilman Räuker 3, Brandon Knutson 1, Cecilia Diniz Behn 1, and Samy
Wu Fung 1

1 Colorado School of Mines, Department of Applied Mathematics and Statistics 2 Imperial College
London 3 UnSearch.org 4 Independent ¶ Corresponding author

DOI: N/A

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: 01 January 1970

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Solving mazes is a classic problem in computer science and artificial intelligence, and humans
have been constructing mazes for thousands of years. Although finding the shortest path
through a maze is a solved problem, this very fact makes it an excellent testbed for studying how
machine learning algorithms solve problems and represent spatial information. We introduce
maze-dataset, a user-friendly Python library for generating, processing, and visualizing datasets
of mazes. This library supports a variety of maze generation algorithms providing mazes with or
without loops, mazes that are connected or not, and many other variations. These generation
algorithms can be configured with various parameters, and the resulting mazes can be filtered
to satisfy desired properties. Also provided are tools for converting mazes to and from various
formats suitable for a variety of neural network architectures, such as rasterized images,
tokenized text sequences, and various visualizations. As well as providing a simple interface
for generating, storing, and loading these datasets, maze-dataset is extensively tested, type
hinted, benchmarked, and documented.

cfg = MazeDatasetConfig(
name = "test",
grid_n = 5,
n_mazes = 1,
maze_ctor = gen_dfs,
... # many, many options

)

ds = MazeDataset.from_config(cfg)

m: SolvedMaze = ds[0]

# # # # # # # # # # #
#  X X X #  #
#  # # # X # X #  #
#  # X # S  #
# # # # # X # # # # #
# X X X X X # E X X #
# X # # #  # # # X #
# X #  # X #
# X # # # # # # # X #
# X X X X X X X X X #
# # # # # # # # # # #

m.as_ascii()

m.as_pixels()

MazePlot(m)

m.as_tokens(...)

<ADJLIST_START> (2,4) <--> (3,4) ; (1,3) <--> (1,4) ; (2,4) <--> (2,3) ;
(1,4) <--> (0,4) ; (2,0) <--> (3,0) ; (4,4) <--> (4,3) ; (4,2) <--> (4,3) ;
(3,1) <--> (3,2) ; (3,0) <--> (4,0) ; (4,1) <--> (4,2) ; (0,1) <--> (0,0) ;
(0,2) <--> (0,3) ; (2,2) <--> (1,2) ; (0,2) <--> (0,1) ; (1,1) <--> (1,0) ;
(3,3) <--> (3,2) ; (1,0) <--> (0,0) ; (0,2) <--> (1,2) ; (2,1) <--> (2,2) ;
(4,0) <--> (4,1) ; (2,1) <--> (2,0) ; (3,2) <--> (2,2) ; (1,3) <--> (0,3) ;
(3,4) <--> (4,4) ; <ADJLIST_END>

<ORIGIN_START> (1,3) <ORIGIN_END> <TARGET_START> (2,3) <TARGET_END>

<PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1)
(4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END>

Figure 1: Usage of maze-dataset. We create a MazeDataset from a MazeDatasetConfig. This contains
SolvedMaze objects which can be converted to and from a variety of formats. Code in the image contains
clickable links to documentation. A variety of generated examples can be viewed here.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

1

https://orcid.org/0000-0002-4213-4993
https://orcid.org/0009-0002-8380-6140
https://orcid.org/0000-0002-8708-1530
https://orcid.org/0009-0009-6321-4413
https://orcid.org/0009-0004-8413-0239
https://orcid.org/0000-0002-8078-5105
https://orcid.org/0000-0002-2926-4582
https://doi.org/N/A
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset.from_config
https://understanding-search.github.io/maze-dataset/maze_dataset.html#SolvedMaze
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_ascii
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_pixels
https://understanding-search.github.io/maze-dataset/maze_dataset/plotting.html#MazePlot
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_tokens
https://understanding-search.github.io/maze-dataset/maze_dataset.html
https://understanding-search.github.io/maze-dataset/examples/maze_examples.html
https://doi.org/N/A


Statement of Need
While maze generation itself is straightforward, the architectural challenge comes from building
a system supporting many algorithms with configurable parameters, property filtering, and
representation transformation. This library aims to greatly streamline the process of generating
and working with datasets of mazes that can be described as subgraphs of an 𝑛 × 𝑛 lattice
with boolean connections and, optionally, start and end points that are nodes in the graph.
Furthermore, we place emphasis on a wide variety of possible text output formats aimed at
evaluating the spatial reasoning capabilities of Large Language Models (LLMs) and other
text-based transformer models.

For interpretability and behavioral research, algorithmic tasks offer benefits by allowing sys-
tematic data generation and task decomposition, as well as simplifying the process of circuit
discovery (Räuker et al., 2023). Although mazes are well suited for these investigations, we
found that existing maze generation packages (Cobbe et al., 2019; Ehsan, 2022; Harries et
al., n.d.; Németh, 2019; Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021) lack support
for transforming between multiple representations and provide limited control over the maze
generation process.

Related Works
A multitude of public and open-source software packages exist for generating mazes (Ehsan,
2022; Németh, 2019; Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021). However, nearly
all of these packages produce mazes represented as rasterized images or other visual formats
rather than the underlying graph structure, and this makes it difficult to work with these
datasets.

• Most prior works provide mazes in visual or raster formats, and we provide a variety of
similar output formats:

– RasterizedMazeDataset, utilizing as_pixels(), which can exactly mimic the out-
puts provided in easy-to-hard-data(Schwarzschild, Borgnia, Gupta, Bansal, et
al., 2021) and can be configured to be similar to the outputs of Németh (2019)

– as_ascii() provides a format similar to (Oppenheim, 2018; Singla, 2023)
– MazePlot provides a feature-rich plotting utility with support for multiple paths,

heatmaps over positions, and more. This is similar to the outputs of (Alance AB,
2019; Ehsan, 2022; Guo et al., 2011; Nag, 2020)

• The text format provided by SolvedMaze(...).as_tokens() is similar to that of (Liu &
Wu, 2023), but provides over 5.8 million unique formats for converting mazes to a text
stream, detailed in section: Tokenized Output Formats.

• For rigorous investigations of the response of a model to various distributional shifts,
preserving metadata about the generation algorithm with the dataset itself is essential.
To this end, our package efficiently stores the dataset along with its metadata in a single
human-readable file (M. Ivanitskiy, n.d.). As far as we are aware, no existing packages
do this reliably.

• Storing mazes as images is not only difficult to work with, but also inefficient. We use a
highly efficient method detailed in section: Implementation.

• Our package is easily installable with source code freely available. It is extensively tested,
type hinted, benchmarked, and documented. Many other maze generation packages lack
this level of rigor and scope, and some (Ayaz et al., 2008) appear to simply no longer be
accessible.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

2

https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/rasterized.html#RasterizedMazeDataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_pixels
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_ascii
https://understanding-search.github.io/maze-dataset/maze_dataset/plotting.html#MazePlot
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset.as_tokens
https://doi.org/N/A


Features
We direct readers to our examples, docs, and notebooks for more information.

Generation and Basic Usage
Our package can be installed from PyPi via pip install maze-dataset, or directly from the
git repository (Michael I. Ivanitskiy et al., 2023a).

To create a dataset, we first create a MazeDatasetConfig configuration object, which specifies
the seed, number, and size of mazes, as well as the generation algorithm and its corresponding
parameters. This object is passed to a MazeDataset class to create a dataset. Crucially, this
MazeDataset mimics the interface of a PyTorch (Paszke et al., 2019) Dataset, and can thus
be easily incorporated into existing data pre-processing and training pipelines, e.g., through
the use of a DataLoader class.

from maze_dataset import (

MazeDataset, MazeDatasetConfig, LatticeMazeGenerators

)

# create a config

cfg: MazeDatasetConfig = MazeDatasetConfig(

name="example", # names need not be unique

grid_n=3, # size of the maze

n_mazes=32, # number of mazes in the dataset

maze_ctor=LatticeMazeGenerators.gen_dfs, # many algorithms available

# (optional) algorithm-specific parameters

maze_ctor_kwargs={"do_forks": True, ...},

# (optional) many options for restricting start/end points

endpoint_kwargs={"deadend_start": True, ...},

)

# create a dataset

dataset: MazeDataset = MazeDataset.from_config(

cfg, # pass the config

..., # other options for disk loading, parallelization, etc.

)

When initializing a dataset, options which do not affect the mazes themselves can be specified
through the from_config() factory method as necessary. These options allow for saving/loading
existing datasets instead of re-generating, parallelization options for generation, and more.
Available maze generation algorithms are static methods of the LatticeMazeGenerators

namespace class and include generation algorithms based on randomized depth-first search,
Wilson’s algorithm (Wilson, 1996), percolation (Duminil-Copin, 2017; Fisher & Essam, 2004),
Kruskal’s algorithm (Kruskal, 1956), and others.

Furthermore, a dataset of mazes can be filtered to satisfy certain properties. Custom filters
can be specified, and some filters are included in MazeDatasetFilters. For example, we can
require a minimum path length of three steps from the origin to the target:

dataset_filtered: MazeDataset = dataset.filter_by.path_length(min_length=3)

All implemented maze generation algorithms are stochastic by nature. For reproducibility, the
seed parameter of MazeDatasetConfig may be set. In practice, using provided deduplication
filters, we find that exact duplicate mazes are generated very infrequently, even when generating
very large datasets.

For use cases where mazes of different sizes, generation algorithms, or other parameter variations
are required, we provide the MazeDatasetCollection class, which allows for creating a single
iterable dataset from multiple independent configurations.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

3

https://understanding-search.github.io/maze-dataset/examples/maze_examples.html
https://understanding-search.github.io/maze-dataset/maze_dataset.html
https://understanding-search.github.io/maze-dataset/notebooks/
https://pypi.org/project/maze-dataset/
https://github.com/understanding-search/maze-dataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset
https://pytorch.org/docs/stable/data.html
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset.from_config
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/filters.html#MazeDatasetFilters
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/collected_dataset.html#MazeDatasetCollection
https://doi.org/N/A


Visual Output Formats
Internally, mazes are SolvedMaze objects, which have path information and a tensor optimized
for storing sub-graphs of a lattice. These objects can be converted to and from several formats
to maximize their utility in different contexts.

as_ascii() as_pixels() MazePlot()

Simple text format for dis-
playing mazes, useful for
debugging in a terminal en-
vironment.

numpy array of
dtype=uint8 and shape
(height, width, 3).
The last dimension is RGB
color.

feature-rich plotting utility
with support for multiple
paths, heatmaps over posi-
tions, and more.

# # # # # # # # # # #
# X X X # #
# # # # X # X # #
# # X # S #
# # # # # X # # # # #
# X X X X X # E X X #
# X # # # # # # X #
# X # # X #
# X # # # # # # # X #
# X X X X X X X X X #
# # # # # # # # # # # 0 1 2 3 4

col

0

1

2

3

4

ro
w

Figure 2: Various output formats. Top row (left to right): ASCII diagram, rasterized pixel grid, and
advanced display tool.

In previous work, maze tasks have been used with Recurrent Convolutional Neural Network
(RCNN) derived architectures (Schwarzschild, Borgnia, Gupta, Huang, et al., 2021). To
facilitate the use of our package in this context, we replicate the format of (Schwarzschild,
Borgnia, Gupta, Bansal, et al., 2021) and provide the RasterizedMazeDataset class which
returns rasterized pairs of (input, target) mazes as shown in Figure 3 below.

Figure 3: Input is the rasterized maze without the path marked (left), and provide as a target the maze
with all but the correct path removed (right). Configuration options exist to adjust whether endpoints
are included and if empty cells should be filled in.

Tokenized Output Formats
Autoregressive transformer models can be quite sensitive to the exact format of input data,
and may even use delimiter tokens to perform reasoning steps (Pfau et al., 2024; Spies et al.,
2024). To facilitate systematic investigation of the effects of different representations of data
on text model performance, we provide a variety of tokenized text output formats.

We convert mazes to token sequences in two steps. First, the maze is stringified using
as_tokens(). The MazeTokenizerModular class provides a powerful interface for configuring
maze stringification behavior. Second, the sequence of strings is tokenized into integers using
encode(). Tokenization uses a fixed vocabulary for simplicity. Mazes up to 50 × 50 are

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

4

https://understanding-search.github.io/maze-dataset/maze_dataset.html#SolvedMaze
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_ascii
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.as_pixels
https://understanding-search.github.io/maze-dataset/maze_dataset/plotting.html#MazePlot
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/rasterized.html#RasterizedMazeDataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset.as_tokens
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#MazeTokenizerModular
https://doi.org/N/A


supported when using a unique token for each position, and up to 128 × 128 are supported
when positions in the maze are represented as a pair of coordinates.

There are many algorithms by which one might tokenize a 2D maze into a 1D format usable
by autoregressive text models. Training multiple models on the encodings output from each
of these algorithms may produce very different internal representations, learned solution
algorithms, and levels of performance. To allow exploration of how different maze tokenization
algorithms affect these models, the MazeTokenizerModular class contains a rich set of options
to customize how mazes are stringified. This class contains 19 discrete parameters, resulting
in over 5.8 million unique tokenizers. There are 6 additional parameters available whose
functionality is not verified via automated testing, but further expand the the number of
tokenizers by a factor of 44/3 to 86 million.

All output sequences consist of four token regions representing different features of the maze;
an example output sequence is shown in Figure 4.

<ADJLIST_START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ;

(1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ;

(4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ;

(1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ;

(1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ;

<ADJLIST_END> <ORIGIN_START> (1,3) <ORIGIN_END> <TARGET_START> (2,3) <TARGET_END>

<PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4)

(3,4) (2,4) (2,3) <PATH_END>

Figure 4: Example text output format with token regions highlighted. Adjacency list : text representation
of the graph, Origin : starting coordinate, Target : ending coordinate, Path : maze solution sequence

Each MazeTokenizerModular is constructed from a set of several _TokenizerElement objects,
each of which specifies how different token regions or other elements of the stringification are
produced.

MazeTokenizerModular

_PromptSequencer

_CoordTokenizer

_AdjListTokenizer

_TargetTokenizer

_PathTokenizer

_EdgeSubset _EdgeGrouping _EdgePermuter

_StepSize

_StepTokenizer

_StepTokenizer

⋮

Figure 5: Nested internal structure of _TokenizerElement objects inside a typical MazeTokenizerModular.

The tokenizer architecture is purposefully designed such that adding and testing a wide
variety of new tokenization algorithms is fast and minimizes disturbances to functioning
code. This is enabled by the modular architecture and the automatic inclusion of any new
tokenizers in integration tests. To create a new variety of tokenizer, developers forking the

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

5

https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#MazeTokenizerModular
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#MazeTokenizerModular
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#_TokenizerElement
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#MazeTokenizerModular
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#PromptSequencers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#CoordTokenizers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#AdjListTokenizers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#TargetTokenizers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#PathTokenizers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#EdgeSubsets
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#EdgeGroupings
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#EdgePermuters
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#StepSizes
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#StepTokenizers
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/elements.html#StepTokenizers
https://doi.org/N/A


library may simply create their own _TokenizerElement subclass and implement the abstract
methods. If the behavior change is sufficiently small, simply adding a parameter to an existing
_TokenizerElement subclass and updating its implementation will suffice.

The breadth of tokenizers is also easily scaled in the opposite direction. Due to the exponential
scaling of parameter combinations, adding a small number of new features can significantly
slow certain procedures which rely on constructing all possible tokenizers, such as integration
tests. If any existing subclass contains features which aren’t needed, a developer tool decorator
@mark_as_unsupported is provided which can be applied to the unneeded _TokenizerElement

subclasses to prune those features and compact the available space of tokenizers.

Benchmarks of Generation Speed
We provide approximate benchmarks for relative generation time across various algorithms,
parameter choices, maze sizes, and dataset sizes in Table 1 and Figure 6. Experiments were
performed on a standard GitHub runner without parallelism.

maze_ctor keyword args all sizes
small
𝑔 ≤ 10

medium
𝑔 ∈ (10, 32]

large
𝑔 > 32

dfs 28.0 2.8 20.3 131.8
dfs accessible_cells=20 2.3 2.2 2.4 2.2
dfs do_forks=False 2.7 2.2 3.1 3.5
dfs max_tree_depth=0.5 2.5 2.0 2.7 4.0
dfs_percolation p=0.1 43.9 2.8 33.9 208.0
dfs_percolation p=0.4 48.7 3.0 36.5 233.5
kruskal 12.8 1.9 10.3 55.8
percolation p=1.0 50.2 2.6 37.2 242.5
recursive_div 10.2 1.7 8.9 42.1
wilson 676.5 7.8 188.6 3992.6
mean 559.9 13.0 223.5 3146.9
median 11.1 6.5 32.9 302.7

Table 1: Generation times for various algorithms and maze sizes. More information can be found on the
benchmarks page.

2 4 8 16 32 64
Maze Size (grid_n)

100

101

102

103

104

ge
ne

ra
tio

n 
tim

e 
pe

r m
az

e 
(m

s)

Maze Size vs Generation Time
Maze Generation Method

gen_dfs
gen_dfs_percolation
gen_kruskal
gen_wilson
gen_recursive_division
gen_percolation

Figure 6: Plot of maze generation time. Generation time scales exponentially with maze size for all
algorithms. Generation time per maze does not depend on the number of mazes being generated, and
there is minimal overhead to initializing the generation process for a small dataset. Wilson’s algorithm
is notably less efficient than others and has high variance. Note that values are averaged across all
parameter sets for that algorithm. More information can be found on the benchmarks page.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

6

https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#_TokenizerElement
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#_TokenizerElement
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization/modular/element_base.html#mark_as_unsupported
https://understanding-search.github.io/maze-dataset/maze_dataset/tokenization.html#_TokenizerElement
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners#standard-github-hosted-runners-for-public-repositories
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs_percolation
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs_percolation
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_kruskal
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_percolation
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_recursive_division
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_wilson
https://understanding-search.github.io/maze-dataset/benchmarks
https://understanding-search.github.io/maze-dataset/benchmarks/
https://doi.org/N/A


Success Rate Estimation
In order to replicate the exact dataset distribution of (Schwarzschild, Borgnia, Gupta, Bansal,
et al., 2021), the parameter MazeDatasetConfig.endpoint_kwargs: EndpointKwargsType

allows for additional constraints such as enforcing that the start or end point be in a “dead
end” with only one accessible neighbor cell. However, combining these constraints with cyclic
mazes (such as those generated with percolation), as was required for the work in (Knutson et
al., 2024), can lead to an absence of valid start and end points. Placing theoretical bounds
on this success rate is difficult, as it depends on the exact maze generation algorithm and
parameters used. To deal with this, our package provides a way to estimate the success
rate of a given configuration using a symbolic regression model trained with PySR (Cranmer,
2023). More details on this can be found in estimate_dataset_fractions.ipynb. Using
the estimation algorithm simply requires the user to call cfg_new: MazeDatasetConfig =

cfg.success_fraction_compensate(), providing their initial cfg and then using the returned
cfg_new in its place.

Success Rate Estimation Algorithm

The base function learned by symbolic regression provides limited insight and may be subject
to change. It is defined as cfg_success_predict_fn, and takes a 5 dimensional float vector
created by MazeDatasetConfig._to_ps_array() which represents the [percolation value, grid
size, endpoint deadend configuration, endpoint uniqueness, categorical generation function
index].

However, the outputs of this function are not directly usable due to minor divergences at the
endpoints with respect to the percolation probability 𝑝. Since we know that maze success is
either guaranteed or impossible for 𝑝 = 0 and 𝑝 = 1, we define the soft_step function to
nudge the raw output of the symbolic regression. This function is defined with the following
components:

shifted sigmoid 𝜎𝑠, amplitude scaling 𝐴, and ℎ function given by

𝜎𝑠(𝑥) = (1 + 𝑒−103⋅(𝑥−0.5))−1 𝐴(𝑞, 𝑎, 𝑤) = 𝑤 ⋅ (1 − |2𝑞 − 1|𝑎)

ℎ(𝑞, 𝑎) = 𝑞 ⋅ (1 − |2𝑞 − 1|𝑎) ⋅ (1 − 𝜎𝑠(𝑞)) + (1 − (1 − 𝑞) ⋅ (1 − |2(1 − 𝑞) − 1|𝑎)) ⋅ 𝜎𝑠(𝑞)

We combine these to get the soft_step function, which is identity-like for 𝑝 ≈ 0.5, and pushes
𝑥 to extremes otherwise.

soft_step(𝑥, 𝑝, 𝛼, 𝑤) = ℎ(𝑥,𝐴(𝑝, 𝛼, 𝑤))

Finally, we define

cfg_success_predict_fn(x) = soft_step(raw_val, 𝑥0, 5, 10)

where raw_val is the output of the symbolic regression model. The parameter 𝑥0 is the
percolation probability, while all other parameters from _to_ps_array() only affect raw_val.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

7

https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/maze_dataset_config.html#MazeDatasetConfig.endpoint_kwargs
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/maze_dataset_config.html#EndpointKwargsType
https://understanding-search.github.io/maze-dataset/notebooks/estimate_dataset_fractions.html
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig.success_fraction_compensate
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig.success_fraction_compensate
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/success_predict_math.html#cfg_success_predict_fn
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/success_predict_math.html#soft_step
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/success_predict_math.html#soft_step
https://doi.org/N/A


0.0 0.2 0.4 0.6 0.8 1.0
percolation probability p

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s f

ra
ct

io
n

g2-dfs_perc
g3-dfs_perc
g4-dfs_perc
g5-dfs_perc
g6-dfs_perc
g8-dfs_perc
g10-dfs_perc
g2-perc
g3-perc
g4-perc
g5-perc
g6-perc
g8-perc
g10-perc

Figure 7: An example of both empirical and predicted success rates as a function of the percolation
probability 𝑝 for various maze sizes, percolation with and without depth first search, and endpoint_kwargs

requiring that both the start and end be in unique dead ends. Empirical measures derived from a sample
of 128 mazes. More information can be found on the benchmarks page.

Implementation
We refer to our repository and docs for documentation and up-to-date implementation details.

This package utilizes a simple, efficient representation of mazes as subgraphs of a finite lattice,
which we call a LatticeMaze. Using an adjacency matrix for storing mazes would be memory
inefficient by failing to exploit the highly sparse structure – for example, for a 2-dimensional
maze, only 4 off-diagonal bands would be have nonzero values. On the other hand, using an
adjacency list could lead to a poor lookup time for whether any given connection exists.

Instead, we describe mazes with the following representation: for a 2-dimensional lattice with
𝑟 rows and 𝑐 columns, we initialize a boolean array

𝐴 = {0, 1}2×𝑟×𝑐

which we refer to in the code as a connection_list. The value at 𝐴[0, 𝑖, 𝑗] determines whether
a downward connection exists from node [𝑖, 𝑗] to [𝑖 + 1, 𝑗]. Likewise, the value at 𝐴[1, 𝑖, 𝑗]
determines whether a rightward connection to [𝑖, 𝑗 + 1] exists. Thus, we avoid duplication of
data about the existence of connections and facilitate fast lookup time, at the cost of requiring
additional care with indexing. Note that this setup allows for a periodic lattice. Generation of
mazes is detailed in LatticeMazeGenerators.

To produce solutions to mazes, two points are selected uniformly at random without replacement
from the connected component of the maze, and the 𝐴∗ algorithm (Hart et al., 1968) is
applied to find the shortest path between them. The endpoint selection can be controlled via
MazeDatasetConfig.endpoint_kwargs: EndpointKwargsType, and complications caused by
this are detailed in section: Success Rate Estimation. A maze with a solution is denoted a
SolvedMaze, which inherits from LatticeMaze.

Parallelization is implemented via the multiprocessing module in the Python stan-
dard library, and parallel generation can be controlled via keyword arguments to
MazeDataset.from_config().

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

8

https://understanding-search.github.io/maze-dataset/benchmarks/
https://github.com/understanding-search/maze-dataset
https://understanding-search.github.io/maze-dataset/maze_dataset.html
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze.connection_list
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/maze_dataset_config.html#MazeDatasetConfig.endpoint_kwargs
https://understanding-search.github.io/maze-dataset/maze_dataset/dataset/maze_dataset_config.html#EndpointKwargsType
https://understanding-search.github.io/maze-dataset/maze_dataset.html#SolvedMaze
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMaze
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDataset.from_config
https://doi.org/N/A


Usage in Research
This package was originally built for the needs of the (Michael I. Ivanitskiy et al., 2023b) project,
which aims to investigate spatial planning and world models in autoregressive transformer
models trained on mazes (Michael Igorevich Ivanitskiy, Spies, et al., 2023; Michael Igorevich
Ivanitskiy, Shah, et al., 2023; Spies et al., 2024). It was extended for work on understanding
the mechanisms by which recurrent convolutional and implicit networks (Fung et al., 2022)
solve mazes given a rasterized view (Knutson et al., 2024), which required matching the
pixel-padded and endpoint constrained output format of (Schwarzschild, Borgnia, Gupta,
Bansal, et al., 2021). Ongoing work using maze-dataset aims to investigate the effects of
varying the tokenization format on the performance of pretrained LLMs on spatial reasoning.

This package has also been utilized in work by other groups:

• By (Nolte et al., 2024) to compare the effectiveness of transformers trained with
the MLM-𝒰 (Kitouni et al., 2024) multistep prediction objective against standard
autoregressive training for multi-step planning on our maze task.

• By (Wang et al., 2024) and (Chen et al., 2024) to study the effectiveness of imperative
learning.

• By (Zhang et al., 2025) to introduce a novel framework for reasoning diffusion models.

• By (Dao & Vu, 2025) to improve spatial reasoning in LLMs with GRPO.

Acknowledgements
This work was partially funded by National Science Foundation awards DMS-2110745 and
DMS-2309810. We are also grateful to LTFF and FAR Labs for hosting authors MII, AFS, and
TR for a residency visit, and to various members of FAR’s technical staff for their advice.

This work was partially supported by AI Safety Camp and AI Safety Support, which also
brought many of the authors together. We would like to thank our former collaborators at AI
Safety Camp and other users and contributors to the maze-dataset package: Benji Berczi,
Guillaume Corlouer, William Edwards, Leon Eshuijs, Chris Mathwin, Lucia Quirke, Can Rager,
Adrians Skapars, Rusheb Shah, Johannes Treutlein, and Dan Valentine.

We thank the Mines Optimization and Deep Learning group (MODL) for fruitful discussions.
We also thank Michael Rosenberg for recommending the usage of Finite State Transducers for
storing tokenizer validation information.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

9

https://doi.org/N/A


References
Alance AB. (2019). Maze generator. http://www.mazegenerator.net. Ayaz, H., Allen,
S. L., Platek, S. M., & Onaral, B. (2008). Maze suite 1.0: A complete set of tools to
prepare, present, and analyze navigational and spatial cognitive neuroscience experiments.
Behavior Research Methods, 40, 353–359. Chen, X., Yang, F., & Wang, C. (2024). iA*:
Imperative learning-based A* search for pathfinding. arXiv Preprint arXiv:2403.15870.
Cobbe, K., Hesse, C., Hilton, J., & Schulman, J. (2019). Leveraging procedural generation
to benchmark reinforcement learning. arXiv Preprint arXiv:1912.01588. Cranmer, M. (2023).
Interpretable machine learning for science with PySR and SymbolicRegression. jl. arXiv
Preprint arXiv:2305.01582. Dao, A., & Vu, D. B. (2025). AlphaMaze: Enhancing large
language models’ spatial intelligence via GRPO. arXiv Preprint arXiv:2502.14669. Duminil-
Copin, H. (2017). Sixty years of percolation (No. arXiv:1712.04651). arXiv. http://
arxiv.org/abs/1712.04651 Ehsan, E. (2022). Maze. https://github.com/emadehsan/maze
Fisher, M. E., & Essam, J. W. (2004). Some Cluster Size and Percolation Problems.
Journal of Mathematical Physics, 2(4), 609–619. https://doi.org/10.1063/1.1703745
Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher, S., & Yin, W. (2022). Jfb:
Jacobian-free backpropagation for implicit networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 36, 6648–6656. Guo, C., Barthelet, L., & Morris, R. (2011).
Maze generator and solver. Wolfram Demonstrations Project, https://demonstrations.
wolfram.com/MazeGeneratorAndSolver/. Harries, L., Lee, S., Rzepecki, J., Hofmann,
K., & Devlin, S. (n.d.). MazeExplorer: A Customisable 3D Benchmark for Assessing
Generalisation in Reinforcement Learning. 2019 IEEE Conf. Games CoG, 1–4. Hart, P.
E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2),
100–107. https://doi.org/10.1109/TSSC.1968.300136 Ivanitskiy, M. (n.d.). ZANJ. https:
//github.com/mivanit/ZANJ Ivanitskiy, Michael I., Shah, R., Spies, A. F., Räuker, T.,
Valentine, D., Rager, C., Quirke, L., Corlouer, G., & Mathwin, C. (2023a). Maze dataset.
https://github.com/understanding-search/maze-dataset Ivanitskiy, Michael I., Shah, R.,
Spies, A. F., Räuker, T., Valentine, D., Rager, C., Quirke, L., Corlouer, G., & Mathwin,
C. (2023b). Maze transformer interpretability. https://github.com/understanding-search/
maze-transformer Ivanitskiy, Michael Igorevich, Shah, R., Spies, A. F., Räuker, T., Valentine,
D., Rager, C., Quirke, L., Mathwin, C., Corlouer, G., Behn, C. D., & others. (2023).
A configurable library for generating and manipulating maze datasets. arXiv Preprint
arXiv:2309.10498. Ivanitskiy, Michael Igorevich, Spies, A. F., Räuker, T., Corlouer, G.,
Mathwin, C., Quirke, L., Rager, C., Shah, R., Valentine, D., Behn, C. D., & others.
(2023). Structured world representations in maze-solving transformers. arXiv Preprint
arXiv:2312.02566. Kitouni, O., Nolte, N. S., Williams, A., Rabbat, M., Bouchacourt, D., &
Ibrahim, M. (2024). The factorization curse: Which tokens you predict underlie the reversal
curse and more. Advances in Neural Information Processing Systems, 37, 112329–112355.
Knutson, B., Rabeendran, A. C., Ivanitskiy, M., Pettyjohn, J., Diniz-Behn, C., Fung,
S. W., & McKenzie, D. (2024). On logical extrapolation for mazes with recurrent and
implicit networks. arXiv Preprint arXiv:2410.03020. Kruskal, J. B. (1956). On the shortest
spanning subtree of a graph and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7 (1), 48–50. Liu, C., & Wu, B. (2023). Evaluating large
language models on graphs: Performance insights and comparative analysis. arXiv Preprint
arXiv:2308.11224. Nag, A. (2020). MDL suite: A language, generator and compiler for
describing mazes. Journal of Open Source Software, 5(46), 1815. Németh, F. (2019). Maze-
generation-algorithms. https://github.com/ferenc-nemeth/maze-generation-algorithms
Nolte, N., Kitouni, O., Williams, A., Rabbat, M., & Ibrahim, M. (2024). Transformers can
navigate mazes with multi-step prediction. arXiv Preprint arXiv:2412.05117. Oppenheim,
J. (2018). Maze-generator: Generate a random maze represented as a 2D array using
depth-first search. https://github.com/oppenheimj/maze-generator/; GitHub. Paszke,
A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

10

http://www.mazegenerator.net
http://arxiv.org/abs/1712.04651
http://arxiv.org/abs/1712.04651
https://github.com/emadehsan/maze
https://doi.org/10.1063/1.1703745
https://demonstrations.wolfram.com/MazeGeneratorAndSolver/
https://demonstrations.wolfram.com/MazeGeneratorAndSolver/
https://doi.org/10.1109/TSSC.1968.300136
https://github.com/mivanit/ZANJ
https://github.com/mivanit/ZANJ
https://github.com/understanding-search/maze-dataset
https://github.com/understanding-search/maze-transformer
https://github.com/understanding-search/maze-transformer
https://github.com/ferenc-nemeth/maze-generation-algorithms
https://github.com/oppenheimj/maze-generator/
https://doi.org/N/A


Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pfau,
J., Merrill, W., & Bowman, S. R. (2024). Let’s think dot by dot: Hidden computation
in transformer language models. arXiv Preprint arXiv:2404.15758. Räuker, T., Ho, A.,
Casper, S., & Hadfield-Menell, D. (2023). Toward transparent ai: A survey on interpreting
the inner structures of deep neural networks. 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), 464–483. Schwarzschild, A., Borgnia, E., Gupta,
A., Bansal, A., Emam, Z., Huang, F., Goldblum, M., & Goldstein, T. (2021). Datasets
for Studying Generalization from Easy to Hard Examples (No. arXiv:2108.06011). arXiv.
https://doi.org/10.48550/arXiv.2108.06011 Schwarzschild, A., Borgnia, E., Gupta, A.,
Huang, F., Vishkin, U., Goldblum, M., & Goldstein, T. (2021). Can you learn an algorithm?
Generalizing from easy to hard problems with recurrent networks. Advances in Neural
Information Processing Systems, 34, 6695–6706. Singla, A. (2023). Evaluating ChatGPT
and GPT-4 for visual programming. arXiv Preprint arXiv:2308.02522. Spies, A. F.,
Edwards, W., Ivanitskiy, M. I., Skapars, A., Räuker, T., Inoue, K., Russo, A., & Shanahan,
M. (2024). Transformers use causal world models in maze-solving tasks. arXiv Preprint
arXiv:2412.11867. Wang, C., Ji, K., Geng, J., Ren, Z., Fu, T., Yang, F., Guo, Y.,
He, H., Chen, X., Zhan, Z., & others. (2024). Imperative learning: A self-supervised
neural-symbolic learning framework for robot autonomy. arXiv Preprint arXiv:2406.16087.
Wilson, D. B. (1996). Generating random spanning trees more quickly than the cover time.
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing -
STOC ’96, 296–303. https://doi.org/10.1145/237814.237880 Zhang, T., Pan, J.-S., Feng,
R., & Wu, T. (2025). T-SCEND: Test-time scalable MCTS-enhanced diffusion model.
arXiv Preprint arXiv:2502.01989.

Ivanitskiy et al. (1970). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/arXiv.2108.06011
https://doi.org/10.1145/237814.237880
https://doi.org/N/A

	Summary
	Statement of Need
	Related Works

	Features
	Generation and Basic Usage
	Visual Output Formats
	Tokenized Output Formats
	Benchmarks of Generation Speed
	Success Rate Estimation
	Success Rate Estimation Algorithm


	Implementation
	Usage in Research
	Acknowledgements
	References

