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APPENDIX III: DESCRIPTION OF THE SUBROUTINES 

 

Contents 

 

Description of the file used to control the accuracy of RT simulations 

FILE PARAMDEF.INC 60 

 

Description of the subroutines used to compute the geometrical conditions:  

SUBROUTINE POSGE 62 

SUBROUTINE POSGW 63 

SUBROUTINE POSLAN 64 

SUBROUTINE POSMTO 65 

SUBROUTINE POSNOA 71 

SUBROUTINE POSSOL 75 

SUBROUTINE POSSPO 79 

 

Description of the subroutines used to compute the atmospheric conditions:  

SUBROUTINE ABSTRA 81 

SUBROUTINE AEROSO 87 

SUBROUTINE AEROPROF 93 

SUBROUTINE ATMREF 94 

SUBROUTINE CSALBR 96 

SUBROUTINE DISCOM 97 

SUBROUTINE DISCRE 98 

SUBROUTINE ENVIRO 99 

SUBROUTINE GAUSS 104 

SUBROUTINE INTERP 105 

SUBROUTINE ISO 106 

SUBROUTINE KERNEL (and  KERNELPOL) 107 

SUBROUTINE MIE (and EXSCPHASE) 108 

SUBROUTINE ODA550 128 

SUBROUTINE ODRAYL 130 
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SUBROUTINE OSPOL 132 

SUBROUTINE SCATRA 135 

SUBROUTINE TRUNCA 137 

 

Description of the subroutines used to compute ground BRDF: 

SUBROUTINE HAPKALBE 139 

SUBROUTINE IAPIALBE 140 

SUBROUTINE MINNALBE 140 

SUBROUTINE OCEALBE (and GLITALBE) 140 

SUBROUTINE RAHMALBE 140 

SUBROUTINE ROUJALBE 140 

SUBROUTINE VERSALBE 140 

SUBROUTINE WALTALBE 140 

SUBROUTINE BRDFGRID 141 

SUBROUTINE HAPKBRDF 142 

SUBROUTINE IAPIBRDF 144 

SUBROUTINE MINNBRDF 147 

SUBROUTINE OCEABRDF (and OCEATOOLS) 148 

SUBROUTINE RAHMBRDF 158 

SUBROUTINE ROUJBRDF 160 

SUBROUTINE VERSBRDF 162 

SUBROUTINE WALTBRDF 166 

SUBROUTINE AKBRDF 167 

SUBROUTINE AKLABE  171 

SUBROUTINE MODISBRDF 172 

SUBROUTINE MODISALBE 174 

 

Description of the subroutines used to update the atmospheric profile (airplane or elevated target 

simulations): 

SUBROUTINE PRESPLANE 176 

SUBROUTINE PRESSURE 177 
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Description of the subroutines used to read the data: 

SUBROUTINE SOLIRR 179 

SUBROUTINE VARSOL 180 

SUBROUTINE AATSR 181 

SUBROUTINE ALI 183 

SUBROUTINE ASTER 185 

SUBROUTINE AVHRR 187 

SUBROUTINE ETM 191 

SUBROUTINE GLI 193 

SUBROUTINE GOES 199 

SUBROUTINE HRV 200 

SUBROUTINE HYPBLUE 202 

SUBROUTINE MAS 203 

SUBROUTINE MERIS 205 

SUBROUTINE METEO 208 

SUBROUTINE MODIS 209 

SUBROUTINE MSS 211 

SUBROUTINE POLDER 212 

SUBROUTINE SEAWIFS 214 

SUBROUTINE TM  216 

SUBROUTINE VGT  218 

SUBROUTINE VIIRS  219 

SUBROUTINE CLEARW 222 

SUBROUTINE LAKEW 223 

SUBROUTINE SAND 224 

SUBROUTINE VEGETA 225 

SUBROUTINE DICA 1 TO 3 226 

SUBROUTINE METH 1 TO 6 227 

SUBROUTINE MOCA 1 TO 6 228 

SUBROUTINE NIOX 1 TO 6 229 

SUBROUTINE OXYG 3 TO 6 230 
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SUBROUTINE OZON 1 231 

SUBROUTINE WAVA 1 TO 6 233 

SUBROUTINE DUST 233 

SUBROUTINE OCEA 233 

SUBROUTINE SOOT 233 

SUBROUTINE WATE 233 

SUBROUTINE BBM 234 

SUBROUTINE BDM 234 

SUBROUTINE STM 234 

SUBROUTINE MIDSUM 235 

SUBROUTINE MIDWIN 236 

SUBROUTINE SUBSUM 238 

SUBROUTINE SUBWIN 238 

SUBROUTINE TROPIC 239 

SUBROUTINE US62 240 

 

Miscellaneous: 

SUBROUTINE EQUIVWL 242 

SUBROUTINE PRINT_ERROR 243 

SUBROUTINE SPECINTERP 244 

SUBROUTINE SPLIE2, SPLIN2, SPLINE, & SPLINT 245 

 



6S User Guide Version 3, November 2006 

 60

FILE PARAMDEF.INC 

 

Function: To control the accuracy of 6SV calculations. 

 

Description: This file gives the experienced user the possibility to control the accuracy of 

RT simulations by changing the number of calculation layers (nt_p), zenith calculation angles 

(mu_p), azimuth calculation angles (nfi_p), and Legendre coefficients (nquad_p, for aerosol 

calculations). By default, these parameters are fixed to the following values: nt_p = 30, mu_p = 

25, nfi_p = 181, and nquad_p = 83, which in general provides a good accuracy of 0.4-0.6%, 

compared to other RT codes and benchmarks. 
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DESCRIPTION OF THE SUBROUTINES USED 

 

TO COMPUTE THE GEOMETRICAL CONDITIONS 
 



6S User Guide Version 3, November 2006 

 62

SUBROUTINE POSGE 

 

Function: Same as POSMTO but for the GOES East satellite. We use exactly the same 

scheme but added the longitude of the sub-satellite point, namely 75°W, at the retrieval 

longitude. Let us also recall that the dimension of the frame is 17331 × 12997 and the altitude of 

the satellite is 35729 km. 
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SUBROUTINE POSGW 

 

Function: Same as POSMTO but for the GOES West satellite. We use exactly the same 

scheme but added the longitude of the sub-satellite point, namely 135°W, at the retrieval 

longitude. Let us recall that the dimension of the frame is 17331 × 12997 and the altitude of the 

satellite is 35769 km. 
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SUBROUTINE POSLAN 

 

Function: To compute the geometrical conditions for the LANDSAT satellite. As the 

dimensions of the frame are 180 × 180 km, the maximum observation angle is 5.5°, so we put 

θv=0. The incident conditions are taken from the latitude and longitude of the centre of the scene. 

Reference: 

NASA GSFC specification for the thematic mapper subsystem and associated test equipment. 

revision C, GSFC 400-8-D.210C, NASA/GSFC, Greenbelt, Maryland, USA, 1981. 
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SUBROUTINE POSMTO 

 

Function: To compute geometrical conditions from the knowledge of the line number and 

pixel in the line (in the Meteosat Frame 2500*5000). First, we compute the latitude and 

longitude of a given pixel to define the solar position (with the time conditions). Second, we 

compute the observation angle. 

 

 
Fig. 1. 

 

Description: Let S be the satellite, M the subsatellite point, P the observed point, and the 

orientation of the axes according to Fig. 1. From Nc and N1, we obtain the two angles X and Y 

with respect to the x and y axes. If we now refer to the plane containing the points S, P, M and 

the center of the earth O (see Fig. 2), we put the altitude of the satellite H and the earth radius RE 

in the equatorial plane. The observed point P corresponds to the point P' on the earth surface and 

we have to determine its coordinates x, y, z with respect to the axis–system centered at O. 
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Fig. 2. 

 

To obtain z, we put,  

SN)HR(ONz E −+== , 

SN is obtained from the solutions of triangles OP'S and SNP'.  

By solving OP'S, we have 
222 OS'OPOSqcos'SP2'SP −=− , 

so  

2
E

22
EE R)1)(cos()HR()RH)(cos('SP −−θ+−+θ=  

By solving SNP', we have SN=SP'cosθ, 

then  
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To estimate cosθ , we use the deviations X and Y. A simple trigonometrical identity shows that 

YcosXcoscos 222 ⋅=θ , 
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where 

Xtan1
1Xcos 2

2

+
=  

and 

2
2

))1(Y(tan1
1Ycos

ε++
=  

with 

297
1

R
RR

E

PE =
−

=ε . 

Here RE and RP are the equatorial and polar radii, which are slightly different because of the 

Earth's oblateness.  

 
Fig. 3. 

 

To obtain x and y, we consider the Fig. 3: 

x = –SN tanY and y = SN/cosXּtanY.  

So, we have the three coordinates x, y, and z of the point P' and infer latitude φ and 

longitude λ. To compute the longitude, we use λ= arctan (x/z) (+ for East, – for West). To 

compute the latitude, we have to consider the geoid with the semiminor axis RP and semimajor 

axis RE (Fig. 4) by solving triangle P'OP''. As )x/ytan(a 1=φ  where y is the ordinate of the point 

located on the ellipsoid, we have to compute x1. 
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Fig. 4. 

 

The ellipse equation is written: 
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)R/R(tan(tana EPΨ=φ   

with )R/ysin(a p=Ψ  

To obtain observation angles (azimuth and zenith), we use the following simple geometrical 

considerations. For the zenith angle  θv, 
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Fig. 5. 
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where θ is so that YcosXcoscos 22
v

2 =θ  . 

For the azimuthal angle vφ , we solve the spherical triangle P'P''M 

 
Fig. 6. 

 

where π−φ= vA , 
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Fig. 7. 

with )sin/1(tanAtan φλ= , 

so ( )[ ] π+φλ=φ )sin/1tanarctanv . 

From the line and column numbers in the  METEOSAT frame, we can compute the latitude 

(φ ) and longitude (λ) of the point, and viewing direction from the normal at the point (azimuth 

vφ  and zenith θv angles). Moreover, if we know the date and hour of the acquisition, we can 

obtain the solar conditions ( ss ,φθ ) from the subroutine POSSOL. 

 

Reference: 

 J. Morgan, Introduction to the Meteosat system, ESOC, Darmstadt, Germany, 1981. 
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SUBROUTINE POSNOA 

 

Function: To compute the geometrical conditions for the NOAA series satellites. Generally, 

we know the pixel number on a line, longitude and time of the ascendant node at the equator, and 

time of acquisition. We obtain the latitude and longitude of the viewed point, viewing angles 

and, with the knowledge of the date, solar geometrical conditions. 

 
Description: The altitude of the NOAA satellite is about H = 860 km, orbit inclination is 

98.96° and time of one revolution is about 101.98 min (6119 sec.). The 1/2 angle is of maximum 

55.385° and there are 2048 pixels for each line. 

 
Fig. 1. 

 

Let AN be the hour movement in rad/sec, HN the hour at the ascendant node, λN its longitude 

and Nc the pixel number. 
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Fig. 2. 

Lets consider Fig. 2. S is the subsatellite point, N is the ascendant node and P is the observed 

point. The scan angle δ gives an angle noted ψ at the centre of the Earth.  

By solving the triangle PRN, we have the latitude pφ  so that: 

)NPsin()Bisin(sin P +=φ .  

Now, in triangle PSN 

Bsin/sin)NPsin( ψ=  

and 

Usin/tan)Btan( ψ= . 

So, 

Usincosisinsinicossin P ψ+ψ=φ . 

By solving PRN, we obtain the longitude λP with respect to λN: 

NPsinNPRsinsin P =λ  

with 
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Pcos
)Bicos(NPRsin

φ
+

= . 

So, we write 

P
P cos

NPsin)Bicos(sin
φ

+
=λ  

or 

PP
P cos

Usinicoscossinisin
Bsincos

sin)Bicos(sin
φ
ψ+ψ−

=
φ

ψ+
=λ  . 

To completely determine the longitude, we use the other relation which gives the cosine 

P
P cos

Ucoscoscos
φ

ψ
=λ   

The absolute longitude (Greenwich, Meridian reference) is given by 

86400
2)HT( NaNP
π

−−λ+λ=λ  

where T is the time of the acquisition; the last term is needed to take into account the rotation of 

the Earth between T and HNa. Let us recall that the movement angle U is calculated from 

U=AN·(T- HNa). 

Consider again Fig. 2 to determine the observation azimuth and zenith angles. 

 δ is defined as  

1024
1024N385.55 c −=δ      in deg., 

the view zenith angle θv is defined by 
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The observation azimuth angle φv is determined by solving the triangle NSP, 

ψ
φλ−λ

=φ
sin

cos)sin(sin sPS
v  

and 

ψφ
ψφ−φ

=φ
sincos

cossinsincos
P

PS
v ,  

where Sφ  and λS are the latitude and longitude of the sub-satellite point P. 
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Reference: 

The characteristics of the orbit have been taken from: 

 NOAA Polar Orbiter Data Users Guide, 1985, U.S. Department of Commerce, NOAA: National 

Environment Satellite, National Climatic Data Center, Satellite Data Service Division, 

World Weather Building, Room 100, Washington DC 20233, USA. 
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SUBROUTINE POSSOL 

 

Function: To compute the solar azimuth and zenith angles (in degrees) for a point over the 

globe defined by its longitude and latitude (in dec. degrees) for a day of the year (fixed by 

number of the month and number of the day in the month) at any Greenwich Meridian Time 

(GMT dec. hour). 

 
Fig.1. 

 

Description: Let P be the point determined by the latitude φ  and the declination of the sun δ 

at this period of the year, the hour angle is noted as t. So the incident angle θS can be determined 

by the spherical trigonometry expression 
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or 
tcoscoscossinsincos v φδ+φδ=θ .  
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The solar declination depends upon the day of the year. We used the decomposition in 

Fourier series of the declination based on astronomical data with the expression:  

)A3sin()A3cos()A2sin()A2cos()Asin()Acos( 7654321 β+β−β+β−β+β−β=δ  

where 
365

J2A π
=  and J is the Julian day 

β1=.006918, β2=.399912, β3=.070257, β4=.006758, 

β5=.000907, β6=.002697, β7=.001480  

The hour angle is computed from the following considerations. From the GMT time, we 

compute the mean solar time (or local time) for the longitude λ 

15
GMTMST λ

+=   (dec.hour) 

The length of the day changes within the year (differences between +30 s and –20 s), so we 

have to correct the local time to obtain the true solar time (TST) 

TST = MST + ET, 

where the equation of time ET is given by: 

π
α−α−α−α+α

=
12))B2sin()B2cos()Bsin()Bcos((ET 54321    (dec.hour) 

with 

365
J2B π

= , α1=.000075, α2=.001868, α3=.032077, α4=.014615, α5=.040849 

We obtain the hour angle t 

)12TST(
180

15t −
π

=    (radians) 

and can compute θS. 
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Fig. 2. 

 

To determine the azimuth angle Sφ , we solve the spherical triangle NSP  

Ssin
tsin

2
sin

sin
θ

=
⎟
⎠
⎞

⎜
⎝
⎛ δ−
π
χ

 

where χ is the solar azimuth angle measured from the south through the west, 

Or 

Ssin
tsincossin
θ

δ=χ . 

To determine the sign of χ we use the cosine 

Ssin
tcoscossincoscos

θ
δ+δφ

=χ , 

so χ is completely defined.  

To define the solar azimuthal angle Sφ  with respect to the North, we write, 

χ+π=φ sinaS  

 
References:  

Ch. Perrin de Brichambaut, Rayonnement solaire et échanges radiatifs naturels, Monographies 

de météorologie, Gauthier-Villars, Paris, France, 1963.  

N. Robinson, Solar Radiation, Elsevier Publishing Company, New-York, N.Y., 10017, 1966. 
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Fig. 3. Simulation of solar angles for the 1st of May, at different latitudes, vs. Universal Time. 
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SUBROUTINE POSSPO 

 

Function: To compute the geometrical conditions for the SPOT satellite. As the dimensions 

of the frame are 60 × 60 km with an observation angle of maximum 2.06°, we have considered 

that:  

• the observation zenith angle is nul, so the azimuth angle is not defined, 

• the incident conditions are the same that those computed for the center of the frame. 

 

 

Note: We have not considered the off-nadir viewing.  

 

Reference: 

M. Chevrel, M. Courtois, and G. Weill, The SPOT satellite remote sensing mission, 

Photogrammetric Engineering and Remote Sensing, 47, 1163-1171, 1981. 
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DESCRIPTION OF THE SUBROUTINES USED 

 

TO COMPUTE THE ATMOSPHERIC CONDITIONS 
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SUBROUTINE ABSTRA 

 

Function: To compute the gaseous transmittance between 0.25 and 4 µm for downward, 

upward and total paths. We consider six gases (O2, CO2, H2O, O3, N2O, and CH4) separately. 

The total transmission is put equal to the simple product of each ones. The spectral resolution is 

equal to 10 cm-1. 

 

Description: We have used two random exponential band models (Goody for H2O and 

Malkmus for O2, CO2, O3, N2O, and CH4) to compute the gaseous transmissions. If we consider a 

homogeneous path, the transmission function is written  

for H2O  
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for the other gases 
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where m is the absorber amount, N0 is the total line number in the frequency interval ∆ν, k is the 

average intensity and α0 is the average Lorentz half width, obtained from the intensity Sj and half 

width αj of the jth spectral line by 
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The spectral resolution of 10 cm-1 is sufficient and contains enough spectral lines to use a 

random band model transmission function.  

From a general point of view, the width of a spectral line corresponds to the convolution 

product of the two shapes, Lorentz and Doppler, and is therefore called a Voigt line. For an 
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atmospheric gas (O2, CO2, H2O, O3, N2O, and CH4 ), the altitude where the Lorentz width and 

Doppler width are equivalent is about 30 km. So, according to the vertical distribution, only O3 

requires a more complex treatment to take into account a Voigt profile. The O3 visible 

transmission is computed by another method detailed in the next part and the absorption in the 

solar infrared (3.3 µm) is very small (see Fig. I-2 of Part I of the manual). Therefore, we have 

used the same formalism for all gases. The approximation contributes no consequential error.  

Equations (1) and (2) are valid for a homogeneous path, where pressure and temperature are 

assumed to be constant. To take into account the variations of temperature and pressure along the 

atmospheric path, we use the Curtis-Godson approximation which associates an amount m  

weighted by temperature (thereby related to the line intensity), and a amount φm  weighted by 

pressure and temperature (thereby related to the intensity and half width line) 

 ∫Φ=
'z

z

du)T()'z,z(m  (5) 

 ∫ φψ=φ
'z

z

du)T()'z,z(m  (6)  

with 

0p/p=φ (p0 is the standard pressure at which the measurements of spectroscopic parameters 

were made), and 

)/dz(du g µρ=  (g is the gaseous density and µ is the cosine of the viewing angle). 

The functions Φ(T) and Ψ(T) are given by 
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where Tr is the reference temperature, αj0 is the half-width at temperature Tr, and p0 is the 

pressure. 

To simplify, we fit these functions with 
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 [ ]2
rr )TT(b)TT(aexp)T( −+−=Φ , (9a) 

 [ ]2
rr )TT('b)TT('aexp)T( −+−=Ψ . (9b) 

The spectroscopic data are taken from the AFGL atmospheric absorption line parameters 

compilation (1991 edition). We have selected the following parameters:  

• the position (in cm-1),  

• the integrated line strength Sj (Tr) at 296 K (in cm-1/(molecules cm2)),  

• the half width αj0 at 296 K and 1013 mb (in cm-1),  

• the energy of the lower transition state. 

The half width at any temperature and pressure is obtained by 
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and the intensity at any temperature can be computed from the vibrational and rotational partition 

and the energy of the lower transition state.  

Subsequently, we have taken Tr = 250 K and computed Φ(T) and Ψ(T) for 3 temperatures 

(200, 250 and 300 K) to determine the coefficients a, a', b and b'.  

Now we have a series of eight coefficients by steps of 10 cm-1: 
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• a, a' 

• b, b' 

• vlow the lower frequency of the interval, and  vsup= vlow + 10cm-1 

These coefficients are read in the subroutines, WAVA1 to 6 for H2O, OZON1 for O3, OXYG3 to 

6 for O2, and DICA1 to 3 for CO2 .  

The weighted absorber amounts m  and φm , computed according to Eqs. (5) and (6) and the 

transmission functions (which correspond to Eqs. (1)-(2) for a homogeneous path), are written as 
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Due to the deficiency of spectroscopy data, the visible ozone transmission function is 

written as 

 ))v(Aexp()v(t
333 OOO µ∆−=∆  (15) 

where uO3
 is the absorber amount and AO3

 is the absorption coefficient given by Kneizys et al. 

(1980). These coefficients are given in steps of 200 cm-1 between 13000 and 24200 cm-1 and by 

step of 500 cm-1 between 27500 and 50000 cm-1 
. 

To take into account the water vapor continuum, we use the same expression with the 

coefficients OH2
A  

 
given in steps of 5 cm-1 

between 2350 and 2420 cm-1. 

A comparison between MODTRAN2 and our results (6S) is shown in the Fig. 1-3. The 

difference observed at roughly 3.1 µm is due to the fact that we have not taken into account the 

N2O continuum. This spectral range is already contaminated by water vapor and is not an 

atmospheric window. Therefore, the 3.1 µm region is not used in remote sensing and its emission 

in 6S generally unimportant. 
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Fig. 1. Gaseous transmission between 0.25 and 1.25 µm (mid. lat. summer atmosphere). 
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Fig. 2. Gaseous transmission between 1.20 and 2.40 µm (mid. lat. summer atmosphere). 

 

 

 
Fig. 3. Gaseous transmission between 2.40 and 4.00 µm (mid. lat. summer atmosphere). 
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SUBROUTINE AEROSO 

 

Function: To compute the optical scattering parameters (extinction and scattering 

coefficients, single scattering albedo, phase function, and asymmetry factor) at the 20 discrete 

wavelengths for an aerosol model selected (or created) from:  

(1) the characteristics of the basic components (Lenoble, 1984; d’Almeida, 1991).  

• dust-like component (D.L., subroutine DUST) 

• oceanic component (O.C., subroutine OCEA) 

• water-soluble component (W.S., subroutine WATE) 

• soot component (S.C., subroutine SOOT) 

(2) pre-computed characteristics of 

• biomass burning smoke model (subroutine BBM, Dubovik et al., 2002) 

• stratospheric aerosol model (subroutine BDM, d’Almeida et al., 1991) 

• background desert model (subroutine STM, Russel et al., 1996) 

 (3) computed using the MIE theory with inputs (size distribution, refractive indexes...) given by 

the user (see subroutine MIE (and EXSCPHASE)).  

  

Description: From the Mie theory (see subroutine MIE), we have computed the phase 

function P(Θ), the extinction and scattering coefficients, the asymmetry factor g for the basic 

components defined by their size distributions and refractive indices. The computations were 

performed at 20 wavelengths and 83 phase angles (80 Gauss angles, 0°, 90° and 180°) by default 

or up to 1000 phase angles (997 Gauss angles, 0°, 90° and 180°) specified by the user.  

 

From the four basic components, three tropospheric aerosols types models can be created by 

mixing with the following volume percentages. By “mixing”, we assume an idea of "external 

mixing" in the model construction, so the resultant values are obtained by a weighted average 

using the volume percentages Cj given by: 

 
 D.L. W.S. O.C. S.C. 

Continental 0.70 0.29  0.01 

Maritime  0.05 0.95  

Urban 0.17 0.61  0.22 
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For each component, we computed the volume concentration Vj and the particle number 

concentration Nj (particle/cm3) using the Log-Normal distribution: 

 
 D.L. W.S. O.C. S.C. 

Vj, µ3/cm3 113.98352 113.98352·10-06 5.14441 59.777553·10-06 

Nj , part/cm3 54.73400 1.86850·1006 276.0500010 1.86850·1006 

 

where 

dr
dr

)r(dN
r

3
4V

0

j3
j ∫

+∞π
=  

and Nj is computed in such a way that the extinction coefficient is normalized at 550 nm. 

If Cj is the aerosol fraction by volume of the component j, we have Cj =vj/v  with vj = njVj, 

where nj is the number of particles in the mixing, so 

∑∑ ==
j j

j

j
j V

C
vnn . 

Then we can obtain the percentage density of particles 

∑
=

j j

j

j

j

j

V
C

V
C

n
n

. 

so, for example, nj/n for the 3 selected models: 

 D.L. W.S. O.C. S.C. 

Continental 2.26490·10-06 0.938299  0.0616987 

Maritime  0.999579 4.20823·10-04  

Urban 1.65125·10-07 0.592507  0.407492 

  

To obtain the extinction coefficient of the resultant model, we compute 

∑ λ=λ
j

ext
j

jext )(K
n
n

)(K  

and we also normalize this coefficient at 550 nm. So we have to compute the equivalent number 

N of particles by 
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The other optical parameters are computed by the same way: 

• scattering coefficient 
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n
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• asymmetry factor 
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• phase function 
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• the single scattering albedo is directly obtained by the ratio 

)(K
)(K)( ext

sca

0 λ
λ

=λω . 

Notes:  

- The data for extinction or scattering coefficients are in km-1 
 

- The following figures give us an order of magnitude of these terms for the 3 selected aerosol 

models plus the desert aerosol model.  
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Fig. 1. Spectral dependence of the extinction coefficient for various aerosol models. 

 

 
Fig. 2. Spectral dependence of the single scattering albedo for various aerosol models. 
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Fig. 3. Spectral dependence for the asymmetry parameter for various aerosol models. 

 

 
Fig. 4. Phase function at 550 µm versus scattering angle for various aerosol models. 
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SUBROUTINE AEROPROF 

 

Function: To decompose the atmosphere into a finite number of calculation layers. 

 

Description: For each calculation layer, AEROPROF calculates the optical thickness, layer 

height, proportion of molecules assuming an exponential vertical profile with the scale height of 

8 km, and proportion of aerosol particles using the user-defined vertical profile. The maximum 

height of a user-defined aerosol atmosphere cannot exceed 300 km. 

By its function, AEROPROF is analogous to the DISCRE subroutine, except for the fact that 

it incorporates the user-defined vertical aerosol profile. 
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SUBROUTINE ATMREF 

 

Function: To compute the atmospheric reflectance for molecular, aerosol and mixed 

atmospheres. Computations are performed using the vector Successive Orders of Scattering 

method (see subroutine OSPOL). 

 

Description: Three reflectance terms computed by ATMREF include the aerosol reflectance 

(ρA), rayleigh reflectance (ρR) and reflectance of a mixed Rayleigh-aerosol atmosphere (ρR+A). In 

addition, three different configurations of sensor position are possible, such as ground-based 

observation, satellite sensor and airborne sensor. 

In case of ground-based observations, we consider that there is no contribution of the 

atmosphere below the sensor and the three reflectances are simply set to zero.  

In case of satellite-based observations, we can consider that all molecules and aerosol 

particles are below the sensor. The subroutine OSPOL is used to compute the reflectances. This 

subroutine deals with purely molecular and aerosol atmospheres and with a mixture of molecules 

and aerosol particles by computing the signal in a set of layers for which the proportion of 

molecules and aerosol particles can be adjusted. The computation of the proportion of aerosol 

particles and molecules in each layer is optimized by the subroutine DISCRE, within which  the 

entire atmosphere is divided into a number of layers with equal optical depths; the proportion 

depends on the aerosol profile, which is either assumed to be exponential with a scale height of 2 

km or provided by the user.  

In case of airborne observations, the three components are computed by the subroutine 

OSPOL. Within this subroutine, a special layer is set so that the top of the layer corresponds to 

the altitude of the aircraft. When the aerosol optical depth below the plane is provided by the 

user as encouraged, the aerosol scale height is computed again to match the total aerosol optical 

depth, aerosol optical depth below plane and plane altitude. If in this case the scale height is 

found to be greater than 7 km, a warning message is issued and computation are aborted.  
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SUBROUTINE CSALBR 

 

Function: To compute the spherical albedo of the molecular layer.  

 
Description: We integrate the transmission function of the different incident directions to  

calculate the spherical albedo, s, that is:  

 ∫ µµΤµ−=
1

0

d)(1s  (1) 

Using the expression of T(µ) derived in SCATRA (Eq. (1)), it can be shown that s reduces to: 

 [ ])(E6)(E43
34

1s 43 τ+τ−τ
τ+

=  (2) 

where E3(τ) and E4(τ) are exponential integrals for the argument τ. These functions are easily 

computable from the expressions given in the reference below.  

Figure 1 shows that the differences between the exact results and Eq. (2) are approximately 

0.003 for τ = 0.35 which results in an error of 0.0003 for a surface albedo of 0.10. In the red part 

of the solar spectrum for which the surface albedo may be larger, the error is still below 0.001.  

 

 
Fig. 1. Accuracy of Eq. (2). 

Reference:  

M. Abramowitz and I Stegun, Handbook of mathematical functions, New-York: Dover 

Publications, Inc., 1970.  
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SUBROUTINE DISCOM 

 

Function: To compute optical properties of the atmosphere at 20 different wavelengths. 

 

Description: 20 different wavelengths which fall within the atmospheric window used in 

remote sensing were selected as “node” wavelengths of the code. 

 

λ = {0.350, 0.400, 0.412, 0.443, 0.470, 0.488, 0.515, 0.550, 0.590, 0.633, 0.670, 0.694, 0.760, 

0.860, 1.240, 1.536, 1.650, 1.950, 2.250, 3.750} µm. 

 

The computed parameters include 

• molecular optical depth (subroutine ODRAYL) 

• aerosol optical depth (subroutine ODA550) 

• atmospheric reflectances (subroutine ATMREF) 

• scattering transmittances (subroutine SCATRA) 

• spherical albedos (subroutine SCATRA) 

 

The computations are made for 3 types of the atmosphere: 

• pure molecular 

• pure aerosol 

• mixed molecular and aerosol 
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SUBROUTINE DISCRE 

 

Function: To decompose the atmosphere into a finite number of calculation layers. 

 

Description: For each calculation layer, DISCRE calculates the optical thickness, layer 

height, and proportion of molecules and aerosol particles assuming an exponential vertical 

profile for each constituent. Figure 1 illustrates how molecules and aerosol particles are mixed in 

a realistic atmosphere. For molecules, the scale height is 8 km. For aerosol particles, it is 

assumed to be equal to 2 km unless specified otherwise by the user (using the ‘aircraft 

measurements’ option). 

  

 

 
 

Fig. 1. Mixing of molecules and aerosol particles in a realistic atmosphere. 
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SUBROUTINE ENVIRO 

 

Function: To compute the environment functions F(r) which allows us to account for an 

inhomogeneous ground. 

  

Description: For an accurate evaluation of F(r), Monte Carlo computations are necessary to 

take into account  

• the altitude dependence of the phase function 

• the dependence of the phase function upon the aerosol type 

• the scaling factors which are different for aerosol particles and molecule. 

Simulations for some different vertical distributions and phase functions show that the variability 

of the environment function F(r) can be rather tractable.  

The molecular scattering which is a major factor for the enlarged contribution of the 

background can be linearized and accounted for by: 

 
)(t)(t

)r(F)(t)r(F)(t)r(F
v

P
dv

R
d

P
v

P
d

R
v

R
d

θ+θ
θ+θ

=  (1) 

where )(t v
R
d θ and )(t v

P
d θ  are the diffuse fractions in the transmission functions respectively for 

Rayleigh and aerosols. FR(r) and FP(r) correspond to the environment functions estimated for 

Rayleigh and aerosols taken into account separately, these functions are slightly dependent upon 

the wavelength.  

We have computed these two functions for a mean atmosphere at the satellite level (Mc 

Clatchey et al., 1971) and we propose the following approximations:  

 [ ]r83.2r27.0P E552.0E448.01)r(F −− +−=  (2) 

 [ ]r10.1r08.0R E070.0E930.01)r(F −− +−= , (3) 

where r is in km. 

If the actual aerosol model (type and vertical distribution) does not differ much from the 

mean model, these approximations are reasonable and we account for major part of the 

environment effect. Figure 1 shows the two functions FR(r) and FP(r). We note that the horizontal 

scales of the environment effect are typically 1 km for aerosol scattering and 10 km for 

molecular scattering. 

For the case of an airborne observation, we computed the altitude dependence of the 
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Rayleigh and aerosol environment function. For several typical altitude we have computed 

FR(r,z) and FP(r,z) by the Monte Carlo method and we have derived an approximate expression 

(Eqs. (2) and (3)). Figures 2 and 3 show the environment functions for the selected altitudes. For 

a plane flying at an arbitrary altitude, we perform a linear interpolation between the closest 

simulated altitudes in 6S to get the environment function at the altitude of the plane.  

 

Effect of the view zenith angle  

For 6S, we look at the dependence of these two environment functions as a function of the 

view zenith angle. Figures 4a and b show for several values of the view zenith angle the 

environment function of Rayleigh and aerosol. As it can be observed on Fig. 4a-b, there is a 

dependence of the function F(r) on the view direction for the view zenith angle larger than 30°. 

In order to account for this effect, we chose to fit the environment function at the desired view 

angle solely as a function of the environment function computed for a nadir view, as it is 

suggested by Fig. 4a-b. The results presented on Fig. 4a-b (symbols) show that a simple 

polynomial function of nadir view environment function whose coefficients depend on the 

logarithm of the cosine of view angle is adequate. For molecules, the F function is fitted by the 

simple expression:  

 [ ]1))0(F1()ln(cos()0(F)(F vRvvRvR +°=θ−⋅θ⋅°=θ=θ  (4) 

for aerosol, a polynomial of a higher degree is needed, that is:  
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with a0=1.3347, b0=0.57757, a1= -1.479, b1= -1.5275  

However, it has to be pointed out that if the approximations (Eqs. (4) and (5)) are capable of 

taking into account the adjacency effect for an arbitrary view angle, they implied uniformity of 

the background as a function of azimuth. As contributions of the adjacent pixels for a large view 

angle do not comply to the symmetry in azimuth, the 6S results, in case of large view angles, 

have to be interpreted more like a sensitivity test to the problem of adjacency effect rather than 

an actual way to perform the adjacency effect correction .  
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Reference:  

D. Tanre, M. Herman, and P.Y. Deschamps, Influence of the background contribution upon 

space measurements of ground reflectance, Applied Optics, 20, 3676-3684, 1981.  

 

 
Fig. 1. Environment function at the satellite level for molecules and aerosol particles. 

 

 

 
Fig. 2. Variation of the Rayleigh environmental function with the sensor altitude. 

 



6S User Guide Version 3, November 2006 

 102

 

 
Fig. 3. Same as Fig. 2 but for particles. 

 

 

 
Fig. 4a. Environment function for a pure molecular atmosphere (lines) for different view zenith angle (θv) 

compared to the approximation used in 6S (symbols) as a function of the distance to the imaged pixel (r). 
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Fig. 4b. Same as Fig. 4a but for aerosol. 
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SUBROUTINE GAUSS 

 

Function: To compute the Gaussian quadrature for a given number of angles n (Gaussian 

angles and their respective weights). The Gaussian quadrature is used in numerical integration 

involving the cosine of emergent or incident direction zenith angle. 
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SUBROUTINE INTERP 

 

Function: To estimate the different atmospheric functions ),,,( vsvs φφµµρ , T(θ) and S at 

any wavelength from the 20 discrete computations (subroutine DISCOM).  

 

Description: The different atmospheric functions (noted f) have been assumed linear as a 

function of optical depth τ, so the interpolation scheme is written,  
α−λ=τ A)(f  

The constants A and α are interpolated between 0.35 and 3.75 µm and extrapolated for the 

two extreme intervals 0.25–0.35 and 3.75–4 µm.  

As the spectral dependences for Rayleigh (α = 4) and aerosols (α = 1) are quite different, we 

consider the two types of atmosphere separately. 
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SUBROUTINE ISO 

 

Function: Compute the atmospheric transmission for either a satellite or aircraft observation 

as well as the spherical albedo of the atmosphere. 

 

Description: The subroutine performs the computation on the basis of the Successive 

Orders of Scattering method (see subroutine OSPOL). The transmission is obtained directly by 

initially setting an isotropic source of radiation at the bottom of atmosphere. The spherical 

albedo is computed by numerical integration (Gaussian quadrature) of the transmission function 

(see Eq. (1) of subroutine CSALBR). 
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SUBROUTINE KERNEL 

 

Function: Compute the values of Legendre polynomials used in the SOS (successive orders 

of scattering) method. 

 

 

SUBROUTINE KERNELPOL 

 

Function: The same as KERNEL, but including the polarization components of a scattering 

phase function. 
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SUBROUTINE MIE (and EXCPHASE) 

 

Function: To compute, using the scattering of electromagnetic waves by a homogeneous 

isotropic sphere, the physical properties of particles whose sizes are comparable to or larger than 

the wavelength, and to generate a mixture of dry particles.  

 

Description: The interaction of an electromagnetic wave with a absorbing sphere is 

described and expressed by the Mie theory (Mie, 1908). This theory was particularly discussed 

by Van de Hulst (Van de Hulst, 1981) and also in part by many other authors (for example Aden, 

1951; Deirmendjian et al., 1961; Wyatt, 1962; Kattawar & Plass, 1967; Dave, 1969; Hansen & 

Travis, 1974; and Liou, 1980). Here, we outline the basic equations of the Mie scattering behind 

the computation procedures.  

 

1. Mie Scattering 

Let λ represents the wavelength, r the radius of the sphere, x the Mie parameter (x = 2π r/λ), 

m the complex index of refraction (m = nr − ini), and θ the direction of scattered radiation 

measured from the forward direction. From Maxwell's equations, we can defined two complex 

functions S1(x,m,θ) and S2(x,m,θ) related to the amplitude of the scattered radiation, 

respectively, perpendicular and parallel to the plane of scattering:  
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1.1. Computation of an(x,m) and bn(x,m) 

The complex functions an(x,m) and bn(x,m) are given by 

)x()mx(m)x()mx(
)x()mx(m)x()mx()m,x(a '

nnn
'
n

'
nnn

'
n

n ξψ−ξψ
ψψ−ψψ

=  

and 

)x()mx()x()mx(m
)x()mx()x()mx(m)m,x(b '

nnn
'
n

'
nnn

'
n

n ξψ−ξψ
ψψ−ψψ

= , 



6S User Guide Version 3, November 2006 

 109

where the prime denotes derivative of the function with respect to the argument (x or mx), and 

ψn(z = x or mx) and ξn(z = x) are the Ricatti-Bessel functions defined as 
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where 
2

1nJ + , 
2

1nN + , and )2(
n 2

1H +  are the Bessel functions of the first, second, and third kind, 

respectively, and jn, nn, )2(
nh  are the corresponding spherical Bessel functions.

2
1nN +  is also called 

the Neumann functions and )2(
n 2

1H +  the half integral order Hankel function of the second kind. 

In order to make the computational work more convenient, it is useful to introduce the 

logarithmic derivative of the Ricatti-Bessel functions (Infeld, 1947; Aden, 1951; Kattawar &  

Plass, 1967): 
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Using these equations, an(x,m) and bn(x,m) may be rewritten as 
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Expressions of an(x,m) and bn(x,m) are now reduced to a ratio of Ricatti-Bessel functions 

involving real arguments and a ratio of "Dn(mx or x) and Gn(x)" functions which are easily 

computable. Examples of an(x,m) and bn(x,m) for m=1.33-i 0.001 and for x=10 and x=50 (which 

means respectively r ≈ 0.8 µm and r ≈ 4.0µm at 0.50 µm) are shown in Fig. 1 and 2. 

Also, in order to save time, we use in 6S the criterion defined by Deirmendjian et al., 1961:  

"the quantities an and bn are terminated either when 14*
nn

*
nn 10n)bbaa( −<+ "  

 

1.1.1. Computation of the Ricatti-Bessel function.  

The ratio of Ricatti-Bessel functions can be reduced to a ratio of spherical Bessel functions with 
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a  real argument x as follows: 
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The spherical Bessel functions jn(x), nn(x) or )x(h )2(
n  have different behaviors depending on if 

they are below or above the transition line defined by x2 = n(n + 1). Below the transition line   

(n(n+1)<x2), they behave as oscillating functions of both order and argument, whereas above the 

transition line (n(n +1)>x2 ) their behavior becomes monotonic..  

It has been shown by many authors that nn(x) or )x(h )2(
n can be processed using an upward 

recurrence (for any values of n and x). Functions nn(x) are computed using  

)x(n)x(n
x

1n2)x(n 1nn1n −+ +
+

=  

with  

x
)xcos()x(n0 −=   

x
)xsin(

x
)xcos()x(n 21 −−= . 

Figure 3 show examples of the nn(x) function for x=10 and x=50.  

For jn(x), we use a similar recurrence  

)x(j)x(j
x

1n2)x(j 1nn1n −+ +
+

=   

but, has it is explained in Corbató & Uretsky’s paper (1959), the function jn(x) cannot be 

computed by an upward recurrence "since upward recursion (except in the region of the x-n 

plane where j oscillate) would bring about a rapid loss of accuracy". Then, a downward 

recurrence is called for, but we have to define the starting value of n, and for that purpose we use 

Corbato & Uretsky’s work which is summarized hereafter. Let N be the starting order of the 

recursion with N( N +1) > x2 . In their paper, they show "that rather than accurately evaluate 

jN(x) and jN −1(x) to start the process, a very approximately starting the recursion at a higher order 

will give a set of numbers which are accurately proportional to the jn over the desired range of n 

from 0 to N". Let nj be one of these numbers. 

They propose to define the higher order ν by 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
ε

−=
)'u1(2

)'u2('BuA
2ln

ln
'Nv 2

2
N  

where 

A = 0.10 and B = 0.35, 
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30
N 2−=ε  (this value comes from the fact that computers can generally store floating point 

numbers with a 30 binary digit mantissa), and 

)1'N2/(x2'u +=  with N'N = or Bx
2ln

ln
2
1x'N Nε−+−=  such that ν be the lower, with however 

N'N ≥ . 

To avoid computational difficulties above the transition line, Corbato & Uretsky worked 

with the ratio n1nn jjr +=  using the recurrence relation 

n
1n rx1n2

xr
−+

=−  

with the starting condition 0rv = . The recursion is continued downward until a ratio nr  which 

exceeds the unity is reached. Then, they set n1n rj =+  and 1jn = , and continue downward using 

the recurrence relation  

)x(j)x(j
x

1n2)x(j 1nn1n +− +
+

= . 

The positive number nj  is defined by )x(j)x(j nn α=  with a constant of proportionality α 

obtained from the relation  

)xsin()x(jx)xcos())x(jx)x(j( 010 +−=α . 

Figure 3 also show examples of the jn(x) function for x=10 and x=50.  

 

1.1.2. Computation of the Dn(mx or x) and Gn(x) functions 

As Kattawar & Plass (1967) pointed out, the procedure for computing Dn(z) by an upward 

recurrence is unstable, then a downward process is needed, and Dn(z) is defined using 

z/n)z(D
1z/n)z(D

n
1n +

−=− . 

Calculations have to be started at an order z'vn >>=  with a starting value which is not really 

important because the series converges rapidly to the exact value (then Dν' (z) = 0 is a convenient 

value). When zn < , Dn(z) becomes oscillatory, and then there is no problem for the calculation 

using the recurrence relation. For practical reasons, we selected in 6S v'= v as defined for jn. 

Kattawar & Plass also showed that Gn(x) may always be calculated using an upward 

process with a starting value G0(x) =−i: 
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x/n)x(G
1x/n)x(G

1n
n −

−−=
−

 

Figure 4 illustrates examples of the Dn(x) function, Fig. 5 - the Dn(mx) function, and Fig. 6 the 

Gn(x) function. 

 

1.2. Computation of πn(cosθ) and τn(cosθ) 

Functions πn and τn depend only on the scattering angle θ. They are related to the associated 

Legendre polynomials )(cosP1
n θ : 

)(cosP
sin

1)(cos 1
nn θ

θ
=θπ  

)(cosP
d
d)(cos 1

nn θ
θ

=θτ  

and are computed from upward recurrence relations defined as   

)(cos)1n()(coscos)1n2()(cosn 1nn1n θπ+−θθπ+=θπ −+  

)(cos)2n()(coscos)1n()(cos n1n1n θπ+−θθπ+=θτ ++  

with the starting values π0(cosθ) = 0 and π1(cosθ) = 1. 

Examples of functions πn and τn are shown Fig. 7 for n=1 to 6 and for 0°<θ<90°. 

 

2. Computation of the physical properties of a particle (see for example Liou, 1980) 

2.1. Extinction 

The extinction cross section σe, which denotes the amount of energy removed (scattered 

and absorbed) from the original beam by the particle, is obtained considering a point in the 

forward direction (θ=0) in the "far field". If we consider an isotropic homogeneous sphere, the 

extinction cross section is given by  

[ ])0,m,x(S
)/2(

4)m,r,( e2e =θℜ
λπ
π

=λσ  

with 

[ ]∑
∞

=

++==θ==θ==θ
1n

nn21 )m,x(b)m,x(a)1n2(
2
1)0,m,x(S)0,m,x(S)0,m,x(S . 

Thus the extinction efficiency Qe is defined by 
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∞

=

+ℜ+=
π
λσ

=λ
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nne22
e

e )m,x(b)m,x(a)1n2(
x
2

r
)m,r,()m,r,(Q . 
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2.2. Scattering  

The scattering cross section σs is derived by a similar way, but considering a scattered light in 

an arbitrary direction, by  

[ ] θθθθ+θθ
π

=λσ ∫
π

dsin),m,x(S),m,x(S),m,x(S),m,x(S
)r/x(

)m,r,(
0

*
22

*
112s . 

Owing to the functions πn and τn, we have to integrate products of the associated Legendre 

polynomials. Using the orthogonal and recurrence properties of these polynomials, the scattering 

cross section can be written  

[ ]∑
∞
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++
π

=λσ
1n

*
nn

*
nn2s )m,x(b)m,x(b)m,x(a)m,x(a)1n2(

)r/x(
2)m,r,( , 

where the asterisk denotes the complex conjugate value, and the scattering efficiency Qs can be 

evaluated by the relation  

[ ]∑
∞
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++=
π
λσ

=λ
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*
nn

*
nn22

s
s )m,x(b)m,x(b)m,x(a)m,x(a)1n2(

x
2

r
)m,r,()m,r,(Q  

 
2.3. Absorption  

The absorption cross section σa and the absorption efficiency Qa can be deduced as 

)m,r,()m,r,()m,r,( sea λσ−λσ=λσ  and 

)m,r,(Q)m,r,(Q)m,r,(Q sea λ−λ=λ . 

 

2.4. Phase function 

On the basis of the Stokes parameters, the intensity I of the electromagnetic waves at each 

point and in any given direction can be related to the incident intensity [formula]   

011 IMI =  

with 

[ ]),m,x(S),m,x(S),m,x(S),m,x(S
x2
1),m,r,(M *

22
*
11211 θθ+θθ=θλ . 

The angular distribution of the scattered energy for a single sphere (also called Phase 

function) P11(λ, r, m, θ) can be defined by  

),m,r,(P
r4

)m,r,(),m,r,(M 112
s

11 θλ
π
λσ

=θλ . 
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Then  

[ ]),m,x(S),m,x(S),m,x(S),m,x(S
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22
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211 θθ+θθ
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It can be checked that  

∫ ∫
π π

π=φθθθλ
2

0 0
11 4ddsin),m,r,(P . 

 

3. Physical properties of a sample of identical particles 

We now consider a sample of identical particles whose size is described by the size 

distribution n(r) (in cm-3 
µm-1) such that  

∫ ∫
∞ ∞

==
0 0

1dr
dr

)r(dNdr)r(n , 

where dN(r) represents the number of particle per unit volume having a radius between r and 

r+dr. 

In 6S, we selected several possibilities to represent the size distribution, thus the user will be 

allowed to choose between 4 options: 

1 - Junge Power-Law function. Junge (1952) showed that the size distribution of aerosols 

whose radii are larger than 0.1µm may be described by  
1

0 r
1rc)10ln(

rlogd
)r(dN −α

α ⎟
⎠
⎞

⎜
⎝
⎛=  or 

α
α ⎟

⎠
⎞

⎜
⎝
⎛=

r
1rc

dr
)r(dN

0  

where α varies between 3 and 5, c is the number density of particles with radius r0, and r0 

is an arbitrary radius. Figure 8-a shows an example of Junge Power-Law function which 

is the "Model C" defined by Deirmendjian (1969), for 1rc a
0 =⋅  and α = 4 

2 – Modified Gamma distribution function. Used by Deirmendjian (1964) to compute 

scattering properties of water clouds and haze and to fit aerosol measurements. Also 

employed by Mie in the Mie and diffraction calculations. 

( )γα −= )r/r(bexp)r/r(A
dr

)r(dN
00   with  r0 = 1µm 

An example of Modified Gamma distribution function is given Fig. 8-b (Volcanic Ash 

defined in WCP 112, A=5461.33, α = 1.0, γ = 0.5, b = 16).  
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3 - Log-Normal distribution function. Based on the Junge Power-Law function, Davies 

(1974) introduced this function to take into account large particles: 

⎟
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σπ
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2
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log
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2
1exp

log2
N

rlogd
)r(dN  

where rM is the mean radius of particles, and σ the standard deviation of r.  

Figure 8-c illustrates examples of Log-Normal distribution functions which are the 3 

three components of the "Continental Model" defined in WCP 112 (see subroutine 

AEROSO to find rM  and σ).  

4 - Sun photometer measurements. You enter directly  dV(r)/dlogr ≈ r4 dN(r)/dr. 

Figure 9 shows the same function than Fig. 8 but for dV(r)/dlog(r).  

 

Under the assumption of "independent scattering", which means that particles are 

sufficiently far from each other compared to the incident wavelength to consider just one 

scattering, it is possible to add scattered intensities independently of the phase of the wave. Then 

we can define the radiative characteristics upon the particle size distribution by 

• The extinction (e), scattering (s) and absorption (a) coefficient 

∫ πλ=λ
max

mix

r

r

2
a,s,ea,s,e dr

dr
)r(dNr)m,r,(Q)m,(k ; 

• The normalized phase function 

∫ πθλ
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=θλ
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r

r
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1),m,(P  ; 

• We now introduce the single scattering albedo ω0 which represents the percentage of energy 

removed from the incident beam which will reappear as single scattered radiation: 

)m,(k
)m,(k)m,(

e

s
0 λ

λ
=λω . 

Computationally, ke,s,a(λ, m) and P(λ, m, θ) are integrated step by step following: 
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where ∆r is defined by 

03.0
r

rrlog =⎟
⎠
⎞

⎜
⎝
⎛ ∆+ . 

The value 0.03 was selected to preserve a good accuracy with a reasonable computational time. 

For example, D'Almeida used a very small step width, 0.011, for the computations given in his 

book (D'Almeida et al., 1991). The logarithmic expression of ∆r comes from the fact that size 

distributions can be frequently described by a logarithmic shape (Junge, 1952; Davies, 1974). 

Finally, in order to save computational time, we defined a criterion on the summation such 

that the computations are not performed either when  

82i 101r
dr

)r(dNr
n
n −<

λ
⎟
⎠
⎞

⎜
⎝
⎛ ∆π  

where ni/n is the percentage density of particles (see subroutine AEROSO for some examples). 

The latter criterion has been tested between 0.4 and 4.0 µm.  

 
4. Physical properties of a mixture of aerosol types 

We now consider a mixture of particles originating from different sources (4 max.). The 

mixing is treated in the same way that the one used to generate the database in the AEROSO 

subroutine. 

Let us recall that the mixture of individual components (or type) of an aerosol is 

characterized by the percentage density of particles ni/n, and if we assume that the particles are 

spherical, each type i is described by its size distribution (then by its microphysical identity: rMi 

and σi, see Table 1 for some examples (Shettle and Fenn, 1976; World Climate Programme, 

1986), and by its complex refractive index mi (see Table 2, from Shettle & Fenn, 1976, 1979; 

World Climate Programme, 1986; D'Almeida et al., 1991). For the size distribution, the Log-

Normal distribution is well adapted to emphasize the individual components of a mixture 

(Davies, 1974, D'Almeida et al., 1991). 

 

5. Examples and comparisons 

The comparison of the computed Ke , Ks and ω0 values, normalized at 550 nm, obtained by 

6S with those given by World Climate Programme (1986) are reported for a Continental and an 

Urban dry aerosol model respectively in Table 3 and Table 4. The asymmetry parameters g is 

also reported in this table. In 6S, this parameter is already computed in an another subroutine, but 
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we can compute it here using  

∫

∫
+

−

+

−

θθλ

θθλθ
= 1

1

1

1

cosd),m,(P

cosd),m,(Pcos
g  

The comparison of the phase function of a Continental model (WMO/WCP-112) computed 

by the MIE subroutine with those by a precise code (subroutine AEROSO) is reported Fig.10 for 

several wavelengths. Also, in Fig. 11 we show the phase function computed using the volumic 

distribution dV/dlogr provided by a CIMEL sunphotometer during the SCAR-A field experiment 

(Sulfate Clouds Aerosol and Reflectances - America) that took place in July 1993 in the Eastern 

USA. 
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Parameters:  

For IAER=8 (Multimodal Log-Normal (up to 4 modes)) 
rmin, rmax, icp  
then for k=1 to icp, enter:  

σ, rM, Cij 
rn(λj), j=1,20 
ri(λj), j=1,20 

where  rmin and rmax are the radii min and max of the aerosol, 
icp is the number of mode (component), 
σ and rM are parameters of the Log-Normal size distributions, 
Cij is the percentage density of particles (see subroutine AEROSO), 
rn and ri are the real and imaginary index of refraction of each component, 
with r = rn-i·ri. You have to enter these parameters for 20 wavelengths used to compute 
the atmospheric signal, which are: 
0.350, 0.400, 0.412, 0.443, 0.470, 0.488, 0.515, 0.550, 0.590, 0.633, 0.670, 0.694, 0.760, 
0.860, 1.240, 1.536, 1.650, 1.950, 2.250, 3.750 

 
 
For IAER=9 (Modified Gamma distribution)  

rmin, rmax 
α, b, γ 
rn(λj), j=1,20 
ri(λj), j=1,20 

where α, b, and γ are the parameters of the Modified Gamma size distribution. 
 
 
For IAER=10 (Junge Power-Law distribution) 

rmin, rmax 
α 
rn(λj), j=1,20 
ri(λj), j=1,20 

where α is the parameter of the Junge Power-Law size distribution.  
 
 
For IAER=11 (Sun-photometer distribution (50 values max)) 

irsunph 
for k=1 to irsunph enter: 
r and dV/dlogr 
rn(λj), j=1,20 
ri(λj), j=1,20 

where irsunph is the number of value and dV/dlogr is usually provided by sunphotometers.  
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Table 1. Microphysical characteristics of the aerosol type (dry particles) used for the comparisons shown 

in Tables 3 and 4 (from WMO-WCP112). 

 Dust-Like Water Soluble Oceanic Soot 

rMi(µm) 0.500 0.0050 0.30 0.0118 

σi 2.990 2.990 2.51 2.00 

 

 

Table 2. Complex refractive indexes of the aerosol types (dry particles) used for the comparisons shown 

in Tables 3 and 4 (from WMO-WCP112). 

Dust-Like Water Soluble Oceanic Soot λ 
(µm) nr ni nr ni nr ni nr ni 
0.400 1.530 8.00E-3 1.530 5.00E-3 1.385 9.90E-9 1.750 0.460 
0.488 1.530 8.00E-3 1.530 5.00E-3 1.382 6.41E-9 1.750 0.450 
0.515 1.530 8.00E-3 1.530 5.00E-3 1.381 3.70E-9 1.750 0.450 
0.550 1.530 8.00E-3 1.530 6.00E-3 1.381 4.26E-9 1.750 0.440 
0.633 1.530 8.00E-3 1.530 6.00E-3 1.377 1.62E-8 1.750 0.430 
0.694 1.530 8.00E-3 1.530 7.00E-3 1.376 5.04E-8 1.750 0.430 
0.860 1.520 8.00E-3 1.520 1.20E-2 1.372 1.09E-6 1.750 0.430 
1.536 1.400 8.00E-3 1.510 2.30E-2 1.359 2.43E-4 1.770 0.460 
2.250 1.220 9.00E-3 1.420 1.00E-2 1.334 8.50E-4 1.810 0.500 
3.750 1.270 1.10E-2 1.452 4.00E-3 1.398 2.90E-3 1.900 0.570 
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Table 3. Comparison between 6S and WMO-WCP112 for the Continental model (normalized value-dry 

particles).  

Kext Ksca ω0 g λ 
(µm) 6S WMO 6S WMO 6S WMO 6S WMO 
0.400 1.40 1.40 1.27 1.27 0.902 0.901 0.643 0.646 
0.488 1.14 1.14 1.03 1.03 0.900 0.898 0.637 0.640 
0.515 1.08 1.08 0.967 0.967 0.899 0.897 0.635 0.638 
0.550 1.00 1.00 0.893 0.891 0.893 0.891 0.634 0.637 
0.633 0.849 0.849 0.755 0.754 0.890 0.888 0.629 0.633 
0.694 0.760 0.760 0.671 0.669 0.881 0.879 0.628 0.631 
0.860 0.577 0.577 0.487 0.486 0.844 0.841 0.629 0.633 
1.536 0.282 0.283 0.212 0.212 0.753 0.750 0.641 0.645 
2.250 0.150 0.151 0.115 0.115 0.765 0.761 0.738 0.741 
3.750 0.101 0.103 0.0796 0.0805 0.790 0.785 0.777 0.779 

 

 

Table 4. Comparison between 6S and WMO-WCP112 for the Urban model (normalized value-dry 

particles). 

Kext Ksca ω0 g λ 
(µm) 6S WMO 6S WMO 6S WMO 6S WMO 
0.400 1.48 1.48 0.980 0.976 0.664 0.660 0.600 0.600 
0.488 1.16 1.17 0.766 0.762 0.658 0.654 0.594 0.593 
0.515 1.09 1.09 0.715 0.711 0.655 0.651 0.592 0.592 
0.550 1.00 1.00 0.651 0.647 0.651 0.647 0.591 0.591 
0.633 0.828 0.829 0.535 0.532 0.646 0.641 0.587 0.587 
0.694 0.733 0.733 0.466 0.462 0.635 0.631 0.585 0.585 
0.860 0.542 0.542 0.322 0.319 0.593 0.588 0.584 0.583 
1.536 0.242 0.243 0.111 0.111 0.460 0.455 0.564 0.565 
2.250 0.123 0.124 0.0428 0.0426 0.347 0.342 0.583 0.585 
3.750 0.0647 0.0659 0.0177 0.0181 0.274 0.274 0.579 0.587 
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Fig. 1. Examples of an an(m,x) function. 

 

 

 
Fig. 2. Examples of a bn(m,x) function. 

 

 

 
Fig. 3. Examples of spherical Bessel functions jn(x) and nn(x). 
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Fig. 4. Example of a Dn(x) function. 

 

 

 
Fig. 5. Examples of a Dn(m,x) function. 

 

 

 
Fig. 6. Examples of a Gn(x) function. 
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Fig. 7. Examples of functions πn(θ) and τn(θ) for n=1 to 6. 

 

 
Fig. 8a. Junge Power-Law distribution: Model C (Deirmendjian, 1969). 

 

 
Fig. 8b. Modified Gamma distribution function: Volcanic Ash (WCP 112). 
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Fig.  8c. Log-Normal distribution function: Continental model (WCP 112). 

 

 

 
Fig.  9. Same as Fig. 8 but represented for dV/dlogr. 
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Fig. 10. Phase function (dry particle) as computed by the MIE subroutine and the one generated by 

the AEROSO subroutine (exact case). 

 

 
Fig. 11. Phase function as computed by the MIE subroutine using dV/dlogr provided by a sunphotometer 

CIMEL during the SCAR-A experiment (Hog Island, July 11, 1993). 
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SUBROUTINE ODA550 

 

Function: To compute the extinction cross section and the aerosol optical depth at λ = 550 

nm from the vertical distributions of the particle density (in particules/cm3). 

 

Description: We have considered the two profiles, suggested by Mc Clatchey et al (1971), 

corresponding to a visibility of 23 (clear) and 5 km (hazy) at ground level. The total numbers of 

aerosols for the clear atmosphere have been adjusted so that the total extinction coefficient at λ = 

550 nm becomes identical to the values used by Elterman (1964).  

This total extinction coefficient K (in km-1) is obtained from 

)z(N10)z(K 3
550

550 −σ= , 

where s is the extinction cross section in mm2 and N(z) the particle density (in part/cm3) (the 

factor 10-3 is to obtain an extinction coefficient in km-1). σ was computed with the same aerosol 

model as the one defined by Mc Clatchey et al., index of refraction equal to 1.50 and size 

distribution similar to Deirmendjian's model "C" (1969) (cut off has been extended from 5 to 10 

µm). The computed value of σ550 is 0.056032. 

The optical thickness τ is defined by  

∫
+∞

=τ
0

550
550 dz)z(K  

We obtain the optical thicknesses at 550 nm, 0.235 and 0.780 respectively for the two standard 

visibilities 23 and 5 km. For another visibility, we compute a new profile particle density from 

those defined for 23 and 5 km. The calculations were made using the following interpolation: 

)z(b
VIS

)z(a)z(N += . 

For example, we obtain:  

τ = 0.152  for V = 50 km, 

τ = 0.520  for V = 8 km. 

 

References: 

R.A. Mc Clatchey, R.W. Fenn, J.E.A. Selby, F.E. Volz, and J.S. Garing. Optical properties of the 

atmosphere, AFCRL-TR-71-0279, Environmental Research Paper, No. 354, L.G. Hancom 

Fiel Bedford, Massachusetts, U.S.A., 1971. 
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D. Deirmendjian, Electromagnetic scattering on spherical polydispersions, American Elsevier 

Pub. Co.,  New York, 290p. 1969.  

L. Elterman, Rayleigh and extinction coefficients to 50 km for the region 0.27 µm to 0.55 µm, 

Applied Optics, 3, 1139-1147, 1964.  

 



6S User Guide Version 3, November 2006 

 130

SUBROUTINE ODRAYL 

 

Function: To compute the molecular optical depth as a function of wavelength for any 

atmosphere defined by pressure and temperature profiles.  

 

Description: The optical depth is written  

∫
+∞

λλ β=τ
0

R dz)z(  

where βλ (z) is the molecular extinction coefficient at altitude z and for wavelength λ. It can be 

obtained from      
5

r 10)z(N)z( λλ σ=β ,       

with Nr(z) is the molecules number/cm3 at altitude z, and σλ is the extinction (or scattering) cross 

section in cm2. 

These two quantities are defined by 

⎟
⎠
⎞

⎜
⎝
⎛

δ−
δ+

+λ
−π

=σλ 76
36

)2n(N
)1n(24

22
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2
s
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22
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3

 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

)z(T
1515.273

25.1013
)z(PN)z(N sr , 

where P(z) and T(z) are respectively the pressure and temperature at the altitude z. Recall that ns 

is the air refractive index calculated at 15°C and 1013 mb, Ns is the molecular density at z = 0 in 

STP conditions, and δ is the molecular depolarization factor. 

We have taken: 

* for refractive index 

22
8

s 9.38
15997

130
240603013.834210)1n( −− λ−

+
λ−

+=⋅−  

where λ is the frequency in cm-1, 

* Ns=2.54743·1019, 

* and the depolarization factor δ = 0.0279 following Young's (1980). 

This depolarization factor is also used to compute the Rayleigh phase function (see subroutine 

CHAND) according to 
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γ+
γ

+Θ+
γ+
γ−

=Θ
21

3)cos1(
21

1
4
3)(P 2 , 

where Θ is the scattering angle, and  γ=δ/(2 –δ). 

 

References : 

B. Edlen, The refractive index of air, Metrologia, 2, 71-80, 1966.  

L. Elterman, Rayleigh and extinction coefficients to 50 km for the region 0.27 µm to 0.55 µm,  

Applied Optics, 3, 1139-1147, 1964.  

D.V. Hoyt, A redetermination of the Rayleigh optical depth and its application to selected solar 

radiation problems, Journal of Applied Meteorology, 16, 432 - 436, 1977.  

A. T. Young, Revised depolarization corrections for atmospheric extinction, Applied Optics, 19, 

3427-3428, 1980.  
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SUBROUTINE OSPOL 

 

Function: To compute the atmospheric intrinsic reflectance for the case of either satellite or 

aircraft observation. Also, to compute the downward radiation field needed for the integral 

formula of ρ  and 'ρ  (see Chapter I, §2.5.1, Eqs. (25)-(26)) used in the computation in case of a 

non-Lambertian target. 

 

Description: The general purpose of the successive order of scattering is to solve 

numerically the equation of radiative transfer for upward (Eq. (1)) and downward radiation (Eq. 

(2)) for any optical thickness τ. If τ1 is the total optical thickness and µ the cosine of the view 

angle, then we can write:  

 )01('de),;'(Je),;(I),;(I
1

1 /)'(/)(
1 ≥µ≥

µ
τ

φµτ+φµτ=φµτ ∫
τ

τ

µτ−τ−µτ−τ−  (1) 

 )01('de),;'(Je),;0(I),;(I
0

/)'(/ ≥µ≥
µ
τ

φµ−τ+φµ−=φµ−τ ∫
τ

µτ−τ−µτ−  (2) 

where the source function ),;(I φµτ  accounts for the interaction of the present radiation field with 

the particles of a layer located at τ, so that:  

 0/
000

0
2

0

1

1

0 e),;,(PF
4

'd'd)',';,(P)',';(I
4

),;(J µτ−
π

−

φµ−φµπ
π
ω

+φµφµφµφµτ
π
ω

=φµτ ∫ ∫  (3) 

The second term of Eq. (3) represents the sun source F0 transversing the path along ),( 00 φµ  

directly to the level τ and then being scattered in direction ),( φµ  (primary scattering). 

To solve this differential equation, one has to fix boundary conditions which are: 

 0),;0(I =φµ−  (4) 

 0),;(I 1 =φµτ  (5) 

These conditions express the fact that there is neither diffuse downward nor upward radiation at 

the top and bottom of a finite atmosphere. 

The convention is to describe the atmosphere with the top at τ=0 and the bottom at τ=τ1. The 

upward radiation correspond to +µ and the downward to −µ with (1 ≥ µ > 0), as depicted in 

Fig. 1. 
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Fig. 1. Schematic view of the radiative transfer problem for a plane parallel atmosphere. 

 
Within the successive order of scattering method, the equation of radiative transfer is solved 

numerically by iteration. First, the equation is solved for each layer considering only the primary 

scattering radiation (one interaction between the source (sun) and the atmosphere), giving for 

Eqs. (1) and (2): 

 )01(e),;,(PF
4

),;(I 0/
000

0)1( ≥µ≥φµ−φµπ
π
ω

=φµτ µτ−  (6) 

 )01(e),;,(PF
4

),;(I 0/
000

0)1( ≥µ≥φµ−φµ−π
π
ω

=φµ−τ µτ−  (7) 

Then for higher orders of scattering we write 

 [ ] τ∆φµτ
µ

=φµτ µτ−τ−

=
∑ /)(

j

p

ji

)n(
j

)n( je),;(J1),;(I  (8) 

 [ ] τ∆φµ−τ
µ

=φµ−τ µτ−τ−

=
∑ /)(

j

j

ji

)n(
j

)n( je),;(J1),;(I  (9) 

where p represents the number of layers used for the decomposition of the atmosphere, τj the 

optical thickness at level j and ∆τ is the increment in optical thickness between two successive 

layers. J(n) is computed from I(n-1) as:  
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 'd'd)',';,(P)',';(I
4

),;(J
2

0

1

1

)n(0)n( φµφµφµφµτ
π
ω

=φµτ ∫ ∫
π

−

 (10) 

Within the code, a numerical integration of Eq. (10) is performed using the decomposition in 

Fourier series (for φ ), Legendre polynomials (for the phase function) and Gaussian quadrature 

(for µ). 

The effects of polarization are included through the calculation of four components of the 

Stokes vector, { }VUQII ,,,=
r

. The first component, I , describes the intensity of radiation; the 

other three characterize perpendicular (Q ), parallel (U ) and elliptical (V ) polarization. The 

degree, angle and ellipticity of polarization are easily calculated from these last three 

components using simple mathematical formulas. Under the assumption of linearly polarized 

light, which is the case of 6SV1, 0=V . In scalar mode, { }0,0,0,II =
r

. 

 

References: 

K.-N. Liou, An introduction to atmospheric radiation (Academic Press, Inc., California, 1980). 

J. E. Hansen and L. D. Travis, Light scattering in planetary atmospheres, Space Science Reviews, 

16, 527-610, 1974. 

J.L. Deuzé, M. Herman, and R. Santer, Fourier series expansion of the transfer equation in the 

atmosphere-ocean system, Journal of Quantitative Spectroscopy and Radiative Transfer, 

41(6), 483-494, 1989. 

J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of polarized light in planetary 

atmospheres: basic concepts and practical methods (Kluwer Academic Publishers, 

Dordrecht, the Netherlands, 2004). 
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SUBROUTINE SCATRA 

 

Function: To compute the scattering transmission functions for three atmospheric models: 

Rayleigh, aerosol and a mixture of both along two paths (downward and upward). Also, to 

compute the spherical albedo. 

 
Description: As in ATMREF, we have to compute the transmission function and albedo for 

three different atmospheres and three sensor configurations. The successive order of scattering 

method (subroutine ISO) is used for the aerosol and mixed cases, or when the sensor is inside the 

atmosphere on board an aircraft. In case of a Rayleigh atmosphere, we use an accurate analytical 

formula which has sufficient accuracy and enables us to save computer time. The formula is 

explicitly coded into SCATRA for the transmission; and CSALBR is called for the albedo. For 

ground measurements, the upward transmission is set to 1.0 and the spherical albedo to 0.0, 

because we neglect the atmosphere between the sensor and the target.  

We only give here the formula of the Rayleigh transmission, which is based on the two 

stream method adapted to the case of a single scattering albedo equal to 1.0 (Rayleigh case). The 

total transmission T(µ) on the path of length µ can be approximated by:  

 [ ] [ ]
R)3/4(

e)3/2()3/2()(T

R

τ+
µ−+µ+

=µ
µ
τ

−

 (1) 

where τR is the Rayleigh optical thickness and µ is the cosine of the solar/observation angle. The 

accuracy of Eq. (1) versus the "exact" computation (successive orders of scattering) is illustrated 

in Fig.1. 
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Fig. 1. Accuracy of Eq. (1). 

 

References: 
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W.E. Meador and W.R. Weaver, Two-Stream approximations to radiative transfer in planetary 
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the Atmospheric Sciences, 37, 630-643, 1980.  

R.H. Welch and W.G. Zdunkowski, Back scattering approximations and their influence on 

Eddington-Type solar flux calculation, Beitraege zur Physik der Atmosphaere, 55(1), 28-42, 

1982.  

W.G. Zdunkowski, R.M. Welch, and G. Korb, An investigation of the structure of typical two-

stream methods for the calculation of solar fluxes and heating rates in clouds, Beitraege zur 

Physik der Atmosphaere, 53(2), 147-166, 1980.  
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SUBROUTINE TRUNCA 

 

Function: To decompose the aerosol phase function in a series of Legendre polynomials 

used in the OSPOL and ISO subroutines.  

 

 

Reference: 

J. Lenoble, Radiative Transfer in scattering and absorbing atmospheres: standard computational 

procedures, 83-84, A. Deepak Publishing, 1985. 

 

 


